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We provide an extensive look at Bott periodicity in the context of complex gapped topological phases of free
fermions. In doing so, we remark on the existence of a product structure in the set of inequivalent phases induced
by the external tensor product of vector bundles—a structure which has not yet been explored in condensed-
matter literature. Bott periodicity appears in the form of a generalized Dirac monopole built out of a given
phase, which is equivalent to the product of a Dirac monopole phase with that same given phase. The complex
K-theory cohomology ring is presented as a natural way to store the information of these phases, with a grading
corresponding to the number of Clifford symmetries modulo 2. The Künneth formula allows us to derive the
result that, for band insulators, the Su-Schrieffer-Heeger (SSH) chain in one dimension allows one to generate
the K-cohomology of the d-dimensional Brillouin zone. In particular, we find that the product of two SSH chains
in independent momentum directions yields a two-dimensional Chern insulator. The results obtained relate the
associated topological phases of charge-conserving band insulators and their topological invariants in all spatial
dimensions in a unified way.
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I. INTRODUCTION

In Kitaev’s seminal paper [1], gapped phases of free
fermions, such as topological insulators and superconduc-
tors, were classified according to K theory, exhibiting Bott
periodicity—twofold in the complex case and eightfold in the
real case. The impact of this result cannot be understated as it
resulted in a paradigm shift. Not only did it allow physicists
to comprehend new phases of matter which do not follow the
traditional Landau-Ginzburg paradigm of symmetry breaking
and local order parameters, bringing sophisticated mathe-
matics into condensed matter, but also because it unified
previously known results on topological phases, such as the
integer quantum Hall effect [2], the Majorana chain [3], and
the quantum spin Hall effect [4,5], and, moreover, predicted
phases that were not known to exist. Following Kitaev’s pi-
oneering work, other phases of matter were classified within
the same spirit. More concretely, appropriate versions of K
theory have been used to classify other phases of matter, to
name a few, Floquet insulators [6], topological crystalline
materials [7–9], and also topological phases of non-Hermitian
systems [10]. There is even a monograph dedicated to com-
plex topological insulators from the point of view of K
theory of C∗ algebras, with emphasis in the bulk-to-boundary
principle [11].

An account of the mathematics of Bott periodicity has also
been presented in condensed-matter literature. In Ref. [12],
for instance, they begin with a symmetry group, the unitary
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for the complex case and the real orthogonal for the real case,
and by adding symmetry-breaking operators, they uncover the
periodic pattern (modulo 2 and modulo 8, for the complex
and real cases, respectively) of associated symmetric spaces
in the stable limit. In this same reference, it is mentioned that
the K-theory groups have a product structure, and the authors
wonder about the possible natural interpretation of the product
in the context of gapped phases.

In the present paper, we will focus on the charge-
conserving topological phases of gapped free fermions which
are described by complex K theory. In this setup, we will pro-
vide an in-depth review of how the K-theory groups emerge
in this setting while giving emphasis to the reduced K groups
representing the nontrivial piece which forgets about the num-
ber of bands and the product structure—a novel ingredient
brought from the mathematics of K theory. We will use three
alternative equivalent descriptions of complex K theory, which
can be advantageous from the physical point of view. Namely,
Hamiltonians, (Fermi) projectors, and vector bundles. The
first two are the most familiar to condensed-matter physics
and make clear contact with physical systems. The last one
is the classical mathematical point of view from Atiyah
[13]. The product structure is presented in detail. We review
complex Bott periodicity, using a version of Bott’s original
construction which turns out to be equivalent, in K theory,
to the (external tensor) product by a Dirac monopole defined
over the two sphere. Our main result is that by introducing the
K-cohomology ring, which contains information on Hamilto-
nians graded by the possible Clifford symmetries and also has
a product, one can use the Künneth formula to prove that the K
cohomology of the d-dimensional Brillouin zone is generated
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in terms of the well-known Su-Schrieffer-Heeger (SSH) chain.
In particular, we find the particularly remarkable result that
the product of two SSH chains is a Chern insulator, an ex-
ample of which is the paradigmatic Haldane anomalous Hall
insulator [14].

The paper is organized as follows. Section II contains the
review on complex K theory in the context of gapped phases
of free fermions while introducing the product structure. In
Sec. II A, we focus on K0(X ), which appears in the absence
of any symmetries other than charge symmetry. In Sec. II B,
we focus on K−1(X ), which appears when one imposes one
Clifford symmetry, such as chiral symmetry. In Sec. II B,
we relate the K̃0 and K−1 groups through suspensions. In
Sec. II C, we deal with K−2(X ) and Bott periodicity. Finally,
in Sec. III, we provide the definition of the K cohomology
together with its ring structure, while presenting, in Sec. III A,
our main results that the K cohomology of the d-dimensional
Brillouin zone is generated by SSH chains and SSH times
SSH equals Chern insulator and, in Sec. III B, the derived
consequences for the associated topological invariants.

II. TOPOLOGICAL PHASES OF FREE FERMIONS
OVER X AND THE FUNCTOR K

In the following, we recall the arguments that relate com-
plex, i.e., charge conserving, gapped phases of free fermions
to K theory. We will put emphasis on three alternative equiva-
lent descriptions of complex K theory: Hamiltonians, (Fermi)
projectors, and vector bundles. The discussion is by no means
complete and we omit details of known proofs. Therefore,
we redirect the reader to standard references on K theory
such as Refs. [13,15–17] for the connection with idempto-
tents and invertibles, which is quite natural in the physical
context of free fermions. We will also review Bott periodic-
ity in the present context, which can be seen as mapping a
family of Hamiltonians over a space to a generalized Dirac
monopolelike associated family over the Cartesian product of
the original space by a two-sphere S2, which is the same, up to
deformation, to the homotopy equivalence presented by Bott
in his original work from Refs. [18,19]—see Eq. (A43). In the
process, we emphasize the fact that gapped topological phases
of free fermions come equipped with a product other than the
direct sum, induced by the external tensor product of vector
bundles, motivating the main results of the paper presented in
Sec. III.

A. K0(X ) and topological phases without Clifford symmetries

Suppose we are given a family of charge-conserving free-
fermion Hamiltonians parametrized by a topological space X
which is compact, connected, and Hausdorff, namely,

H(x) =
N∑

j,k=1

a†
j h jk (x)ak, x ∈ X, (1)

where {a†
j}N

j=1 denote fermion creation operators and H (x) =
[h jk (x)]1� j,k�N is a Hermitian matrix whose entries are con-
tinuous functions. For convenience, we will also assume that
X is a pointed space, i.e., it comes equipped with a choice of a
point x0 ∈ X . Here X can be the d-dimensional Brillouin zone

BZd , see Sec. III, but it can also be the space of parameters
of the theory, such as the possible hopping amplitudes or
fluxes thread through the system. In the case that X = BZd ,
the fermionic creation and annihilation operators also depend
on the momentum k ∈ BZd , but they are globally defined so
the representation of Eq. (1) is an effective valid description.
We remark that one can relax the compactness condition on
X to be locally compact by taking suitable boundary con-
ditions at “infinity” (one point compactification)—compare
the definitions below to those in Sec. 2.6 of Ref. [17]. See
also Kitaev’s discussion on continuous systems and Dirac
operators in Ref. [1].

The statement that the continuous family {H(x)}x∈X is
charge conserving means that the total charge,

Q =
N∑

j=1

a†
j a j, (2)

commutes with H(x) for all x ∈ X . From now on, we will
identify {H(x)}x∈X with {H (x)}x∈X , since they are in one-to-
one correspondence. Alternatively, we can just think of the
continuous family {H (x)}x∈X as a continuous map H : X →
M(N ;C),

H : X � x �→ H (x) ∈ M(N ;C), (3)

where M(N ;C) denotes the set of N × N matrices with com-
plex entries, and simply write it as H .

For the family {H (x)}x∈X or, equivalently, for H to be
admissible, it must satisfy a gap condition. The gap condition
adopted in Ref. [1] is that the eigenvalues of H (x) satisfy
α � λ � α−1, with α ∈ (0, 1], for every x ∈ X . This condi-
tion assumes that the Fermi level EF of the system is set to
zero. Within this set of admissible families, we will impose
an equivalence relation that identifies those families which
belong to the same “phase.”

The first classification principle is that of adiabatic con-
tinuity or homotopy. Namely, we say that two families
H0 : X → M(N ;C) and H1 : X → M(N ;C) of admissible
Hamiltonians are adiabatically connected or, equivalently, ho-
motopic, if there is a continuous path of admissible families
that joins the two, i.e., if there is an admissible family H :
[0, 1] × X → M(N ;C) such that

H (0, x) = H0(x) and H (1, x) = H1(x) for all x ∈ X. (4)

The map H : [0, 1] × X → M(N ;C) defines a homotopy
between the two families within the space of admissible fam-
ilies. Adiabatic connectivity defines an equivalence relation
within the set of admissible families. By spectral flattening,
one can show that every family has a representative with the
property that

H (x)2 = IN , for every x ∈ X, (5)

where IN is the N × N identity matrix. The homotopy is ex-
plicitly given by (1 − t )H (x) + t sgn(H (x)), where sgn(·) is
the sign function. The representative constructed only carries
information about the Fermi projector

P(x) = �( − H (x)), x ∈ X, (6)

where �(·) is the Heaviside step function. Indeed, H (x) =
IN − 2P(x). By this discussion, we see that, under homotopy,
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it is enough to begin with the set of continuous families of
orthogonal projectors {P(x)}x∈X , denoted also by the associ-
ated map P : X → M(N ;C), and identify those that differ by
homotopy. From now on, we will think of H also in terms of
the associated family of orthogonal projectors P.

To be able to arrive at a notion of topological phases which
is independent of N , we consider the inclusions M(N ;C) ⊂
M(N + 1;C),

M(N ;C) � P �→ P ⊕ 0 =
[

P 0
0 0

]
∈ M(N + 1;C), (7)

and consider the direct limit M(C) = lim−→ M(N ;C), where

we take the disjoint union
∐

N∈N M(N ;C) and quotient by
the equivalence relation P ∼ P ⊕ 0 for every P ∈ M(N ;C)
and N ∈ N. In the direct limit, we can think of each finite-
dimensional matrix as a matrix which differs from the zero
infinite matrix by a finite number of entries. The inclusion
M(N ;C) ⊂ M(N + 1;C) takes a family of orthogonal pro-
jectors {P(x)}x∈X , with P(x) ∈ M(N ;C), and produces an
orthogonal projector in M(C). Observe, however, that this
direct limit construction fails to preserve the gap condition
if we take {H (x)}x∈X and identify it with a family with
values in M(C) by adding zeros. However, if P ∈ M(N ;C)
is an orthogonal projector, then the matrix IN+1 − 2P ⊕ 0 ∈
M(N + 1;C) still satisfies the gap condition. So, in terms
of projectors, the construction above is perfectly legitimate
in the sense that it preserves the gap condition. We could,
however, observe that the gap condition implies that H (x) is
invertible and so is an element of GL(N ;C). The obvious
direct limit construction would be to take the direct limit
GL(C) = lim−→ GL(N ;C), where every finite-dimensional in-

vertible matrix is thought of as an infinite matrix different
from the infinite identity matrix from a finite number of en-
tries. This is perfectly well defined, so we can think of the
Hamiltonian as a continuous map H : X → GL(C).

From here on, we think of the family {P(x)}x∈X as a con-
tinuous map P : X → M(C), where M(C) has the direct limit
topology, i.e., a set is open if and only if the intersection with
M(N ;C) is open for all N ∈ N.

The resulting set of equivalence classes has the structure of
what is called an Abelian monoid, i.e., a set which has a binary,
closed, associative, and commutative operation with unit. This
operation is direct sum and the zero element given by the zero
matrix. A given continuous family of N × N orthogonal pro-
jectors {P(x)}x∈X has a topological vector bundle associated
to it in a natural way, namely, the vector bundle Im P → X ,
whose fiber over x ∈ X is the vector subspace Im P(x) ⊂ Cn.
Conversely, due to the result that every topological vector
bundle over a compact Hausdorff space X is isomorphic to
a subbundle of the trivial bundle X × CN for some N ∈ N
(see, for instance, Propositions 1.7.9 to 1.7.12 of Ref. [17]),
every vector bundle, up to isomorphism, arises in this way.
Moreover, if we have a vector bundle over [0, 1] × X , then
we have a family of orthogonal projectors {P(t, x)}(t,x)∈[0,1]

providing a homotopy between {P(0, x)}x∈X and {P(1, x)}x∈X .
The associated vector bundle Im P restricted to {0} × X is
isomorphic to Im P restricted to {1} × X . This result on ho-
motopy invariance of vector bundles can be obtained using
a version of the Tietze extension theorem and the existence

of partitions of unity (see Lemma 1.4.3 of Atiyah’s lectures
[13]). Thus, we conclude that homotopic projectors give rise
to isomorphic vector bundles. Moreover, if we have isomor-
phic vector bundles, then we can build a bundle over [0, 1] ×
X with the two bundles corresponding to the restrictions to
{0} × X and {1} × X , respectively. To see this, one first re-
alizes that if we have isomorphic vector bundles E , F , and
without loss of generality we can assume E , F ⊂ X × CN , as-
sociated to families of projectors {PE (x)}x∈X and {PF (x)}x∈X ,
then there exists a continuous map S : X → GL(2N ;C) with
the property that PF ⊕ 0N = S(PE ⊕ 0N )S−1 (see the proof
of Proposition 1.7.6 of Ref. [17]). Then, one proves that pro-
jectors which satisfy this similarity relation are homotopic in
double the dimension, using the homotopy

Tt = (S ⊕ 02N )Rt (S
−1 ⊕ 02N )Rt

t , (8)

where Rt = [
cos ( πt

2 )I2N − sin ( πt
2 )I2N

sin ( πt
2 )I2N cos ( πt

2 )I2N
], which interpolates be-

tween I4N and S ⊕ S−1, one has that Tt (PE ⊕ 0N ⊕ 02N )T −1
t

interpolates between PE ⊕ 03N and PF ⊕ 03N . Thus, iso-
morphic vector bundles give rise to homotopic families
of orthogonal projectors. This discussion shows that the
isomorphism classes of vector bundles are in one-to-one cor-
respondence with homotopy classes of families of orthogonal
projectors. Additionally, the direct sum of orthogonal projec-
tors yields precisely the Whitney direct sum of vector bundles
and we can identify the set of equivalence classes of orthog-
onal projectors. In other words, what we have just built is the
monoid of isomorphism classes of topological vector bundles
over X , denoted (Vect(X ),⊕). To turn this into an Abelian
group, one considers the Grothendieck group completion of
the monoid, which in terms of vector bundles is to consider
Vect(X ) × Vect(X ), i.e., pairs of isomorphism classes of vec-
tor bundles ([E ], [F ]) and quotient by the equivalence relation

([E ], [F ]) ∼ ([E ′], [F ′])

⇔∃Q :E ⊕ F ′ ⊕ Q ∼= E ′ ⊕ F ⊕ Q, (9)

where ∼= denotes vector bundle isomorphism. One often
writes the equivalence class of ([E ], [F ]) as a formal dif-
ference [E ] − [F ]. The addition of classes is given in terms
of the Whitney sum as ([E1] − [F1]) + ([E2] − [F2]) = [E1 ⊕
E2] − [F1 ⊕ F2]. The zero element can be written as [E ] − [E ]
for any vector bundle E and −([E ] − [F ]) = [F ] − [E ]. The
resulting Abelian group is known as K0(X ) or simply K (X )—
the complex topological K-theory group of X .

Any element [E ] − [F ] can be represented by [E ] − [θn],
where θn = X × Cn denotes the trivial bundle for some rank
n. The reason is that, as explained above, due to the existence
of partitions of unity over X and the Tietze extension theorem,
every vector bundle over X is isomorphic to a subbundle of
some trivial bundle. In terms of projectors, for any family
{P(x)}x∈X of N × N orthogonal projectors, we can define an
orthogonal complement family

Q(x) = IN − P(x), (10)

so Im P ⊕ Im Q = θN . If [E ] is an isomorphism class of
vector bundles, we denote by [E⊥] the class obtained by
considering the orthogonal complement family of projectors.
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Then

[E ] − [F ] = [E ] − [F ] + [F⊥] − [F⊥]

= [E ⊕ F⊥] − [θN ], (11)

for some natural number N . It is instructive to realize K0(X ) as
equivalence classes of pairs of families of projectors, in which
addition is given by direct sum. As before, we denote the
difference classes by [{P1(x)}x∈X ] − [{P2(x)}x∈X ] or simply by
[P1] − [P2]. It is important to note that, if Q(x) = IN − P(x),

P ⊕ Q is homotopic to (P + Q) ⊕ 0N = IN ⊕ 0N , (12)

and this gives us the equivalent statement in terms of pairs
of equivalence classes of families of orthogonal projectors.
Namely, there are trivial constant families {IN }x∈X , for N ∈ N,
and any [P1] − [P2] can be written as

[P1] − [P2] + [IN − P2] − [IN − P2(x)]

= [P1 ⊕ (IN − P2)] − [IN ], for some N ∈ N. (13)

The equivalent statement in terms of Hamiltonians is that we
should think of topological phases as pairs of equivalence
classes of families of Hamiltonians and we can take the second
family to be a trivial family,

H =
N∑

j=1

(a†
j a j − a†

N+ jaN+ j ), (14)

associated with the matrix H = IN ⊕ (−IN ). We remark that
the approach of taking equivalence classes of orthogonal
projectors is equivalent to taking equivalence classes of
idempotents, i.e., continuous maps E : X → M(C) satisfying
E (x)2 = E (x) for all x ∈ X . The reason is that any idempotent
is homotopic, within the space of idempotents, to some family
of orthogonal projectors.

The assignment X �→ K0(X ) is functorial in the following
sense. If we have a morphism of compact Hausdorff topolog-
ical spaces, i.e., a continuous map f : X → Y between two
such spaces X and Y , then there is a group homomorphism
f ∗ : K0(Y ) → K0(X ) in which

K0(Y ) � [E ] − [F ] �→ [ f ∗E ] − [ f ∗F ] ∈ K0(X ), (15)

where f ∗E is the pullback bundle whose fiber at x is the fiber
of E at f (x). In terms of projectors, it just means that given
a family {P(y)}y∈Y , we have a natural family over X given by
{P( f (x))}x∈X . Obviously, if idX : X → X is the identity map,
the induced map in K theory is the identity map. Moreover,
if two maps f , g : X → Y are homotopic, due to homotopy
invariance of the induced maps on vector bundles by pull-
back, they induce the same maps f ∗, g∗ : K0(Y ) → K0(X ).
Moreover, since pullbacks preserve direct sums, this induces
a homomorphism of Abelian groups. In mathematical terms
the assignment X �→ K0(X ) is a contravariant functor from
the category of compact Hausdorff topological spaces to that
of Abelian groups.

Taking the reference point x0 ∈ X , the natural inclusion
i : {x0} → X induces a map i∗ : K0(X ) → K0({x0}). Now
K0({x0}) ∼= Z, where the isomorphism is given by [E ] −
[F ] �→ dim E − dim F , or in terms of projectors, it is simply
the difference between the ranks of the projectors. The kernel
of i∗ is known as the reduced K-theory group K̃0(X ) = ker i∗,

also denoted by K̃ (X ). An element [E ] − [F ] ∈ K̃0(X ) has the
property that [i∗E ] − [i∗F ] = 0, in other words, the ranks of
E and F have to be the same at x0. We can then represent
elements of K̃0(X ) in the form [E ] − [θn], where n = dim Ex0 .
Another equivalent interpretation of K̃0(X ) is in terms of
stable equivalence classes of vector bundles over X . Namely,
let [E ], [F ] ∈ Vect(X ) denote isomorphism classes of vec-
tor bundles over X , and introduce an equivalence relation
given by

[E ] ∼s [F ] iff E ⊕ θm ∼= F ⊕ θn, for some m, n. (16)

The set of stable equivalence classes of vector bundles over
X is the quotient EU (X ) = Vect(X )/ ∼s. Denote by [E ]s the
equivalence class of [E ] under the equivalence relation ∼s.
Then, if [E ] − [θn] ∈ K̃0(X ) we may map it to [E ]s. Observe
that, in K̃0(X ), the equality [E ] − [θn] = [F ] − [θm] implies
there exists a vector bundle Q such that

E ⊕ θm ⊕ Q ∼= F ⊕ θn ⊕ Q. (17)

By noting that there exists Q⊥ such that Q ⊕ Q⊥ ∼= θ r for
some r, the above condition is equivalent to [E ]s = [F ]s. By
taking the direct sum of bundles in EU (X ) = Vect(X )/ ∼s,
the identification of K̃0(X ) with EU (X ) becomes a group
homomorphism. The stable equivalence relation essentially
forgets about the dimensionality of the vector bundles and it
cares only about the nontrivial twist of the bundle.

The K theory K0(X ) is not only a group, but also a ring,
with the ring structure induced by tensor product of bundles.
Namely, we can define

([E1] − [F1])([E2] − [F2])

= [E1 ⊗ E2 ⊕ F1 ⊗ F2] − [E1 ⊗ F2 ⊕ F1 ⊗ E2], (18)

for bundles E1, E2, F1, F2 over X , and one can check that
this is well-defined. Moreover, the pullback as defined before
induces ring homomorphisms. By restriction, and because
the kernel of a ring homomorphism is an ideal, we get a
ring structure on the reduced K theory K̃0(X ). Thinking of
the identification of K̃0(X ) with EU (X ), we would lake to
make the latter into a ring with the same ring structure as the
former. One would expect the product of stable isomorphism
classes to be related to the tensor product. Indeed, taking
[E ] − [θn], [F ] − [θm] ∈ K̃0(X ), we can write

([E ] − [θn])([F ] − [θm])

= [E ⊕ F ⊕ θnm] − [E ⊗ θm ⊕ θn ⊗ F ]

= [E ⊕ F ⊕ E⊥ ⊗ θm ⊕ θn ⊗ F⊥ ⊕ θmn]

− [(E ⊕ E⊥) ⊗ θm ⊕ θn ⊗ (F ⊕ F⊥)]

= [E ⊕ F ⊕ E⊥ ⊗ θm ⊕ θn ⊗ F⊥] − [θ pm+nq−nm], (19)

where E⊥, F⊥ are orthogonal complement bundles such that
E ⊕ E⊥ ∼= θ p and F ⊕ F⊥ ∼= θq. So the good definition mak-
ing EU (X ) ∼= K̃0(X ) into a ring isomorphism is to define

[E ]s ∗ [F ]s = [E ∗ F ]s

= [E ⊗ F ⊕ E⊥ ⊗ θm ⊕ θn ⊗ F⊥]s, (20)

where we defined the ∗ operation also on vector bundles by the
the formula inside the bracket on the right-hand side (RHS).
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Alternatively, we can think of stable equivalence classes of
projectors and stable equivalence classes of Hamiltonians.
That would mean that we would identify a class [P] − [IN ] ∈
K̃0(X ), with N = trP(x0) with a stable equivalence class in the
following sense. Recall that [P] is interpreted as a homotopy
class of families of orthogonal projectors in M(C). We then
impose the further equivalence relation,

[P1] ∼s [P2] iff [P1 ⊕ In] = [P2 ⊕ Im] for some m, n, (21)

and denote the resulting equivalence class of [P] in the quo-
tient space by [P]s. Similarly, in terms of equivalence classes
of Hamiltonians,

[H1] ∼s [H2]

iff [H1 ⊕ (In ⊕ (−In))] = [H2 ⊕ (Im ⊕ (−Im))],

for some m, n, (22)

and denote the resulting equivalence class of [P] in the quo-
tient space by [H]s. It is not hard to see that the resulting
sets are in bijection with EU (X ) or K̃0(X ), these bijections
inducing group isomorphisms. Moreover, we can make it into
ring isomorphisms by defining the product as follows. For
stable equivalence classes of projectors,

[P1]s ∗ [P2]s = [P1 ∗ P2]s

= [P1 ⊗ P2 ⊕ (In1 − P1) ⊗ In2 ⊕ In1 ⊕ (In2 − P2)]s, (23)

where ni, i = 1, 2, are the dimensions of the vector spaces
where P1 and P2 act, so Ini − Pi, i = 1, 2, are the associ-
ated orthogonal projectors. For stable equivalence classes of
Hamiltonians,

[H1]s ∗ [H2]s = [H1 ∗ H2]s

= [H1 ⊗ H2 ⊕ (−H1) ⊗ (In2 ⊕ (−In2 ))

⊕ (In1 ⊕ (−In1 )) ⊕ (−H2)]s, (24)

where ni is the number of negative eigenvalues of Hi, i = 1, 2.
The above formula fixes, up to homotopy, what will be the
product of two topological phases parametrized by X with no
Clifford symmetries. We will illustrate this in an example.

Example 1. This example will show that the product of
Dirac monopoles is trivial. Let X = S2 ⊂ R3 and take

H (x) = x1σ1 + x2σ2 + x3σ3 = �x · �σ , (25)

where �σ = (σ1, σ2, σ3) are the Pauli matrices. The associated
projector,

P(x) = 1
2 (1 + H (x)), (26)

defines an identification S2 with the rank 1 orthogonal projec-
tors in C2 or, equivalently, with the space of one-dimensional
subspaces of C2, i.e., CP1. The associated bundle Im P →
S2 is then identified with the tautological bundle over CP1,
denoted L → CP1, whose fiber over a one-dimensional sub-
space is the subspace itself. In physical terms, the associated
bundle is seen as the charge −1 Dirac monopole bundle,
since the associated Berry curvature can be identified with a
magnetic field of a magnetic monopole sitting at the origin of
R3, of topological charge −1. This charge is most simply the
first Chern number of the bundle Im P → S2. Let us take the

external tensor product Hamiltonian:

(H ∗ H )(x) = H (x) ⊗ H (x) ⊕ (−H (x)) ⊗ σ3

× ⊕ σ3 ⊗ (−H (x)). (27)

The associated bundle of positive eigenvalues is isomorphic to

L ⊗ L ⊕ L⊥ ⊗ θ1 ⊕ θ1 ⊗ L⊥, (28)

which is seen to be isomorphic to a trivial bundle because the
associated Chern number is 0. In terms of K theory, this can be
seen due to the fact that S2 can be written as the union of two
disks which are contractible and, thus, the product in reduced
K theory is trivial, see Example 2.13. of Ref. [16].

For any X,Y , we have the external tensor product given by

μ : K0(X ) ⊗ K0(Y ) −→ K0(X × Y )

a ⊗ b �−→ p∗
1a p∗

2b, (29)

where p1 : X × Y → X and p2 : X × Y → Y are the canon-
ical projections. Restriction to K̃0(X ) ⊗ K̃0(Y ) also yields
a map,

μ : K̃0(X ) ⊗ K̃0(Y ) −→ K̃0(X × Y ), (30)

in fact, it yields a map to K̃ (X ∧ Y ), known as the smash
product of X and Y , which is obtained by taking the Cartesian
product X × Y and collapsing the subspace corresponding
to the wedge sum X ∨ Y = {x0} × Y � X × {y0}. The reason
being that a is 0 as an element of K ({x0}) and its pullback
by p1 is zero over {x0} × Y (meaning it maps to zero under
the induced map by the inclusion {x0} × Y ↪→ X × Y ) and,
similarly, the pullback by p2 of b is zero over X × {y0}.
Therefore, it maps to zero under the induced map K̃ (X ×
Y ) → K̃ (X ∨ Y ) and defines an element of K̃ (X ∧ Y ). See,
for example, Ref. [16] for a detailed proof. Observe that, as a
consequence, we can also define an external tensor product of
stable equivalence classes of vector bundles by the formula

μ : EU (X ) ⊗ EU (Y ) −→ EU (X ∧ Y )

[E ]s ⊗ [F ]s �−→ [p∗
1E ]s ∗ [p∗

2F ]s, (31)

and similarly for stable equivalence classes of projectors and
Hamiltonians. The famous theorem of Bott periodicity stems
from the fact that μ : K̃0(X ) ⊗ K̃0(S2) → K̃0(X ∧ S2) is an
isomorphism of Abelian groups. More concretely, if we take
b = [L] − [θ1] ∈ K̃0(S2), where L → S2 is the tautological
line bundle, the map α : a �→ a ∗ b ∈ K̃0(X ∧ S2), for a ∈
K̃0(X ), is an isomorphism of Abelian groups. Observe that
in terms of stable equivalence classes of vectors bundles, this
corresponds to

EU (X ) � [E ]s �→ [p∗
1E ∗ p∗

2L]s ∈ EU (X ∧ S2), (32)

where [p∗
1E ∗ p∗

2L]s = [p∗
1E ⊗ p∗

2L ⊕ p∗
1E⊥ ⊗ θ1 ⊕ θn ⊗

p∗
2L⊥]s. For more details on the isomorphism, see Sec. II C.

B. K−1(X ) and topological phases with a single
Clifford symmetry

Within the discussion above, we did not address the pos-
sibility of having additional generic symmetries. Here the
word generic means a symmetry, such as chiral symmetry,
that has an implementation at the level of the single particle
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sector of the theory in terms of a Clifford algebra generator.
When we do this, we obtain other K groups. In fact, due to
Bott periodicity, in the complex case, there are only two such
groups K0(X ) and K1(X ). Let us describe the latter. Now we
consider that our admissible families {H (x)}x∈X are N × N
Hermitian gapped matrices satisfying

H (x)	 = −	H (x), for all x ∈ X (33)

for 	 a constant matrix with 	2 = IN . Because of this, if λ

is an eigenvalue of H (x) and v an associated eigenvector,
then 	v is an eigenvector with eigenvalue −λ. Since 	2 =
IN , 	 provides an isomorphism between the positive energy
eigenspaces and the negative energy eigenspaces. Because of
the gap condition, N must be even. We now replace the N by
2N . We can choose a basis where

	 =
[

IN 0
0 −IN

]
, (34)

and this implies that our allowed families must satisfy

H (x) =
[

0 U †(x)
U (x) 0

]
, (35)

where U (x) ∈ U(N ) is unitary for each x ∈ X . To get rid of
the dimension label, the matrix 	 must be rescaled in the
appropriate way, one more positive eigenvalue and one more
negative eigenvalue at a time. The N × N unitary matrix U (x)
naturally fits in a (2N + 2) × (2N + 2) matrix H (x) by taking
the inclusion U(N ) ⊂ U(N + 1):

U(N ) � U �→ U ⊕ 1 =
[
U 0
0 1

]
∈ U(N + 1). (36)

Taking the direct limit, we get continuous maps U : X → U,
where U = lim−→ U(N ) with the direct limit topology. The ho-

motopy classes of such maps form an Abelian group K−1(X )
under the usual matrix multiplication. In a similar fashion
to what happened with K0(X ), continuous maps f : X → Y ,
induce group homomorphisms f ∗ : K−1(Y ) → K−1(X ) go-
ing in the opposite direction. The minus in the notation for
K−1(X ) is justified, mathematically, with the fact that the
Abelian groups K−n(X ), n ∈ Z, form a generalized cohomol-
ogy theory, and this will be explored in Sec. III.

K−1(X ) and ˜K0(SX )

The group K−1(X ) as defined above is isomorphic to
K̃0(SX ), where SX denotes the suspension of X . Recall that
the suspension of X is the topological space obtained from
X × [0, 1] by collapsing X × {0} and X × {1} to a point.
We will denote by q : X × [0, 1] → SX the quotient map
and the equivalence classes in the quotient by [(t, x)] =
q(t, x), where t ∈ [0, 1], x ∈ X . Another important space is
the reduced suspension 
X which is the quotient of SX by
further collapsing the line {x0} × [0, 1]. Note that this space
is homeomorphic to X ∧ S1 and also, since {x0} × [0, 1] is
contractible within SX , it has the same homotopy type of
SX . As a consequence K̃0(SX ) ∼= K̃0(
X ) ∼= K̃0(X ∧ S1). In
fact, the usual definition of the higher order K groups is,
see Refs. [13,16], K̃−n(X ) = K̃ (
nX ), for n � 0 (and defined
using Bott periodicity for negative n). Since K−1({x0}) is
trivial, because the unitary groups are path connected, we have

that K−1(X ) ∼= K̃−1(X ), the latter defined as the kernel of the
group homomorphism induced by the inclusion i : {x0} ↪→
X , and the isomorphism we are building is equivalent to
K̃−1(X ) ∼= K̃0(SX ). We will now provide the explicit isomor-
phism K−1(X ) ∼= K̃0(SX ), within the definitions coming from
phases of gapped free fermions.

From a map U : X → U(X ) we can construct a vector
bundle over SX by taking the trivial bundle over the cones C−
and C+, corresponding to the projections, respectively, of X ×
[0, 1/2] and X × [1/2, 1] onto the quotient, and gluing them
together in the overlap X × {1/2} ∼= X through the clutching
function U . In terms of matrices, this can be achieved as
follows. Define

H (t, x) = cos(πt )	 + sin(πt )H (x)

=
[

cos(πt )IN sin(πt )U †(x)
sin(πt )U (x) − cos(πt )IN

]
,

for (t, x) ∈ [0, 1] × X. (37)

Observe that H (0, x) = H (1, x) = 	, soH (x, t ) defines a fam-
ily over the suspension SX , and H (1/2, x) = H (x). The
associated projector,

P(t, x) = I2N − H (t, x)

2
, (38)

defines a vector bundle Im P → SX with the desired proper-
ties. To see that this is the case, observe that the columns of
the matrix

v−(t, x) = 1√
1 + tan2

(
πt
2

)[
IN

tan
(

πt
2

)
U (x)

]
,

t ∈ [0, 1), x ∈ X (39)

form a basis for the eigenspace of H (t, x) of energy 1 for every
t ∈ [0, 1), x ∈ X . In the same way,

v+(t, x) = 1√
1 + cot2

(
πt
2

)[
cot

(
πt
2

)
U †(x)

IN

]
,

t ∈ (0, 1], x ∈ X, (40)

When t = 1/2 and x ∈ X , we have

v−(1/2, x) =
[

IN

U (x)

]
and v+(1/2, x) =

[
U †(x)

IN

]
, (41)

so we have a transition function g+−(x) = U (x) at the
equator of the suspension. This construction provides the
desired group isomorphism K−1(X ) ∼= K̃0(SX ), namely, the
assignment

K−1(X ) � [U ] �→ [P] − [IN ] ∈ K̃0(SX ) ⊂ K0(SX ), (42)

where N = tr P(t, x), for all t ∈ [0, 1], x ∈ X . It is not hard
to see that the map is injective, as different homotopy classes
of maps x �→ U (x) ∈ U cannot be deformed continuously into
each other so the resulting bundles cannot be isomorphic. To
see that this is indeed an isomorphism, we need to check that
any element K̃0(SX ) occurs in this way. Take a continuous
family of orthogonal projectors of rank N , {P(t, x)}(t,x)∈I×X ,
where P(t, x) ∈ M(M;C), where, without loss of generality,
we can assume M > N , as we will eventually take it as a
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family with values in M(C). It defines a family over SX
if and only if P(0, x) and P(1, x) are both independent of
x ∈ X . In this case, we have a well-defined class [P] − [IN ] ∈
K̃0(SX ). Since C− and C+ are contractible in SX , it means
that the restriction of {P(t, x)}(t,x)∈I×X to these subspaces
provide homotopies to constant orthogonal projectors. De-
fine P(x) = P(1/2, x), x ∈ X . Then P(x) is homotopic to a
constant orthogonal projector, through {P(t, x)}[(t,x)]∈C− and
through {P(t, x)}[(t,x)]∈C+ . Equivalently, the associated bundles
E± := Im P|C± are trivializable, trivializations which can be
chosen to be unitary. The relation between them at the overlap
C+ ∩ C− = {1/2} × X ∼= X is provided by a unitary matrix
U : X → U(N ). Up to homotopy, we can always reconstruct
{P(t, x)}[(t,x)]∈SX from the homotopy class of U : x �→ U (x) ∈
U(N ). From U , build the Hamiltonian

H (t, x) = cos(πt )	 + sin(πt )H (x), (43)

with

H (x) =
[

0 U †(x)
U (x) 0

]
, (44)

which concludes the proof. It is useful to extend the map to
a loop of unitaries. Observe that at t = 1, H (t, x) = −	. We
can extend the map by declaring that from 1 � t � 2, we have

H (t, x) = cos(πt )	 + sin(πt )H0, (45)

with

H0 =
[

0 IN

IN 0

]
. (46)

The resulting map satisfies H (0, x) = 	 = H (2, x) and, thus,
defines a loop of Hamiltonians with no Clifford symmetries.
The map we have just built is essentially λ : U(N ) → �GN , as
described in Ref. [19] where GN = U(2N )/(U(N ) × U(N )) is
the Grassmannian of N planes in C2N which can be identified
with the orthogonal projectors of rank N is C2N or the set of
Hermitian matrices in C2N satisfying H2 = IN and having N
negative eigenvalues. The space �X is the loop space of X ,
which is the space of based loops in X .

C. K−2(X ), ˜K0(S2X ) and topological phases with two Clifford
symmetries: Bott periodicity

Next, we consider adding another Clifford symmetry 	2

and see that it reproduces the group K0(X ). We let 	1 = 	 be
defined as before and pick a fixed choice of 	2, satisfying

	i	 j + 	 j	i = 2δi j I2N , i, j = 1, 2. (47)

One such choice is given by

	2 =
[

0N −iIN

iIN 0N

]
. (48)

Now we look for continuous families of N × N Hermitian
matrices {H (x)}x∈X such that

H (x)2 = I2N and H (x)	i + 	iH (x) = 0,

for i = 1, 2 and for all x ∈ X. (49)

It is not hard to show that these matrices have the form

H (x) =
[

0N h(x)
h(x) 0N

]
, (50)

where h(x) is an N × N Hermitian matrix and squares to the
identity. It is clear that these families are completely deter-
mined by the N × N blocks h(x), which in turn are determined
by the orthogonal projector p(x) = �(−h(x)). To get rid of
the dependence on N , we must rescale both matrices 	1 and
	2 appropriately. The replacement N → N + 1 in these ma-
trices is naturally accompanied by the inclusion

h(x) �→ h(x) ⊕ 1, (51)

which in terms of the projector p(x) means

p(x) �→ p(x) ⊕ 0. (52)

Taking the direct limit and imposing the homotopy equiva-
lence relation, we again obtain the monoid (Vect(X ),⊕) and
the Grothendieck group completion retrieves K0(X ). Hence,
what we would logically call K−2(X ) is naturally isomor-
phic to K0(X ). This is a manifestation of Bott periodicity
in physics. In Appendix A, we look at it from a different
perspective again using the suspension construction, and show
how the Dirac monopole or, equivalently, the tautological
bundle over the sphere L → S2 plays an important role in
it. In particular, what we show there is that K̃−2(X ) which,
under the above definition, is naturally identified with K̃0(X ),
is isomorphic to K̃0(X ∧ S2) = K̃0(
2X ), which is the usual
definition of K̃−2(X ). The isomorphism is given by taking the
external tensor product with a Dirac monopole.

This concludes our digression through complex K theory
and Bott periodicity in the context of gapped phases of free
fermions.

III. KÜNNETH FORMULA AND SSH TIMES SSH EQUALS
CHERN INSULATOR

From the Abelian groups K0(X ) and K−1(X ), one can
build a graded group

K∗(X ) = K0(X ) ⊕ K1(X )

∼= K ({x0}) ⊕ K̃0(X ) ⊕ K̃−1(X ), (53)

known as the K-cohomology group of X . Observe that this
group stores information of complex gapped topological
phases of free fermions with an arbitrary number of Clifford
symmetries, so it is natural to consider it as a whole. Note
that the grading is precisely given by the number of Clifford
symmetries mod 2.

If we take the usual definition K̃−i(X ) = K̃0(X ∧ Si ), we
have a product

μ : K̃0(X ∧ Si ) ⊗ K̃0(Y ∧ S j ) → K̃0(X ∧ Si ∧ X ∧ S j )

= K̃0((X ∧ Y ) ∧ Si+ j ), (54)

because for any compact Hausdorff spaces X,Y, Z , we have
that X ∧ (Y ∧ Z ) ∼= (X ∧ Y ) ∧ Z , X ∧ Y ∼= Y ∧ X , and Si ∧
S j ∼= Si+ j (see Ref. [13] or Ref. [16], for instance). One uses
the Bott class to provide isomorphisms K̃ i(X ) ∼= K̃ i+2(X ), for
every i. Finally, to extend the product to the unreduced K
groups [16], one can use the fact that K−i(X ) = K̃−i(X+),
with X+ = X � pt, where pt denotes a point, and i = 0, 1. In-
deed, K̃0(X+) = K0(X ) and, since X+ ∧ S1 ∼= (X ∧ S1) ∨ S1,
we have that K̃−1(X+) = K̃ (X+ ∧ S1) = K̃−1(X ) ⊕ K̃0(S1) =
K̃−1(X ) ⊕ K̃0(S1) = K̃−1(X ) because vector bundles over the
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S1 are trivializable (since the general linear group is path con-
nected) and because [16] K̃0(X ∨ Y ) ∼= K̃0(X ) ⊕ K̃0(Y ) for
any compact Hausdorff spaces X,Y . Using the maps induced
by the diagonal map  : X ↪→ X × X , given by x �→ (x, x),
for all x ∈ X , one obtains a Z2-graded product defining a
ring structure on K∗(X ), which can be shown to satisfy ab =
(−1)i jba, for a ∈ Ki(X ), b ∈ K j (X ) and i, j ∈ {0, 1}(because
exchanging the two factors involves a permutation of Si and
S j factors in Si ∧ S j , which in K theory yields the sign of
the permutation—see, for instance, Lemma 2.4.11 of Atiyah’s
lectures [13]). One can show that the product μ (for spaces of
finite type) defines a ring isomorphism,

K∗(X × Y ) ∼= K∗(X ) ⊗ K∗(Y ), (55)

known as the Künneth theorem, see Ref. [17].
Before proceeding, we would like to remark that the Kün-

neth theorem of Eq. (55) is, in its origin, different from the
Künneth theorem in ordinary cohomology. The Künneth for-
mula in complex K theory is of a different nature as the objects
considered are formal differences of isomorphism classes of
vector bundles over a given Hausdorff compact topological
space and not closed differential forms over a smooth man-
ifold, nor Abelian Čech cocyles. In particular, the Künneth
formula for ordinary cohomology appears in previous works
in condensed-matter literature and, more precisely, in research
works on topological phases, for example, in Ref. [20], within
the context of Eq. (41) and the discussion below. The Künneth
formula there refers to ordinary cohomology rather than the
generalized cohomology associated with complex K theory.

A. SSH times SSH equals Chern insulator and
K∗(BZd ) = �(SSH1, . . . , SSHd )

As a consequence of the Künneth theorem, we have the
following main result of our paper relating band insulators
in one ant two dimensions with charge symmetry and, more
generally, relating band insulators in one dimension and those
in d dimensions.

Example 2. This example will show that K∗(BZ2) =
�(SSH1, SSH2) and, more generally, K∗(BZd ) =
�(SSH1, . . . , SSHd ), where SSHi, i = 1, . . . , d are SSH
chains in the available independent momentum directions.
If we observe that the Brillouin zone in d dimensions is,
topologically, a torus, i.e., BZd = T d = S1 × · · · × S1, we
only need to look at K∗(BZ1) = K∗(S1). We have that

K∗(S1) = K0(S1) ⊕ K1(S1) = K0({x0}) ⊕ K̃−1(S1)

= K0({x0}) ⊕ K̃0(S2) = Z ⊕ Z b, (56)

where we noted that K̃−1(S1) = K̃0(S2) ∼= Z, generated by
the Bott class b = [L] − [1]. We proceed to describe mul-
tiplication in K∗(S1). The multiplication of elements of
K0(S1) = K0({x0}) = Z is just the usual multiplication in Z;
the multiplication of elements of K0(S1) = Z by elements
of K−1(S1) = Z b induces simple scalar multiplication m ⊗
nb �→ mnb ∈ K−1(S1), for m, n ∈ Z, and, since K̃0(S1) = 0,
multiplication of elements K̃−1(S1) yields zero. One con-
cludes that

K∗(BZ1) ∼= Z[b]/b2 ∼= �(b), (57)

as a Z2-graded ring, where Z[b]/b2 corresponds to poly-
nomials in b modded out by the relation b2 = 0 and �(b)
denotes the exterior algebra generated by b. As a result, by
the Künneth theorem,

K∗(BZ2) ∼= K∗(BZ1) ⊗ K∗(BZ1) ∼= �(b1, b2), (58)

where �(b1, b2) denotes the exterior algebra in two generators
bi = p∗

i b, where pi, i = 1, 2, are the canonical projections.
In physical terms, as will be shown below, the bi’s can be

represented by SSH chains in 1D, and the product class

b1b2 ∈ K̃0(BZ2) ⊂ K0(BZ2) ⊂ K∗(BZ2) (59)

can be represented by a Chern insulator such as the anomalous
Haldane insulator or a massive Dirac model.

The SSH chain in the nontrivial phase yields a generator of
K̃−1(BZ1). To see this note that, in momentum space, the SSH
Hamiltonian is specified by the continuous family

H (k) =
[

0 v + we−ik

v + weik 0

]
, (60)

where k ∈ BZ1 ∼= S1, and v,w are, respectively, hopping am-
plitudes. Observe that H anticommutes with

	 =
[

1 0
0 −1

]
. (61)

Whenever |w| > |v|, we can continuously deform this
family to

H (k) =
[

0 e−ik

eik 0

]
, (62)

and this defines an element SSH = {U (k) = eik}k∈S1 . Actu-
ally, this is a generator of the first homotopy group of U(1)
(winding number 1) and of the direct limit lim−→ U(N ). As

a consequence, SSH can be seen as a generator of π1U ∼=
[S1, U] ∼= K−1(S1) ∼= K̃−1(S1).

To apply the definition of the product described in the
beginning of this section in Eq. (54), we use K̃−1(S1) ∼=
K̃0(SS1) ∼= K̃0(S2). Explicitly, we use the construction of
Sec. II B, to write

H (t, k) =
[

cos(πt ) sin(πt )e−ik

sin(πt )eik − cos(πt )

]
= sin(πt ) cos(k)σx + sin(πt ) sin(k)σy + cos(πt )σz,

(63)

which yields the usual Dirac monopole Hamiltonian of
Example 1. This intermediate step, using the construction of
Sec. II B, is also well known in condensed-matter literature
and it is usually referred to as dimensional reduction [21].
As a consequence, the SSH class corresponds to the Dirac
monopole class or, equivalently, the Bott class b = [L] −
[1] ∈ K̃0(S2).

Now the sequence of spaces S1 ∨ S1 ↪→ S1 × S1 → S1 ∧
S1 = S2 induces an isomorphism K̃0(BZ2) ∼= K̃0(S2) (see
Hatcher’s book [16], for example), where the last map is the
quotient. Meanwhile, the product class

p∗
1SSH p∗

2SSH = p∗
1b p∗

2b ∈ K̃0((S1 ∧ S1) ∧ (S1 ∧ S1))

= K̃0(S4), (64)
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is the generator of K̃0(S4) ∼= K̃0(S2), by Bott periodicity. Ob-
serve, however, that in the definition of the product we have
to swap two S1’s, so actually what we get is minus the Bott
class over S1 ∧ S1 which produces the desired product class
in K̃0(BZ2).

Before describing the obtained product class, it will be
useful to illustrate the result that p∗

1SSH p∗
2SSH generates

K̃0(S4) more explicitly. Note that, in terms of stable equiva-
lence classes of Hamiltonians, we are computing the product
class as described by the continuous family

H (x1) ∗ H (x2) = H (x1) ⊗ H (x2) ⊕ (−H (x1)) ⊗ σ3

× ⊕ σ3 ⊗ (−H (x2)), (65)

with xi = [(ti, ki )] ∈ SS1 ∼= S2, i = 1, 2, and H (x) is the Dirac
monopole Hamiltonian of Eq. (25). We can parametrize each
copy of S2 using the Cartesian coordinates xi = (x1

i , x2
i , x3

i ) ∈
S2 ⊂ R3, i = 1, 2. Now from the discussion of Appendix A,
it follows that we can alternatively describe the stable equiva-
lence class of the above Hamiltonian in terms of a generalized
Dirac monopole as in Eq. (A43):

H̃ (x1, x2) = x1
1σ1 ⊗ H (x2) + x2

1σ2 ⊗ I2 + x3
1σ3 ⊗ I2

=
3∑

j=1

x1
1x j

2σ1 ⊗ σ j + x2
1σ2 ⊗ I2 + x3

1σ3 ⊗ I2. (66)

Observe that the matrices γi = σ1 ⊗ σi, i = 1, . . . , 3, together
with γ4 = σ2 ⊗ I2 and γ5 = σ3 ⊗ I2 satisfy

γiγ j + γ jγi = δi j I4, for i, j = 1, . . . , 5.

Observe that γ5 = −γ1γ2γ3γ4. Moreover the five-dimensional
vector appearing in H̃ (x1, x2),

y = (
x1

1x1
2, x1

1x2
2, x1

1x3
2, x2

1, x3
1

) ∈ R5, (67)

satisfies |y|2 = 1, and thus parametrizes a sphere S4 ∼= (S1 ∧
S1) ∧ (S1 ∧ S1). We have reduced the Hamiltonian to the
usual Dirac form:

H̃ (y) =
5∑

i=1

yiγi, y ∈ S4. (68)

To see that this is a generator for K̃0(S4), note that iso-
morphism class of a vector bundle over S4 is equivalently
described by the homotopy class of the transition function
in the equator of the sphere, which, in turn, is, in the stable
sense, captured by the second Chern number of the bundle. It
is enough to show that this number is ±1. This calculation
is performed in Appendix B. Swapping two S1 factors can
be achieved, modulo homotopy, by taking a reflection in any
of the coordinates. This simply inverts the sign of the Chern
number which becomes +1. This concludes the alternative
proof that p∗

1SSH p∗
2SSH is a generator for K̃0(S4). Using the

Bott periodicity isomorphism, we can “divide” by the Bott
class, and we know that this class corresponds to, up to a
minus sign, that of the Dirac monopole over S1 ∧ S1 ∼= S2

– after all, it was explicitly the external tensor product of
two Dirac monopoles associated with two independent two-
spheres. Notice, however, that the circles now correspond
the one-dimensional independent Brillouin zones. To get the

corresponding class in BZ2, we still need to pullback by the
quotient map q : S1 × S1 ∼= BZ2 → S2, which will not affect
the topological invariant, in this case the first Chern number
which is equal to +1, as argued below.

We now show that the resulting product class can be rep-
resented by any Chern insulator of topological charge +1.
To see this, suppose that X is a smooth compact connected
manifold. Take

Ch : K̃0(X ) → H even(X ;R)

[E ] − [θn] �→ Ch(E ) − n, (69)

where Ch(E ) is the Chern character of the bundle. Explicitly,
if we are given a connection, such as the Berry connection for
a subbundle of a trivial bundle, we can write the even de Rham
class represented by the closed differential form

tr ei F
2π =

∞∑
k=0

(
i

2π

)k 1

k!
tr F k, (70)

where F is the curvature of the connection. Then Ch
commutes with pullbacks and it is an Abelian group homo-
morphism. Moreover, for the case of X = S2 or X = T 2 it
reduces to giving the first Chern class:

Ch(E ) − n = n + c1(E ) − n = c1(E ) ∈ H2(X ;Z). (71)

Since the first Chern class of L is a generator of cohomology
of S2, namely

∫
S2 c1(L) = −1, it follows that the first Chern

number provides an isomorphism K̃0(S2) ∼= Z. The isomor-
phism K̃ (T 2) ∼= K̃ (S2) is given by taking the pullback by
the quotient q : BZ2 = T 2 → S1 ∧ S1 which has degree one
(it is a homeomorphism on the complement of S1 ∨ S1) and
hence the Chern number of the resulting bundle q∗L is the
same—thus, the first Chern number provides an isomorphism
K̃0(T 2) ∼= Z. Now instead of q∗L we can choose any bundle
with Chern number −1. The massive Dirac model is repre-
sented by the family

H (k1, k2) = sin(k1)σ1 + sin(k2)σ2

+ (M − cos(k1) − cos(k2))σ3, (72)

for M = 1 the occupied bundle Im p → BZ2 has first Chern
number +1, and thus gives a generator of K̃ (T 2). Let us
denote by p∗

i SSH = SSHi, i = 1, 2, and [Im p] − [1] = CH.
The final result is

SSH1 SSH2 = CH, (73)

which can be elegantly stated as the product of two SSH
chains (1D topological phases) is a Chern insulator (2D topo-
logical phase). More generally, we have the result

K∗(BZd ) = �(SSH1, . . . , SSHd ), (74)

with SSHi = p∗
i SSH , with pi the ith canonical projection to

BZ1 ∼= S1, i = 1, . . . , d . So, the complex gapped topological
phases of free fermions in d-dimensional translation invariant
models are generated by SSH chains, one for each indepen-
dent direction.
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B. Relation to the topological invariant description

We will finish this section by making contact with the topo-
logical invariant description of complex topological phases
of free fermions. This will be done through the Chern char-
acter graded ring isomorphism, relating complex K theory
with the de Rham cohomology, which we proceed to explain.
In Eq. (69), the even Chern character for compact smooth
manifolds X actually provides a group homomorphism to
H even(X ;Q), meaning that when integrated over closed sub-
manifolds of X , it yields rational numbers (this is because the
Chern classes have values in H even(X ;Z)). One can extend
the map to K̃−1(X ) by assigning to each class [U ], with
U : X → U, the closed odd differential form

Ch(U ) =
∞∑

k=0

(−1)k

(
i

2π

)k+1 k!

(2k + 1)!
tr [(U −1dU )2k+1],

(75)

whose de Rham class is known as the odd Chern character.
Observe that for the case of the SSH chain in Eq. (62), this
just yields

Ch(eik ) = i

2π
e−ikdeik = − 1

2π
dk, (76)

whose integral over the Brillouin zone yields minus the wind-
ing number of the map BZ1 � k �→ eik ∈ S1, equal to −1.

One can show that the odd Chern character provides a
group homomorphism Ch : K̃−1(X ) → Hodd(X ;Q). One can
extend it to the unreduced K theory by applying the for-
mulas obtained to the case X+ = X � pt—equivalently, since
K̃−1(X ) ∼= K−1(X ), it is enough to extend Eq. (69) to K0(X )
by Ch([E ] − [F ]) = Ch(E ) − Ch(F ) ∈ H even(X ;Q), for any
[E ] − [F ] ∈ K0(X ). In fact, one can show that by tensoring
with the rationals to avoid torsion, the group homomorphism
Ch : K∗(X ) ⊗ Q → H∗(M;Q) is actually a graded ring iso-
morphism (see Refs. [15,17]), where the ring structure in
cohomology is the cup product induced by the exterior prod-
uct of differential forms and the Z2 grading refers to even- and
odd-degree differential forms.

Before applying the isomorphism to derive consequences,
at the level of the familiar topological invariants, from our
main results, it may be useful to relate the even and odd
Chern characters. This relation is obtained by means of
the suspension. In fact, we have K̃0(SX ) = K̃−1(X ) and
K̃−1(SX ) = K̃0(SSX ) ∼= K̃0(X ) (by Bott periodicity). More-
over, if we write a decomposition of the suspension in terms
of cones, SX = C−X ∪ C+X , then the connecting homomor-
phism, which in this case is an isomorphism, δ : Hk (X ) ∼=
Hk+1(SX ), for k > 0, of the associated Mayer-Vietoris se-
quence in cohomology will transform the odd Chern character
into the even Chern character. In terms of differential forms,
this connecting homomorphism can be understood as follows.
Fixing k > 0, by contractibility of the cones,

1

k!
tr

(
iF

2π

)k∣∣∣∣
C±X

= dQ2k−1
± (77)

for some (2k − 1)-forms Q2k−1
+ and Q2k−1

− defined over C+X
and C−X , respectively. Over the intersection C+X ∩ C−X ∼=
X , since the gauge fields will differ by a gauge transformation

U defined over X , a standard calculation, see, for example,
Ref. [22], yields, up to an exact form,

Q2k−1
+ − Q2k−1

−

= (−1)k−1

(
i

2π

)k (k − 1)!

(2k − 1)!
tr[(U −1dU )2k−1]. (78)

The connecting homomorphism δ : H2k−1(X ) → H2k (SX )
sends the de Rham class of RHS of the above equation,
Eq. (78), to the de Rham class of the left-hand side of Eq. (77).
Observe that for a line bundle over a two-sphere, the above
formula yields the familiar result that the first Chern number
is a winding number of a transition function defined over
the equator circle. Indeed, let us consider the case of the
SSH chain and the identification K̃−1(BZ1) = K̃0(SBZ1) =
K̃0(S2). The cones C±BZ1 are identified with neighborhoods
of the north and south poles of the two-sphere SBZ1 ∼= S2.
The relation between the Berry gauge fields over the cones
C±BZ1, denoted A±, at the overlap, C−BZ1 ∩ C+BZ1 ∼= BZ1,
is

A+ − A− = Ch(eik ) = − 1

2π
dk, (79)

yielding that the first Chern number is equal to +1, which is
equal to the winding number of eik .

Finally, because Ch : K∗(X ) ⊗ Q → H∗(M;Q) is a
graded ring isomorphism, we can read off the relation between
the topological invariants in different dimensions. For exam-
ple, from our result SSH1SSH2 = CH, we can apply Ch to
both sides of the equation to obtain

Ch(SSH1SSH2) = Ch(SSH1) � Ch(SSH2) = Ch(CH),
(80)

where � is the cup product in cohomology. Since, at the level
of differential forms,

Ch(SSHi ) = − 1

2π
dki, i = 1, 2, (81)

integration over BZ2 = BZ1 × BZ1 yields∫
BZ1×BZ1

(
− i

2π
dk1

)
�

(
− i

2π
dk2

)
=

∫
BZ1×BZ1

(
− i

2π
dk1

)
∧

(
− i

2π
dk2

)
=

∫
BZ1

(
− i

2π
dk1

) ∫
BZ1

(
− i

2π
dk2

)
= 1 =

∫
BZ1×BZ1

Ch(CH), (82)

which gives the topological charge one, as described previ-
ously. Hence, the relation between the topological invariants
of SSH1, SSH2, and CH is that the invariant for the latter is
the product of the invariants for the two former ones. Thus, we
conclude that our main result provides not only a conceptual
advance in the understanding of the product structure but also
provides the necessary means, through the Chern character
ring isomorphism, to completely determine and relate the
usual topological invariants in different dimensions.
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IV. CONCLUSIONS

We have provided an in-depth review of K theory and
mod 2-Bott periodicity in the context of complex gapped
phases of free fermions while emphasizing a product structure
which was previously neglected in literature because its phys-
ical interpretation was not clear. In Sec. III, we introduced
the K-cohomology group together with the associated ring
structure, allowing us to derive, using Künneth’s theorem,
the result that the SSH chains, one for each independent
momentum direction, generate the K-cohomology groups of
the Brillouin zone in d dimensions and that the product of
two SSH chains is a Chern insulator. These results relate the
associated topological phases and their topological invariants
in all spatial dimensions in a unified way.

One could wonder if similar results hold for the case of
topological phases of gapped free fermions as described by
real K theory. Unfortunately, in that case, the external ten-
sor product is not always injective and this implies that the
Künneth formula does not hold for the real K theory, see
Atiyah’s discussion in Ref. [23]. Nevertheless, multiplicative
structures are fundamental to understand the periodic table of

topological insulators and superconductors and the associated
anomalous surface states, i.e., complex and real K theory,
and, more generally, of understanding crystalline topological
insulators and superconductors [24].

We hope these results shed new light on the physics of this
product structure—previously thought of as just mathematical
in nature, devoid of physical character—and motivates further
results in the classification of topological phases within the
same spirit.
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APPENDIX A: THE TWOFOLD BOTT PERIODICITY OF COMPLEX K THEORY

In the following, we will see the twofold Bott periodicity of complex K theory from a different perspective using the
suspension construction, and show how the Dirac monopole or, equivalently, the tautological bundle over the sphere L → S2

plays an important role in it. In particular, what we will show is that K̃−2(X ) which, under the above definition, is naturally
identified with K̃0(X ) is isomorphic to K̃0(X ∧ S2) = K̃0(
2X ), which is the usual definition of K̃−2(X ).

For the purpose of the discussion, it is convenient to define K−2(X ) in terms of the families of matrices with two Clifford
symmetries. So we will take the families for the form of Eq. (50). Consider then the inclusion[

0N h
h 0N

]
�→

[
0N+1 h ⊕ 1
h ⊕ 1 0N+1

]
, with N > 0, (A1)

take the direct limit, with respect to these inclusions, and quotient by the equivalence relation of homotopy preserving the
Clifford symmetries. The resulting set has the structure of an Abelian monoid under the operation([

0N1 h1

h1 0N1

]
,

[
0N2 h2

h2 0N2

])
�→

[
0N1+N2 h1 ⊕ h2

h1 ⊕ h2 0N1+N2

]
, with N1, N2 > 0. (A2)

Performing the Grothendieck group completion yields an Abelian group which we call K−2(X ). The elements of K−2(X ) can be
thought of as differences [{H1(x)}x∈X ] − [{H2(x)}x∈X ] and by the same argument as in K0(X ), we can bring the second family to
a trivial form which, in this case, is given by

Htrivial,N =
[

02N IN ⊕ (−IN )
IN ⊕ (−IN ) 02N

]
, (A3)

for some N ∈ N. Again, one can consider the kernel of the induced map i∗ : K−2(X ) → K−2({x0}) and this provides the reduced
K-theory group K̃−2(X ), whose elements can be thought of differences [H] − [Htrivial,N ], where N is equal to the rank of
eigenbundle associated with the −1 eigenvalue of h, Im p → X .

Suppose we have a family {H (x)}x∈X satisfying the two required Clifford symmetries and, thus, being defined by {h(x)}x∈X

as in Eq. (50). Then we can define a family with a single Clifford symmetry over the suspension SX by

H (t, x) = cos(πt )	2 + sin(πt )H (x) =
[

0N −i cos(πt )IN +sin(πt )h(x)
i cos(πt )IN +sin(πt )h(x) 0N

]
, for t ∈ [0, 1], x ∈ X.

(A4)

Observe that

U (t, x) = i cos(πt )IN + sin(πt )h(x) (A5)

satisfies U (0, x) = iIN , U (1, x) = −iIN , for all x ∈ X ,

U †(t, x)U (t, x) = (cos2(πt ) + sin2(πt ))IN = IN , for all (t, x) ∈ [0, 1] × X. (A6)
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Hence, {U (t, x)}[(t,x)]∈SX is a well-defined continuous family of unitary N × N matrices over SX and {H (t, x)}[(t,x)]∈SX is a
well-defined continuous family of Hamiltonians with a single Clifford symmetry 	1. Observe that under the inclusions above,
we have h(x) �→ h(x) ⊕ 1 and U (t, x) �→ U (t, x) ⊕ 1. Thus, we have a well-defined map

K̃−2(X ) � [H] − [Htriv,n] �→ [U ] ∈ K−1(SX ), (A7)

or, equivalently,

K̃0(X ) � [Im p] − [θn] �→ [U ] ∈ K−1(SX ), (A8)

where n is the rank of the eigenbundle Im p. The map is a group homomorphism. Note the similarity of this construction with
that in Sec. II B, but here with 	2 instead of 	. Again, it is useful to extend U (t, x) to a loop of unitaries or, equivalently, to a
loop of Hamiltonians with one Clifford symmetry. To do this, we just observe that U (1, x) = −iIN , independently of x. We can
then extend by declaring that, for 1 � t � 2,

U (t, x) = i cos(πt )IN + sin(πt )(−In ⊕ IN−n), (A9)

where n equals the number of negative eigenvalues of h. The construction described above is up to multiplication by
i and when we take N �→ 2N and n �→ N (which can be done under stable isomorphism), precisely applying the map
f : GN = U(2N )/U(N ) × U(N ) → �U (2N ) described by Bott in Ref. [19]. Indeed, if we write h(x) = q(x) − p(x), where
p(x) = �(−h(x)) is the associated orthogonal projector, and q(x) = I2N − p(x), we have that

U (t, x) =
{

ieiπt p(x) + ie−iπt q(x), t ∈ [0, 1]
ieiπt p0 + ie−iπt q0, t ∈ [1, 2],

(A10)

where

p0 = IN ⊕ 0N and q0 = 0N ⊕ IN . (A11)

Observe then, with the two maps λ : U(2N ) → �G2N and f : GN → �U (2N ), we have a map, as defined by Bott [19], γ =
�λ ◦ f : GN → �2G2N and its adjoint γ ∗ : GN ∧ S2 → G2N , given by

γ (h)(t1, t2) = γ ∗([(h, [(t1, t2)])]) = λ( f (t1))(t2). (A12)

In Bott’s original work [18,19], he showed, making use of Morse theory, that in the N → ∞ limit, γ is an homotopy equivalence.
The direct limit of GN is, up to homotopy, BU, the classifying space for the unitary group. The classifying space satisfies that the
homotopy classes of maps [X, BU] = EU (X ), since homotopy classes of maps from X to the spaces of projectors modulo stable
equivalence is in bijection with stable equivalence classes of vector bundles over X . As a consequence of Bott’s work, it follows
that [X, BU] ∼= [X,�2BU]. Because, by duality, [X,�kY ] ∼= [X ∧ Sk,Y ], for natural k, we have [X, BU] ∼= [X ∧ S2, BU], i.e.,
K̃0(X ) ∼= K̃0(X ∧ S2), through γ . Bott showed in Ref. [19] also that γ is homotopy equivalent to the map induced by external
tensor product by the Bott class b = [L] − [θ1] ∈ K̃ (S2).

Note that γ defines the Hamiltonian

H (t1, t2, x) = cos(πt1)	1 + sin(πt1)H (t2, x), where t1 ∈ [0, 1], and [(t, x)] ∈ SX. (A13)

The formula above defines a family over S2X = S(SX ), the double suspension of X with no Clifford symmetries. We will
denote elements of S2X by their equivalence classes [(t1, t2, x)], with (t1, t2, x) ∈ [0, 1]2 × X . In K-theory terms, this procedure
corresponds to applying the isomorphism K−1(Y ) ∼= K̃0(SX ) constructed in Sec. II B, with Y = SX . In other words, we have
built a map

K̃−2(X ) � [H (x)] − [Htriv,N ] �→ [P] − [IN ] ∈ K̃0(S2X ), (A14)

where 2N is the size of the Hermitian matrix h appearing in H and P([(t1, t2, x)]) = �(−H (t1, t2, x)) for all [(t1, t2, x)] ∈ S2X .
We have cones C−(SX ) and C+(SX ), restricted to which the associated bundle Im P trivializes. If we introduce the 2N × 2N

matrices,

Z (t1, t2, x) = tan

(
πt1
2

)
U (t2, x)

= tan

(
πt1
2

)
(i cos(πt2)I2N + sin(πt2)h(x)), with [(t1, t2, x)] ∈ C−(SX ), (A15)

and

W (t1, t2, x) = cot

(
πt1
2

)
U †(t2, x)

= cot

(
πt1
2

)
(−i cos(πt2)IN + sin(πt2)h(x)), with [(t1, t2, x)] ∈ C+(SX ), (A16)
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the eigenvectors with eigenvalue +1 are described by the unitary 2N frames,

v−(t1, t2, x) =
[

I2N

Z (t1, t2, x)

]
(I2N + Z†(t1, t2, x)Z (t1, t2, x))−1/2, for [(t1, t2, x)] ∈ C−(SX ), (A17)

and

v+(t1, t2, x) =
[
W (t1, t2, x)

I2N

]
(I2N + W †(t1, t2, x)W (t1, t2, x))−1/2, for [(t1, t2, x)] ∈ C+(SX ). (A18)

The relation over C−(SX ) ∩ C+(SX ) = {1/2} × SX ∼= SX is given by

v−(1/2, t2, x) = v+(1/2, t2, x)U (t2, x), (A19)

and this follows since

Z (1/2, t2, x) = U (t2, x) = W −1(1/2, t2, x)

for [(t2, x)] ∈ SX. (A20)

This relation does in fact hold everywhere except for t1 = 0 and t1 = 1, i.e., whenever both matrices are simultaneously defined.
Denote by p(x) = �(−h(x)) and by q(x) = I2N − p(x), the orthogonal complement. Observe that

Z (t1, t2, x) = tan

(
πt1
2

)
U (t2, x)

= tan

(
πt1
2

)
(i cos(πt2)I2N + sin(πt2)h(x))

= tan

(
πt1
2

)
(i cos(πt2)(p(x) + q(x)) + sin(πt2)(q(x) − p(x)))

= i tan

(
πt1
2

)
eiπt2 p(x) + i tan

(
πt1
2

)
e−iπt2 q(x) (A21)

and

W (t1, t2, x) = cot

(
πt1
2

)
U †(t2, x)

= cot

(
πt1
2

)
(−i cos(πt2)I2N + sin(πt2)h(x))

= cot

(
πt1
2

)
(−i cos(πt2)(p(x) + q(x)) + sin(πt2)(q(x) − p(x)))

= −i cot

(
πt1
2

)
e−iπt2 p(x) − i cot

(
πt1
2

)
eiπt2 q(x). (A22)

Now define

z(t1, t2) = i tan

(
πt1
2

)
eiπt2 ∈ C. (A23)

Similarly, define

w(t1, t2) = −i cot

(
πt1
2

)
e−iπt2 ∈ C. (A24)

Observe that if t1 �= {0, 1}, we can write z = 1/w. Then, we see that

v−(t1, t2, x) =
[

I2N

Z (t1, t2, x)

]
(I2N + Z†(t1, t2, x)Z (t1, t2, x))−1/2

= 1√
1 + |z(t1, t2)|2

[
q(x)

z(t1, t2)q(x)

]
+ 1√

1 + |z(t1, t2)|2
[

p(x)
−z̄(t1, t2)p(x)

]
= 1√

1 + |z(t1, t2)|2
[

1
z(t1, t2)

]
⊗ q(x) + 1√

1 + |z(t1, t2)|2
[

1
−z̄(t1, t2)

]
⊗ p(x) (A25)
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and, similarly,

v+(t1, t2, x) =
[
W (t1, t2, x)

I2N

]
(I2N + W †(t1, t2, x)W (t1, t2, x))−1/2

= 1√
1 + |w(t1, t2)|2

[
w(t1, t2)

1

]
⊗ q(x) + 1√

1 + |z(t1, t2)|2
[−w̄(t1, t2)

1

]
⊗ p(x). (A26)

The structure of the two previous equations provides us a splitting of a bundle of rank 2N , E → S2 × X into two subbundles
of rank N ,

E = E1 ⊕ E2, (A27)

provided we allow z and w to range over the complex numbers and preserve the gluing condition z = 1/w whenever z,w �= 0.
We proceed to describe E1 and E2. The Riemann sphere C ∪ {∞} has the usual stereographic projection coordinate

z = tan

(
θ

2

)
eiφ, (A28)

where θ ∈ [0, π ] and φ ∈ [0, 2π ). By analogy with the above, we write

Z (z, x) = zq(x) − z̄p(x) = z

2
(I2N + h(x)) − z̄

2
(I2N − h(x)) = z − z̄

2
I2N + z + z̄

2
h(x)

= tan

(
θ

2

)
(i sin(φ)I2N + cos(φ)h(x)) (A29)

and, similarly,

W (w, x) = wq(x) − w̄p(x). (A30)

From which it is clear that in C − {0} ⊂ C ∪ {∞},
Z (z, x)W (w = 1/z, x) = p(x) + q(x) = IN . (A31)

The bundle E → S2 × X is defined through the trivializations

v−(z, x) = 1√
1 + |z|2

[
I2N

Z (z, x)

]
for (z, x) ∈ C × X, (A32)

i.e., away from the north pole, and

v+(w, x) = 1√
1 + |w|2

[
W (w, x)

I2N

]
for (w, x) ∈ C × X, (A33)

i.e., away from the south pole. In the overlap, i.e., for z ∈ C − {0}, the transition function is

v−(z, x) = v+(1/z, x)Z (z, x)(Z†(z)Z (x))−1/2. (A34)

Now the bundles E1 and E2 come from the decompositions

v−(z, x) = 1√
1 + |z|2

[
1
z

]
⊗ q(x) + 1√

1 + |z|2
[

1
−z̄

]
⊗ p(x) (A35)

and

v+(w, x) = 1√
1 + |w|2

[
w

1

]
⊗ q(x) + 1√

1 + |w|2
[−w̄

1

]
⊗ p(x), (A36)

which, therefore, hold globally. The bundle E1 corresponds to the first summand and the bundle E2 to the second.
Perhaps it might be useful to recall a few facts about the Dirac monopole bundle, see also Example 1. In the language

described in this paper, it corresponds to the family over S2 ⊂ R3 defined by

H (x) = �x · �σ =
[

x3 x1 − ix2

x1 + ix3 −x3

]
. (A37)

Using stereographic projection with respect to the south pole of S2, we get the complex coordinate z = (x1 + ix2)/(1 + x3) and
the +1 eigenvalue bundle can be described by

v−(z) = 1√
1 + |z|2

[
1
z

]
for z ∈ C. (A38)
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This description misses the south pole of the sphere z = ∞, which is captured by

v+(w) = 1√
1 + |w|2

[
w

1

]
for w ∈ C, (A39)

where w is the stereographic projection with respect to the north pole. When the two descriptions are available, i.e., in S2 −
{N, S} ∼= C − {0}, the relation between them is given by

v−(z) = v+(1/z)
z

|z| , (A40)

hence the winding number 1 transition map at the equator of the sphere given by g+− : φ �→ eiφ ∈ U(1). This bundle is also
known as the tautological bundle over the complex projective line CP1 ∼= C ∪ {∞}, the space of all one-dimensional subspaces
of C2, because the fiber over each point is precisely the point itself which is a one-dimensional subspace of C2. The dual bundle,
L, has a transition map which is the complex conjugate of this one. We then conclude that

E1 = p∗
1L ⊗ p∗

2Im q and E2 = p∗
1L ⊗ p∗

2Im p, (A41)

where p1 : S2 × X → S2 and p2 : S2 × X → X are the natural projections, i.e., from the bundle Im p → X , we have constructed,
through γ , a bundle

E = p∗
1L ⊗ p∗

2Im q ⊕ p∗
1L ⊗ p∗

2Im p → S2 × X. (A42)

In terms of Hamiltonians, E can be described as a generalized Dirac monopole. Namely, E is the positive eigenvalue bundle of

H (x1, x2, x3, x) = x1σ1 ⊗ h(x) + x2σ2 ⊗ I2N + x3σ3 ⊗ I2N , (A43)

where (x1, x2, x3) ∈ S2 ⊂ R3 and x ∈ X .
Let us see that E is isomorphic to the bundle induced by the map γ ∗ : GN ∧ S2 → G2N . The latter bundle is built as follows.

Over the Grassmannian GN = U(2N )/(U(N ) × U(N )), we have the tautological bundle whose fiber at an N-plane is the plane
itself. Let us call this bundle E2N

N . Then, the Hamiltonian h defines a map ĥ : X → GN by x �→ Im q, so f = ĥ ∧ idS2 : X ∧ S2 →
GN ∧ S2 (where idS2 is the identity over the S2 factor) provides a map γ ∗ ◦ f : X ∧ S2 → G2N . Then

F = (γ ∗ ◦ f )∗E2N
N

∼= f ∗((γ ∗)∗E2N
N

)
(A44)

is the bundle induced by γ ∗. The bundle F can be described as follows, see Ref. [19] for more details. Take S2 = D+ ∪ D− ∼=
CP1 as the union of two disks whose intersection corresponds to the lines in CP1 which are invariant under complex conjugation.
Then

F |D+×X = (p∗
1L ⊗ p∗

2Im q ⊕ p∗
1L ⊗ p∗

2Im p)|D+×X ,
(A45)

F |D−×X = (p∗
1L ⊗ p∗

2θ
N ⊕ p∗

1L ⊗ p∗
2θ

N )|D−×X .

Observe that over D± the bundles L and L are trivializable, yielding

E |D−×X = (p∗
1L ⊗ p∗

2Im q ⊕ p∗
1L ⊗ p∗

2Im p)|D−×X

∼= (p∗
1θ

1 ⊗ p∗
2Im q ⊕ p∗

1θ
1 ⊗ p∗

2Im p)|D−×X

∼= (p∗
1θ

1 ⊗ (p∗
2Im q ⊕ p∗

2Im p))|D−×X

∼= (p∗
1θ

1 ⊗ p∗
2θ

N ⊕ p∗
1θ

1 ⊗ p∗
2θ

N )|D−×X

∼= (p∗
1θ

2 ⊗ p∗
2θ

N )|D−×X

∼= (p∗
1(L ⊕ L⊥) ⊗ p∗

2θ
N )|D−×X

∼= (p∗
1(L ⊕ L) ⊗ p∗

2θ
N )|D−×X

∼= (p∗
1L ⊗ p∗

2θ
N ⊕ p∗

1L ⊗ p∗
2θ

N )|D−×X

= F |D−×X , (A46)

where we used L⊥ ∼= L, because they share the same transition function. Moreover, at ∂D− = ∂D−, corresponding to the lines
invariant under complex conjugation, we have that L|∂D− = L̄|∂D− , and hence

E |∂D−×X = F |∂D−×X . (A47)

We conclude that the isomorphism over D− × X extends to the whole of S2 × X by declaring that it is the identity over D+ × X—
hence the bundles E and F are isomorphic. Now we can show that this bundle is stably isomorphic to

p∗
1L ⊗ p∗

2Im q ⊕ θ1 ⊗ p∗
2Im p ⊕ p∗

1L⊥ ⊗ θN = p∗
1L ∗ p∗

2Im q, (A48)
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representing the external tensor product of the Bott class [L]s with [Im q]s, since (Im q)⊥ = Im p. To see this, take E and
consider the stably isomorphic bundle

E ⊕ θ2 ⊗ θN = p∗
1L ⊗ p∗

2Im q ⊕ p∗
1L ⊗ p∗

2Im p ⊕ p∗
1θ

2 ⊗ p∗
2θ

N . (A49)

Now θ2 ∼= L ⊕ L⊥, so,

p∗
1L ⊗ p∗

2Im q ⊕ p∗
1L ⊗ p∗

2Im p ⊕ θ2 ⊗ θN ∼= p∗
1L ⊗ p∗

2Im q ⊕ p∗
1L ⊗ p∗

2Im p ⊕ p∗
1L ⊗ p∗

2θ
N ⊕ p∗

1L⊥ ⊗ p∗
2θ

N . (A50)

To proceed, we show that

p∗
1L ⊗ p∗

2Im p ⊕ p∗
1L ⊗ p∗

2θ
N ∼= p∗

2(Im p ⊕ θN ). (A51)

We can form an open cover {Uα}M
α=1 of X so Im p|Uα

∼= Uα × CN , and we have transition functions gαβ : Uα ∩ Uβ → GL(N ;C),
describing how the local frame fields glue together. The transition functions have to satisfy the cocycle condition over triple
intersections:

gαβgβγ = gαγ over Uα ∩ Uβ ∩ Uγ . (A52)

We can then build an open cover {Uα,+,Uβ,−} of S2 × X , with Uα,± = Uα × D±, where D± are the two disks in S2 = D+ ∪ D−.
The transition functions for the bundle p∗

1L ⊗ p∗
2Im p ⊕ p∗

1L ⊗ p∗
2θ

N are then of the form
(i) over Uα,− ∩ Uβ,+ the transition function gα−,β+ = diag( z̄

|z|gαβ, z
|z| IN ),

(ii) over Uα,± ∩ Uβ,± the transition function gα±,β± = diag(gαβ, IN ).
We can define a path of transition functions as follows. Let

Rt =
[

cos
(

π (1−t )
2

)
IN − sin

(
π (1−t )

2

)
IN

sin
(

π (1−t )
2

)
IN cos

(
π (1−t )

2

)
IN

]
(A53)

and take

gα−,β+(t ) =
[

z̄
|z|gαβ 0

0 IN

]
Rt

[ z
|z| IN 0

0 IN

]
R−t ,

gα−,β−(t ) =
[

gαβ 0

0 IN

]
,

gα+,β+(t ) = Rt

[
z̄
|z| IN 0

0 IN

]
R−t

[
gαβ 0

0 IN

]
Rt

[ z
|z| IN 0

0 IN

]
R−t , (A54)

with t ∈ [0, 1]. Then one can check that, indeed, for α, β, γ ∈ {1, . . . , M}, we have the cocycle conditions

gα+,β+gβ+,γ+ = gα+,γ+, over Uα,+ ∩ Uβ,+ ∩ Uγ ,+,

gα−,β−gβ−,γ− = gα−,γ−, over Uα,− ∩ Uβ,− ∩ Uγ ,−,
(A55)

gα−,β+gβ+,γ+ = gα−,γ+, over Uα,− ∩ Uβ,+ ∩ Uγ ,+,

gα−,β−gβ−,γ+ = gα+,γ+, over Uα,− ∩ Uβ,− ∩ Uγ ,+,

needed to define a vector bundle over [0, 1] × (S2 × X ). Observe that the resulting bundle restricted to {0} × S2 × X is p∗
1L ⊗

p∗
2Im p ⊕ p∗

1L ⊗ p∗
2θ

N and the one restricted to {1} × S2 × X is p∗
2(Im p ⊕ θN ). By homotopy invariance of topological vector

bundles, the result of Eq. (A51) follows. Plugging this result in Eq. (A50), we get

p∗
1L ⊗ p∗

2Im q ⊕ p∗
1L ⊗ p∗

2Im p ⊕ p∗
1L ⊗ p∗

2θ
N ⊕ p∗

1L⊥ ⊗ p∗
2θ

N

∼= p∗
1L ⊗ p∗

2Im q ⊕ p∗
2(Im p ⊕ θN ) ⊕ p∗

1L⊥ ⊗ p∗
2θ

N

∼= p∗
1L ⊗ p∗

2Im q ⊕ p∗
1θ

1 ⊗ p∗
2Im p ⊕ p∗

1L⊥ ⊗ p∗
2θ

N ⊕ p∗
2θ

N

∼= p∗
1L ⊗ p∗

2Im q ⊕ p∗
1θ

1 ⊗ p∗
2(Im q)⊥ ⊕ p∗

1L⊥ ⊗ p∗
2θ

N ⊕ θN

∼s p∗
1L ∗ p∗

2Im q. (A56)

Observe that what we have proved is that

[p∗
1L ⊗ p∗

2Im q ⊕ p∗
1L ⊗ p∗

2Im p]s = [p∗
1L ∗ p∗

2Im q]s, (A57)
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and we have equivalent results in terms of stable equivalence classes of projectors and Hamiltonians. In particular, it yields that
the generalized Dirac monopole built out of {h(x)}x∈X of Eq. (A43) is equivalent to the (external tensor) product of the Dirac
monopole of Eq. (25) by {h(x)}x∈X .

Bott periodicity in complex K theory is a consequence of the observation that the external tensor product of vector bundles
that takes vector bundles E → X and F → Y to p∗

1E ⊗ p∗
2F , where p1, p2 are the natural projections, induces an isomorphism

K0(S2 × X ) ∼= K0(X ). We remark that, as a ring, K0(S2) = Z[x]/(x − 1)2, where x = [L] ∈ K0(S2). At the level of reduced K
theory, the Bott periodicity isomorphism K̃0(X ) ∼= K̃ (S2 ∧ X ) = K̃−2(X ), consists precisely in multiplication by the Bott class
[L] − [1] ↔ [L]s, which is exactly the nontrivial S2 piece appearing in the external tensor product [E ]s = [p∗

1L ∗ p∗
2Im q]s

constructed above. Observe that we have done this using the +1 eigenbundle, but the analogous result holds for the orthogonal
complement bundle since their sum is trivial, namely, we would get a bundle isomorphic to p∗

1L ∗ p∗
2Im p.

APPENDIX B: SECOND CHERN NUMBER FOR THE EXTERNAL TENSOR PRODUCT OF DIRAC MONOPOLES

We wish to compute the second Chern number associated with the positive energy eigenbundle of the Hamiltonian

H̃ (y) =
5∑

i=1

yiγi, y ∈ S4, (B1)

representing the stable equivalence class of the external tensor product of two Dirac monopoles Eq. (65). The positive energy
eigenbundle is described by the orthogonal projector P(y) = (I4 + H (y))/2. The associated Berry curvature is given by the
matrix valued two-form

F = PdP ∧ dPP = 1

4
P

5∑
i, j=1

γiγ jPdyi ∧ dy j

= 1

8
P

5∑
i, j=1

[γi, γ j]Pdyi ∧ dy j . (B2)

The second Chern class is then represented by the closed differential form

1

8π2
(tr F 2 − tr F ∧ tr F ) = 1

8π2
tr F 2

= 1

8π2

1

16

5∑
i, j,k,l=1

tr (Pγiγ jγkγl )dyi ∧ dy j ∧ dyk ∧ dyl , (B3)

where we used the fact that the trace of a commutator is zero and the cyclic property of the trace. Now, if we write P(y) =
(I4 + H (y))/2, the first term does not contribute. The reason is that from the collection of 5 gamma matrices, this term will be
missing one, which, in turn, anticommutes with the 4 and squares to the identity. We are then left with

1

8π2

1

32

5∑
i, j,k,l,m=1

tr (γiγ jγkγlγm)yidy j ∧ dyk ∧ dyl ∧ dym. (B4)

In the above sum, if γi is equal to any to any of the other γ ’s appearing in the product, the trace yields zero by the same argument
as before. Therefore, we are left with the completely antisymmetric combination,

− 1

8π2

1

8

5∑
i, j,k,l,m=1

εi jklmyidy j ∧ dyk ∧ dyl ∧ dym, (B5)

where εi jklm is the Levi-Civita symbol, and where we noted that tr (γ1γ2γ3γ4γ5) = −tr γ 2
5 = −4. Finally observe that the

differential form (1/4!)
∑5

i, j,k,l,m=1 εi jklmyidy j ∧ dyk ∧ dyl ∧ dym is nothing but the volume element of S4 according to the
standard round metric, which integrates to 8π2/3. Upon integrating over S4, we obtain the result −1.
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