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Starting-point-independent quantum Monte Carlo calculations of iron oxide
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Quantum Monte Carlo (QMC) methods are useful for studies of strongly correlated materials because they
are many body in nature and use the physical Hamiltonian. Typical calculations assume as a starting point a
wave function constructed from single-particle orbitals obtained from one-body methods, e.g., density functional
theory. However, mean-field-derived wave functions can sometimes lead to systematic QMC biases if the mean-
field result poorly describes the true ground state. Here, we study the accuracy and flexibility of QMC trial
wave functions using variational and fixed-node diffusion QMC estimates of the total spin density and lattice
distortion of antiferromagnetic iron oxide (FeO) in the ground state Bl crystal structure. We found that for
relatively simple wave functions the predicted lattice distortion was controlled by the choice of single-particle
orbitals used to construct the wave function, rather than by subsequent wave function optimization techniques
within QMC. By optimizing the orbitals with QMC, we then demonstrate starting-point independence of the trial
wave function with respect to the method by which the orbitals were constructed by demonstrating convergence
of the energy, spin density, and predicted lattice distortion for two qualitatively different sets of orbitals. The
results suggest that orbital optimization is a promising method for accurate many-body calculations of strongly
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correlated condensed phases.
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I. INTRODUCTION

Iron oxide (wiistite, FeO) is a prototypical charge trans-
fer insulator which displays a rich phase diagram that
includes magnetic, electronic, and structural phase transfor-
mations due in part to the open-shell configuration of the
3d electrons [1-8]. In the ground state, FeO adopts a bulk
antiferromagnetic (AFM) structure composed of alternating
ferromagnetic planes of Fe atoms perpendicular to [111]
which induces a symmetry-lowering distortion of the nomi-
nally cubic B1 lattice [9,10]. Previous theoretical studies have
investigated structural phase transitions at high pressure and
the equilibrium lattice distortion [8,11-19]. One of the main
findings of these studies is that the predicted lattice distortion
is particularly sensitive to the treatment of the electrons.

Quantum Monte Carlo (QMC) methods are especially well
suited to problems where electronic correlation is important
because they use the physical Hamiltonian and are therefore
variational [20,21]. The input for a typical QMC calcula-
tion is a trial wave function, the antisymmetric portion of
which is often generated from a set of single-particle orbitals
(SPOs) from mean-field methods such as Kohn-Sham density
functional theory (DFT). In addition to the antisymmetric
piece, the trial wave function typically includes many ad-
justable parameters which can be optimized by exploiting the
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variational principle using, for example, variational Monte
Carlo (VMC). Classic examples include the Jastrow factor,
backflow transformation of the electronic coordinates, a mul-
tideterminant expansion, and orbital optimization. Each of the
above has been studied extensively in atomic, molecular, and
condensed regimes because such wave functions explicitly
introduce electron-electron correlation into the wave function
and thereby give improved ground-state properties compared
to a mean-field wave function [22-28].

Complementary to VMC is diffusion Monte Carlo (DMC),
a projector-based method whose accuracy depends on the
nodal surface of the wave function, which in turn depends
on the SPO set. The challenge for highly accurate QMC
studies of strongly correlated systems, then, lies in construct-
ing a suitably flexible wave function which can repair any
deficiencies inherited from the mean-field SPOs. Thus new
methods for generating accurate QMC trial wave functions
with sufficient flexibility are highly desired. Several previous
studies have demonstrated remarkable success in constructing
flexible and accurate wave functions in atomic and molecu-
lar systems [22,26,29-32], but until now wave functions for
condensed systems have tended to be much simpler due to the
larger number of electrons and larger basis sets.

Here we report variational and diffusion quantum Monte
Carlo calculations of AFM FeO using a variety of trial wave
function Ansdtze, including electron-electron backflow trans-
formations as well as multideterminant expansions and orbital
optimization. In order to test the flexibility of the trial wave
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function, we constructed two sets of DFT SPOs using Perdew-
Burke-Ernzerhof (PBE) and PBE + U functionals generated
to yield qualitatively different lattice distortions and spin den-
sities. We then demonstrate the starting-point independence of
DMC estimates of the energy, spin density, and equilibrium
lattice distortion with respect to the SPOs in a Slater Jastrow
wave function through orbital optimization and show that this
was not possible for either backflow or small multideterminant
wave functions. The results indicate that orbital optimization
is a promising method for constructing very accurate and flex-
ible wave functions for QMC calculations in systems where
mean-field descriptions yield an incorrect ground state and
highlight the potential of QMC methods to deliver starting-
point-independent estimates of some ground-state properties
in strongly correlated condensed phases.

II. COMPUTATIONAL APPROACH

The immediate goal of this study was to understand how
the techniques used to construct QMC trial wave functions
affected the estimated ground-state properties in a challeng-
ing condensed system. With that goal in mind, we restricted
calculations to a single four-atom AFM primitive cell so that
advanced wave function Ansdtze which scale unfavorably with
system size could be tested.

The building block of all the trial wave functions consid-
ered here was the Slater-Jastrow (SJ)-type wave function:

r(r;a, B) = D' (r;a)D (r; )’ ™), (1

where r is the set of electronic coordinates, {«, 8} are the
set of variational parameters, and D™ is a Slater determinant
composed of SPOs. The adjustable parameters « of the anti-
symmetric portion of the wave function include, for example,
weights in a multideterminant expansion, electron-electron
backflow transformation, and orbital rotations. Finally, J(r; 8)
is the Jastrow function that explicitly introduces dynamic
correlation into the wave function and enforces the cusp con-
ditions [23,33,34].

The DMC algorithm applied to fermions commonly re-
quires that the nodal surface [Wr(r;a, ) = 0] of the trial
wave function is prescribed in order to mitigate the fermion
sign problem [35,36]. This fixed-node approximation intro-
duces a systematic bias in the results, which, while variational,
may be significant if the nodal surface of the trial wave
function is qualitatively different from that of the exact
ground-state wave function. As we show later, this bias can
sometimes result in qualitatively incorrect behavior even after
wave function optimization.

A. Wave function generation

In order to test the flexibility of QMC trial wave functions
we constructed two sets of SPOs which produced qualitatively
different estimates of the spin density and equilibrium lattice
distortion. Trial wave functions were constructed from SPOs
generated from spin-unrestricted DFT calculations using the
QUANTUM ESPRESSO code (version 6.4.0), an implemen-
tation of plane-wave-based Kohn-Sham density functional
theory with periodic boundary conditions [37]. We used pseu-
dopotentials specifically designed for QMC calculations to

describe the iron and oxygen atoms for both the DFT and
QMC calculations [38]. The iron pseudopotential had a neon
core (3523p®3d®4s? valence), and the oxygen pseudopoten-
tial had a helium core (25s22p* valence), for a total of 44
electrons in the primitive cell. All DFT calculations used a
180-hartree plane wave cutoff and a 6 x 6 x 6 k-point grid
and were tested to confirm that further increasing those values
did not appreciably change the DFT energy or stress. The first
SPO set was constructed using the PBE generalized gradient
approximation [39], and the second used a PBE+-U functional
(U = 4.3 eV) in the rotationally invariant scheme following
previous work [16,17] in order to localize the Fe 3d states.
The two sets of SPOs are qualitatively distinct and essentially
describe two different materials. The PBE result predicted a
metallic ground state and a positive lattice distortion, while
the PBE + U results predicted an insulating ground state and
negative lattice distortion.

B. Wave function optimization and Monte Carlo calculations

All QMC calculations were performed with the QMCPACK
code (version 3.6) [40]. We used the improved adaptive shift
algorithm [41] to optimize, in some cases, more than 3000
wave function parameters using VMC. Common among all
trial wave functions we considered were species-dependent
one-, two-, and three-body Jastrow factors represented as cu-
bic polynomials in the particle separations with a spatial cutoff
corresponding to the Wigner-Seitz radius of the cell, about 2.9
bohrs. The two-body Jastrow produced the largest energy and
variance reduction, but the addition of one- and three-body
terms was found to further reduce the energy and variance
significantly. The use of small core pseudopotentials resulted
in a highly oscillatory wave function near the atomic cores
which was costly in terms of memory to accurately represent
on a rectangular mesh. We therefore chose to divide the repre-
sentation of the wave function into two parts, as suggested
by Esler et al. [42], with the regions near the ions stored
as radial splines multiplied by spherical harmonics and the
interstitial regions represented by three-dimensional B splines
on a rectilinear mesh [43]. This scheme reduced the memory
required to represent the wave function by a factor of more
than 25 compared to the standard rectangular mesh with no
statistically significant change in the energy or variance.

With two sets of SPOs in hand, we proceeded to optimize
the trial wave functions using VMC. While optimization of the
Jastrow factor yielded significant energy and variance reduc-
tion, the SPOs themselves are what limit the ultimate accuracy
of DMC. We therefore explored three methods of improv-
ing the nodal surface of the trial wave function: backflow
transformation of the electronic coordinates, multideterminant
expansion, and orbital optimization. A backflow (BF) trans-
formation is a transformation of the electronic coordinates r
to quasiparticle coordinates q [44]. For a particular electron
this transformation is given by

r—>q=ri+y n(rn—rla)m—r), (2
J

with n being a spherically symmetric cubic spline function.
The second trial wave function type was a multidetermi-
nant (MD) expansion. In this wave function, one builds out
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of a set of single-particle orbitals {¢} and a number of Slater
determinants {®[¢]}, with the former being larger than the
number of electrons per spin channel:

D(r,a) =Y o;®[¢(r)]. 3)

The appeal of this Ansatz is that with an infinite number of ¢’s
and ®’s, this wave function is exact. Unfortunately, it scales
exponentially in the number of particles. For that reason,
we explored the use of modest multideterminant expansions
which were constructed in a two-step procedure. The first step
was a VMC optimization of the 924 determinant weights in an
expansion consisting of all possible single excitations within
a basis of 64 SPOs. The second step was a VMC optimization
of all possible single and double excitations generated from
the highest weighted 32 determinants from the previous step,
which totaled 452 determinants. For these wave functions we
found that optimization of the weights of the determinants at
each twist further reduced the VMC energy by approximately
20 mhartree/FeO compared to optimization at only a single
twist due to differences in orbital energy ordering.

The third trial wave function type included an optimization
of the SPOs (OO) themselves. With this method, each opti-
mized SPO ¢ present in the determinant is constructed from a
unitary transformation of the original SPOs ¢ [26-29]:

¢i = Zaij¢j- “
J

This wave function contained over 3000 optimizable param-
eters and was therefore expected to be the most flexible and
accurate trial wave function type we considered.

After optimization, production DMC calculations were
carried out on all optimized trial wave functions on a 3 x 3 x
3 grid of twist vectors, and the results were subsequently twist
averaged. DMC results were linearly extrapolated to zero time
step from a series of calculations with finite time steps of
7 = 0.01, 0.005, and 0.0025 hartree™!.

III. RESULTS

The principal goal of this study was to understand how
sensitive various ground-state properties of a system were to
the trial wave function for a realistic and challenging con-
densed system. To that end, we calculated a series of physical
properties that are typically strongly affected by the electronic
structure: the total spin density and the equilibrium lattice
distortion.

We compare the twist-averaged total energies for all opti-
mized trial wave functions for an undistorted (cubic) geometry
in Fig. 1. As expected, the VMC energies of the optimized
backflow, multideterminant, and orbital optimization wave
functions were lower than their simpler Slater-Jastrow wave
function counterparts. An unexpected result was that improve-
ments in the multideterminant trial wave function predicted
by VMC did not carry over to DMC in all cases. We attribute
this result to the relatively small active space in which that
wave function was constructed, and it suggests that our VMC
optimization strategy improves the overall shape of the wave
function but not necessarily its nodal surface. Importantly, the
DMC energies of the orbital optimized trial wave function
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FIG. 1. Twist-averaged QMC energies for several optimized trial
wave function types built from either PBE or PBE4+U SPOs. The
DMC energies are linearly extrapolated to zero time step. Abbrevia-
tions: SJ = Slater Jastrow, MD = multi determinant, BF = backflow,
and OO = orbital optimization.

were statistically identical regardless of the SPO set in which
the optimization occurred, a result unique to this wave func-
tion. Especially encouraging was that the OO wave function
was much less expensive to evaluate than the MD or BF, which
were 2.2 and 1.6 times as expensive to evaluate as the OO
wave function, respectively.

A. Spin density

The character of the Fe 3d orbitals produced from our
PBE + U calculations is very different from those of PBE.
As a result, we expected to see a significant difference in the
predicted total spin densities depending on the SPOs used in
the trial wave function. An open question was how signifi-
cantly the spin density would change after optimization. To
illustrate the differences in the spin densities obtained from
the optimized trial wave functions, we show differences in the
DMC estimates from various wave functions with respect to
that from a single-determinant SJ wave function composed
of PBE SPOs in Fig. 2. Because estimates of observables
from different wave functions are subject to different time
step errors, all DMC results have been linearly extrapolated to
zero time step. Additionally, the spin density estimator does
not commute with the Hamiltonian, which means that our
DMC spin densities were subject to a mixed estimator bias,
which we have corrected [36]. While both the backflow and
multideterminant trial wave functions show only small pertur-
bations in the spin density compared to the SJ PBE reference
(comparing the top and bottom rows of Fig. 2, excluding
the rightmost illustrations), the orbital optimized trial wave
function yields a significantly different spin density (rightmost
illustrations of Fig. 2). Significantly, the qualitatively distinct
characters of the PBE and PBE + U SPOs are effectively
erased with orbital optimization (top and bottom rightmost
illustrations in Fig. 2). In concordance with the comparison
of the total energy shown in Fig. 1, the convergence of the
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FIG. 2. Differences in the DMC estimated total spin density between trial wave function types with respect to a single SJ trial wave
function composed of PBE SPOs. Detailed views looking along [111] show an isosurface corresponding to 2% of the maximum difference
and are restricted to a single FeOq octahedron for visual clarity. Iron and oxygen atoms are shown as large gray and small black spheres,
respectively. Green (purple) surfaces bound regions where PBE total spin density is less (greater) than that from the other SPO set.

spin density suggests that the observables computed from the
orbitally optimized wave function were independent of the
underlying SPO set.

B. Equilibrium lattice distortion

In the ground state, the nominally cubic Bl crystal struc-
ture of AFM FeO is slightly elongated along the [111]
direction, thereby simultaneously increasing the interplanar
spacing and decreasing the intraplanar spacing of the iron
atoms [45,46]. This phenomenon is observed in many tran-
sition metal oxides and is controlled by interactions between
3d electrons on the iron atoms [47,48]. For that reason we
expected the equilibrium lattice distortion to be very sensitive
to the quality of the trial wave function. Figure 3 shows energy
versus lattice distortion at the VMC and DMC levels. The
VMC results for each wave function type universally pre-
dicted lattice contraction along [111], which is qualitatively
wrong compared to experiment.

Considering the more accurate DMC calculations, we see
significant improvements in both energy and predicted lattice
distortion. DMC correctly shifted the predicted equilibrium
lattice distortion for all trial wave functions to more positive
values (corresponding to extension along [111]), although this
shift is insufficient to recover the correct behavior in some
cases. There was also a reordering of the relative energies of
the trial wave functions compared to VMC. Wave functions
constructed from PBE+4U orbitals yielded higher DMC en-

ergies compared to those of the PBE wave functions. That
the multideterminant wave functions produce a higher energy
than their single-determinant counterparts at the DMC level is
a reflection of the fact that wave function improvements from
VMC do not necessarily guarantee a corresponding improve-
ment with DMC but could probably be improved via a larger
multideterminant expansion [29]. Compared to the multide-
terminant expansion, the improvements in the nodal surface
due to the backflow transformation and orbital optimization
are readily apparent both in terms of lower total energy and
lattice distortion. Indeed, the backflow and orbital optimized
wave functions yielded significant energy reductions, in some
cases reducing the energy by as much as 20 mhartree per FeO
compared to the single SJ trial wave function. Overall, we
found that the orbital optimized wave function produced the
lowest VMC and DMC total energies, which indicates that it
was the most accurate wave function among those tested.

As expected, the predicted equilibrium distortion is quite
sensitive to the trial wave function. For example, a SJ trial
wave function composed of PBE orbitals predicts an equi-
librium distortion of about 1.9%, while the backflow and
multideterminant wave functions predicted 2.0% and 2.4%,
respectively. By design, we constructed the PBE+ U wave
function in such a way to accumulate excess charge be-
tween Fe atoms along [111] compared to the other wave
functions, which explains why the PBE 4+ U wave function
uniquely predicted a negative lattice distortion at the DMC
level. Estimates of the distortion from trial wave functions
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FIG. 3. Energy versus lattice distortion for VMC (left) and DMC (right) calculations with trial wave functions constructed from various
DFT-based methods. The solid lines are quadratic polynomial fits to the data and are included as a guide to the eye.

composed of PBE+ U SPOs show remarkably little varia-
tion in the predicted lattice distortion. We found standard SJ,
backflow, and multideterminant estimates of —1.8%, —2.0%,
and —1.8%, respectively. Finally, the estimated distortion
from the orbital optimization wave function was 1.9%. For
FeO, comparison to experiment is hampered by the fact that
natural and synthetic samples are nonstoichiometric. Never-
theless, experimental measurements suggest lattice distortion
between about 1% and 2% [10,45,46]. Admittedly, the large
uncertainty in the experimental data, likely due in part to sto-
ichiometry, is consistent with several of our QMC estimates.
However, in terms of the present study, the low energy of the
orbital optimization trial wave function suggests that it is the
most accurate.

IV. DISCUSSION AND CONCLUSIONS

The goal of this study was to understand how the SPOs
used to construct the QMC trial wave function affected several
ground-state properties and to test the extent to which various
QMC wave functions provided estimates of observables that
were independent of the quality of the SPOs. The most signif-
icant result of this investigation was the demonstration of the
starting-point independence of the QMC trial wave function
with respect to the energy, spin density, and predicted lattice
distortion via orbital optimization, which was not achieved
using any other wave functions that we considered. This
suggests that wave functions of this form may provide truly
ab initio QMC estimates of ground-state properties for ma-
terials in which a mean-field description sometimes gives
incorrect results.

The results presented here are subject to several limita-
tions. Most importantly, the 44-electron, 4-atom primitive cell
considered here is too small to make meaningful estimates
of observables in the thermodynamic limit. This limitation
was unavoidable in order to explore advanced wave functions
which scale unfavorably with system size. Given the small
simulation cell, it is reasonable to question how much of what

we have observed will carry over to the thermodynamic limit.
What this work shows is that there are qualitative differences
and large quantitative energy differences in the underlying
orbitals and charge distributions between various flavors of
mean-field DFT and VMC orbital optimization, most notably
on the iron site. If we consider a mapping of our FeO primitive
cell onto a Hubbard model, it would imply notable changes
to the nearest-neighbor and interband hopping and on-site
Coulomb repulsion integrals. It seems to us that short of a
coincidence whereby PBE, PBE + U, and subsequent VMC
orbital optimization all give similar orbitals in the thermody-
namic limit, the issues identified in this work will also arise in
larger systems and will require similar mitigation strategies to
what we have demonstrated here.

Beyond issues of simulation size, the ground-state wave
function of an antiferromagnet is, in general, not a single
Slater determinant. To understand how the restriction on the
wave function Ansatz affects the present results, we ask what
the variational improvement in energy could be from a better
treatment of magnetic degrees of freedom. By comparing
QMC energy estimates for single-reference versus resonat-
ing valence bond type wave functions for antiferromagnetic
ground states in the two-dimensional Heisenberg model with
an effective J of the order of 1 eV, we can estimate that the
relevant magnetic energy scale in FeO is about 1 mhartree
per formula unit [49]. In contrast, we found that the energy
scale coming from changes in the mean-field orbitals was of
the order of 10 mhartree/f.u. for DMC and of the order of 50
mhartree/f.u. for VMC (Fig. 1). This suggests that whether
one has the right magnetic ground state is of secondary im-
portance in modeling these systems (in terms of their energy)
compared to the shape of the orbitals and overall charge distri-
butions. In the present study, we cannot claim to have the cor-
rect ground state of FeO; however, this work does show that
orbital optimization is a promising first step in the construc-
tion of more sophisticated Ansatzé for QMC investigations of
magnetic systems. Finally, we emphasize that within DFT or
DFT+-U there are multiple minima with different symmetries
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and geometries. The ground state is monoclinic [16,50]. Even
local spin density approximation (LSDA) gives the correct
positive strain [11] and LDA clearly shows minima for both
positive and negative strains. Recently it is also shown that
the SCAN functional gives the correct ground state and a gap
even for the disordered paramagnetic state [50].

In conclusion, we have performed a systematic investiga-
tion of some ground-state properties of AFM B1 FeO, and
in particular we explored several QMC wave function gen-
eration techniques. The results suggest that the equilibrium
lattice distortion and spin density are exceptionally sensi-
tive to the construction of the trial wave function (viz., the
nodal surface). We demonstrated the starting-point indepen-
dence of the QMC trial wave function with respect to the
energy, spin density, and equilibrium lattice distortion through
orbital optimization. Finally, we suggest that advanced and
systematically improvable QMC wave functions achieved via
orbital optimization may soon be used more extensively in
condensed-matter systems for problems where strong elec-
tronic correlation effects are important.

Input files used in this study can be found at Ref. [51].
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