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With recent demonstrations of lasing, germanium-tin (GeSn) stands out as a promising candidate for the
integration of a low threshold, room temperature monolithic laser source in silicon (Si) photonics. The impact of
physical properties, such as energy band structure, crystal quality, and cavity loss on lasing performances (i.e.,
lasing threshold and maximal lasing temperature) has to be better understood, however. In this work, we calculate
the theoretical band-to-band net gain for relaxed, [100] uniaxial, and (100) biaxial tensile-strained GeSn. We
show that the band-to-band net gain depends not only on the interband gain introduced by the transition between
valence bands and conduction bands, but also on the intervalence band absorption between the valence bands.
Both approaches, GeSn with high Sn concentration and/or with high tensile strain, can yield a band-to-band
net gain at room temperature. Then, the integration of another source of absorption—free carrier absorption—
will be discussed. Finally, from the simulation of GeSn lasing characteristics, we show the important role the
crystal quality has on the lasing threshold. Based on the results, we suggest using GeSn with low/medium Sn
concentrations, under very high [100] uniaxial or (100) biaxial tensile strain, to obtain a low threshold, room
temperature lasers.
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I. INTRODUCTION

Interests in a monolithically integrated laser source for
silicon (Si) photonics increased recently, with the experi-
mental demonstrations of lasing in germanium-tin (GeSn)
alloys [1–4] and strained Ge [5–7]. In the case of GeSn,
several experimental studies were conducted to optimize its
lasing performance, i.e., reduce the lasing threshold and
increase the maximal lasing temperature. Various strate-
gies were tested, including different types of microcavi-
ties (Fabry-Perot waveguide [1,3,8–11], microdisk [2,4,11–
15], photonic-crystal [16], microbridge [17]), different Sn
concentrations—between 5.4% and 20%, multiquantum wells
[9,12] and the application of (100) biaxial [14,15] or [100]
uniaxial tensile strain [17]. Two trends were identified based
on experimental results: the lasing threshold decreased when
the Sn concentration decreased—down to 0.8 kW/cm2 in a
microdisk with 5.4% of Sn at 25 K (we will call it “GeSn
5.4%” from now on), under (100) biaxial tensile strain [15].
Meanwhile, the maximum lasing temperature increased when
the Sn concentration and/or the applied strain increased, with
current records at 270 and 273 K for a GeSn Fabry-Perot
waveguide up to 20% of Sn [10] and a suspended GeSn
16.0% microbridge under [100] uniaxial tensile strain [17],
respectively.

So far, only a few theoretical studies of GeSn and strained
Ge lasers—in terms of optical gain and resolution of the
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laser equations—can be found in the literature. Rainko et al.
calculated the net optical gain of (100) biaxial-tensile-strained
GeSn, taking into account the interband gain from the transi-
tion between the valence band and the condition band, and the
free carrier absorption (FCA) [18]. Intervalence band absorp-
tion (IVBA) was also suggested as an additional mechanism
limiting the net optical gain [19–22]. Early works of Geiger
[19], Suess et al. [20], and Carroll et al. [21] provided an
empirical, linear expression of IVBA as a function of the
photon energy. Gupta et al. [22] calculated IVBA and FCA for
[100] uniaxial strained Ge, with IVBA extracted solely from
the band structure of the material. It showed a more complex
IVBA profile, compared to the linear empirical expression.
The authors pointed out the important role of intervalence
transition between two valence bands, and between the spin-
orbit band and the valence bands. It is thus interesting to
study the impact of IVBA and FCA on the optical gain of
GeSn, for different values of Sn concentration and applied
strain. In addition, the lasing threshold of GeSn depends on
various factors, for example, the crystal quality: this effect
is quantified using the nonradiative lifetime, describing how
long the electrons and holes can stay in their excited states,
before combining through an intermediate trap level. The
cavity loss is another important factor to consider. A detailed
analysis of those two parameters using laser equations [23] is
therefore necessary to better understand the performance of
GeSn lasers.

We will present in Sec. II the methodology adopted to
calculate the band-to-band optical gain and the lasing char-
acteristics of GeSn. We will calculate in Sec. III the net
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FIG. 1. The simulation workflow for the calculation of the band-
to-band net optical gain and the lasing characteristics of GeSn.

band-to-band optical gain, first for relaxed GeSn with differ-
ent Sn concentrations, between 25 and 298 K, then for (100)
biaxial and [100] uniaxial tensile strained GeSn at 298 K. We
will discuss in Sec. IV the integration of FCA in the calcula-
tion of net gain. Finally, in Sec. V, we will show the impact of
nonradiative lifetime and cavity loss on the lasing threshold of
GeSn optical cavity, by solving the laser equations.

II. METHODOLOGY

A. Simulation workflow

For a given GeSn configuration (Sn concentration, applied
strain), we first calculate its band structure using the local em-
pirical pseudopotential method (EPM) [24,25]. Then, using
the calculated energy levels and the wave functions, we es-
tablish a relationship between the injected carrier density and
the quasi-Fermi levels (for electrons and holes, respectively),
plus the momentum matrix. With these data, we calculate the
band-to-band net optical gain of GeSn and finally, the lasing
characteristics of the GeSn laser. The simulation workflow is
shown in Fig. 1. The methodology adopted for FCA calcula-
tion will be detailed in Sec. IV.

B. Electronic band structure of GeSn

In local EPM, the Hamiltonian is written as

H (G, G′) = − h̄2

2m
� + Vloc(G − G′) + VSO(G, G′), (1)

where − h̄2

2m �, Vloc(G − G′), and VSO(G, G′) are, respectively,
the kinetic term, the local pseudopotential, and the spin-orbit
pseudopotential. The formula giving Vloc and VSO are as fol-
lows [25]:

Vloc(G − G′) = S(G − G′)V (|G − G′|)

=
(

1

Nat

∑
at

e[−i(G−G′ )rat ]

)
V (|G − G′|), (2)

VSO(G, G′) = −2iμSO

(
(�/2)1/3

π

)2

S(G − G′)

B(|G|)B(|G′|)(G × G′)· < σ |S|σ ′ >, (3)

with

B(|G|) = 5 − (G/ς )2

5[1 + (G/ς )2]4
, (4)

where Nat, rat, �, S, and B(|G|) are the number and the coordi-
nates of atoms in the primitive cell, the volume of the primitive
cell, the Pauli vector, and the overlap integral, respectively.
The local form factors V (|G − G′|) and the spin-orbit param-
eters μSO, ς are variables that are optimized to fit the energy
gaps of GeSn.

In unstrained GeSn with a diamond crystal struc-
ture, values of V are required only when |G − G′|relax =
{√3,

√
8,

√
11} 2π

a0
. These values will be denoted V3,V8,V11.

For strained GeSn, we apply a spline interpolation to extract
V at an arbitrary value of |G − G′|. To obtain a good inter-
polation, we define, for each special value of |G − G′|relax,
two neighbored values of V to determine the slope of the
curve. We call these values V −,V,V +, corresponding to the
wave vectors q− = 1

1+θ
|G − G′|relax, q = |G − G′|relax, q+ =

1
1−θ

|G − G′|relax. The cutoff of the plane wave basis is taken
as |G|cutoff = 3.8 2π

a0
. V is set to 0 when |G| = 0 or |G| =

|G|cutoff.
We fit the pseudopotential to reproduce the reference val-

ues of the direct, the indirect, and the spin-orbit gap of GeSn.
In relaxed GeSn, they are taken from 8-band k.p modeling

FIG. 2. (a) Direct and indirect gaps of relaxed GeSn, as a function of the Sn concentration at 0 K (from Ref. [26]). (b)–(d) Band structure
of relaxed GeSn 10%, 1% (100) biaxial strain GeSn 10%, and 3% [100] uniaxial strain GeSn 10%. Here, CB, HH, LH, and SO denote the
conduction band, the heavy hole/light hole valence band, and the spin-orbit band.

155203-2



GeSn OPTICAL GAIN AND LASING CHARACTERISTICS … PHYSICAL REVIEW B 102, 155203 (2020)

TABLE I. Deformation potentials, spin-orbit gap, lattice param-
eter, and elastic constants of Ge and α-Sn. “-” represents a lack of
data.

Ge α-Sn

ac	 − av (eV) −9.48 [27] –
acL − av (eV) −2.78 [27] –
b (eV) −2.55 [27] –
ESO (eV) 0.29 [19] 0.80 [19]
a0(Å) 5.6580 [19] 6.4892 [19]
C11 (GPa) 129.0 [19] 69.0 [19]
C12 (GPa) 48.0 [19] 29.0 [19]

at 0 K [26] [Fig. 2(a)]. In strained GeSn, these values are
calculated using the deformation potential theory [27]. Due
to the lack of reliable data on deformation potentials ac	 −
av, acL − av, b for the diamond phase α-Sn, we use the same
deformation potentials of Ge in Ref. [27] for all Sn concentra-
tions. The spin-orbit gap ESO, the lattice parameter a0, and the
elastic constants C11, C12 are interpolated between Ge and
Sn. These parameters are given in Table I.

Since the pseudopotential form is arbitrary, it cannot re-
produce simultaneously the gap variation under (100) biaxial
strain and [100] uniaxial strain, using a single set of pa-
rameters. Therefore, for a given Sn concentration, we fit the
pseudopotential for each type of strain to guarantee a good
superposition between EPM gaps and the references. The fit-
ted parameters of the pseudopotential for different GeSn cases
are given in Table II. We keep ς = 10.09 Å−1 (value taken
from Ref. [22]) in all cases since we observe that changing
this parameter has little effect on the band structure of GeSn.

We show in Figs. 2(b) to 2(d) band structures for relaxed GeSn
10%, (100) biaxial, and [100] uniaxial strained GeSn 10%.
Energy gaps for strained GeSn 6%, 10%, and 13% at 0 K are
shown in Fig. 3.

Because of the lack of experimental Varshni relations
within a large range of Sn concentration, for GeSn gain cal-
culations at different temperatures, we use their energy gaps
at 0 K.

To validate the calculated band structure, we compared the
effective masses and the intrinsic carrier density ni at 298 K
with literature values for pure, unstrained Ge. Table III results
are in good agreement with the reference values.

C. Gain formula

The band-to-band optical absorption between two energy
bands a and b is [33]

α(h̄ω) = πe2

nrcε0m2
0ω

∫
kεBZ

d3k

(2π )3

∑
a

∑
b

|ê . pba|2

δ(Eb(k) − Ea(k) − h̄ω)( fa − fb), (5)

with ê the polarization of light, p the momentum operator,
|ê · pba|2 the momentum matrix element, and f the Fermi-
Dirac distribution. The refractive index nr is taken as 4.22
for GeSn [34]. There are two contributions to the band-to-
band optical absorption (Fig. 4): interband transition (a is a
valence band, while b is a conduction band) and intervalence
transition (both a and b are valence bands). The intercon-
duction transition (both a and b are conduction bands) is
negligible due to the very high gap between the first and other
conduction bands. The integral is transformed into a discrete
sum on the first Brillouin zone (BZ), using a Monkhorst-Pack

TABLE II. Fitted pseudopotential parameters for different GeSn configurations studied here. “uni” stands for [100] uniaxial tensile strained
GeSn, while “bi” represents (100) biaxial tensile-strained GeSn.

Relaxed GeSn

0% Sn (Ge) 16% Sn 18% Sn 20% Sn 22% Sn

V3 (Ry) −0.25319 −0.25520 −0.25103 −0.25207 −0.25141
V8 (Ry) 0.03486 0.03509 0.03079 0.03203 0.03172
V11 (Ry) 0.03626 0.02694 0.02920 0.02726 0.02646
μSO (Ry) 0.00043 0.00054 0.00055 0.00057 0.00056
ς (Å−1) 10.09 10.09 10.09 10.09 10.09

Strained GeSn

6% Sn uni 6% Sn uni bi 10% Sn uni 10% Sn bi 13% Sn uni 13% Sn bi

θ 0.020 0.015 0.015 0.012 0.020 0.012
V −

3 (Ry) −0.26636 −0.25979 −0.26580 −0.25751 −0.26787 −0.25884
V3 (Ry) −0.25412 −0.25125 −0.25183 −0.25020 −0.24984 −0.24968
V +

3 (Ry) −0.24717 −0.24875 −0.24777 −0.25319 −0.24098 −0.25077
V −

8 (Ry) 0.03014 0.03289 0.03112 0.03163 0.02960 0.03265
V8 (Ry) 0.03445 0.03101 0.03171 0.02979 0.02963 0.02913
V +

8 (Ry) 0.03805 0.03910 0.03589 0.03700 0.03672 0.03407
V −

11 (Ry) 0.03014 0.02919 0.03006 0.02885 0.02904 0.02657
V11 (Ry) 0.03281 0.03558 0.03269 0.03420 0.03268 0.03309
V +

11 (Ry) 0.03246 0.03756 0.02835 0.03599 0.02491 0.03655
μSO (Ry) 0.00048 0.00047 0.00050 0.00048 0.00052 0.00051
ς (Å−1) 10.09 10.09 10.09 10.09 10.09 10.09
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FIG. 3. Energy gaps as a function of [100] uniaxial strain (left)
and (100) biaxial strain (right) at T = 0 K for (a) GeSn 6%, (b) GeSn
10%, and (c) GeSn 13%. Straight lines are the gaps calculated using
the deformation potential theory, while dots are the gaps fitted with
EPM. The definition of each curve is shown in (b)

(MP) grid [35] with a 200 × 200 × 200 resolution to ensure
a convergence of the result.

To approximate the Dirac distribution δ[Eb(k) − Ea(k) −
h̄ω], we use a Gaussian function with a full width at
half maximum (FWHM) of 40 meV. We observe that this
choice of FWHM leads to an underestimation of the trans-
parency threshold of interband/intervalence band absorption,
20–25 meV lower than the value of the direct gap/valence
gaps. A narrower Gaussian function can reduce this under-
estimation, with the cost of higher simulation time since we
must increase the resolution of the MP grid to maintain the
convergence of the results. However, since the energy offset is

FIG. 4. Optical transition scheme in GeSn.

TABLE III. Comparison of the effective masses and the intrinsic
carrier density of Ge between calculations with EPM and reference
values. Here the well-known Varshni relation for Ge [32] is added to
correct the band structure of Ge at 298 K.

Ge

EPM Reference

ml
L−CB 1.527 1.590 [28]

mt
L−CB 0.091 0.081 [28]

m	−CB 0.048 0.041 [28]

m[111]
	−HH 0.669 0.597 [29]

0.623 [30]
m[110]

	−HH 0.497 0.439 [29]
0.467 [30]

m[100]
	−HH 0.257 0.226 [29]

0.251 [30]
m[111]

	−LH 0.054 0.046 [29]
0.052 [30]

m[110]
	−LH 0.056 0.048 [29]

0.053 [30]
m[100]

	−LH 0.062 0.053 [29]
0.060 [30]

ni (cm−3) (at 298 K) 2.9 × 1013 2.4 × 1013 [31]

very small, this approximation does not have a strong impact
on results.

In this case, only band-to-band transitions are consid-
ered, the net absorption is then the sum of the interband
absorption and IVBA. From Eq. (5), α(h̄ω) < 0 represents
an optical gain, while α(h̄ω) > 0 represents an optical ab-
sorption. This convention must be used to interpret all optical
gain/absorption curves in the following.

In the next sections, when the interband absorption or the
net absorption is negative, we will use, respectively, the term
interband gain and net gain. However, when discussing the
numeric results of optical gain, we will use their absolute
value to stay coherent with the usual convention, used by the
scientific community.

D. Quasi-Fermi levels and momentum matrix elements

The quasi-Fermi levels Fc (for electrons) and Fv (for
holes) are calculated for each value of injected carrier density
ninj using the following formulas:

n =
∫

kεBZ
aεCB

d3k

(2π )3

1

1 + e( Ea (k)−Fc
kBT )

= ninj + ndop, (6)

p =
∫

kεBZ
aεVB

d3k

(2π )3

1

1 + e( Fv−Ea (k)
kBT )

= ninj + pdop, (7)

with ndop, pdop n-type and p-type doping levels. The same MP
grid (from band-to-band gain calculation) is used to transform
the integral into a discrete sum.

In strained GeSn, the polarization of light determines the
intensity of momentum matrix elements. We plot in Fig. 5,
|ê · pba|2 for the band-to-band transition between the highest
valence band and the lowest conduction band, first at the 	

point as a function of tensile strain, then at the vicinity of the
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FIG. 5. (a) The variation of |ê · pba|2 at the 	 point as a function of applied strain (left), at the vicinity of the 	 point for tensile GeSn
(middle), the convention of strain direction, and of light polarization (right) for a) [100] uniaxial strained GeSn 6% and (b) (100) biaxial
strained GeSn 6%. Here ε is the applied strain.

	 point. For both [100] uniaxial [Fig. 5(a)] and (100) biaxial
tensile strain [Fig. 5(b)], |ê · pba|2 is higher if the light is
polarized perpendicularly to the strain direction, which favors
both the interband gain and band-to-band net gain. For the
rest of the article, we study the optical gain of tensile-strained
GeSn only with this polarization of light.

E. Laser equations

The lasing characteristics of a GeSn laser is modelled using
the following two equations [23]:

G − Rrad − Rnrad − c

nr
gpSp = 0, (8)

c

nr
(	pgp − αcav)Sp + CspRrad = 0, (9)

with each individual term in Eqs. (8) and (9) written as

G = Pabs

Epump(d1 − d0)
= P(e−αd0 − e−αd1 )

Epump(d1 − d0)
, (10)

Rrad = βrad
(
n	 p − n2

i

)
, (11)

Rnrad = n

τnrad
+ Cnn

(
np − n2

i

) + Cp p
(
np − n2

i

)
, (12)

αcav = nrω

cQ
. (13)

The definition and the unit of each parameter are detailed
in Table IV.

III. BAND-TO-BAND GAIN CALCULATION FOR GESN

For relaxed GeSn and tensile-strained GeSn, we limit
the band-to-band gain calculation to intrinsic, nondoped
material.

A. Relaxed GeSn

We calculate the net absorption for relaxed GeSn as
a function of Sn concentration and temperature. For each

TABLE IV. Units and definitions of the parameters used in the
laser equations. SRH stands for Shockley-Read-Hall mechanism.

Parameter Unit Definition

G cm−3 s−1 Carrier generation rate
Rrad cm−3 s−1 Radiative recombination rate
Rnrad cm−3 s−1 Nonradiative recombination rate

(SRH and Auger mechanism)
Sp cm−3 Emitted photon density in

the lasing mode
gp cm−1 Net gain (with reversed sign)
αcav cm−1 Cavity loss of the lasing mode
	p Optical confinement factor of

the lasing mode
Csp Ratio of spontaneous emission

triggering the stimulated emission
Epump eV Pump photon energy
α cm−1 Absorption at the pump

photon energy
P kW cm−2 Pump power
Pabs kW cm−2 Pump power absorbed

in the gain medium
d0, d1 cm Initial and final depth

of the gain medium
Q Quality factor of the lasing mode
ni cm−3 Intrinsic carrier density
βrad cm3 s−1 Radiative recombination coefficient
τnrad s Nonradiative lifetime
Cn, Cp cm6 s−1 Auger recombination coefficient for

electron (n) and hole (p)
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TABLE V. Maximum of the band-to-band net gain (in absolute value) for relaxed GeSn, with ninj between 5 × 1016 cm−3 and
3 × 1019 cm−3, as a function of the Sn concentration and the temperature. The gain unit is in cm−1. ninj value (in cm−3) at the maximum
net gain is indicated in the parentheses. “–” signifies an absence of net gain.

25 K 100 K 150 K 220 K 298 K

6% Sn 121 6 – – –
(1 × 1019) (1 × 1019)

10% Sn 2675 1802 1106 262 –
(1 × 1019) (1 × 1019) (1 × 1019) (1 × 1019)

13% Sn 3013 1803 1224 602 93
(5 × 1018) (5 × 1018) (1 × 1019) (1 × 1019) (1 × 1019)

16% Sn 2934 2205 2171 2061 1848
(5 × 1018) (3 × 1019) (3 × 1019) (3 × 1019) (3 × 1019)

18% Sn 3874 3726 3607 3381 3018
(3 × 1019) (3 × 1019) (3 × 1019) (3 × 1019) (3 × 1019)

20% Sn 4240 4221 4201 4012 3588
(3 × 1019) (3 × 1019) (3 × 1019) (3 × 1019) (3 × 1019)

22% Sn 4615 4636 4618 4386 3842
(1 × 1019) (3 × 1019) (3 × 1019) (3 × 1019) (3 × 1019)

GeSn configuration, we run the simulation for six in-
jected carrier densities: ninj = 5 × 1016 cm−3, 2 × 1017 cm−3,
1 × 1018 cm−3, 5 × 1018 cm−3, 1 × 1019 cm−3, and 3 ×
1019 cm−3, covering the low excitation to the high excitation
regime. We extract the maximum of the band-to-band net
gain, with the value of ninj at such a maximum, for each
GeSn configuration (Table V): When the Sn concentration

increases, the net gain can appear at higher temperature. At
room temperature (298 K), the net gain exists from GeSn 13%
upward.

We plot in Fig. 6(a) IVBA, interband, and net absorption
spectra of GeSn 10%, 13%, 16%, at 298 K, for different values
of ninj. As expected, interband gain appears when the photon
energy is superior to the direct gap. For relaxed GeSn, there

FIG. 6. (a) IVBA, interband, and net absorption spectra for GeSn 10%, 13%, and 16% at 298 K. Sign convention of absorption/gain is
indicated in the interband absorption graph of GeSn 10%. (b) Different absorption branches (LH-HH, SO-HH, and SO-LH) of IVBA in relaxed
GeSn 18%, for ninj = 1 × 1019 cm−3 at 298 K. (c) Net absorption spectra of GeSn 18%, 20%, and 22% at 298 K. The color code for different
values of ninj is the same for (a) and (c).
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FIG. 7. Evolution of IVBA, interband, and net absorption spectra at 25, 150, and 298 K, (a) with ninj fixed at 1 × 1019 cm−3 for GeSn 13%
and (b) with ninj fixed at 3 × 1019 cm−3 for GeSn 22%.

are two main branches of strong IVBA [Fig. 6(b)]: The first
one at low photon energies is due to a transition between
the light hole bands and the heavy hole bands (LH-HH),
while the second one at higher photon energies comes from
the transition between the spin-orbit bands and the heavy hole
bands (SO-HH). The curve form of IVBA found in our work
agrees very well with Ref. [22] results.

For GeSn 10% and 13%, there is a strong overlap between
the interband gain and the SO-HH branch of IVBA. This
overlap suppresses the net gain in GeSn 10% at 298 K. In
GeSn 13%, thanks to a higher interband gain due to a larger
difference between the minimum of the conduction band at
	 and at L Ec	 − EcL compared to GeSn 10%, there is a
net gain that exists at 298 K. However, its value is limited
significantly because of the overlap (capped at 93 cm−1). It
is worth noting that, in both cases, a ninj increase does not
guarantee that the net gain will be stronger: While the inter-

band gain increases, IVBA increases at the same time, which
might result in an even stronger net absorption. This correlated
effect from the interband gain and IVBA explains why, in
some cases, like GeSn between 6% and 13% Sn concentration,
the maximum net gain is located at a medium value of ninj

(5 × 1018 cm−3 and 1 × 1019 cm−3) instead of the highest
value of 3 × 1019 cm−3.

When the Sn concentration increases further than 13%, the
direct gap decreases and the spin-orbit gap increases. As a
result, it pulls the interband gain and the SO-HH branch of
IVBA in opposite directions. A part of the interband gain is
now located in the valley between the LH-HH and SO-HH
absorption branches, where IVBA is weak. The net gain is
thus enhanced significantly in that case. For GeSn 16%, a
higher interband gain, due to a larger value of Ec	 − EcL,
together with a weak overlap between IVBA and the interband
gain between 0.35 and 0.54 eV, boosts the net gain, resulting

TABLE VI. Maximum of the band-to-band net gain (in cm−1) with the corresponded value of ninj (in parentheses, in cm−3) for [100]
uniaxial tensile strained GeSn at 298 K, with ninj between 5 × 1016 cm−3 and 3 × 1019 cm−3, as a function of the Sn concentration and the
applied strain ε.

[100] uniaxial tensile strain, T = 298 K

ε = 0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0%

6% Sn – – – – – – 36 1331 2629
(1 × 1019) (1 × 1019) (3 × 1019)

10% Sn – – – – 433 1821 2959 3760 3706
(1 × 1019) (3 × 1019) (3 × 1019) (3 × 1019) (3 × 1019)

13% Sn 93 209 531 1568 2798 3799 4273 4167 3456
(1 × 1019) (1 × 1019) (1 × 1019) (3 × 1019) (3 × 1019) (3 × 1019) (3 × 1019) (3 × 1019) (3 × 1019)
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TABLE VII. Maximum of the band-to-band net gain (in cm−1) with the corresponding value of ninj (in parentheses, in cm−3) for (100)
biaxial tensile strained GeSn at 298 K, with ninj between 5 × 1016 cm−3 and 3 × 1019 cm−3, as a function of the Sn concentration and the
applied strain. The net gain for GeSn 13%, ε = 2.4% is not calculated since the material is predicted to become a semimetal.

(100) biaxial tensile strain, T = 298 K

ε = 0% 0.4% 0.8% 1.2% 1.6% 2.0% 2.4%

6% Sn – – – – 1930 5226 7159
(1 × 1019) (3 × 1019) (3 × 1019)

10% Sn – – 46 2736 5514 6922 7330
(5 × 1018) (3 × 1019) (3 × 1019) (3 × 1019) (3 × 1019)

13% Sn 93 517 2900 5050 6406 7368
(1 × 1019) (1 × 1019) (3 × 1019) (3 × 1019) (3 × 1019) (3 × 1019)

in a maximum value of 1848 cm−1 at 298 K. The trend is
stronger for GeSn with higher Sn concentrations (18% to
22%), with maximum net gains of 3018 cm−1, 3588 cm−1,
and 3842 cm−1, respectively [Fig. 6(c)].

As the temperature increases from 25 to 298 K, the net
gain decreases in most cases (except for GeSn 22% with
the maximum of net gain plateaus between 25 and 150 K).
Mechanisms behind that decrease could be different depend-
ing on the Sn content. Let us consider GeSn 13%: IVBA, in-
terband, and net absorption spectra of GeSn 13% at 25 K, 150
and 298 K are plotted in Fig. 7(a) for ninj = 1 × 1019 cm−3.
At 25 K, the net gain peaks at 0.56 eV; we then track the
evolution of IVBA, interband, and net absorption at this en-
ergy at 150 and 298 K. While the interband gain decreases
significantly, with a loss of 3159 cm−1 from 25 to 298 K,
IVBA decreases more slowly (with a loss of 395 cm−1 over
the same temperatures). The net gain decreases rapidly and
turns into a net absorption at 298 K. Meanwhile, for higher

Sn concentrations, the impact of interband gain becomes
more important. For GeSn 22% and ninj = 3 × 1019 cm−3

[Fig. 7(b)], the net gain peaks at 0.40 eV, where IVBA is
very weak compared to the interband gain, and remains stable
regardless of the temperature. In this case, the variation of
the maximum of net gain is mainly driven by interband gain
variations.

B. Strained GeSn

We then calculate the net absorption for [100] uniaxial
and (100) biaxial tensile-strained GeSn. As mentioned in
Sec. II D, we run, for both cases, simulations with light po-
larized perpendicularly to the direction of applied strain. Due
to the large number of possible configuration, we will discuss
here only results for tensile-strained GeSn 6%, 10%, 13% at
298 K, with the same values of ninj used in Sec. III A for re-
laxed GeSn. The maxima of band-to-band net gain are listed in

FIG. 8. Net absorption spectra at 298 K, for different strain values (a) of [100] uniaxial strained GeSn 10% and (b) of (100) biaxial strained
GeSn 10%.
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FIG. 9. IVBA, interband, and net absorption spectra at 298 K,
ninj = 5 × 1018 cm−3 for different strain values of (a) [100] uniaxial
strained GeSn 10% and (b) (100) biaxial strained GeSn 10%.

Table VI for [100] uniaxial tensile strain and in Table VII for
(100) biaxial tensile strain. We plot in Fig. 8, as an example,
the net absorption spectra at different strain values for [100]
uniaxial and (100) biaxial strained GeSn 10%.

For both types of tensile strain, the net gain at 298 K
starts appearing at lower strain values as the Sn concentra-
tion increases. We explain this phenomenon using the same
mechanism as for relaxed GeSn (Fig. 9). First, the interband
gain increases when the strain increases, thanks to a larger
value of Ec	 − EcL. Then, the overlap between the interband
gain and IVBA becomes weaker since the direct gap Eg	

decreases and the spin-orbit gap ESO increases at the same
time. Here, Eg	 = Ec	 − EvHH, ESO = EvHH − EvSO for [100]
uniaxial tensile strained GeSn, and Eg	 = Ec	 − EvLH, ESO =
EvLH − EvSO for (100) biaxial tensile strained GeSn. In the
[100] uniaxial case, the strong IVBA comes from LH-HH and
SO-HH branches, while in the (100) biaxial case, it comes
from HH-LH and SO-LH branches.

C. Discussion

From those results, GeSn with high Sn concentrations
and/or high applied tensile strains are favorable solutions
to make net gain appear at high temperature, eventually at
room temperature. The physics behind both approaches are
similar to each other, relying simultaneously on an increase of
the interband gain and on a decrease of the overlap between
the interband gain and IVBA to maximize the net gain. This
remark resonates with the theoretical work in Ref. [22], in
which the authors presented a similar mechanism guiding the
evolution of the net gain of strained Ge as a function of the ap-
plied strain. It also agrees qualitatively with the experimental
works on GeSn lasers. For relaxed GeSn or GeSn with a slight
residual (100) biaxial compressive strain, the maximal laser

temperature was of 80 K for GeSn 8.5% microdisk [2], be-
tween 90 and 130 K for GeSn 10.9%–13.3% [2,3,12], between
180 and 230 K for GeSn 16%–17.5% [4,8,11,13], and 270 K
for GeSn 20% [10]. In the last case, it should be highlighted
that the Sn concentration of 20% was obtained close to the
surface of GeSn layer. The actual Sn concentration in the bulk
varied gradually, with a mean value estimated around 17.5%–
18%. For strained GeSn, Chretien et al. showed a record lasing
temperature of 273 K, for [100] uniaxial strained GeSn 16%
microbridges, with the highest tensile strain around 2.2% at
low temperature (25 K) [17]. However, they also reported a
decrease of tensile strain as the temperature increased due to
the thermal dilatation of the Ge tensor arm.

If we take the presence of net gain as an indication that
lasing should occur at a given temperature, simulation overes-
timates the maximum GeSn lasing temperature. For example,
it predicts the existence of net gain in relaxed GeSn at room
temperature, for 13% onwards, reaching very high values for
GeSn 16%–22%. This is clearly not in line with experimental
results. The same remark could be made for strained GeSn,
where the net gain reaches colossal values with high applied
strain (based on simulations, 4273 cm−1 for 3% [100] uniaxial
strained GeSn 13%, and 7368 cm−1 for 2% [100] biaxial
strained GeSn 13%). However, it should be noted that until
now we discussed only the band-to-band net gain of GeSn.
It is well known that FCA should be considered and added
to the band-to-band net gain to correct its value. From the
experimental point of view, the heating of the suspended
micro-cavity under strong pulsed laser excitation can kick in
and introduce a mismatch between the temperature measured
in the cryostat (which host the GeSn sample) and the true
temperature of the GeSn sample. Cavity loss should also be
considered since it sets the minimum net gain required for
lasing.

IV. FREE CARRIER ABSORPTION IN GESN

A. Models

The FCA term is now added to the calculation of net ab-
sorption. To calculate FCA in a semiconductor material, two
approaches are often used.

(1) The Drude-Lorentz’s model, which treats the excited
charged carriers in semiconductor like an electron gas. The
formula of FCA with the Drude-Lorentz’s model is as follows
[36]:

α(h̄ω) = e3

ε0cnrω2

(
n	

m∗2

e	 μe	
+ nL

m∗2

eL μeL

+ pHH

m∗2

hHH μhHH
+ pLH

m∗2

hLH μhLH

)
(14)

with n	 , nL, pHH, pLH are the electron densities in the 	 and
L conduction bands, the hole densities in the heavy hole (HH)
and light hole (LH) valence bands of 	, respectively. m∗ and
μ are the effective mass and the mobility of electrons in 	, L
conduction bands, and of holes in HH, LH valence bands.

(2) The empirical model, which is parametrized from ex-
perimental absorption spectrum. It usually takes the form of

α(λ) = Anλα + Bpλβ (15)
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TABLE VIII. Net gain maximum (in cm−1) with the corresponding value of ninj (in parentheses, in cm−3) for relaxed GeSn, using the
Drude-Lorentz’s model to calculate FCA.

25 K 100 K 150 K 220 K 298 K

6% Sn 49 – – – –
(1 × 1019)

10% Sn 2500 1629 932 91 –
(1 × 1019) (1 × 1019) (1 × 1019) (1 × 1019)

13% Sn 2733 1525 846 212 –
(5 × 1018) (5 × 1018) (1 × 1019) (1 × 1019)

16% Sn 2277 1118 600 367 85
(5 × 1018) (5 × 1018) (1 × 1019) (1 × 1019) (1 × 1019)

18% Sn 1683 1054 855 473 132
(5 × 1018) (1 × 1019) (1 × 1019) (1 × 1019) (3 × 1019)

20% Sn 1472 869 465 – –
(5 × 1018) (1 × 1019) (1 × 1019)

22% Sn 477 – – – –
(5 × 1018)

with λ being the photon wavelength, n, p the total electron and
hole densities, A, B, α, β are constants to be fitted. Similarly
to Ref. [22], we assume that the empirical model remains
constant regardless of the Sn concentration and the applied
strain.

Here, we test the integration of both models in the cal-
culation of net gain for relaxed, undoped GeSn. For the
Drude-Lorentz’s model, n	 , nL, pHH, pLH and the effec-
tive masses are extracted from the EPM band structure. For
carriers density in the 	 valley, we calculate n	 , pHH, pLH by
applying the integrals 6 and 7 on a sphere of wave vectors k,
centered at 	 point, with |k| � 0.075|g|, where g is one of the
basis vectors in the reciprocal space. Assuming electrons in
the conduction band are only distributed in the 	 valley and
in the L valley, nL is then: nL = ninj − n	 .

In relaxed GeSn, only m∗
e	 is isotropic; therefore, approx-

imations should be made for m∗
eL, m∗

hHH, m∗
hLH because the

Drude-Lorentz’s model ignores the effective mass anisotropy.
For the conduction band in the L valley, the conductivity
effective mass is used [37]

1

m∗
eL

= 1

3

(
1

ml
eL

+ 2

mt
eL

)
. (16)

For both the HH and LH valence band, the constant-energy
surfaces take a much complex form of a deformed sphere.
Here, we calculate their average effective mass m∗

hHH and
m∗

hLH using the harmonic mean over all directions in the
reciprocal space (the unity sphere of the reciprocal space is
discretized into N different directions n)

1

m∗
hHH

= 1

N

∑
n

1

mn
hHH

, (17)

1

m∗
hLH

= 1

N

∑
n

1

mn
hLH

. (18)

In strained GeSn, the situation becomes more complicated
due to the anisotropy of m∗

e	 and to the difficulty of having a
proper definition for heavy holes and light holes. Details and
results of the Drude-Lorentz’s model in the case of strained
GeSn can be found in the Appendix.

Due to the scarcity of experimental data for GeSn carrier
mobilities, especially at high Sn concentration, we use an
experimental value measured for electrons in n-doped Ge
[38,39]: μe−nGe = 470 cm2 V−1 s−1 and suppose that μe	 =
μeL = μhHH = μhHH = μe−nGe. This choice is comparable to
the experimental electron and hole mobilities reported for
GeSn in Ref. [40] (μh = 509 cm2 V−1 s−1 for GeSn 10%),
in Ref. [41] (μh = 428 cm2 V−1 s−1 for GeSn 9%) and in
Ref. [42] (μe = 440 cm2 V−1 s−1 for GeSn 4.5%). One might
argue that it is still a rather simplistic approximation for the
carrier mobilities since they should depend on numerous fac-
tors, for example, on the Sn concentration and the injected
carrier density. However, we proceed with this assumption to
build a starting model of FCA in GeSn, which can be further
refined with the expansion of GeSn carrier mobility database.

For the empirical model of FCA, we use the model of Liu
et al. for Ge [43], once again due to the lack of experimental
data for the GeSn absorption spectrum. In both cases (Drude-
Lorentz’s model and Liu’s empirical model), we hypothesize
that for a Sn concentration between 6% and 22%, some phys-
ical properties of GeSn, here, the absorption spectrum and the
carrier mobility, can be approximated reasonably using data
from pure Ge.

B. Results and discussion

We calculate the net absorption using the Drude-Lorentz’s
model and the Liu’s empirical model for FCA, under sim-
ilar conditions of ninj, Sn concentrations, and temperatures
of Sec. III A. The maximum of the net gain is shown in
Table VIII using the Drude-Lorentz’s model for FCA, and
in Table IX using Liu’s empirical model. There is a clear
difference of the impact of these two FCA models on the net
gain: compared to the band-to-band calculation, Liu’s empir-
ical model reproduces the evolution trend of the maximum of
net gain, while the Drude-Lorentz’s model predicts that the net
gain vanishes at very high Sn concentrations (20% and 22%).
While Liu’s empirical model has a stronger impact than the
Drude-Lorentz’s model at low Sn concentrations between 6%
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TABLE IX. Net gain maximum (in cm−1) with the corresponded value of ninj (in parentheses, in cm−3) for relaxed GeSn, using the Liu’s
empirical model to calculate FCA.

25 K 100 K 150 K 220 K 298 K

6% Sn – – – – –
10% Sn 2282 1350 630 – –

(5 × 1018) (5 × 1018) (1 × 1019)
13% Sn 2721 1496 767 39 –

(5 × 1018) (5 × 1018) (5 × 1018) (5 × 1018)
16% Sn 2583 1406 814 425 50

(5 × 1018) (5 × 1018) (5 × 1018) (5 × 1018) (5 × 1018)
18% Sn 2445 1857 1502 1033 456

(5 × 1018) (5 × 1018) (1 × 1019) (1 × 1019) (1 × 1019)
20% Sn 3369 2539 2109 1404 589

(5 × 1018) (1 × 1019) (1 × 1019) (1 × 1019) (1 × 1019)
22% Sn 3916 3005 2359 1391 426

(5 × 1018) (1 × 1019) (1 × 1019) (1 × 1019) (1 × 1019)

and 13%, with lower maximum of net gain, the situation is
inverted for high Sn concentrations between 16% and 22%.

We plot in Fig. 10 FCA spectra at 298 K, at ninj = 5 ×
1018 cm−3 and 1 × 1019 cm−3, for Liu’s empirical model
and the Drude-Lorentz’s model for Sn concentrations between
10% and 22%. While Liu’s empirical model is independent
of the Sn concentration, the Drude-Lorentz’s model depends
strongly on this variable: For GeSn 10% and 13%, the latter
yields lower FCA than the former. These two models yield

FIG. 10. Comparison between the Drude-Lorentz’s model and
Liu’s empirical model of FCA, for relaxed GeSn with a Sn con-
centration between 10% and 22% at (a) ninj = 5 × 1018 cm−3 and
(b) ninj = 1 × 1019 cm−3.

comparable results for GeSn 16%. From GeSn 18% upward,
the Drude-Lorentz’s model yields higher FCA and eventually
it becomes strong enough at GeSn 20%–22% to suppress the
net gain.

To explain the evolution of Drude-Lorentz’s FCA and
the Sn concentration, first we plot the contribution of each
type of charged carrier (	 electrons, L electrons, light holes,
and heavy holes) in the total FCA [Fig. 11(a)]: The contri-
bution of 	 electrons increases with the Sn concentration,
and eventually becomes the dominant factor at very high
Sn concentration (between 16% and 22% Sn). Since these
contributions are proportional to the terms n

m∗2
e μe

and p

m∗2
h μh

in

Eq. (14), we should look at the carrier density and the effective
mass in each term.

For electrons, when the Sn concentration increases, Ec	 −
EcL becomes more negative: More electrons is thus located in
the 	 valley [Fig. 11(b)]. At the same time, m∗

e	 decreases,
while m∗

eL keeps the same value regardless of the Sn concen-
tration [Fig. 11(c)]. The decrease of m∗

e	 observed in this work
and in other calculation [1,29,44] can be explained using the
perturbation theory [28], showing a smaller effective mass
when the direct gap shrinks. Therefore, the FCA contribu-
tion from 	 electrons increases with the Sn concentration,
while the FCA contribution from L electrons decreases. The
simultaneous effect of an increased value of n	 and a de-
creased value of m∗

e	 makes the gain of FCA from 	 electrons
outweigh the loss from L electrons, which leads to an in-
crease of the full FCA with the Sn concentration, as seen in
Fig. 10.

For holes, while the light hole effective mass m∗
hLH is com-

parable to m∗
e	 [Fig. 11(c)], most of the holes are located in

the heavy hole band due to its higher density of states (i.e.,
higher effective mass) and to the relative position between
these two valence bands, with a degeneracy at the 	 point.
The FCA contribution from both types of holes is therefore
much weaker than that of 	 electrons. Combined with the
previous remark on the FCA contribution of 	 electrons and L
electrons, it explains why, in the Drude-Lorentz’s model, the
main FCA contribution comes from 	 electrons at very high
Sn concentration.
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FIG. 11. (a) The contribution of each term in the total Drude-Lorentz FCA at 298 K: electrons in the 	 and L conduction bands (e − 	,
e − L), light holes (h − LH) and heavy holes (h − HH), ninj = 5 × 1018 cm−3. The total FCA is normalized to 1. (b) The ratio n	

ninj
at ninj =

5 × 1018 cm−3 for relaxed GeSn with Sn between 10% and 22%, as a function of the temperature. (c) The ratio m∗
m0

for e − 	, e − L, h − LH
and h − HH as a function of the Sn concentration. The arrows indicate the corresponding y-axis in each case.

On the other side, since both models show that FCA
∝ λk , with k � 2, when the interband gain shifts towards
lower photon energy as the direct gap shrinks, the contribu-
tion of FCA on the net gain becomes more important. The
calculation of total net gain for relaxed GeSn, especially at
high Sn concentration, depends strongly on the choice of
FCA model. The same remark can be made for high [100]
uniaxial-(100) biaxial tensile strained GeSn. Therefore, mea-
surements of absorption spectrum, especially for GeSn with
small direct gap, should be conducted to gain further insight
on the FCA. Right now, these tasks remain a challenge from
an experimental point of view, stemming from the fragility
of highly strained GeSn structure [17] and from the grad-
ual distribution of Sn atoms in high Sn content GeSn layers
[10,45]. A more in-depth theoretical calculation of FCA is
also necessary, to take into account phonon-assisted, charge
impurity-assisted intravalley and intervalley transitions, as
presented in Refs. [18,46].

V. LASING CHARACTERISTICS OF GeSn
OPTICAL CAVITY

With the calculated net gain, we use the formalism of
Sec. II E to study the lasing characteristics of GeSn optical
cavities. We limit the calculation to two cases. First, we study
relaxed GeSn 16%, where the maximal lasing temperature is
reported to be 230 K [13]. Then, we study GeSn 6% with
1.27% of (100) biaxial tensile strain. Continuous wave (i.e.,
with a very low threshold) lasing was demonstrated experi-
mentally in GeSn with a Sn concentration close to that (5.4%),
with 1.27% and 1.4% of (100) biaxial strain [14,15]. The
mode position and the optical confinement were taken from
experimental data. The choices of various parameters (Csp,
Epump, αpump, βrad, Cn, Cp, 	p) and the depths of the experi-
mental GeSn gain medium are shown in Table X. Here, for
GeSn, we choose a radiative recombination coefficient value
βrad comparable to other direct-gap semiconductor, between

1 × 10−11 cm3 s−1 and 1 × 10−8 cm3 s−1, as reported in
Ref. [47]. Due to questions remaining on the choice of FCA
model—as shown in Sec. IV—unless there is notification, all
lasing characteristics are calculated using the band-to-band
net gain.

We plot in Fig. 12(a) the simulated lasing characteristics,
linking the emitted photon density Sp to the pump power
P, for relaxed GeSn 16% at 15 K with two quality fac-
tors: Q = 200 and Q = 2000, corresponding, respectively, to
αcav = 473.5 cm−1 and αcav = 47.3 cm−1. Due to the lack of
experimental data for τnrad in GeSn 16%, τnrad is set here at
170 ps—the experimental value reported for GeSn 12.5%,
extracted from pump-probe measurement [19]. Despite a 10-
fold difference concerning cavity loss, the simulated lasing
threshold Pth stabilizes and varies only between 43 kW cm−2

and 36 kW cm−2. It is explained by looking at the variation
of net absorption as a function of ninj, at the laser mode
position [Fig. 12(b)]: The net gain starts appearing at ninj =
3.5 × 1017 cm−3 and increases rapidly with ninj up to 1 ×
1018 cm−3. Therefore, the threshold densities (i.e., the injected
carrier density required to reach the threshold gain g = αcav

	p
)

for Q = 200 and Q = 2000 are very close, respectively, at

TABLE X. Parameters used for laser equations.

Parameter Value

Csp 0.01
Epump(eV) 1.1676 [13,14]
α (cm−1) 21550 [48]
βrad (cm3 s−1) 1 × 10−10

Cn, Cp (cm6 s−1) 5 × 10−31 [19]
d0, d1 (nm) 115, 533 (GeSn 16%) [13]

0, 300 (GeSn 6%) [14]
	p 0.634 (GeSn 16%)

0.842 (GeSn 6%)
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FIG. 12. (a) Lasing characteristics of a relaxed GeSn 16% optical cavity at 15 K, for Q = 2000 and Q = 200, at lasing wavelength λlaser =
2800 nm. (b, c) Net absorption as a function of ninj at 15 K (λlaser = 2800 nm) and at 230 K (λlaser = 3200 nm), calculated for three different
models: band-to-band (without FCA), band-to-band with Drude-Lorentz FCA, and band-to-band with Liu’s empirical FCA. The blue and red
straight lines indicate the threshold gain g = αcav

	p
for Q = 2000 and for Q = 200.

4.4 × 1017 cm−3 and 3.7 × 1017 cm−3. Here, changing the
quality factor of the optical cavity has some limited impact
on the lasing threshold. It should also be noted that for relaxed
GeSn 16% at 15 K, FCA is very small due to the low threshold
density around 1017 cm−3: Different models of GeSn net gain
(band-to-band calculation, with or without FCA) give similar
results in this case.

When the temperature increases, the effect of the cav-
ity loss becomes more important [Fig. 12(c)]: At 230 K,
due to a shift of lasing mode toward higher wavelengths
observed in the experiments, Q = 200 and Q = 2000 cor-
responds to αcav = 414.3 cm−1 and αcav = 41.4 cm−1. Here,
the net gain increases more slowly with ninj. Therefore, the
threshold densities for two values of Q differ significantly, at
3.4 × 1018 cm−3 and 9.5 × 1017 cm−3. The FCA contribution
also becomes important in this range of ninj: The threshold
density at Q = 2000 depends now on the choice of net gain
model, with or without FCA. Here, FCA strongly reduces
the net gain and makes a GeSn optical cavity with high loss
(Q = 200) unfit for lasing.

Next, we plot in Fig. 13(a) the lasing characteristics of
relaxed GeSn 16% at 15 K, with Q = 2000 and τnrad varying
between 17 and 1700 ps. Indeed, a higher value of τnrad—
representing a GeSn layer with a better crystalline quality, less
trap defects and dislocations—leads to a smaller lasing thresh-
old. Below and near the lasing threshold, with low value of ninj

(inferior to 3.7 × 1017 cm−3), the Shockley-Read-Hall nonra-
diative recombination is the main recombination mechanism.
Therefore, the carrier continuity Eq. (8) can be approximated
as

P(e−αd0 − e−αd1 )

Epump(d1 − d0)
≈ n

τnrad
, (19)

which leads to

P ≈ Epump(d1 − d0)

(e−αd0 − e−αd1 )

n

τnrad
, (20)

hence the inverse proportionality between Pth and τnrad shown
in Fig. 13(a).

At low temperature, the results suggest that the crystalline
quality of GeSn is the most important factor controlling the
lasing threshold. To check this remark, we plot in Fig. 13(b)
the lasing characteristics of relaxed GeSn 16% (Ec	 − EcL =
−0.157 eV) and 1.27% (100) biaxial tensile-strained GeSn
6% (Ec	 − EcL = −0.083 eV), using the same values of Q
and τnrad. Despite the difference of Ec	 − EcL, plus the las-
ing mode position, Pth are quite similar, at 3.7 kW cm−2 and
2.9 kW cm−2, respectively. The lasing threshold of GeSn 16%

FIG. 13. (a) Lasing characteristics of relaxed GeSn 16% optical
cavity at 15 K, for τnrad = 1700 ps, 170 ps, and 17 ps at lasing
wavelength λlaser = 2800 nm. (b) Lasing characteristics of relaxed
GeSn 16% optical cavity (λlaser = 2800 nm) and 1.27% (100) biaxial
strained GeSn 6% (λlaser = 2350 nm) at 15 K.
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is slightly higher, in part due to a lower value of (e−αd0 −e−αd1 )
(d1−d0 )

(i.e., less lights are absorbed). The experimental results show,
however, a contrast: with the same type of optical cavity
(microdisk), relaxed GeSn 16% gives Pth = 134 kW cm−2 at
15 K, while 1.27% (100) biaxial tensile strained GeSn 5.4%
gives Pth = 5 kW cm−2.

Using Eq. (20) and the experimental value of Pth, we esti-
mate τnrad = 47 ps for relaxed GeSn 16% and τnrad = 986 ps
for strained GeSn 6%. For GeSn 16%, this value is lower
than the GeSn 12.5% experimental value [19], suggesting a
lower crystal quality. It can be explained by a higher lattice
parameter mismatch between the GeSn layer and the Ge
buffer during the epitaxial growth which is performed at a
lower temperature, favoring the presence of dislocation and
defect in the material [49,50]. For GeSn 6%, this value is
higher than the GeSn 12.5% experimental value. It can be at-
tributed to more favorable conditions for epitaxy, with a lower
lattice parameter mismatch with the Ge buffer and a higher
epitaxy temperature, resulting in a better crystalline quality.
Compared to the lifetimes published by De Cesari et al. [51]
(τnrad estimated between 1500 and 2300 ps for GeSn 5% at
7 K) and Elbaz et al. [15] (τnrad estimated between 1400 ps
and 2100 ps for GeSn 5.4% at 25 K), the estimated value of
τnrad for GeSn 6% is lower. Surface reflectivity—which is not
considered in this work—might explain those differences.

As discussed in Sec. III C, GeSn with high Sn concen-
tration and/or with high [100] uniaxial-(100) biaxial tensile
strains are solutions to achieve GeSn lasing at room tem-
perature. In addition, from the simulation of GeSn lasing
characteristics, a high crystalline quality—and therefore a
high value of τnrad—is critical to reduce lasing threshold at low
temperature. This remark remains valid at higher temperature,
even when the effect of cavity loss becomes more significant.
Therefore, to obtain a GeSn laser with low lasing threshold at
room temperature, one might target GeSn with low or medium
Sn concentrations together with a very high tensile strain.

Such an approach yields net optical gain at room temperature,
and is more likely to result in high crystalline quality GeSn
under the constraints of current epitaxy technology. Better
crystalline quality also enables GeSn to withstand higher me-
chanical stress and prevents the material from fracturing under
high tensile strains.

VI. CONCLUSION

We calculated the band-to-band net gain of relaxed and
strained GeSn. We showed that it was determined not only
by the amplitude of interband gain, controlled by the dif-
ference between the conduction band energies at 	 and L
valley, but also by the relative position between the interband
gain and the intervalence band absorption, controlled by the
difference between the direct gap and the spin-orbit gap. Both
approaches, GeSn with high Sn concentration and/or with
high [100] uniaxial-(100) biaxial tensile strain can make the
net gain appear at higher temperature and eventually at room
temperature. We then discussed the integration of free carrier
absorption into the calculation of net gain and showed that
different models give contrasted results, especially for GeSn
with a small direct band gap. Experimental measurements of
absorption spectrum and in-depth theoretical calculation are
thus needed to gain further insight on this topic. Finally, we
simulated the lasing characteristics for relaxed GeSn 16%
and (100) biaxial tensile-strained GeSn 6% optical cavities.
We found that both the cavity loss and crystalline quality—
with the later having a direct impact on the nonradiative
lifetime—altered the lasing threshold, but in different ways:
while crystalline quality had a strong impact on the lasing
threshold regardless of the temperature, cavity loss had very
limited impact at low temperature and became more signif-
icant as the temperature increased. Given those results, we
suggest using low/medium Sn concentration GeSn under very
high [100] uniaxial or (100) biaxial tensile strain to obtain low
threshold lasing at room temperature.

FIG. 14. (a) Evolution of m∗
e	 , m∗

eL , m∗
h−LH, and m∗

h−HH as functions of the applied strain, for (a) GeSn 10% under [100] uniaxial tensile
strain and (b) GeSn 10% under [100] biaxial tensile strain.
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TABLE XI. Net gain maximum (in cm−1) with the corresponding value of ninj (in parenthesis, in cm−3) at 298 K in [100] uniaxial
tensile-strained GeSn, with ninj between 5 × 1016 cm−3 and 3 × 1019 cm−3, extracted for Drude-Lorentz’s model and Liu’s empirical model of
FCA.

[100] uniaxial tensile strain-Drude-Lorentz FCA

ε = 0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0%

6% Sn – – – – – – – 986 1827
(1 × 1019) (3 × 1019)

10% Sn – – – – 28 976 1484 2211 1972
(5 × 1018) (1 × 1019) (3 × 1019) (3 × 1019) (3 × 1019)

13% Sn – – – 313 841 1111 1341 728 –
(1 × 1019) (1 × 1019) (3 × 1019) (3 × 1019) (3 × 1019)

[100] uniaxial tensile strain-Liu′s empirical FCA

ε = 0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0%

6% Sn – – – – – – – 442 968
(5 × 1018) (1 × 1019)

10% Sn – – – – – 707 1246 1205 1136
(5 × 1018) (1 × 1019) (1 × 1019) (3 × 1019)

13% Sn – – – 389 924 1297 1254 1211 565
(5 × 1018) (1 × 1019) (1 × 1019) (1 × 1019) (3 × 1019) (3 × 1019)
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APPENDIX: FREE CARRIER ABSORPTION
IN STRAINED GeSn

In strained GeSn, m∗
e	 becomes anisotropic. Here, we cal-

culate all the effective masses m∗
e	 , m∗

eL, m∗
hLH, and m∗

hHH using
the harmonic mean over all directions in the reciprocal space,
similar to the method adopted for m∗

hHH and m∗
hLH in relaxed

GeSn. We plot, in Fig. 14, the values of m∗
e	 , m∗

eL, m∗
hLH, and

m∗
hHH for GeSn 10% under [100] uniaxial and (100) biaxial

tensile strain. For the L electrons, the applied strain has very
little impact on m∗

eL: Its values barely change and they are very
similar to the conductivity effective mass calculated in relaxed
GeSn.

TABLE XII. Net gain maximum (in cm−1) with the corresponding value of ninj (in parentheses, in cm−3) at 298 K in (100) biaxial
tensile-strained GeSn, with ninj between 5 × 1016 cm−3 and 3 × 1019 cm−3, extracted for Drude-Lorentz’s model and Liu’s empirical model of
FCA.

(100) biaxial tensile strain-Drude-Lorentz FCA

ε = 0% 0.4% 0.8% 1.2% 1.6% 2.0% 2.4%

6% Sn – – – – 1370 3609 4336
(1 × 1019) (3 × 1019) (3 × 1019)

10% Sn – – – 1597 2490 2038 –
(1 × 1019) (3 × 1019) (3 × 1019)

13% Sn – – 926 1564 – –
(1 × 1019) (1 × 1019)

(100) biaxial tensile strain-Liu′s empirical FCA

ε = 0% 0.4% 0.8% 1.2% 1.6% 2.0% 2.4%

6% Sn – – – – 1061 3365 3931
(5 × 1018) (1 × 1019) (1 × 1019)

10% Sn – – – 1331 3057 3720 3776
(5 × 1018) (1 × 1019) (1 × 1019) (3 × 1019)

13% Sn – – 938 2442 3175 3550
(1 × 1019) (1 × 1019) (1 × 1019) (3 × 1019)
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For holes, the situation becomes more complicated. Under
both types of strain, m∗

hHH drops, becoming comparable to
m∗

hLH. This phenomenon was already observed by Rainko
et al. in their work on (100) biaxial strained GeSn [18]. It is
thus difficult—based solely on the band energy position—to
define properly the terms ”heavy holes” and ”light holes” for
strained GeSn, in contrast to relaxed GeSn. Therefore, here,
for [100] uniaxial and (100) biaxial strained GeSn, we calcu-
late the Drude-Lorentz FCA only with the contribution from
the 	 electrons and the L electrons, omitting the contribution
from holes. On the other side, Liu’s empirical model will be
used once again to compare with the Drude-Lorentz’s model.

We extract, in Tables XI and XII, the maxima of net gain at
298 K for [100] uniaxial strained–(100) biaxial strained GeSn,

with contributions from the Drude-Lorentz’s model and Liu’s
empirical model. For [100] uniaxial strain, Liu’s empirical
model has a stronger impact on the net gain than the Drude-
Lorentz’s model in every case, except for highly strained
GeSn 13%. For (100) biaxial strain, like relaxed GeSn, a clear
difference can be seen in small direct gap GeSn (i.e., under
high tensile strain): the Drude-Lorentz’s model suppresses the
net gain at 2.4% strained GeSn 10% and from 1.6% strained
GeSn 13%, while Liu’s empirical model predicts a strong net
gain for these configurations. It is explained by a faster decline
of m∗

e	 under (100) biaxial strain compared to [100] uniaxial
strain, hence a stronger FCA.
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