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Higher-fold chiral fermions that go beyond twofold Weyl fermions have recently been reported in crystalline
systems. Here, we focus on such excitations in several binary, ternary, and quaternary alloys/compounds with
CoGe, BiSbPt, and KMgBO3 as the representative examples that belong to the crystal space group 198. We
found distinct threefold, fourfold, and sixfold chiral fermions in the bulk via density-functional computations.
We provide general symmetry arguments for the protection of these degeneracies with special emphasis on
the fourfold fermions. Our surface spectra simulations show that the size of Fermi arcs resulting from these
chiral fermions are large, robust, and untouched from the bulk states due to the near absence of trivial bulk
Fermi pockets. All these features make these systems—especially CoGe and KMgBO3—promising topological
semimetal candidates to realize higher-fold fermions in future photoemission and transport experiments.
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I. INTRODUCTION

The discovery of chiral fermions in solid-state quantum
materials has kick-started a burst of activity in condensed-
matter physics. A methodological approach toward the
understanding and search for new topological semimetals is
to examine how the symmetries of a material enforce or sym-
metry protect degenerate multifold band-crossing points [1,2].
These new quasiparticles [3–6] in the solid state [7–17] may
not even have elementary particle counterparts.

Some of the new, unexpected quasiparticle excitations pre-
dicted recently are spin-1 [15–18], charge-2 Dirac [17,18],
and spin- 3

2 [17] chiral fermions. The well-known twofold
Weyl chiral fermions can be present in the absence of
either inversion (I) or time reversal (T ) symmetry in three-
dimensional (3D) crystals. They are characterized by nonzero
topological charges called Chern numbers (C = ±1) [5,6].
These Weyl fermions can be described by an effective spin-
1
2 Hamiltonian H ∝ h̄ δ�k · �σ at lowest order. δ�k is small
deviations from the Weyl node in momentum space. �σ ≡
{σx, σy, σz} are the 2 × 2 Pauli matrices. However, certain
crystal symmetries can also protect spin-1 or spin- 3

2 chiral
fermions [17,18] at high-symmetry points in the crystal mo-
mentum space. They are threefold and fourfold, respectively.
Their effective low-energy Hamiltonians are H ∝ h̄ δ�k · �L,
where Li’s are (3 × 3) spin-1 and (4 × 4) spin- 3

2 rotation
generators, respectively. The low-energy dispersions of these
multi-Weyl systems follow from the corresponding model
Hamiltonians, e.g., spin-1 fermions possess a combination of
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a Dirac-type linear band crossing and a flat band, as shown in
Fig. 1(a), with C = ±2 and 0, respectively.

Additionally, two identical copies of spin- 1
2 Weyl nodes

can also be symmetry protected [16,18]. This leads to C =
±2 with fourfold degeneracy. The effective Hamiltonian for
such a multi-Weyl node [16,18] can be described as H ∝
h̄ δ�k · �σ ⊗ I2×2. They have been named charge-2 Dirac nodes.
Figure 1(a) shows schematic diagrams of low-energy dis-
persions for Dirac, Weyl, spin-1, and charge-2 Dirac nodes.
The symmetry-protected band crossings which carry C = ±2
are referred to as double Weyl nodes. These band crossings
are topologically robust under infinitesimal changes of the
Hamiltonian parameters [19] and lead to quite interesting
phenomena [6].

In the search for such multi-Weyl systems, there have
been a few studies on binary transition - silicides with
space group (SG) 198, which are predicted to be double
Weyl semimetals [15–18,20–23]. Here, we study several bi-
nary, ternary, and quaternary alloys with CoGe, BiSbPt,
and KMgBO3 as the representative case, respectively. We
provide a detailed analysis including ab initio simulations
of bulk and surface excitations and symmetry-protection
arguments for various multifold degeneracies. Unlike pre-
vious reports which were geared toward binary systems,
our symmetry arguments are quite general in the spirit
of Kramers theorem and are independent of the composi-
tion of the constituent elements. We performed ab initio
electronic structure calculations using VIENNA AB INITIO SIM-
ULATION PACKAGE [24,25] with Perdew-Burke-Ernzerhof [25]
exchange correlation. Chern numbers were calculated us-
ing Wannier charge center evolution of maximally localized
Wannier functions [26–28] from WANNIER90 [29]. Surface
spectra and Fermi arcs (FAs) were simulated using iterative
Green’s function method [30–32]. Further information on
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FIG. 1. (a) Schematic band structure of Dirac, Weyl, spin-1, and
charge-2 fermions. (b) Crystal structure of CoGe (space group P213).
(c) Bulk Brillouin zone (BZ) and (001) surface BZ (represented
by dashed square). Crystal structure of (d) ternary BiSbPt and (e)
quaternary KMgBO3.

computational details can be found in the Supplemental Ma-
terial (SM) [33].

II. CRYSTAL STRUCTURES

The crystal structure and the corresponding Brillouin zone
(BZ) for CoGe are shown in Figs. 1(b) and 1(c). CoGe crys-
tallizes in cubic structure with SG P213 under high pressure
[34,35]. The primitive cell contains four formula units with
both Co and Ge atoms lying on threefold axes occupying
the same Wyckoff sites 4a (x, x, x). The internal co-ordinates
are xCo = 0.1359 and xGe = 0.8393. The theoretically opti-
mized lattice parameter of CoGe is found to be 4.64 Å, which
matches fairly well with the experimental value, 4.637 Å [34].

Figures 1(d) and 1(e) show the crystal structure of BiS-
bPt and KMgBO3 compounds. Similar to binary CoGe, the
primitive cell of ternary BiSbPt contains four formula units
with Bi, Sb, and Pt occupying 4a(x, x, x) Wyckoff sites where
xBi = 0.629, xSb = 0.373 and xPt = 0.990. The optimized lat-
tice parameter for BiSbPt is found to be 6.69 Å. In KMgBO3,
the K, Mg, and B atoms are located in one crystallographic
position 4a(x, x, x), while the O atoms sit on a different Wyck-
off site 12b(y1, y2, y3), where xK = 0.1333, xMg = 0.8552,
xB = 0.4076, y1

O = 0.4181, y2
O = 0.2572, and y3

O = 0.5405.
The optimized lattice parameter for KMgBO3 is found to be
6.89 Å, which is in fair agreement with the experimental value
6.83451 Å [36].

III. SYMMETRY ARGUMENTS

The crystal structure of these systems has tetrahedral
(T4) point-group symmetry with the following information
germane to our analysis [37]. The point group has three
generators at � point: two screws, S2z = {C2z| 1

2 , 0, 1
2 }, S2y =

{C2y|0, 1
2 , 1

2 } and a threefold rotation S3 = {C+
3,111|0, 0, 0}.

They satisfy S2zS3 = S3S2y and S3S2zS2y = S2yS3. Due to
S3, the third screw symmetry S2x = {C2x| 1

2 , 1
2 , 0} is also

present. On the other hand, at the R point, the three gen-
erators are S2x = {C2x| 1

2 , 3
2 , 0}, S2y = {C2y|0, 3

2 , 1
2 }, and S3 =

{C−1
3,111|0, 1, 0}. They satisfy S2xS3 = S3S2y and S3S2xS2y =

S2yS3. We also keep time-reversal symmetry and thus will
focus on the time-reversal invariant momenta in the BZ.

We start with the spinless case for which time-reversal
operator (T ) squares to identity (I). This case is relevant for
systems composed of light elements with weak spin-orbit cou-
pling (e.g., KMgBO3), as well as for phonon spectra [18] for
this crystal structure. At the � point, the electronic structure
can potentially show a threefold band degeneracy. However,
the � point symmetries do not necessarily imply threefold
degeneracies. For a threefold degeneracy, the two screw sym-
metries S2y and S2z should commute and square to I as is the
case at �, as well as S3 should act nontrivially (S3|ψ〉 �= |ψ〉
where |ψ〉 is a simultaneous eigenstate of S2y and S2z; see
supplementary Sec. I.C of Ref. [3]. It turns out that there can
also be twofold degeneracies or onefold states at the � point
consistent with the symmetries if S3 is trivial.

The symmetry properties at the R point are crucially differ-
ent. At this point, the two screws S2x and S2y now anticommute
and square to −I, and hence the previous threefold degener-
acy argument does not apply anymore. Reference [18] offered
an intuition that the degeneracy at the R point has to be
even-dimensional with a lower bound of four [38]. From our
analysis, we shall show that it has to be even with an upper
bound of four in the presence of S3.

First, we can get a twofold degeneracy using the anticom-
mutation of the screws: |ψ〉 and S2x|ψ〉 are distinct eigenstates
under S2y, say with eigenvalues of i and −i, respectively, with-
out loss of generality. We can get a further twofold degeneracy
due to S2zS3 = S3S2y: S3|ψ〉 and S2yS3|ψ〉 are distinct eigen-
states now under S2x with eigenvalues i and −i, respectively.
If S3 is nontrivial [39] and takes us out of the subspace of
|ψ〉 and S2x|ψ〉, i.e., minimally 〈ψ |S3ψ〉 = 0, then mutual
orthogonality of the two pairs is ensured [40]. Time reversal
(effectively complex conjugation) does not generate any new
states for spinless electrons. Since we have accounted for all
the symmetries present at R, we can at most get a symmetry-
protected fourfold degeneracy and no higher. Combining with
the argument of Ref. [18], we arrive at an exactly fourfold
node protected by symmetries.

Going to the spinfull case for which T 2 = −I, the Kramers
degeneracies are lifted throughout the zone except at the
time-reversal invariant momenta in the presence of spin-orbit
interaction (SOI) because the crystal does not possess space-
inversion symmetry. Adding the spin quantum number to a
potential threefold spinless degeneracy at �, we would like
to understand what happens to the six states under SOI. It
turns out that they cannot give rise to a sixfold degeneracy,
but at least have to split into two nodal points with fourfold
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FIG. 2. (a), (b) Band structure of CoGe without (left) and with (right) spin-orbit interaction (SOI). The various degeneracies at the nodal
points are protected by nonsymmorphic screw and threefold rotation symmetries of SG 198 and time-reversal symmetry. (c) 3D Fermi surface
at isolevel EF with SOI. (d), (e) In-plane Berry curvature plotted on kz = 0 (left) and kx = ky (right) plane, highlighting its flows between R
and � points in agreement with the sign of the topological charges in the presence of SOI.

degenerate and twofold degenerate states. This is because only
a fourfold degeneracy can at most be protected by � point
symmetries. The reason for this is that now the screws S2y and
S2z anticommute (and square to −I) at the � point instead
of the R point for the spinless case [41]. So, we can again
get a fourfold degeneracy by the argument previously made
for the spinless case at R point. However, for the spinfull
case, time reversal could potentially generate new eigenstates.
But, mutual orthogonality of S2y and S2z eigenstates and their
time-reversed partners is not ensured due to imaginary eigen-
values under the screws [40]. Thus, we can only conclude a
fourfold degeneracy and no higher. This completes the split-
ting argument. Also, a singlefold spinless band at � (if S3 is
trivial) will give rise to Kramers twofold degeneracy in the
spinfull case. Similarly, a fourfold spinfull degeneracy arising
from a twofold spinless degeneracy is also consistent with the
symmetries. On the other hand, at R point there can be sixfold
degeneracies [3].

To explain the spinfull fourfold degeneracy at the � point
for binary systems, an alternate top-down argument was given
in Ref. [15]. Chang et al. started with an eight-dimensional
representation of the Hamiltonian after making (minimal) as-
sumptions on the nature of the orbitals in the unit cell. They
then wrote down the distinct symmetry allowed “mass” terms
in the k · p Hamiltonian based on the procedure laid down in
Ref. [42] to reduce down to a fourfold degeneracy. Our argu-
ments [40] above are rather bottom up and purely based on
symmetries of the SG. On the other hand, comparing with the
arguments of Ref. [3] for the case of commuting screws, we
have paid attention to the interplay of S3 symmetry of SG 198
with anticommuting screws, which forbids any degeneracies

higher than fourfold (and only fourfold for the spinless case at
the R point). In particular, our arguments also predict that sys-
tems beyond the binary class, e.g., ternaries and quaternaries
in SG 198 will also host these fourfold degeneracies.

We finally note that the fourfold degeneracies at the R
point have charge-2 Dirac nodal character. This is ensured
because of the presence of twofold line degeneracies along
R-X and M-X directions (in fact, the whole kx = π and
symmetry-related planes). Such additional symmetry protec-
tion is obtained from a product of time-reversal and screw
symmetries (e.g., T S2x) [40], leading to Kramers-like twofold
degeneracies. Fourfold degeneracies at the � point are not so
constrained and therefore generically have spin- 3

2 character
instead.

IV. RESULTS AND DISCUSSION

A. Binary compound (CoGe)

1. Bulk excitations

In Fig. 2(a), we briefly look at the spinless electronic band
structure of CoGe by suppressing SOI. Different colored lines
in Fig. 2(a) indicate band index (24 to 27). At �, we see a
threefold or spin-1 degeneracy as discussed earlier. There are
also twofold degeneracies and onefold states at � at other
energies (not highlighted). The computed Chern number for
the 25th–27th bands at the � point are found to be C(25) =
−2, C(26) = 0, and C(27) = +2, respectively. On the other
hand, at the R point, we find only fourfold degeneracies in line
with the symmetry arguments. One such fourfold degeneracy
with charge-2 nodal is highlighted in Fig. 2(a). The computed
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FIG. 3. (a) Surface spectrum of CoGe at (001) surface in presence of SOI. Surface states are marked by SS. Superimposed bulk band
structure along R-�-X are represented by black lines. (b), (c) Fermi arc contour at EF and EF − 0.026 eV (spin-3/2 Weyl node). (b) also shows
the spin-momentum locked spin texture (orange arrows).

Chern number at this fourfold degenerate node is +2. Hence,
the total Chern number is zero in the entire zone in accordance
with the Nielsen-Ninomiya theorem [43]. These observations
are also pertinent to the weak-SOI case of KMgBO3 to be
discussed later [Fig. 5(a)].

The effect of SOI is expected to be relevant for CoGe and
BiSbPt, and the corresponding spinfull results are shown in
the rest of Figs. 2 and 4(a). At �, we get at most a fourfold
degeneracy as dictated by symmetry arguments. One such
fourfold degeneracy is highlighted in Fig. 2(b). Whereas at
the R point, sixfold degeneracy is also allowed by symmetries
as highlighted in Fig. 2(b). Figure 2(c) illustrates the Fermi
surface (FS) map with SOI. At the � point, two concentric
spherical shape FSs are found, which arise from the fourfold
spin-3/2 excitations. The bands in the inner (outer) sphere
possess Chern number −1(−3). At R, FS corresponds to four
electronlike bands from double spin-1 excitations with C =
+2. Along the �-R and at the M point in the BZ, tiny Fermi
pockets are observed. We further show the Berry curvature
( ��) on kz = 0 and kx = ky planes in Figs. 2(d) and 2(e) to
highlight that it flows between R and � points in agreement
with the sign of the topological charges. Notably, under am-
bient conditions, CoGe crystallizes in the SG C2/m [35,44],
where none of the above band topology is observed in our
calculations [33].

2. Surface excitations

Figure 3 shows the surface state results for these unconven-
tional fermions. FAs on the surface, if present, are generally
expected to connect topological nodes of opposite chirality.
We studied the (001) surface in which R and � points fall at
different locations [as shown in Fig. 1(c)] as opposed to the
(111) surface to allow for large FAs. In the presence of SOI
and consequent doubling of the Chern number (|C| = 4) at
R and � points, there are two pairs of FA states that emerge
from the bulk projected states at �̄ and M̄ points, as seen from
the surface spectrum shown in Fig. 3(a). FA spectral weights
are shown in Figs. 3(b) and 3(c) at two different energy
cuts. Figure 3(b) also reveals the spin-momentum-locked spin
texture of the FAs in the presence of SOI. Without SOI, two
doubly spin-degenerate FAs are present (see SM [33] for more
details). SOI lifts the spin degeneracy everywhere except at

time-reversal invariant momenta, and thus two pairs of FAs
appear with antiparallel spin polarization. Such spin-polarized
textures may offer applications in spintronics [45,46].

B. Beyond binary compounds

We now report the simulated results of prototype ternary
and quaternary systems—BiSbPt and KMgBO3—that be-
long to the same SG as the binary CoGe. Figure 4(a)
displays the bulk band structure of BiSbPt in the presence
of SOI. As expected, it shows various higher-fold fermions
in concurrence with our general symmetry arguments. Fig-
ure 4(b) shows the surface states (SSs) on (001) surface
originating from these fourfold and sixfold Weyl nodes in
bulk. BiSbPt hosts four pairs of surface states near EF

[shown as SS1 and SS2 in Fig. 4(b)]. SS1 states emerge
from the spin-3/2 node just above the EF , while the SS2
states emerge from the spin-3/2 node at around −0.26 eV
below the EF [see Fig. 4(a)]. In contrast to Ref. [15], where
only bulk properties of few ternary compounds are shown,
the multifold degenerate Weyl nodes in our predicted BiSbPt
compound lie almost at the Fermi level and the extra trivial
Fermi pockets are nearly absent. This, in turn, yields clean
surface states near EF [see Fig. 4(b)], however, there are
comparatively more spectral weights arising from the bulk
than CoGe.

Remarkably, we found that the quaternary compound
KMgBO3 from the orthoborate family shows the cleanest FAs
when compared to all the systems we studied as well as CoSi
from the previous report. KMgBO3 has already been synthe-

FIG. 4. For BiSbPt with SOI: (a) Electronic band structure and
(b) surface spectrum at (001) surface. Surface states are marked by
SS. Inset in (a) shows the zoomed view of higher Chern number
assisted Weyl nodes at � and R points in the BZ.
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FIG. 5. For KMgBO3 with SOI: (a) Bulk band structure, (b) surface spectrum at side surface (001). Surface states are marked by SS.
(c) Fermi arc contour at energy E1=EF − 0.2 eV, shown by the horizontal yellow line in (b). As mentioned in the text, SOI-induced splitting
is close to imperceptible (compare with Fig. S5 of SM [33]).

sized using solid-state reaction techniques without requiring
high pressure [36]. It is expected to have weak SOI because
of its light constituent elements. Figure 5 shows the bulk band
structure and surface spectra with SOI. As clearly visible,
there is a pair of almost degenerate large FAs running from
�̄ to M̄ with almost no mixing from the bulk states, thus mak-
ing KMgBO3 an exciting candidate for future experimental
studies. The weak-SOI nature of KMgBO3 is corroborated
by the negligible effect of SOI on both the bulk and surface
electronic structures. The maximal SOI-induced splitting is
less than 0.01 eV, and the bulk and surface electronic struc-
tures is essentially a “doubled copy” of the corresponding
spinless band structure (see Fig. S5 of the SM [33]). We
note here that SOI effects are already very small for CoSi
[20–22] and this should carry over for KMgBO3 as well. The
degeneracies in the bulk are again in accordance with earlier
symmetry considerations, and can essentially be understood
using the spinless arguments. Moreover, we also found several
other experimentally synthesized quaternaries [Ag4Te(NO3)2,
Ag4Te(ClO3)2 and Ag4TeSO4] with SG 198 and they again
show three-, four-, and sixfold degenerate Weyl nodes at � and
R points in the BZ. The multi-Weyl nodes in these quaternary
systems also lie quite close to EF (see Fig. S6 of the SM) [33].

V. CONCLUSION

It is important to note that the Weyl nodes that appear in
systems such as WTe2 [5], MoTe2 [47], LiAlGe [48], TaAs(P)
[49], NbAs(P) [50] and so on are accidental band crossings
with the FAs relatively smaller in size. In contrast, the �- and
R-point band crossings in CoGe, BiSbPt, and KMgBO3 (all
belonging to SG 198) are robustly protected by the crystal
SG symmetries. Also, the FAs on the (001) surface are much
larger since the nodes are maximally separated in BZ. An-
other promising feature of these systems—especially CoGe
and KMgBO3—is the “clean” nature of FAs because of the
near absence of spectral weights from bulk states at EF as
evident from Figs. 3–5. This makes them relatively superior
to many other reported binary alloys (of SG 198), such as
GaPt [51], GaPd [52], AlPd [15], AlPt [15,23], RhGe [15],
AuBe [53], and MSi (M = Fe, Mn, Ru, Re) [18], which suffer

from large spectral weight contributions of extra bulk band
crossings across EF . Very recently, experiments [20–22] have
borne out these advantages for the related compound CoSi
[17], which makes the case for experiments on CoGe and
KMgBO3 attractive since they have already been successfully
synthesized [34,36].

In summary, we predict an ideal higher Chern-number
topological semimetal in CoGe in agreement with previous
bulk studies on binary systems with SG 198. We showed giant
FA states in this system without much contamination from
the bulk states. Furthermore, we have identified the existence
of four- and sixfold degenerate Weyl nodes and their novel
surface signatures in a ternary BiSbPt and a quaternary com-
pound KMgBO3. These unconventional multi-Weyl nodes lie
close to the Fermi level, which make these beyond binary
sytems experimentally quite promising as well. KMgBO3 ad-
ditionally has exceptionally clean, giant FA states compared
to all other systems as has been emphasized before. At a
theoretical level, we gave new, alternate Kramers-theoremlike
arguments based on the inter-relationships between two non-
symmorphic screws and threefold rotations of SG 198 to
explain the fourfold degeneracies at R point for the spinless
case (only possibility) and at � point for the spinfull case.
Thus, they were expectedly seen in all the nonbinary and
binary systems with SG 198 that we studied. The energy offset
observed between the multi-Weyl nodes at � and R points
makes these systems suitable for observing quantized circu-
lar photogalvanic effects with possibilities for technological
applications [15,54]. All these features of CoGe, BiSbPt, and
KMgBO3 serve as strong motivation for future experimental
investigations to study these candidate chiral semimetals with
topological charges larger than C = ±1.
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APPENDIX: DERIVATIONS OF BAND DEGENERACIES
AND FURTHER DETAILS ON SYMMETRY ARGUMENTS

This Appendix contains auxiliary elaborations on the
symmetry arguments presented concisely in the main text.
Section 1 sets up the preliminaries of symmetry operations.
Section 2 is devoted to the band degeneracies at � and R
points for the spinless case. Section 3 is devoted to the analysis
of degeneracy for the spinfull case. Section 4 explains the
twofold line degeneracies along R-X and M-X high-symmetry
directions in the BZ.

1. Some preliminaries

Following usual conventions, we will specify any crystal
symmetry operation by a point group operation O followed by
a translation, �t . For pure point group operations, �t = (0, 0, 0).
The rules of combining two crystal symmetry operations are

{O1|�t1}{O2|�t2} = {O1O2|O1 �t2 + �t1},
{O|�t}−1 = {O−1| − O−1�t}.

Pure translations are indicated by {I|�t} = e−i�k.�t , where I is
an identity operation, and �k and �t are reciprocal wave vector
and translation vectors, respectively. We use R to signify a
2π rotation, which equals I and −I for spinless and spinfull
cases, respectively.

The twofold (C2) and threefold (C3) rotation operators
transform lattice coordinates as follows:

C2x(x, y, z) −→ (x,−y,−z),

C2y(x, y, z) −→ (−x, y,−z),

C2z(x, y, z) −→ (−x,−y, z),

C3,111(x, y, z) −→ (z, x, y),

C−1
3,111(x, y, z) −→ (y, z, x).

The matrix representations of these rotation operators are thus
as follows:

C2x =
(1 0 0

0 −1 0
0 0 −1

)
; C2y =

(−1 0 0
0 1 0
0 0 −1

)
,

C2z =
(−1 0 0

0 −1 0
0 0 1

)
; C3,111 =

(0 0 1
1 0 0
0 1 0

)
,

and we can use them to multiply rotation operators
( {O1O2O3...}) to obtain the net point-group operation. The
sum of two translation vectors follows the usual rule:

(x1, y1, z1) + (x2, y2, z2) −→ (x1 + x2, y1 + y2, z1 + z2).

Furthermore, the color scheme set up above will be used in
the remaining text when needed to allow for easy parsing of
the various algebraic manipulations. In some algebraic ma-
nipulations, any expression with a given color in any line is
replaced in the following line by the right-hand side of the
corresponding colored formula above.

2. Spinless case

a. � point

The little group at the � point has S2z = {C2z| 1
2 , 0, 1

2 },
S2y = {C2y|0, 1

2 , 1
2 } & S3 = {C3,111|0, 0, 0} as the symmetry

generators [37]. These generators satisfy the following rela-
tions:

S2
2z =

{
C2z|1

2
, 0,

1

2

}{
C2z|1

2
, 0,

1

2

}

=
{

C2
2z|C2z

(
1

2
, 0,

1

2

)
+

(
1

2
, 0,

1

2

)}

=
{

C2
2z|

(
1̄

2
, 0,

1

2

)
+

(
1

2
, 0,

1

2

)}

= {
C2

2z|0, 0, 1
} = {R|0, 0, 1}

= {I|0, 0, 1} = 1. (A1)

From now on, we will skip the derivations of the various
relations satisfied by the crystal symmetries and only focus
on the details of the symmetry protection of the degeneracies.
All derivations of crystal symmetry relations are compiled in
Sec. VII of the SM [33]. Similar to Eqs. (A1), we also get

S2
2y = 1, (A2)

S3
3 = 1. (A3)

The twofold screws and threefold rotation C3,111 satisfy the
following relations:

[S2z, S2y] = 0, (A4a)

S2zS3 = S3S2y, (A4b)

S3S2zS2y = S2yS3. (A4c)

Since S2z and S2y commute, let |ψ〉 be a simultaneous
eigenstate of both S2z and S2y (and also the Hamiltonian since
these are the symmetries of the Hamiltonian, i.e., commute
with the Hamiltonian by definition).

Let

S2z|ψ〉 = λ1|ψ〉, S2y|ψ〉 = λ2|ψ〉, (A5)

with λ1 = ±1, λ2 = ±1 due to Eqs. (A1) and (A2).
Using the above relations between S3, S2z, and S2y, we can

arrive at

S2zS3|ψ〉 = S3S2y|ψ〉 = λ2S3|ψ〉,
S2yS3|ψ〉 = S3S2zS2y|ψ〉 = λ1λ2S3|ψ〉,
S2zS

2
3 |ψ〉 = S3S2yS3|ψ〉 = S2

3S2zS2y|ψ〉 = λ1λ2S2
3 |ψ〉,

S2yS2
3 |ψ〉 = S3S2zS2yS3|ψ〉 = S2

3S2z|ψ〉 = λ1S2
3 |ψ〉, (A6)

The set of equations Eqs. (A6) show S3 generates two new
distinct eigenstates S3|ψ〉 and S2

3 |ψ〉 of S2z and S2y provided
either λ1 �= 1 or λ2 �= 1. In other words, both screws are
nontrivial. These three states will be degenerate since S3 com-
mutes with the Hamiltonian. Thus, these three states (|ψ〉,
|S3ψ〉, |S2

3ψ〉) together form a threefold degeneracy at � point.
The above is a recapitulation of the arguments in Sec. C in
the SM of Ref. [3]. The λ1 = λ2 = 1 may correspond to a
case where both screws are trivial which does not protect any
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degeneracy or a case where only one of the screws is trivial
which protects only a twofold degeneracy.

b. R point

The generators at the R point are S2x = {C2x| 1
2 , 3

2 , 0}, S2y =
{C2y|0, 3

2 , 1
2 } and S3 = {C−1

3,111|0, 1, 0} [37]. They satisfy the
following:

S2
2x = − 1, (A7a)

S2
2y = − 1, (A7b)

S2xS2y = − S2yS2x, (A7c)

S2xS3 = S3S2y, (A7d)

S3S2xS2y = S2yS3. (A7e)

The eigenvalues under the twofold screws (S2x, S2y) will be
unit modulus and pure imaginary due to Eqs. (A7a) and (A7b).
Let |ψ〉 be an eigenstate of S2y with eigenvalue i without loss
of generality, i.e., S2y|ψ〉 = i|ψ〉. Then, Eq. (A7c) implies that
|S2xψ〉 ≡ S2x|ψ〉 will be an eigenstate of S2y with eigenvalue
−i because

S2y|S2xψ〉 =S2yS2x|ψ〉 = −S2xS2y|ψ〉 = −i|S2xψ〉.
Since |ψ〉 and |S2xψ〉 have different eigenvalues under S2y,
they are orthogonal. Equation (A7d) now implies that |S3ψ〉 ≡
S3|ψ〉 will be an eigenstate of S2x with eigenvalue i because

S2x|S3ψ〉 = S2xS3|ψ〉 = S3S2y|ψ〉 = S3i|ψ〉 = i|S3ψ〉.
Equation (A7c) will again imply that |S2yS3ψ〉 ≡ S2yS3|ψ〉
will be an eigenstate of S2x with eigenvalue −i because

S2x|S2yS3ψ〉=S2xS2y|S3ψ〉 = −S2yS2x|S3ψ〉 = −i|S2yS3ψ〉.
Since |S3ψ〉 and |S2yS3ψ〉 have different eigenvalues under
S2x, they are orthogonal [55].

By requiring that S3 acts nontrivially on the eigenstates
of S2y and takes out of the subspace formed by them, we
can ensure mutual orthogonality between eigenstates of S2y

and S2x. Minimally, 〈ψ |S3ψ〉 = 0 guarantees all other mutual
orthogonalities as follows:

Case of |S3ψ〉 and |S2xψ〉:
〈S2xψ |S3ψ〉 =〈ψ |S−1

2x S3|ψ〉 = 〈ψ |(−S2x )S3|ψ〉
= − 〈ψ |S2xS3|ψ〉 = 〈ψ |S3S2y|ψ〉
=i〈ψ |S3|ψ〉 = 0.

Case of |S2yS3ψ〉 and |ψ〉:
〈ψ |S2yS3ψ〉 =〈ψ |S2yS3|ψ〉 = −〈ψ |S−1

2y S3|ψ〉
= − (−i)〈ψ |S3|ψ〉 = 0.

Case of |S2yS3ψ〉 and |S2xψ〉:
〈S2xψ |S2yS3ψ〉 =〈ψ |S−1

2x S2yS3|ψ〉
=〈ψ |(−S2x )S2yS3|ψ〉
= − 〈ψ |S2x|S2yS3ψ〉
=i〈ψ |S2yS3ψ〉 = 0.

Therefore, (|ψ〉, |S2xψ〉, |S3ψ〉, |S2yS3ψ〉) are four mutually
orthogonal states. Thus, we have a symmetry-protected four-

fold degeneracy at R point in the absence of spin-orbit
coupling.

Since time-reversal squares to identity (T 2 = I) for spin-
less fermions, it does not generate any new eigenstates. In fact,
it relates the eigenstates of the two screws as follows:

S2y|T ψ〉 = S2yT |ψ〉 = T S2y|ψ〉 = T i|ψ〉 = −iT |ψ〉
⇒ S2y|T ψ〉 = −i|T ψ〉,

where we have used the facts that T commutes with the
screws, and T †iT = −i (anti-linear property). Thus, we can
identify |T ψ〉 with |S2xψ〉 having same eigenvalue −i under
S2y. By a very similar argument, the pairs {|T S2xψ〉, |ψ〉},
{|T S3ψ〉, |S2yS3ψ〉} and {|T S2yS3ψ〉, |S3|ψ〉} can be
identified.

To demonstrate the fourfold degeneracy at the R point
for spinless case, we have simulated a few more binary and
ternary systems belonging to SG 198. The bulk band structure
for these compounds is shown in Fig. S3 of the SM [33]. Sim-
ilar to CoGe, the electronic structure in all these binary and
ternary systems shows the fourfold degeneracy at the R point,
irrespective of their location with respect to Fermi level. Thus,
the fourfold degeneracy at R point for the spinless case is
independent of both the chemical elements at the lattice sites
and number of atoms in the cell. Rather, the degeneracy at the
R point is strictly determined by the crystal SG symmetry.

3. Spinfull case

The generators at � point are S2z = {C2z| 1
2 , 0, 1

2 }, S2y =
{C2y|0, 1

2 , 1
2 } & S3 = {C3,111|0, 0, 0} [37]. They satisfying the

following relations for spinfull fermions:

S2
2z = −1, (A8a)

S2
2y = −1, (A8b)

S3
3 = −1. (A8c)

The difference with respect to the corresponding spinless
� point symmetry relations is due to the different action of R
in these two cases.

Also, we have

S2zS2y = − S2yS2z, (A9a)

S2zS3 = S3S2y, (A9b)

S3S2zS2y = S2yS3. (A9c)

Therefore, we can use the very same arguments as in
Sec. A 2 b to generate a fourfold degeneracy.

Since T 2 = −1 for the spinfull case, it is possible that time
reversal may generate further new states. In other words, the
question is whether the time-reversed partners of the above
fourfold states {|ψ〉, |S2zψ〉, |S3ψ〉, |S2yS3ψ〉} are distinctly
new states or not. As mentioned in the main text, they are
actually not new states because mutual orthogonalities are
not ensured. This is due to the imaginary eigenvalues under
screws.

From S2
2z = S2

2y = T 2 = −1, we have S−1
2z = −S2z, S−1

2y =
−S2y and T −1 = −T . Also, T commutes with the screws.
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First, these mutual overlaps have to be real, e.g.,

〈S2zψ |T ψ〉 = 〈ψ |S−1
2z T |ψ〉 = −〈ψ |S2zT |ψ〉

= −〈ψ |T S2z|ψ〉 = 〈ψ |T −1S2z|ψ〉
= 〈T ψ |S2zψ〉 = 〈S2zψ |T ψ〉∗.

Second, the eigenvalue of |T ψ〉 under S2y is the same as
|S2zψ〉, and similarly the eigenvalue of |T S2zψ〉 under S2y is
the same as |ψ〉, as follows. Let, S2y|ψ〉 = i|ψ〉. Therefore,

S2y|S2zψ〉 = −i|S2zψ〉

by following the same argument as in Sec. A 2 b. Now,

S2y|T ψ〉 = S2yT |ψ〉 = T S2y|ψ〉 = T i|ψ〉
= − iT |ψ〉 = −i|T ψ〉.

Thus, both |T ψ〉 and |S2zψ〉 have the same eigenvalues under
S2y, and we cannot conclude anything about this mutual or-
thogonality. The same lack of mutual orthogonality will be the
case for the other pairs {|ψ〉, |T S2zψ〉}, {|S3ψ〉, |T S2yS3ψ〉},
and {|S2yS3ψ〉, |T S3ψ〉}. Thus, we can at most get a four-
fold degeneracy ({|ψ〉, |S2zψ〉, |S3ψ〉, |S2yS3ψ〉}) at � point
for spinfull fermions in SG 198.

We also note here that for the R point, since now
the screws commute and square to 1, the eigenvalues are
unit modulus and purely real. We can get a threefold
degeneracy ({|ψ〉, |S3ψ〉, |S2

3ψ〉}) by following the same ar-
guments as in Sec. A 2 a. Furthermore, due to eigenvalues
being real, the above mutual orthogonalities under time
reversal are ensured, and we have three distinctly new time-
reversed partners ({|T ψ〉, |T S3ψ〉, |T S2

3ψ〉}). This can give a
symmetry-protected sixfold degeneracy at the R spinfull case
as discussed in Ref. [3].

4. Twofold degeneracies along R-X and M-X directions

a. Spinless case

The screw rotation along the x axis is S2x = {C2x| 1
2 , 1

2 , 0}.
We can define an antiunitary operator 	2x = T S2x. T squares

to +1 for the spinless case and commutes with the (unitary)
screw. Thus we have

	2
2x = T S2xT S2x = T 2S2

2x

= T 2

{
C2x|1

2
,

1

2
, 0

}{
C2x|1

2
,

1

2
, 0

}

= T 2

{
C2

2x|C2x

(1

2
,

1

2
, 0

)
+

(1

2
,

1

2
, 0

)}

= T 2

{
C2

2x|
(

1

2
,

1̄

2
, 0

)
+

(1

2
,

1

2
, 0

)}
,

= T 2{C2
2x|1, 0, 0

} = T 2{R|1, 0, 0}
= {R|1, 0, 0} = {I|1, 0, 0} = e−ikx . (A10)

Therefore, on the kx = π plane, 	2
2x = −1. Thus, by

Kramers argument, if |ψ〉 is an eigenstate of S2x, then |	2xψ〉
is a like a time-reversed partner for kx = π . Hence, 	2x

gives a Kramers-like double degeneracy on the kx = π and
symmetry-related planes. This in turn implies that the bands
along R-X and M-X directions in the BZ are twofold degener-
ate by the combination of time-reversal and screw symmetry
as seen in Fig. 2(a) of the main text.

b. Spinfull case

For the spinfull case, R = −I and T 2 = −I. Therefore,
similar to Eq. (A10), it follows that

	2
2x = T S2xT S2x = T 2S2

2x

= T 2{C2
2x|1, 0, 0} = T 2{R|1, 0, 0}

= −I{−I|1, 0, 0} = +e−ikx .

Thus, similar to the spinless case, 	2
2x = −1 again and the

bands are doubly degenerate on kx = π and symmetry-related
planes even in the spinfull case. These gives the double de-
generacy of bands along R-X and M-X and symmetry-related
directions in the BZ as also observed in Fig. 2(b) of the main
text. We note here that this is again a Kramers-like degeneracy
ensured by a combination of time-reversal and screw symme-
try on these planes and not the standard Kramers degeneracy
which cannot be applied here since inversion symmetry is
absent. Screw symmetry is replacing the inversion symmetry
on these high-symmetry planes to again make the Kramers
argument operational and give us a Kramers-like twofold
degeneracy.
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