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Remarkable low-energy properties of the pseudogapped semimetal Be5Pt
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We report measurements and calculations on the properties of the intermetallic compound Be5Pt. High-quality
polycrystalline samples show a nearly constant temperature dependence of the electrical resistivity over a wide
temperature range. On the other hand, relativistic electronic structure calculations indicate the existence of a
narrow pseudogap in the density of states arising from accidental approximate Dirac cones extremely close to
the Fermi level. A small true gap of order ∼3 meV is present at the Fermi level, yet the measured resistivity is
nearly constant from low to room temperature. We argue that this unexpected behavior can be understood by
a cancellation of the energy dependence of density of states and relaxation time due to disorder, and discuss a
model for electronic transport. With applied pressure, the resistivity becomes semiconducting, consistent with
theoretical calculations that show that the bandgap increases with applied pressure. We further discuss the role
of Be inclusions in the samples.
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I. INTRODUCTION

Intermetallic compounds involving Be have not been the
subject of intensive study, in part because of the element’s
toxicity. However, several recent measurements in the Be-
Pt series have displayed remarkable properties. Be21Pt5 is a
complex metallic alloy that crystallizes in the cubic space
group F 4̄3m, where polyhedral 26-atom Pt-Be clusters dec-
orate four Wycoff sites, resulting in a 416-atom conventional
unit cell. Unlike most complex metallic alloys, this material
displays superconductivity below a critical temperature of
Tc = 2.06 K [1].

Be5Pt, on the other hand, crystallizes in the same space
group but into a much simpler structure with only 24 atoms
per conventional unit cell. The electronic structure is usually
reported as semiconducting, with a gap of 190 meV deduced
from the high-temperature resistivity. This is consistent with
the energy scale found within density functional theory (DFT)
[2] corresponding to the excitation of electrons from the top
of the valence band to a sharp peak in the conduction band.
However, there is a general depletion of the density of states
over a wider range, decreasing down to the Fermi level,
and it is difficult to judge from the calculations presented in
Ref. [2] whether a true gap exists at some lower energy scale.
Experimentally, the resistivity is metallic but with a nearly
temperature-independent behavior over the entire measured
temperature range 3–300 K. Though this suggests that the sys-
tem is a metal at the lowest energies, quantitative estimates are
difficult, as the samples contain a filamentary secondary phase
of Be metal. The low-temperature electrical resistivity of Be
(6.4 × 10−9 μ�cm) can be substantially smaller than that of

Cu (3.4 × 10−7 μ�cm) [3]. The existence or nonexistence of
a true gap, and the origin of the extremely flat temperature
dependence of the resistivity below 100 K, remain puzzles.

In the pioneering work of Ref. [2], the intrinsic resistivity
of Be5Pt crystals, T independent over a 200-K range, was
reported on samples tens of microns in size, and electronic
structure calculations on a large energy scale were presented.
Here we follow up these intriguing results with a closer ex-
amination of the low-energy band structure, an analysis of
the unusual transport behavior, and studies of the pressure
dependence of electronic properties up to 30 GPa.

First, using an arc melting technique, we have grown
polycrystalline samples which we characterize by x-ray
diffraction, resistivity, Hall effect, and specific heat mea-
surements. We present basic sample characterization of our
polycrystals in Sec. II.

We have also performed DFT calculations for this system,
focusing in Sec. III on the low-energy band structure near the
Fermi level. The unusual structure in the DOS turns out to be
due to light-mass valence and conduction bands, consisting
of Pt d states and Be p states, that nearly touch the Fermi
level and exhibit a tiny indirect bandgap of order only 3 meV.
This makes Be5Pt the only binary, nontopological intermetal-
lic system with calculated bandgap significantly smaller than
room temperature [4]. Even more intriguingly the two bands
near the Fermi level provide a quasilinear DOS until nearby
heavier mass bands are reached; these determine the bandgap
previously stated in the literature. Finally, at slightly higher
energies we note the existence of doubly degenerate Weyl
loops within 100 meV of the Fermi level. This suggests
that electron doping with, e.g., relatively small amounts of
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FIG. 1. Measured and calculated x-ray pattern for Be5Pt. The
smaller peak on the high angle side of the measured higher angle
lines is due to the incident Cu K-alpha x-ray radiation having two
wavelengths (K-alpha1 and K-alpha2) while the calculated pattern
in red is for a single incident wavelength. A small offset has been
introduced to displace the patterns.

Au, could create a system with Weyl states at the Fermi
level.

Next, we provide in Sec. IV a simple model to explain
the low-temperature transport, including the remarkable fact
that the resistivity is nearly flat in temperature, whereas the
Hall coefficient decreases rapidly with decreasing tempera-
ture. The model relies on the anomalous scattering behavior
of conduction electrons from static disorder in a pseudogap
state, analogous to Dirac metals like graphene, although the
quasi-Dirac point in this system is accidental in nature.

Finally, in Sec. VI we present calculations and measure-
ments of Be5Pt under pressure. DFT calculations in the F 4̄3m
structure predict that the tiny gap near the Fermi level fur-
ther opens with pressure, with concomitant enhancement of
resistivity and eventually true semiconducting behavior. This
is precisely what is observed in the measurements reported
here. No structural transitions are anticipated theoretically, nor
does the electrical resistivity data suggest such transitions up
to 30 GPa.

II. MATERIALS CHARACTERIZATION

We prepared polycrystalline samples of Be5Pt following a
strategy guided by the phase diagram of Pt-Be, which shows
the phases (starting from the Be-rich side of the phase di-
agram) Be, Be5Pt, and then possibly Be21Pt5 (or Be4.2Pt)
[1]. The Be21Pt5 phase is described [1] as superconducting
(resistive onset) at Tc = 2.06 K. When we prepared Be5Pt
via arc melting, we therefore added extra Be (which has a
high vapor pressure at the elevated melting temperature) to
compensate for the Be mass loss during the melting process.
As long as the sample remains Be-rich after arc melting, the x-
ray characterization shows single phase cubic Be5Pt structure
(Fig. 1), without detectable impurity phases.

If sufficient Be is evaporated in the production process to
produce a sample more Be poor than the 5:1 ratio in Be5Pt, the
x-ray pattern becomes much more complicated, and supercon-

FIG. 2. 600× magnification image of a slightly Be-rich (∼5%)
Be5Pt sample showing Be second phase regions (blue/purple).

ductivity (absent in the stoichiometric or superstoichiometric
Be5Pt samples) with a Tc resistive onset of 2.47 K is detected.
We presume this is indicative of the presence of a minor
amount of the Amon et al. Be21Pt5 phase [1], although our Tc

onset is slightly higher. In our typical preparations of Be-rich
Be5Pt, the excess Be tends to form connected regions (see
micrograph in Fig. 2), leading to a low-temperature electri-
cal resistivity significantly lower than “ideal” stoichiometric
Be5Pt, where according to Amon et al. [2], ρ0 as T → 0 is
∼360 m� cm. In Fig. 3, we show the resisitivity of a sample
of Be5Pt, together with the low-temperature Hall coefficient
as a function of temperatures. Our samples of Be-rich Be5Pt
have ρ0 as T → 0 between 0.45 and 2.0 m� cm.

The presence of 5% second phase of Be threaded through
the sample as illustrated in Fig. 2 is not an impediment
to determining the temperature dependence of the majority
phase—see Fig. 3. Similarly, the temperature dependence of
the Hall effect (inset to Fig. 3) and the pressure response
of the resistivity (discussed below in Sec. VI) can also be
determined. The essential point is that the resistivity of Be
[5,6] is so much smaller than the intrinsic resistance of Be5Pt
[2] that the measured resistance of our composite sample,
treated in a resistor network model, would be much smaller
than our measured value of 2 m� cm if the Be percolated
across the sample.

FIG. 3. Resistivity and low-temperature Hall coefficient (insert).
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TABLE I. Coordinates of Pt and Be under ambient pressure
obtained from DFT structure relaxation.

Site x y z

Pt 4a 0 0 0
Be1 16e 0.124 0.124 0.624
Be2 4c 0.25 0.25 0.25

III. ELECTRONIC STRUCTURE

A. Structure and method

Be5Pt crystallizes in the noncentrosymmetric space group
F 4̄3m (No. 216), with latomic positions given in Table I.
There are four formula units per conventional cell. Pt, Be1,
and Be2 sit at Wyckoff positions 4a, 4c, and 16e, respectively.
See Fig. 4. The linearized augmented plane wave method,
as implemented in WIEN2K [7], is used to carry out first-
principles calculations. The lattice constant of Be5Pt is 5.975
Å. The generalized gradient approximation (GGA) [8] is cho-
sen as the exchange correlation functional. Relativistic effects
are included and spin-orbit coupling is treated with the second
variational method. Muffin-tin radii of Pt and Be are 2.47 and
1.98 a.u., respectively. Rmin

MT Kmax, which determines the plane
wave cutoff in the interstitial region, is kept at 7. To properly
describe the electronic structure of Be5Pt near the Fermi level,
we adopt a �-centered k mesh with 11 921 k points in the
irreducible Brillouin zone wedge. For the structure prediction
calculations, we used the Vienna Ab initio Simulation Package
(VASP). The electronic structures and the bandgaps of Be5Pt
obtained using VASP and WIEN2K are similar.

B. Results and discussions

The calculated density of states (DOS) of Be5Pt has a
“pseudogap” Epg of roughly 400 meV, where the DOS is
strongly suppressed, and in addition, a true gap � of ∼3 meV

FIG. 4. The crystal structure of Be5Pt is face-centered cubic. Be
atoms sit at two nonequivalent Wyckoff positions 16e (Be1) and 4c
(Be2). Be1 forms networks of corner sharing tetrahedra [2]. The Be1-
Be1 bond length is 2.10 Å, while the Be1-Be2 bond length is 2.48 Å.
The distance between two nearest Be2 atoms is 4.22 Å.

FIG. 5. (a) Electronic structure (left) and density of states (right)
of Be5Pt from DFT. (b) Electronic structure (left) and density of
states of Be5Pt within 0.4 eV of the Fermi level. DOSs are in units
of states per eV per primitive cell. The two lowest conduction bands
are linear along X → W and they touch at the X point (Weyl point).

(see Fig. 5). Low-temperature transport properties of Be5Pt
are therefore dominated by the states in close vicinity to
the Fermi level, i.e., the states near the valence band maxi-
mum and the conduction band minimum. The valence band
maximum at (0, 0.28, 0.28) and its equivalent k points are
trivial M3-type van Hove singularities with light effective
masses mx = 0.27me, my = 0.15me, and mz = 0.17me. At
the W point, the lowest two unoccupied states are split by
200 meV due to spin-orbit coupling. In addition, dispersion
of the lowest unoccupied conduction band near W is strongly
anisotropic, with relatively flat dispersion along W → X and
a steep slope along W → K .

Be5Pt crystallizes in space group (No. 216) with broken
inversion symmetry. The inversion symmetry breaking of the
bulk Be5Pt results in Dresselhaus spin-orbit coupling (SOC)
which lifts spin degeneracy at general k points in the Brillouin
zone. Symmetry analysis of space group (No. 216) [9] reveals
that SOC vanishes along the � → X path, which our DFT cal-
culations confirm. Bands along � → X are therefore doubly
degenerate; see Fig. 6(b). In Fig. 6(a), the band dispersions of
the two lowest conduction bands near X are shown, demon-
strating the linear dispersion near the Weyl point at X .

Because the DOS has a sharp edge above the Fermi level,
a small amount of electron doping can shift states near W and
X below the Fermi level. In Fig. 6, we plot the band disper-
sions of the two lowest conduction bands near the X point
on the kx − ky plane. We have chosen (001) as the X point.
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FIG. 6. (a) DFT low-energy dispersion of the two lowest unoc-
cupied bands on the kx − ky plane, i.e., the plane perpendicular to the
� − X direction. (b) Band dispersion of the two lowest unoccupied
bands on the kx-kz plane. Dresselhaus spin-orbit coupling vanishes
along � − X which leaves the twofold spin degeneracy intact. Spin
textures of the lowest and the next lowest unoccupied bands are
shown in (c) and (d).

Interestingly, local band dispersions on the kx − ky plane are
linear near X , which is in agreement with Ref. [10]. The
effective Hamiltonian near X can therefore be written as

HD = β(kxσx − kyσy). (1)

σx and σy are Pauli matrices and kx/y are crystal momenta
along conventional reciprocal lattices. As a result of the linear
Dresselhaus SOC, the expectation values of sx and sy are
dependent on kx and ky. We compute the spin textures of the
two lowest conduction bands using the WIEN2K code [11] and
find that the DFT spin textures are exactly what would be
obtained from the linearized HD in Eq. (1).

To understand the effect of pressure on the electronic
structure of Be5Pt, we carry out DFT calculations of Be5Pt
under 5, 10, 20, 30, 40, 50, 70, 90, 110, 130, and 150 GPa.
Under ambient pressure, the indirect bandgap of Be5Pt is only
3 meV. As pressure increases from 0 to 70 GPa, the indirect
bandgap goes up quickly to 78 meV. Above 70 GPa, it starts
to slowly decrease with higher pressure. The pseudogap, on
the other hand, increases with pressure monotonically from
0.4 eV under ambient pressure to 1.2 eV under 150 GPa.

We note that pressure has a dramatically different impact
on occupied vs unoccupied states near the Fermi level. The oc-
cupied states within 0.25 eV of the Fermi level are insensitive
to changes in pressure. For the unoccupied states within 1 eV
above the Fermi level, pressure has the effect of transferring
a significant amount of spectral weight away from the Fermi
level, thereby widening the pseudogap.

It is interesting to consider what may happen to the prop-
erties of this material with a small amount of electron doping,
e.g., with Au. First, we expect the electronic properties to
change rather rapidly, due to the steep rise in the calculated
DFT density of states on the electron doped side at ambient
pressure. These calculations suggest that as little as 2% Au
could change the density of states at the Fermi level by orders

FIG. 7. Cartoon of Be5Pt band structure near the Fermi level at
ambient pressure.

of magnitude. In addition, slightly more Au doping should
raise the chemical potential to the ∼0.1 eV level where the
Weyl point would be at the Fermi surface, assuming a rigid
band shift. We plan to study this doping sequence in a subse-
quent study.

IV. INTERPRETATION OF TRANSPORT

The rather high value of the measured resistivity of our
samples is consistent with a semiconducting behavior, as
claimed in Ref. [2], but the temperature dependence of the
resistivity, constant over more than 100 K at low T , is not.
Electronic structure calculations presented in Sec. III (see
Fig. 5) suggest, in fact, an asymmetric pseudogap in the den-
sity of states from about −0.35 eV to 0.05 eV, with a peak in
the unoccupied density of states at the upper edge created by a
flat band. Closer to the Fermi energy, a tiny true indirect gap of
about 3 meV opens. At first glance, such a pseudogap/full-gap
combination might be expected to lead to a semiconducting
temperature dependence of the DC transport, but we argue
here that this may be misleading.

Let us assume that we can approximate the low-energy
physics by an asymmetric, very slightly gapped V-shaped
density of states with a tiny true gap, � = �e + �h ∼ 3 meV,
as illustrated in the schematic Fig. 7. We model the elec-
tronic structure relevant for low-temperature transport with
two Dirac-like bands: an electronlike band, εe

k = γek and a
holelike one, εh

k = −γhk, where k is measured with respect
to the near-touching point of the band and we assume γ h >

γ e. Such a model yields to a density of state linear in en-
ergy N (εk ) ∼ εk similar to the band structure calculations.
Comparing with Fig. 7, the model discussed in this section
corresponds to zero gap �α = 0, α = e, h, and zero chemical
potential μ, but it can be easily generalized to include hole
doping or gapping the band, both of which are discussed in
the Appendix.

Electronic transport in a typical metallic system with large
nonzero density of states at the Fermi level may normally
be well described by assuming a constant carrier scattering
time τ ; this leads to a temperature-independent resistivity and
Hall coefficient. Both the band structure calculations and the
experimental Hall data for this system presented here suggest
that this picture is incorrect. In fact, since the density of
states is strongly energy dependent near the Fermi level, a
constant relaxation time approximation is no longer valid. Let
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us assume that the transport at low temperatures is dominated
by a small number of weakly scattering pointlike defects with
concentration ni and potential u. As shown in the Appendix
the scattering rate from pointlike weak impurities for such a
model is given by [12]

1

τα (ω)
= 2
′′(ω) = �0

α|ω|, (2)

where we introduced the dimensionless parameter �0
α =

niu2/γ 2
α , characterizing the scattering strength. Note that we

have set both the lattice parameter a = 1 and the reduced
Planck constant h̄ = 1 in this and subsequent expressions.

The longitudinal conductivity is given by the sum over the
bands of the hole and electron contributions that are given by

σα
xx ∼ e2

2π�0
α

. (3)

From (3), we see that the T dependence of the H = 0 longitu-
dinal conductivity vanishes to leading order, as expected. Note
there is no universal term in the conductivity, due to the ne-
glect of self-consistency in the Born approximation, which is
relevant only over an exponentially small temperature range.
The T dependence of the conductivity from inelastic scatter-
ing will of course contribute at sufficiently high temperatures,
but this depends on details of the system, such as Debye
frequency, phonon distribution, etc., that we do not model
here.

The analysis of the Hall coefficient requires the computa-
tion of the transverse component of the conductivity tensor
σxy. Also in this case, the total conductivity is given by the
sum of the electron and hole contributions. As detailed in the
Appendix and discussed in [13], the cyclotronic frequency ωc

for a Dirac-like electronic structure is singular at zero energy,
thus the denominator (1 + ω2

cτ
2) cannot be neglected even

if the magnetic field is small. Details of the derivation can
be found in the Appendix, the final result for the transverse
conductivity of the α band reads

σα
xy = ± e2

2π�0
α

κ2
α

∫ 0

−∞
dε

ε2

ε4 + κ4
α

(
− ∂ f

∂ε

)
, (4)

where the parameter κα has the dimensions of energy and it is
defined as κ2

α = eHv2
α/�0

α with vα = γα the band velocity. The
denominator determines the σxy ∼ T 2 dependence as T → 0
and 1/T 2 as T → ∞. The crossover between low and high T
behaviors depends on the value of κα . Now we discuss com-
bining the contributions of hole and electron bands. Notice
that in a completely symmetric model for the Dirac bands, the
system would be compensated, i.e., σ h

xy = −σ e
xy and the Hall

coefficient would be zero. However, in our model in order
to reproduce the particle-hole asymmetry of the density of
states we assume γ h > γ e, as a consequence here κh > κe.
The asymmetry of the Dirac bands of our model implies that
the total conductivity is dominated by the hole contribution
since γh > γe. This effect is enhanced by the T dependence of
the chemical potential, which moves to negative values as T
increases (see Appendix).

Despite the fact that σxy increases with increasing T , a
consistent explanation of the Hall coefficient temperature de-
pendence reported in Fig. 3 is difficult using this model alone.

This is because the Hall coefficient is given by

RH = σxy

H
(
σ 2

xx + σ 2
xy

) , (5)

and the T dependence of RH depends not only on σxy, but
in principle also on σxx(H ) [see Eq. (A6)]. Applying Eq. (5)
directly with the current model dominated by the hole band,
gives an RH with positive sign that increases as T → 0 in con-
trast to the experiment. The strong T dependence of σ h

xx(H ) ∼
T 4 at low T is at the root of this discrepancy. As discussed
in the Appendix, the inclusion of a small gap in the model
does not changes the Hall coefficient T behavior. However,
if one assumes the Fermi level lies a few meV inside the
electron band, we recover a non-negligible contribution of
the electron band at low temperature. This effectively cuts off
the singular behavior of RH at low temperature and, within a
certain range of parameters, can reproduce a RH (T ) similar to
the one experimentally observed as shown in the Appendix.

However, this result requires fine tuning, which is probably
unreasonable given the other uncertainties in the analysis.
The main source is the existence of Be inclusions in the
samples, as shown in Fig. 2. Although the precise values of
the resistivity of the Be inclusions in our samples are un-
known, they clearly correspond to a conductivity much larger
[5,6] than the intrinsic Be5Pt material, in agreement with the
conclusions of Ref. [2]. If we crudely model our samples
as consisting of two parallel conducting channels, we expect
that σ = σ Be + σ Be5Pt, with σ Be � σ Be5Pt. Note σ Be is the
effective conductivity of the Be conducting network. Because
σ Be5Pt

xx is also T independent and smaller than σ Be
xx , we may

neglect it entirely in the estimation of RH , and assume σxx ≈
σ Be

xx , quite T independent over 100 K, and furthermore only
weakly dependent on H due to its strong metallic character.
On the other hand, if σ Be

xy is not too much larger than σ Be5Pt
xy ,

its temperature dependence will dominate the extremely weak
temperature dependence of σ Be

xy . Furthermore, while the Hall
coefficient of pure hcp Be metal has a positive or negative sign
according to the direction of the magnetic field perpendicular
to or parallel to the basal plane [14], the former value is signif-
icantly larger, and is expected to dominate in the Be inclusions
present here; we therefore assume that σ Be

xy is constant in T
and has a positive sign, like σ Be5Pt

xy , which is dominated by
the light hole states. The temperature dependence of the latter
dominates, however, so we conclude that for our samples,

RH ≈ σ Be
xy + σ Be5Pt

xy

H
(
σ Be

xx

)2 ∼ 1 + cT 2, (6)

where c is a positive constant. This result agrees qualitatively
with the measured Hall coefficient of the composite sample.
If samples can eventually be prepared without the Be inclu-
sions, the Appendix contains more detailed predictions for the
expected intrinsic behavior.

V. CALCULATIONS UNDER PRESSURE

We used the Genetic Algorithm for Structure and Phase
Prediction (GASP) [15,16] to search for possible phase tran-
sitions in Be5Pt under pressure at fixed composition. Two
GASP searches were performed at 50 GPa and 150 GPa. The
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FIG. 8. Enthalpy difference of structures generated in GASP at
50 GPa and 150 GPa with respect to the lowest enthalpy structure
Hr , shown in red. All of the low enthalpy structures have the F 4̄3m
space group. The inset shows the primitive lattice with the lowest
enthalpy.

ambient pressure atomic structure, along with 20 randomly
generated structures, were used to initialize the GASP searches.
GASP uses a genetic algorithm to perform global optimization,
minimizing the enthalpy of formation in candidate structures.
The algorithm iteratively creates “offspring” structures from
“parent” structures by using genetic operators like mutation or
mating, corresponding to operations like adding and remov-
ing atoms or splicing two structures, respectively. Structural
features or “genes” which tend to lower the enthalpy of a
structure are promoted in later structures as the algorithm
progresses.

VASP [17,18] was used to relax the structures and calculate
the enthalpies. The cutoff energy for the plane-wave basis
set was set to 520 eV. We used the projector augmented
wave (PAW) pseudopotentials [19] and the Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation [8]
(GGA) for the exchange-correlation functional. A k-point
density of 20 k points per Å−1 was used for all the DFT
relaxations. A stopping criterion of 600-DFT relaxations was
used for both GASP searches. Setting the maximum number
of atoms in generated structures limits the search space to
structures containing 6 or 12 atoms. In a previous work by the

authors of GASP, it was noted that increasing the maximum
system size also exponentially increases the number of local
minima in the energy landscape [20]. Efficiency is further re-
duced because individual energy calculations are much more
expensive for larger structures. In another work by Lyakhov
et al., it was noted that randomly generated large cells of-
ten have very poor formation energies; many are glasslike
structures [21]. Based on these points, we have enforced a
maximum of 12 atoms per generated configuration, equiva-
lent to two formula units, based on available computational
resources.

Figure 8 shows the enthalpy of structures generated by
GASP at 50 GPa and 150 GPa. During the GASP searches,
structures that were predicted to be more stable relaxed to
structures with the F 4̄3m space group, which is the same
as that of the ambient condition ground-state structure. This
indicates that no structural phase transition is seen in PtBe5
under pressure at 50 GPa and 150 GPa. Figure 9 shows the
enthalpy and volume as a function of the pressure across the
lowest enthalpy structures from the GASP runs at 50 GPa and
150 GPa. Four of the five lowest enthalpy structures from both
the GASP runs had the same symmetry. The P63mc structure
shows almost no variation in enthalpy and volume with re-
spect to the F 4̄3m structure because they are related through
stacking faults. The Pt atoms in F 4̄3m form an ABC-type
closed pack stacking whereas they form an ABA-type closed
pack stacking in P63mc. The structure with the F 4̄3m space
group has the lowest enthalpy and thus the ambient condition
ground-state structure remains the most stable structure up to
150 GPa.

The absence of pressure-induced structural transitions is
not surprising given that the ambient pressure structures of
both Pt and Be individually exhibit a remarkable stability
under pressure. Platinum remains in the ambient pressure fcc
structure to at least 304 GPa [22]. The stability of fcc Pt under
pressure can be attributed to the fact that its neighbor to the
right in the periodic table, Au, also adopts the fcc structure.
Pressure is well known to induce a transfer of s electrons
into d states in several elements. This s → d transfer often
leads to structural transitions. As s → d transfer occurs in
Pt, it becomes more Au-like. However, Au is also in the fcc
structure, so no structural transition occurs [23]. Beryllium

FIG. 9. (a) Enthalpy and (b) volume relative to the F 4̄3m ambient condition ground-state structure as a function of pressure of the lowest
enthalpy structures from the GASP structure search at 50 GPa and 150 GPa.
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remains in the ambient pressure HCP phase to at least 174 GPa
[24]. In the heavier alkaline earth elements (Ca, Sr, and Ba),
pressure-induced s → d transfer leads to the appearance of
complex crystal structures at high pressure [25]. However,
Be has no nearby d states. Lithium, adjacent to Be, also has
no nearby d states, yet exhibits a number of complex crystal
structures under relatively low pressures, due to the overlap of
the 1s2 core electrons. However, the 1s2 core of Be (1.38 pm)
is substantially smaller than that of Li (1.86 pm) [26], and
hence core overlap will not begin to occur until much higher
pressures than for Li.

The arguments above involve solids formed from the iso-
lated elements Be and Pt. Of course, in a compound, there
could always be another structure that exhibits a smaller vol-
ume of lower energy, hence decreasing the enthalpy. However,
the PtBe5 compound is a comparably close packed. Therefore,
a priori, we did not anticipate a phase transformation and
confirmed this expectation by a genetic algorithm search. A
concrete example of such a mechanism is the structural tran-
sition in Hume-Rothery phases [27], driven by Fermi-sphere
Brillouin-zone interactions, as well as pressure-induced struc-
tural transitions [28]. The basic idea is that when the Fermi
sphere is close to the Brillouin zone boundary, a gap can open,
thus lowering the energy. A structural transition can then oc-
cur if the transition brings additional portions of the Brillouin
zone into close proximity with the Fermi sphere (thus further
lowering the energy). Due to the low carrier density of Be5Pt,
this mechanism is unlikely to be relevant, however.

VI. PRESSURE DEPENDENCE OF RESISTIVITY

For the high-pressure resistivity measurements, a micro-
sized Be5Pt sample (∼40 × 40 × 5 μm3) was cut from a
larger piece of polycrystalline sample and placed in a
gas-membrane-driven diamond anvil cell (OmniDAC from
Almax-EasyLab) along with a ruby (∼10 μm in diameter)
for pressure calibration [29]. Two opposing diamond anvils
(0.15- and 0.5-mm central flats) were used, one of which was
a designer-diamond anvil (0.15-mm central flat) with six sym-
metrically deposited tungsten microprobes in the encapsulated
high-quality-homoepitaxial diamond [30]. A 316 stainless
steel metal gasket was pre-indented from ∼150 to 25 μm
in thickness with a hole (∼80 μm in diameter), which was
filled with soapstone (steatite) for insulating the sample and
which also served as the pressure-transmitting medium. For
the resistivity calculation, we used the van der Pauw method
(assuming an isotropic sample in the measurement plane), ρ

= π tR/ln 2, where t is the sample thickness (∼5 μm) with a
current of 1 mA. The high-pressure resistivity cell was placed
inside a customized continuous-flow cryostat (Oxford Instru-
ments). A home-built optical system attached to the bottom of
the cryostat was used for the visual observation of the sample
and for the measurement of the ruby manometer. The pressure
was applied from ∼1 (initial loading) to 32 GPa slowly for
∼5 h for the pressure-dependent resistivity measurement at
room temperature and then released to each pressure (Fig. 10)
for the temperature-dependent resistivity measurements in the
range from ∼295 K down to 1.8 K (Fig. 11).

Figure 10 shows room-temperature resistivity data under
high pressure from ∼32 GPa down to 2 GPa during decom-

FIG. 10. Resistivity of Be5Pt versus pressure from ∼32 down to
2 GPa (unloading) at room temperature. Inset represents the resis-
tivity values at five different pressures for 5 and 291 K. Notice that
pressure change due to change in temperature (291 down to 5 K)
is relatively small, for example ∼1 GPa at 2.8 GPa and ∼2.6 GPa
at 31 GPa, indicating the stability of the pressure cell. Bottom right
inset shows the photograph of the Be5Pt sample (∼40 × 40 × 5 μm3)
along with a ruby for pressure calibration, a soapstone insulation
(a bright area surrounding the sample), a 316 stainless steel metal
gasket with a hole (∼80 μm in diameter), and six-lead (tungsten)
configuration. Leads 3 and 4 were used to measure voltage drop,
whereas leads 2 and 5 were used to provide current flow.

pression. The resistivity data during compression is not shown
because lead 1 (see Fig. 10 inset), used for one of the current
leads, had a short with the metal gasket, which might include

FIG. 11. Resistivity versus temperature curves (cooling) for
Be5Pt at 31, 22, 11, 5.7, 2.8, and 0 GPa (measured at room tempera-
ture). Data at 0 GPa is adopted from Fig. 3. Inset shows ln ρ versus
1/T plot to calculate the bandgap energy (Eg) using the Arrhenius
relation, ln ρ(T ) = ln ρ0 + Eg/2kBT . Cyan lines are the linear fits
to the data from 0.0034 K−1 (294 K) to 0.0044 K−1 (227 K), where
each slope gives the corresponding Eg/2kB value.
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FIG. 12. DFT calculations of (a) the indirect bandgap (red) and
the pseudogap (blue) of Be5Pt versus pressure. (b) DOS of Be5Pt
under pressure.

additional resistance in the data other than the sample. The
leads for unloading pressure are without any short. It is known
that resistivity obtained from decompression provides more
accuracy than from compression because sample thickness is
relatively well kept during decompression [31]. The resistivity
of Be5Pt at room temperature increases under high pressures,
which indicates the bandgap energy (Eg) also increases ac-
cording to the Arrhenius relation, ρ(T ) = ρ0 exp (Eg/2kBT )
at a fixed T . This is consistent with the band structure calcula-
tions for greater than ambient pressure in Fig. 12, showing the
bandgap opens further with increasing pressures to ∼27 GPa.
The inset in Fig. 10 compares the resistivity at 5 and 291 K
for selected pressures. The anomaly ∼23 GPa in Fig. 10,
which shows pressure reversing, is from the adjustment of
pressure determination of the ruby manometer, whereas the
discontinuities in the resistivity curve are due to the changes in
pressures before and after temperature-dependent resistivity
measurements.

The temperature-dependent resistivity curves of Be5Pt are
shown in Fig. 11 for five unloading pressures at 31, 22, 11, 5.7,
and 2.8 GPa, including a separate ambient pressure measure-
ment (see Fig. 3). Remarkably, the resistivity curve at ambient
pressure is nearly flat over a wide temperature range compared
with the high-pressure resistivity curves, as discussed above.
The resistivity at 2.8 GPa begins to increase monotonically
with decreasing temperature, which corresponds to a typical
semiconducting behavior. With further increasing pressure,

the increase in temperature-dependent resistivity gets larger
and larger (see Fig. 10 inset). This enhancement in the semi-
conducting behavior under high pressures to 31 GPa is again
in good agreement with the DFT calculations of pressure
effects on Be5Pt in Sec. III. The fits of the Arrhenius equation
to the high-pressure resistivity curves (ln ρ versus 1/T plot)
are shown in the Fig. 11 inset in the temperature range from
∼227 to 294 K to calculate the bandgap energy (Eg). The
estimated Eg values are ∼ 35, 38, 39, 43, and 32 meV at 2.8,
5.7, 11, 22, and 31 GPa, respectively, which shows a good
qualitative agreement with the calculated true gaps shown in
Fig. 12.

VII. CONCLUSIONS

Through a series of measurements and theoretical calcu-
lations, we have argued that the little-studied intermetallic
semiconductor Be5Pt is in fact an extremely unusual mem-
ber of its materials class. While not superconducting like its
cousin Be21Pt5, our electronic structure calculations suggest
that at ambient pressure it is semiconducting with one of the
smallest gaps of any intermetallic, an indirect gap of order
3 meV according to DFT calculations we presented here.
Insulating temperature dependence is not observed in low-
temperature transport, however; rather the resistivity is flat at
ambient pressure over a range of roughly 100 K, together with
a strongly T -dependent Hall effect.

The calculated band structure near the Fermi level has
hole and electron bands resembling Dirac cones whose ex-
trema are accidentally nearly degenerate. In addition, there
is a Weyl loop structure quite close to the Fermi level, such
that a small amount of doping might allow observation of
topological quantization. Here we studied the transport in the
quasi-Dirac cone bands and developed a model to explain the
T -independent resistivity together with the sign and unusual T
dependence of the observed Hall coefficient. Agreement with
experiment requires assumptions about the influence of the Be
inclusions found in current samples, however.

Calculations were performed under pressure using a ge-
netic algorithm structural relaxation method, which failed to
find any phase transitions from the ambient pressure F 4̄3m
structure up to 150 GPa, consistent with resistivity mea-
surements performed in a diamond anvil cell up to this
pressure. However, the temperature dependence of the resis-
tivity evolved significantly, consistent with the opening of the
gap found in DFT calculations.

In summary, we have performed a close investigation of
the properties of the intermetallic semiconductor Be5Pt, and
shown that it is a remarkable member of this class, pri-
marily because of an extraordinarily small accidental gap,
surrounded by a somewhat larger pseudogap feature in the
density of states. Additional unusual features of the band
structure include Weyl loops close to the Fermi level; we have
suggested that doping the compound with a small amount of
gold may allow one to bring this feature to the Fermi level.
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APPENDIX A: TRANSPORT

We consider a two-band toy model with two Dirac-like
bands. For the moment, we neglect the tiny bandgap present
in the Be5Pt system, i.e., we fix �e = �h = 0, and further
assume that μ = 0 at zero temperature. The band dispersion
is then εα = ±γαk, where α = e, h and k is measured with
respect to the touching point of the band. This will yield a
linear density of states in energy Nα (ε) = |ε|/(γ 2

α π ). To ac-
count for the particle-hole asymmetry of the density of states
found in the band structure calculations for Be5Pt we need
γh > γe. Note that because the Dirac cone is now asymmetric,
the chemical potential μ depends significantly on T and must
be calculated self-consistently.

Assuming that the transport at low temperatures is domi-
nated by a small number of weakly scattering pointlike defects
with concentration ni and potential u the scattering rate reads
[12]

1

τα (ω)
= 2
′′(ω) = 2niu

2
∑

k

Im G(k, ω)

= πniu
2
∫

dε Nα (ε)δ(ω + ε) = �0
α|ω|, (A1)

where we introduced the dimensionless parameter �0
α =

niu2/γ 2
α , characterizing the scattering strength. In this and

subsequent expressions we have set both the lattice parameter
a = 1 and the reduced Planck constant h̄ = 1.

The longitudinal conductivity is given by the sum of the
electron and hole contribution σxx = ∑

α σ α
xx with

σα
xx = e2v2

α

2

∫
d2k

(2π )2
τα (εk )

(
− ∂ f

∂εk

)

= e2v2
α

2

∫
dε Nα (ε) τα (ε)

(
− ∂ f

∂ε

)

= e2λα

2π�0
α

, (A2)

where vα = ±γα is the velocity for the α = e, h band and λα

a numerical factor coming from the evaluation of the integral
and that in our case is λh > λe. We recover the result quoted
in the main text that shows that the T dependence of the
longitudinal conductivity vanishes to leading order. The total
conductivity is dominated by the contribution of the holes that
is in our model ∼9 times larger than that of the electrons.
This effect results from the strong hole-electron anisotropy
of the bands that forced us to assume γh > γe and pushes
the chemical potential to negative value as the temperature
increases.

The Hall coefficient in a two-band system is given by

RH = σxy

H
(
σ 2

xx + σ 2
xy

) , (A3)

FIG. 13. Temperature dependence of the hole and electron band
contributions to σxx (H ) and σxy for κe = 3, 10 K. To estimate
the temperature independent term e2/(2π�0

α ), we fix �0
α such that

the total longitudinal conductivity at zero field, Eq. (A2), fits the
experimental value σxx = 0.5 105(�m)−1. The anisotropy of band
structure, encoded in the parameters γ 2

h ∼ 4γ 2
e , and in the tem-

perature shift of the chemical potential to negative values, makes
the transport dominated by the hole band over the whole range of
temperature. κ2

α acts as a cutoff for the divergence of the σα
xy.

where H is the magnetic field, σxx = ∑
α σ α

xx is the total lon-
gitudinal conductivity, and σxy = ∑

α σ α
xy the transverse one.

Following the same procedure as in Eq. (A2), the transverse
conductivity for each band is given by [13]

σα
xy = −e2v2

α

2

∫
dε Nα (ε)

ωα
c (ε) τ 2

α (ε)

1 + (ωc
α (ε) τα (ε))2

(
− ∂ f

∂ε

)

= e2

2π�0
α

κ2
α

∫ 0

−∞
dε

ε2

ε4 + κ4
α

(
− ∂ f

∂ε

)
. (A4)

Here ωα
c = eHv2

α/ε is the energy-dependent cyclotron fre-
quency. It is negative for the hole band, εh < 0, and positive
for the electron one, εe > 0. We further introduced the param-
eter κα such that ωα

c (ε)τα (ε) = κ2
α/ε2, i.e.,

κ2
α = eHv2

α

�0
α

. (A5)

Since 1/τα (ε) and Nα (ε) vary as ε, the integral without the
(ωα

c τα )2 term in the denominator is actually divergent as 1/ε2.
Thus this term is required, unlike the ordinary Hall effect
for metallic systems, even in the low field limit, and deter-
mines the σα

xy ∼ T 2 dependence as T → 0. To determine the
crossover between low- and high-temperature behavior, we
must estimate the value of κα from Eq. (A5). Notice that the T
behavior of the two bands changes over different energy scales
as one can see in Fig. 13 where we show the temperature
dependence of the transverse conductivity together with the
electron and hole contributions for two representative values
of κe. Here we used γh ∼ 4γe, as extracted from the density
of states in Fig. 5 approximated as linear as shown in the
schematic of Fig. 7. As a consequence we have κh ∼ 4κe,
thus the low-high temperature crossover appears at lower tem-
perature for the electron term with respect to the hole term.
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FIG. 14. Temperature dependence of RH for the two-band Dirac
model. (Dotted lines) Result obtained using �e = �h = 0, μ(T =
0) = 0 for κe = 1.5, 3.0 K. We find that the transport is dominated by
the hole band and we get a divergent RH (T ) for T → 0. (Continuous
lines) Result obtained using �e = �h = 0.5 meV and μ(T = 0) =
3.4 meV. If the chemical potential at T = 0 lies inside the electron
band the divergence at low T is suppressed by the contribution of the
electron band and we get an RH that increases as T is increased over
the 3–20 K range.

The sign of the transverse conductivity is positive due to the
dominant contribution of the hole band.

Since in the evaluation of σxy we account for the full mag-
netic field dependence, i.e., we retain the full denominator in
Eq. (A4), when computing the Hall coefficient via Eq. (A3),
we need to use the same approximation for the field-dependent
longitudinal conductivity σxx, i.e.,

σα
xx(H ) = −e2v2

α

2

∫
dε Nα (ε)

τ (ε)

1 + ωc
2(ε) τ 2(ε)

(
− ∂ f

∂ε

)

= e2

2π�0
α

∫ 0

−∞
dε

ε4

ε4 + κ4
α

(
− ∂ f

∂ε

)
, (A6)

whose temperature dependence is shown in Fig. 13 for the
same values of κα used in the σxy calculation. It is evident that
the total contribution of both the longitudinal and transverse
conductivities comes essentially from the hole band regard-
less of the value of κα . The strong anisotropy of the Dirac
cone considered here reduces the two-band model to a single
holelike band model. As a consequence, the Hall coefficient
reduces to RH ∼ σ h

xy/(σ h
xy)2 + (σ h

xx )2, that regardless of the
exact value of the κα parameter used, present a divergent
behavior as T → 0 is approached; see dotted lines in Fig. 14.
The anomalous temperature dependence of σxx(H ) ∼ T 4 at
low T is at the root of this behavior in the current model.

The inclusion of a small gap in the model, does not change
qualitatively the low-temperature behavior of the conductivi-
ties and of the Hall coefficient. This new energy scale could
change the relative weight of the bands especially if κα is of
the same order of the gap. However, this effect is small with
respect the suppression of the electron band contribution due
to the strong temperature-dependent chemical potential shift
to negative values that makes the physics still dominated by
the holelike band over the whole temperature range.

FIG. 15. In the figure above, the band dispersions of the two
lowest unoccupied bands under 11 different pressures are shown.
The twofold degeneracy at the X point gives rise to the first DOS
peak above the Fermi level.

An effective parameter that crucially affects the tempera-
ture dependence of the Hall coefficient is, instead, the doping.
In fact, if we assume μ(T = 0) > 0, such that the Fermi level
at zero temperature lays at the edge of the electron band, or
further inside the band, we recover a not negligible contribu-
tion of the electron band at very low T that effectively cuts
off the divergence of the Hall coefficient at low temperature;
see Fig. 14 where we show the results for a specific case
with �e = �h = 0.5 meV and μ(T = 0) = 3.4 meV for two
different values of κe. As a consequence the Hall coefficient
is now increasing as T is increased up to ∼20 K as seen in
experiment. Notice that the crossover between the divergent
RH (T ) of the un-doped model to the RH (T ) increasing with
temperature of the doped case is controlled by the position of
the Fermi level at zero temperature with respect the electron
band, thus it is also affected by the gap values. Moreover,
the values of κα used in the calculation influence the range
of temperature over which RH increases, i.e., the position
of the peak as shown in Fig. 14. This result thus requires
fine tuning, which is probably unreasonable given the other
uncertainties in the analysis. In the main text we explicitly dis-
cuss the possible role of the existence of Be inclusions in the
samples.

APPENDIX B: PRESSURE DEPENDENCE OF THE
LOWEST UNOCCUPIED DOS PEAK

We have shown in Fig. 12(b) of the main text that the first
peak of the unoccupied DOS is strongly pressure dependent.
To understand the origin of the pressure dependence, we plot
the band dispersion of the two lowest conduction bands along
X → W in Fig. 15. The first DOS peak above the Fermi
level is the result of the two conduction bands (Pt 5d bands)
touching at X . As pressure increases, the two bands touch
at progressively higher energy. As a result, the DOS peak
is pushed up and a significant amount of spectral weight is
transferred away from the Fermi level.
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APPENDIX C: DEPENDENCE OF THE BANDGAP ON THE
EXCHANGE-CORRELATION FUNCTIONAL

Because the true spectral (indirect) gap of Be5Pt of 3 meV
found in the calculations presented is unusually small, we
have checked this result by calculating the same quantity us-
ing several exchange-correlation functionals, including LDA,
PBE, the strongly constrained and appropriately normed
exchange-correlation functional (SCAN) [32,33], as well as
the hybrid functional HSE06 [34]. The predicted bandgaps
shown in Table II are consistently very small, ranging from
3 to 22 meV, except for the HSE06 result of 297 meV. We
note further that in Ref. [2], a larger bandgap of 85 meV was
estimated from the DOS calculated using the FPLO code. It is
well known that while HSE06, with the conventional choice
of Hartree-Fock (HF) mixing coefficient of α = 1/4, works
well for molecular systems and simple semiconductors, it can
significantly overestimate the bandgap in systems with large
dielectric constants and small bandgaps [35]. In fact, from our
Arrhenius analysis of the resistivity presented in Fig. 10, the

TABLE II. Calculated bandgaps in meV of Be5Pt using several
exchange-correlation functionals and the VASP and WIEN2K codes.
For the hybrid functional HSE06, we vary the amount of HF mixing
from the default value of α = 1/4 to a smaller value of 1/8. All
results include spin-orbit coupling interactions.

HSE06 HSE06
LDA PBE SCAN α = 1/4 α = 1/8

VASP 22 8 12 297 160
WIEN2K 13 3 4 – –

larger HSE06 bandgap is inconsistent with the data, which
suggest a gap of at most ∼30 meV. Reducing the amount
of HF mixing brings the bandgap closer to the experimental
value, indicating that Be5Pt has a sizable electric susceptibil-
ity. We note further that the shape of the band structure and the
density of states does not change significantly among all these
different functionals, such that the analysis presented here is
expected to be robust against small errors in the gap value.
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