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Quantum information theory and strongly correlated electron systems share a common theme of macroscopic
quantum entanglement. In both topological error correction codes and theories of quantum materials (spin liquid,
heavy fermion and high-Tc systems), entanglement is implemented by means of an emergent gauge symmetry.
Inspired by these connections, we introduce a simple model for fermions moving in the deconfined phase of
a Z2 gauge theory by coupling Kitaev’s toric code to mobile fermions. This permits us to exactly solve the
ground state of this system and map out its phase diagram. Reversing the sign of the plaquette term in the
toric code permits us to tune the ground state between an orthogonal metal and an orthogonal semimetal in
which gapless quasiparticles survive despite a gap in the spectrum of original fermions. The small-to-large
Fermi surface transition between these two states occurs in a stepwise fashion with multiple intermediate phases.
By using a diagrammatic technique, we are able to explore physics beyond the integrable point to examine
various instabilities of the deconfined phase and to derive the critical theory at the transition between deconfined
and confined phases. We outline how the fermionic toric code can be implemented as a quantum circuit, thus
providing an important link between quantum materials and quantum information theory.
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I. INTRODUCTION

Strongly correlated quantum materials provide natural oc-
currence of macroscopic entanglement which is believed to
be reflected in a variety of exotic experimental observations:
the acclaimed Fermi surface reconstruction without symme-
try breaking in cuprates [1] and heavy fermion systems [2];
quantum oscillations in (bulk) insulating YbB12 [3] (and ar-
guably also SmB6 [4,5]); anomalous thermal transport and
spin relaxation in spin liquid candidates, e.g., in the organic
salt κ-ET2Cu2CN3 [6]. All of these materials have the vicinity
to (partial) Mott transitions in common (the Kondo breakdown
on the lattice can be regarded as an orbital selective Mott
localization [7]).

A theoretically appealing approach to such systems in-
volves fractionalized particles and topological order [8].
Strong correlations impose (Gutzwiller-) projected local
Hilbert spaces. These can be treated in prefractionalized
slave-boson [9] or slave-spin [10,11] theories, whereby a
gauge symmetry [typically U(1), SU(2), or Z2] is introduced.
Topological order enters through the physics of these lat-
tice gauge theories. In particular, sufficiently large space-time
dimensions sustain deconfined states, i.e., macroscopically
entangled superposition states with Wegner-Wilson loops
of any length and topological ground-state degeneracy on
tori.

Topological order is crucial to explain the Fermi-surface
reconstruction without symmetry breaking [12]. Convention-
ally, the Fermi-surface volume is fixed by the total electron
density [13,14] (including f electrons for Kondo lattices).

However, topological order exploits a loophole [15,16] in the
derivation of the Luttinger-Oshikawa theorem.

The same macroscopic entanglement associated with topo-
logical order is also utilized in quantum error correction
codes. For example, Kitaev’s soluble toric code model [17]
interweaves numerous imperfect physical qubits to two robust
logical qubits. We here exploit this insight from quantum
information science and expose the toric code to a fermionic
bath, Fig. 1(a): We thereby obtain asymptotically exact analyt-
ical results about deconfined states of gauge theories coupled
to itinerant electrons. Additionally, we extend previous toric-
code proposals to design an analog quantum computer of
fermionic Z2 gauge theories, Fig. 6.

Recently, there has been substantial numerical progress
in the study of deconfinement in metals [18–24]. Cer-
tain fermionic Z2 gauge theories are amenable to quantum
Monte-Carlo methods (sign-free) and provide evidence for
small-to-large Fermi surface transitions without symmetry
breaking [22–24]. Despite this, numerically realistic system
sizes and the pertinent obstacle of analytical continuation in
frequency space are still a limitation in resolving sharp Fermi-
surface features. Complementary techniques which overcome
such problems, in particular, simple analytically tractable
models of fermions in deconfined gauge theories [25] are
widely lacking. A promising approach [26,27] is to Kondo
couple conduction fermions to the simplest exactly soluble
spin liquid with deconfined Z2 gauge degrees of freedom—
Kitaev’s honeycomb model [28]. However, to the best of our
knowledge, only perturbative or mean-field results are avail-
able to date.
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FIG. 1. (a) Graphical illustration of the mutually commuting
operators in the fermionic toric code, Eq. (1). (b) Phase diagram
[(O)M = (orthogonal) metal, (O)SM = (orthogonal) semimetal] as
a function of coupling constants K/w, J/h and filling n. Numerical
data in the J = 0 plane (in the back) is combined with a schematic
illustration for J > 0.

In this paper, we introduce a simple model of fermions in
the deconfined (i.e., topological) phase of Z2 gauge theory—
a fermionic toric code [17,29–32], see Eqs. (1) below and
Fig. 1(a). We begin our discussion from the asymptotic cases
K � w [K � −w] in the phase diagram Fig. 1(b), when the
ground state is easily determined to be an orthogonal metal
(OM) [orthogonal semimetal (OSM)] with large [small] Fermi
surface. We are able to characterize the small to large Fermi-
surface transition as an infinite sequence of symmetry broken
states with fractional average flux � and develop a diagram-
matic technique to systematically include perturbations about
this soluble point and to study the transition to the confined
phase.

The OM concept was introduced in Ref. [33] as a state
similar to a normal metal in all respects (e.g., conductivity and
thermodynamics) except for the behavior of single-electron
Green’s functions (e.g., the spectral function is gapped). In
Ref. [33], the lattice fermions were fractionalized into “or-
thogonal” fermions and slave spins cr,α → τ z

r fr,α, where τ a
r

are Pauli matrix operators. In the OM, the τ spins are dis-
ordered, while the f fermions are in a Fermi-liquid state.
The authors of Ref. [33] provided exemplary solvable models.
Recently, the authors of Ref. [23] introduced a model of OM
as a Z2 gauge theory where τ spins played the role of Higgs
bosons.

Here we suggest a radical simplification of the theory
by generalizing the mapping between the toric code and Z2

gauge theory [34,35]. The explicit application of Gauss’s law
removes the necessity of f fermions and Higgs bosons and en-
ables us to work with gauge-invariant fermions (see Appendix
A for details), which extends our calculational capacities. The
exact solution of the resulting fermionic toric code and asso-
ciated diagrammatics play the same role as free fermions in
ordinary metals, providing the starting point for perturbation
theory and a positive definition of a (Z2-deconfined) non-
Fermi liquid as the class of quantum states of nonintegrable
models which are adiabatically connected to the ground state
of the soluble model.

II. BARE MODEL

The soluble starting point for our discussions is a gener-
alization of Kitaev’s toric code [17] by means of fermionic
matter fields. The basic Hamiltonian H0 = HK + Hh + Hc is
given by

HK = −K
∑
�

B�, Hh = −h
∑

r

Qr, (1a)

Hc = −w
∑
〈r,r′〉

σ z
br,r′

c†
r,αcr′,α − μ

∑
r

c†
r,αcr,α. (1b)

Here, c†
r,α creates a fermion with spin component α =

↑,↓ at a vertex r of a square lattice [depicted by circles in
Fig. 1(a)], while Z2 gauge fields are represented by Pauli
matrices σ a

b (a = x, y, z) located on each bond b [depicted by
squares in Fig. 1(a)]. The flux (= plaquette) operators B� =∏

b∈� σ z
b and charge (= star) operators Qr = (−1)n̂r

∏
b∈+r

σ x
b

(where n̂r = ∑
α c†

r,αcr,α) all mutually commute, and more-
over commute with the fermionic term Hc (we assume w >

0). In distinction to a model studied in Refs. [32,36–38], in
Eqs. (1) a factor (−1)n̂r is included into Qr which allows the
following projective construction of the ground state.

A. Ground states for |K/w| � 1

As in the toric code, the construction of the ground
state |GS〉 of Eqs. (1) relies on an extensive number of
integrals of motion B�, Qr with eigenvalues ±1. We first
consider the limit |K/w| � 1 in which all ground states are
homogeneous with zero flux (π flux), B� |GS0〉 = |GS0〉
(B� |GSπ 〉 = − |GSπ 〉), through all plaquettes. It is
illustrative to first set h = 0. In this limit, σ z

b are classical
variables and we choose a gauge in which the gauge sector
of the zero-flux (π -flux) solution, denoted |0〉σ (|π〉σ ),
suffices 〈σ z

b 〉 = 1 (〈σ z
b 〉 = (−1)bx ). Then, the fermionic

term Hc can be readily solved by Fourier transform. Of
course, the dispersion is different in the zero flux [ε0(k) =
−w(cos(kx ) + cos(ky)); k ∈ (−π, π ) × (−π, π )] and
π -flux background [ε±

π (k) = ±w
√

cos2(kx ) + cos2(ky); k ∈
(−π/2, π/2) × (π, π )]. In either case, the ground state in
the fermionic sector is a Fermi sea which we denote |FS0/π 〉c.
The re-imposition of h > 0 requires Qr |GS〉 = |GS〉 (∀r).
This lifts the macroscopic degeneracy of candidate ground
states, leaving only two contenders in the infinite plane,

|GS0〉 =
∏

r

P̂r[|FS0〉c |0〉σ ], E0 = −K − h + 2Ec,0, (2a)

|GSπ 〉 =
∏

r

P̂r[|FSπ 〉c |π〉σ ], Eπ = K − h + 2Ec,π , (2b)

where P̂r = (1 + Qr)/2 = P̂2
r . These two states represent su-

perpositions of configurations of σ fields which preserve the
flux configuration. The fermion dispersion, denoted ε0(k)
[επ (k)], of these phases enable us to identify |GS0〉 [|GSπ 〉]
as an OM [OSM], respectively. We emphasize that, despite
the inhomogenous gauge-field configuration and the small
semimetallic Fermi surface, |GSπ 〉 breaks neither crystalline
symmetries (the latter being projectively represented, see Ap-
pendix B) nor the Oshikawa-Luttinger theorem (because the
gauge sector is deconfined, see Appendix C) [16].
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B. Small to large Fermi surface transition

While it is clear that the eigenstates presented in Eqs. (2)
yield the correct ground state for |K/w| � 1, inhomogenous
states displaying arrays of π fluxes with density � �= 0, π

become important at small |K/w|. These are not favorable
for HK , but yield energetic gain of order w by lowering the
ground state of the electrons. The latter effect is especially
great when the band is at commensurate (e.g., half) filling due
to the nesting of the Fermi surface. Indeed [32], Monte Carlo
simulations corroborate the conjecture that the average flux
density at K = 0 and filling n is � = 2πn. The situation is
somewhat similar to the quantum Hall effect with its succes-
sion of various quantum Hall states [39].

For a given flux density �, it is reasonable to assume
that the ground-state configuration is given by some reg-
ular array of π fluxes. For each of these, a ground state
|GS�〉 = ∏

r P̂r[|FS�〉c |�〉σ ] can be readily constructed and
the ground-state energy determined. Contrary to the OM and
OSM, the intermediate states do break crystalline symmetries,
even when represented projectively. This is revealed in the
ground-state averages of the B� operators which are invari-
ant under action of the projection operators. Therefore, we
expect that the OM-OSM transition, which separates distinct
gapless quantum phases characterized by different projective
representation of translations [23], occurs as an infinite suc-
cession of symmetry broken states with fractional average flux
� = πk/N� (k = 1, . . . , N� − 1).

To substantiate this hypothesis, we have semianalytically
investigated a large variety of trial flux configurations for
N� = 8. While we relegate technical details to Appendix G,
we here illustrate the procedure and consider two exemplary
states with average flux � = π/2: an arrangement of vertical
lines and a checkerboard pattern. The corresponding eigenval-
ues E are determined by

4 − cos(4kx ) + 8
(
E2 − 2

)
E2 + (

4 − 8E2
)

cos(2ky)

+ cos(4ky) = 0 (vertical stripes), (3a)

2 − 4 sin(2kx ) sin(2ky) − cos(4kx ) + 8
(
E2 − 2

)
E2

− cos(4ky) = 0 (checkerboard). (3b)

The configurations and corresponding band structures are
presented in Fig. 2. In particular, for the checkerboard pat-
tern there are four Dirac points in the Brillouin zone. The
ground-state energy as a number of filling is readily obtained
for these two configurations and within the π/2 sector, the
stripy (checkerboard) pattern is favorable near half (quarter)
filling, see Appendix G. We repeat the procedure for ∼30
other trial states and represent the flux density associated with
lowest energy as a color plot in Fig. 1(b). As the stepsize
1/N� → 0, the observed succession of states is expected to
coalesce into a quantum phase transition with a finite, critical,
strange metallic region.

C. Excitations

We return to the OM and OSM phases, for which fermionic
single-particle excitations are

|e : k〉 =
∏

r

P̂r[c
†
k |FS0/π 〉c |0/π〉σ ], k �∈ Fermi sea, (4a)

|h : k〉 =
∏

r

P̂r[ck |FS0/π 〉c |0/π〉σ ], k ∈ Fermi sea. (4b)

FIG. 2. Band structure associated to flux configurations with av-
erage flux � = π/2 and (a) stripy and (c) checkerboard arrangement
of fluxes. Within a unit cell (yellow square), the latter are presented
in (b), (d): a π flux is depicted by a red dot, we choose a gauge in
which sign(w) is reversed on highlighted bonds.

Electrons (holes) have excitation energy ε0/π (k) − μ [μ −
ε0/π (k)] above the ground state. Particle-hole pairs and multi-
fermion excitations can be expressed analogously by insertion
of fermionic operators to the right of all projectors P̂r. In
contrast to these gapless excitations, states obtained by apply-
ing fermionic operators to the left of projectors are gapped,
because fermion operators anticommute with Qr and thus cre-
ate a local excitation with energy 2h. Electric strings W (e)

γr,r′
=∏

b∈γr,r′
σ z

b along a contour γr,r′ also create the same local
excitations. As in the toric code, strings are deconfined and
have energy 2h at each end (this motivates the notion of e
particles). However, unlike the toric code, magnetic strings
W (m)

γ ∗
�,�′

= ∏
b∈γ ∗

�,�′
σ x

b along a dual contour γ ∗
�,�′ do not cre-

ate static eigenstates.

D. Diagrammatic technique

Despite the absence of a Wick theorem in the toric code
sector, the presence of Wick’s theorem for fermions in a
Fermi sea allows us to develop a Feynman diagrammatic
representation of imaginary time-ordered ground-state corre-
lators of fermionic operators and of σ z insertions (see Fig. 3
and Appendix D). In distinction to ordinary diagrammatics, a
fermion operator inserts a vertex of a local gapped propagator
and a dispersive, orthogonal fermion. This is because c†

r and
cr create an e particle in addition to a fermionic excitation.
Similarly, σ z

b inserts a vertex connecting two e particles at
sites adjacent to the bond b. The absent Wick theorem implies
nontrivial (but computable) interactions of e particles on sites
with more than two vertices.

The simplest correlator—the two-point Green’s function,
Fig. 3(b)—is G(r1, r2; τ ) = δr1,r2 e−2h|τ |GFS(r1, r1; τ ) or in
frequency domain

G(r1, r1; z) =
∫

(dk)
1

z − ε0(k) + sign[ε0(k)]2h
. (5)
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nr(τ)

nr'(τ')

(c)(b)(a)

τi

τf
+

nr(τ)

nr'(τ')

τi

τf
+

FIG. 3. (a) Diagrammatic representation of operators and bare
propagators (here for the OM phase). (b) While the fermionic
Green’s function is gapped, operator insertions with an even number
of fermionic fields at the same space-time position (e.g., density) dis-
play ordinary Fermi-liquid behavior because D(τ = 0) = 1. (c) This
holds in particular for the polarization operator.

This determines a gapped density of states. On the other
hand, the correlators of local two-fermion operators (e.g., the
polarization operator) display standard Fermi-liquid behavior,
Fig. 3(c). Thus, Eqs. (1) provide a realization of an OM
[33]. As a corollary, the instability of the OM (OSM) with
respect to any fermionic interaction with local space-time op-
erators, Hint = ∑

r,r′ c†
r,αcr,βc†

r′,α′cr′,β ′Vα,β;α′,β ′ (r, r′), is exactly
the same as in the corresponding confining (i.e., trivial) Fermi
liquid phase.

While we have followed the current convention [19,23,33]
by considering c†

r as the creation operator of the physical
fermion, following Dirac [40] we could equally have iden-
tified c̃†

r = W (e)
γ∞,r

c†
r as the physical creation operator. This

operator simultaneously creates fermions and the associated
distortion in the gauge field. It is this object that creates the
gapless excitations in Eqs. (4).

III. PERTURBATION THEORY

The diagrammatic technique allows the systematic study
of perturbations which break local charge conservation
[δH, Qr] �= 0:

δH = −
∑
r,r′

tr,r′c†
r,αcr′,α − J

∑
b

σ z
b . (6)

Perturbative contributions in tr,r′ (represented by a dashed
line) to the Green’s function are depicted in Fig. 4, which also
illustrates the string tension J of electric strings (we leave a
finite string tension of magnetic strings for future studies).
In the dual formulation of an Ising-Higgs gauge theory, J
represents the nearest-neighbor Z2 slave-spin interaction.

A. Long-range hopping

An infinite-order resummation of the hopping in the
random phase approximation (RPA) becomes justified for
long-range tr,r′ : In all diagrams except Fig. 4(a), tri,r f is multi-
plied by the Green’s functions connecting the same sites. The
decay of GFS(r f , ri; τ f , τi ) in space removes the singularity of
the Fourier transform in momentum space. This validates the
omission of this kind of diagram in RPA and thus

GRPA(k, z) = [G(x, x; z)−1 + t (k)]−1. (7)

τi

τf

(a)

τi

τf

(c)

τi

τf

(b)

τi

τf

(d)

+

+
τi

τf

(e) (f)

+
+

+
τi

τf

trr' trr' trr'

trr'
trr'J

J

J

J

J

FIG. 4. Diagrammatic representation of perturbative t and J cor-
rections to G(r f , ri; τ f , τi ). (a)–(d) First-order diagrams in t . (e)–(f)
Diagrams contributing to the Higgs transition.

This implies the appearance of dispersive subgap states at
energy E (k). For example, for the OM phase and constant
density of states, G(x, x; z) = ρ0 ln[(2h − z)/(2h + z)] and
thus E (k) = 2h tanh[1/(ρ0t (k)].

B. Higgs transition (K � w)

According to the Feynman rules, fermionic operators are
glued together with e particles (i.e., the ends of W (e)

γr,r′
strings)

in the deconfining phase of the toric code. Technically, this is
reflected in the Green’s function obtained by the resummation
of diagrams of type Fig. 4(e):

G(r f , ri; τ f , τi ) = D(r f , ri; τ f , τi )GFS(r f , ri; τ f , τi ). (8)

When J �= 0, strings D(r f , ri; τ f , τi ) are nonzero even for
r f �= ri. They describe the dynamics of e particles and lead
to finite 〈σ z

b (τ )σ z
b′ (τ ′)〉 correlators. We first concentrate on the

OM phase, where the propagator of e particles is determined
self-consistently to be

D(q; iω) = 4h

ω2 + 4h{h − 2J[cos(qx ) + cos(qy)]} . (9)

The inclusion of small nearest-neighbor hopping t leads to
the replacement J → J + t̄ in Eq. (9), see Fig. 4(f), where
t̄ = 2tGFS(r + êx, r; τ, τ ). At small J, t̄ the intersite Green’s
function is finite, but exponentially suppressed.

The zero-frequency, zero-momentum correlator D(q =
0; iω = 0) represents the sum over electric strings of any
spatiotemporal extent. Its divergence at 4(J + t̄ ) = h signals
the confinement-deconfinement quantum phase transition of
the toric code [35,41–43]. For even larger J + t̄ , the conden-
sation of e particles imposes the breakdown of topological
order and the propagator is D(q; iω) = Z (2π )3δ(q)δ(ω) +
δD(q; iω). According to Eq. (8), fermions form an ordinary
Fermi liquid, for which the toric code order parameter

√
Z

determines the fermionic quasiparticle weight.
To determine the behavior near criticality, one has to

incorporate renormalization corrections to the strings and
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(c)(b) (d)(a)

+
+

+
+ +

+
+

+

+

FIG. 5. (a), (b) Interaction of order-parameter field with itself
(with fermions) (four-point correlators of e particles are represented
as a disk). (c), (d) Spectral weight in the extended Brillouin zone in
the confined semimetallic (confined metallic) phase at 10% doping
above half filling and elastic scattering rate 1/τ = 0.2w.

fermionic propagators in Figs. 4(e) and 4(f). This is most
systematically achieved within an effective field theory S =
Sφ + Sψ + Sint with

Sφ =
∫

dτd2x
1

2
φ
[ − ∂2

τ − v2∇2 + r
]
φ + λ

4
φ4, (10a)

Sψ =
∫

dτd2x ψ̄α[∂τ + ε0(−i∂x,−i∂y)]ψα, (10b)

Sint =
∫

dτd2x gφ2ψ̄α[cos(−i∂x ) + cos(−i∂y)]ψα. (10c)

The neutral field φ (ψ) describes the critical fluctuation
of strings (of the fermions), D(x; τ ) = 4ha2〈φ(x, τ )φ(0, 0)〉
(GFS(x; τ ) = a2〈ψ̄ (x, τ )ψ (0, 0)〉), where a is the lattice con-
stant. We can thus identify r = 4h(h − 4(J + t̄ )), v2 =
4h(J + t̄ )a2. Moreover, we determined the coupling constants
λ ∼ a2J4/h [cf. Fig. 5(a)] and g ∼ a2ht [cf. Fig. 5(b) and
Appendix E, note the form factor in Eq. (10c) due to nearest-
neighbor fermionic insertions] and we reiterate that this field
theory is designed to incorporate perturbations on top of the
integrable theory, hence g ∝ t . As an important corollary of
the microscopic derivation, at t = 0 the presence of fermions
does not affect the 3D Ising criticality, yet it is a relevant
perturbation [33,44,45]. The critical theory Eqs. (10) can then
be used to determine a variety of critical properties at the
Higgs transition. Most prominently, the quasiparticle weight
plays the role of the order parameter, i.e., Z ∼ |h2r/J4|2β

where β ≈ 0.33 [(2 + 1)D Ising].

C. Higgs transition (K � −w)

We now return to the Higgs transition induced by per-
turbing the OSM phase with Eq. (6). Conceptually, the same
steps which we outlined for the OM hold in the OSM case,
too. However, the nontrivial representation of translational
symmetry in the flux-phase implies several subtleties [see Ap-
pendix E for details, including a derivation of the OSM analog
of Eqs. (10)]: (i) The propagator D(r f , ri; τ f , τi ) is a matrix
which acts in the space of the basis of the two-atomic unit cell.
(ii) As a consequence, the transition occurs at a slightly higher
numerical value of (J + t̄ )/h = 1/

√
8 and there are two mo-

menta q in the Brillouin zone, at which D(q, iω = 0) diverges.
(iii) The relative size of the two order parameter fields near
these two momenta defines a 2D vector—hence the Higgs
(confinement/deconfinement) transition is in the XY rather
than Ising [46] universality class. For any orientation of the 2D

α1
γ1

β1
δ1

α2
γ2

β2
δ2

EC

EC

FIG. 6. A quantum emulator of Eqs. (1) is composed of an array
of pairs of Majorana Cooper pair boxes (MCBs) (yellow rectangles
in which Majorana modes are represented as stars), which encode the
qubits on the links of Fig. 1(a) and quantum dots (blue disks), which
host the conduction electrons on the sites of Fig. 1(a). Inset: Each
MCB consists of two Kitaev chains which are coupled to a floating
mesoscopic superconductor and capacitively coupled to the ground.
If one out of two MCBs has occupied Majorana modes, a single
charge can virtually hop from γ1 → α2 and back from β2 → δ1,
which lowers the energy (antiferromagnetic Ising superexchange).

vector, the real-space structure of the Higgs condensate is in-
homogeneous. (iv) The critical theory Sφ + Sψ + Sint contains
a complex boson φ, two Dirac fermions ψ , and an interaction
term Sint, which in the XY case, however, is renormalization
group irrelevant [47]. (v) According to Eq. (8), the confined
phase inherits the small Fermi surfaces of the deconfined
OSM phase. By Oshikawa-Luttinger theorem, this is only
possible since lattice translational symmetry is spontaneously
broken in the confined semimetallic phase. (vi) Nonetheless,
the fermionic spectral weight is perfectly translationally in-
variant, and for comparison to the metal plotted in the large
Brillouin zone in Fig. 5(c). (vii) The quasiparticle residue of
this spectral weight is momentum independent and appears as
Z ∼ |h2r/J4|2β , where β = 0.35 [(2 + 1)D XY].

IV. IMPLEMENTATION

We conclude by noting that our model can be implemented
as a quantum circuit involving interpenetrating lattices of
quantum dots and Majorana Cooper pair boxes (MCBs), Fig. 6
(see Appendix F for details). This solid-state proposal com-
plements earlier proposals based on cold-atomic experimental
setups [36]. On each MCB island, a large charging energy
EC fixes the charge and thereby encodes a qubit [48,49],
where the two degenerate quantum states, |↓〉 (|↑〉), have N0

(N0 − 2) particles in the condensate and empty (filled) pairs
of Majorana modes. It has been proposed [50,51] that virtual
hopping couples arrays of qubits to develop plaquette and star
terms of the toric code.

The interpenetrating array of quantum dots (represented as
blue discs in Fig. 6) contains one spinless electron per site
and materializes the lattice sites [circles in Fig. 1(a)]. The
logical qubits [squares in Fig. 1] are encoded in a pair of ad-
jacent MCBs, in which easy-axis Ising superexchange selects
a ground-state Hilbert space spanned by |↑1,↓2〉 , |↓1,↑2〉.
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Virtual cyclic exchange of Majorana fermions around an
empty plaquette generates HK in Eqs. (1), which due to the
spatial separation of internal (red) and external (green) Maro-
jana modes is unaffected by the quantum dots. Similarly, the
star term derives from cyclic exchange of Majorana fermions
around a quantum dot. Under appropriate tuning of micro-
scopic parameters, it picks up an additional phase π when
the dot is occupied by electrons [i.e., Hh in Eqs. (1)]. Finally,
electron hopping between quantum dots occurs via a two-step
virtual process, hybridizing with the Majoranas at the red
sites to produce the spin-dependent hopping term of strength
w in Eqs. (1). Experimental signatures of fermions in these
artificial Z2 gauge theories, e.g., fermionic correlators, can
be readily accessed by electronic coupling to the quantum
dots. We leave details of this and similar implementations, in
particular, the study of additional integrability breaking terms
and experimental signatures, to future studies [52].

V. SUMMARY

In summary, inspired by parallels between quantum infor-
mation theory and correlated electron systems, by coupling
Kitaev’s toric code to mobile fermions we have obtained a
simple, solvable model for fermions in the deconfined phase
of a Z2 gauge theory which can be simulated in an analog
quantum computer. The phase diagram of this model contains
a transition with abrupt changes in the Fermi surface topology
between an OM and OSM through a sequence of symmetry-
breaking states. We have further been able to characterize the
Higgs transition away from the integrable point using dia-
grammatic perturbation theory and leave the quantum phase
transitions between (orthogonal) semimetallic and metallic
states at finite J/h (blurry line in Fig. 1) to future studies.

Although our model is too abstract for direct application to
real materials, there are a number of interesting observations
that may be of experimental relevance. For example, in our
model the small Fermi-surface phase displays parallels with
the phenomenology of the pseudogap phase in the cuprates
[53]. In light of such resemblances, we believe that the strat-
egy of this work, i.e., condensing crucial emergent physical
characteristics of quantum materials and analyzing them in
a quantum information setting, will be a valuable scientific
method for future research.
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APPENDIX A: RELATIONSHIP TO
FERMION-ISING-HIGGS GAUGE THEORY

In this Appendix, we explicitly relate the model of Gazit
et al. [23] to the fermionic toric code. We generalize the steps
presented in Ref. [54].

1. Fermion-Ising-Higgs gauge theory

The model of Ref. [23] contains σ̄
x,y,z
b Pauli matrices de-

scribing a Z2 gauge field which lives on the bonds b of a
square lattice. It also contains τ

x,y,z
r Pauli matrices describing

Higgs matter (slave spins) on the vertices r of the same lattice
and spinful fermions fr,α living also on the vertices. The
Hamiltonian is

H = HZ2 + Hτ + H f + Hc + HU , (A1a)

where

HZ2 = −K
∑
�

∏
b∈�

σ̄ z
b − g

∑
b

σ̄ x
b , (A1b)

Hτ = −J
∑
br,r′

σ̄ z
br,r′

τ z
r τ

z
r′ − h

∑
r

τ x
r , (A1c)

H f = −w
∑
br,r′

σ̄ z
br,r′

f †
r,α fr′,α, (A1d)

Hc = −t
∑
br,r′

τ z
r f †

r,ατ z
r′ fr′,α, (A1e)

HU = U
∑

r

(n̂r,↑ − 1/2)(n̂r,↓ − 1/2). (A1f)

The symmetries of this Hamiltonian are [23]:
(i) global SU(2) (spin): fr,α → Uαβ fr,β ,
(ii) at μ = 0: global isospin SU(2) in particle-hole space,

and
(iii) local Z2 generated by the conserved charges Q̄r =

(−1)n̂rτ x
r︸ ︷︷ ︸

matter

∏
b∈+r

σ̄ x
b︸ ︷︷ ︸

gauge field

, where n̂r = f †
r,α fr,α .

We highlight that part of this Hamiltonian, HZ2 + H f was
studied before, e.g., in Refs. [19,33].

2. Physical origin within Z2 slave-spin theories

We briefly comment on the connection between this model
and Z2 slave-spin theory as introduced by Rüegg et al. [11].

Consider a model of spinful fermions on a square lattice:

HHubbard+... = −t0
∑
br,r′

c†
r,αcr′,α

+
∑

r

[U0n̂r(n̂r − 1) − μn̂r] + . . . . (A2)

The terms “. . . ” represent additional nonlocal terms which are
not further specified (see discussion below). In the case when
the Hubbard U0 is twice the chemical potential, the on-site
problem contains two twofold degenerate levels. These may
be represented by a spin variable, using 〈τ x

r 〉 = 1 (〈τ x
r 〉 = −1)

for the singly occupied states at energy −μ (empty or doubly
occupied states at energy 0). In the slave-spin formulation, we
have thus fractionalized the conduction electrons:

c†
r = f †

r τ z
r . (A3)

In this representation,

HHubbard+... = −t0
∑
br,r′

f †
r,ατ z

r fr′,ατ z
r′ − U0

∑
r

τx + . . . , (A4)

using the on-site constraint (−1)n̂rτ x
r = 1.
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Depending on the nature of the additional unspecified
terms denoted . . . in the previous equation, a series of renor-
malization group steps may then lead to Eqs. (A1) as an
effective low-energy theory (with the more general gauge
invariant constraint Q̄r = 1). By reversing the arguments, the
physics discussed in this paper is applicable for those models
which are in the basin of attraction of the fix-point Hamil-
tonian Eqs. (A1). In particular, note that h in Eqs. (A1)
corresponds to the on-site repulsion of the extended Hubbard
model Eq. (A2).

3. Formulation in terms of gauge invariant quantities

Since the total, local charge is conserved, we can impose
Gauss’s law on the physical Hilbert space:

Q̄r |Phys〉 = |Phys〉 (Gauss’s law). (A5)

We readily see that gauge invariant quantities are
(1) c electrons: cr,α = τ z

r fr,α .
(2) Z2 electric strings along a contour γr,r′ between r, r′:

W (e)
γr,r′

= τ z
r [

∏
b∈γr,r′

σ̄ z
b ]τ z

r′ ≡ ∏
b∈γr,r′

σ z
b .

(3) Of course, σ̄ x
b ≡ σ x

b (magnetic strings) and n̂r =
f †
r,α fr,α = c†

r,αcr,α are trivially gauge invariant.
Here we have introduced Pauli matrices without a bar,

σ z
b = ∏

r∈∂b τ z
r σ̄

z
b and σ x

b = σ̄ x
b , which clearly also have the ap-

propriate commutation relations. Except [54] for special lines
J = 0 or g = 0, all states of HZ2 + Hτ can be fully specified
in the unitary gauge in which τ z

r |phys〉 = |phys〉. (Indeed,
within the physical subspace, where τ x

r → (−1)n̂r
∏

b∈+r
σ x

b ,
the Hamiltonian H preserves this gauge choice.) In short,
having fixed the gauge Qr |phys〉 = |phys〉 = τ z

r |phys〉 allows
us to express all gauge-invariant quantities without resorting
to τ operators,

H = HZ2 + Hτ + H f + Hc + HU , (A6a)

where

HZ2 = −K
∑
�

∏
b∈�

σ z
b − g

∑
b

σ x
b , (A6b)

Hτ = −J
∑

b

σ z
b − h

∑
r

∏
b∈+r

(−1)n̂rσ x
b , (A6c)

H f = −w
∑
br,r′

σ z
br,r′

c†
r,αcr′,α, (A6d)

Hc = −t
∑
br,r′

c†
r,αcr′,α, (A6e)

HU = U
∑

r

(n̂r,↑ − 1/2)(n̂r,↓ − 1/2). (A6f)

This is a fermionic toric code, and at g = J = t = U = 0
the same as Eqs. (1) of the main text.

APPENDIX B: SYMMETRIES IN THE ORTHOGONAL
SEMIMETAL PHASE

1. Explicit construction of the π-flux states

Here, we solve the π -flux model in the gauge where 〈σ z
b 〉 =

(−1)bx , i.e., it is negative on every other vertical column
but positive everywhere else (see Fig. 7). We choose a two-

c1 c2

FIG. 7. Unit cell (shaded gray) and flux configuration prior to
application of Qr operators in the OSM phase (green lines represent
bonds with 〈π |σ z

b |π〉 = −1).

atom unit cell of dimers along the x direction and Fourier
transform,

cx,1 =
∫

small BZ
(dk)eikrck,1, (B1)

cx,2 =
∫

small BZ
(dk)eikr+ikxxck,2. (B2)

(Note that 1,2 labels do not correspond to sublattice labels
A, B). The momentum space Hamiltonian is

H = −2w

∫
small BZ

(dk)c†
k[− cos(ky)γz + cos(kx )γx]ck (B3)

[the small Brillouin zone (BZ) is k ∈ (−π/2, π/2) ×
(−π, π )], which implies a dispersion

ε (±)
π (k) = ±2w

√
cos(kx )2 + cos(ky)2. (B4)

Dirac nodes occur at |kx| = |ky| = π/2.

2. Projective representation of translational symmetry

In this Appendix section, we explicitly demonstrate the
projective representation of translational symmetry. For sim-
plicity, we consider a system below half filling. For the gauge
choice |π〉σ discussed above, 〈π |σ z

b |π〉
σ

= (−1)bx , the Fermi
surface is given by

|FS〉c =
∏
k∈FS

(c†
k,1, c†

k,2)ψ (−)
k |0〉

=
∏
k∈FS

∑
x,x′

eik(x−x′ )(c†
x,1, c†

x,2)ψ (−)
x′ |0〉 , (B5)

where ψ
(−)
k is the two-component eigenstate of h(k) =

− cos(ky)γz + cos(kx )γx with energy ε (−)
π (k).

We now consider a different gauge choice, |π ′〉σ , in which
the columns of minus signs have been shifted by one lattice
constant, 〈π ′|σ z

b |π ′〉
σ

= (−1)bx+1. It has a different Slater
wave function, i.e.,

|FS′〉c =
∏
k∈FS

(c†
k,1, c†

k,2)ψ̃ (−)
k |0〉

=
∏
k∈FS

∑
x,x′

eik(x−x′ )(c†
x,1, c†

x,2)ψ̃ (−)
x′ |0〉 . (B6)
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(a) (b) (c)

x

y

0 x

y

0 x

y

0

FIG. 8. Flux insertion argument in the OSM phase. (a) Represen-
tation of |π〉σ (analogous to Fig. 7) prior to the insertion of a π flux.
(b) Configuration |π〉σ after insertion of a π flux. (c) Translation of
the latter |π〉σ .

Since |π ′〉σ induces a fermionic hopping Hamiltonian h̃(p) =
h(px, py + π ), it follows that ψ̃

(−)
k = ψ

(−)
kx,ky+π

.
We now demonstrate that |π ′〉σ |FS′〉c =∏

r∈(Z,2Z) Qr |π〉σ |FS〉c and hence
∏

r P̂r |π ′〉σ |FS′〉c =∏
r P̂r |π〉σ |FS〉c (i.e., the two seemingly different states

Eqs. (B5) and (B6) are the same in the deconfined phase:
translational symmetry is restored). It is easy to see that the
string of Qr operators translates the columnar gauge field
pattern of negative bonds by one. The effect of the fermionic
parity operator requires a little more explanation:∏

r∈(Z,2Z)

(−1)n̂r |FS′〉c

=
∏
k∈FS

∑
x,x′

eik(x−x′ )(−1)y(c†
x,1, c†

x,2)ψ̃ (−)
x′ |0〉

=
∏
k∈FS

(c†
k,1, c†

k,2)ψ̃ (−)
(kx,ky+π ) |0〉

= |FS〉c . (B7)

In the second line, we have used that the spectrum (and thus
the Fermi surface) is invariant under shifts of π in the y
direction.

APPENDIX C: LUTTINGER’S THEOREM

In this Appendix, we explain why the vanishing Fermi
surface in the OSM at half filling is consistent with the
Oshikawa-Luttinger-theorem [14]. We follow arguments sim-
ilar to those presented by Paramekanti and Vishwanath [16].

To this end, we consider a our model, Eqs. (1), on a finite
cylinder as in Fig. 8.

We first remind the reader about the Oshikawa-Luttinger
theorem for conventional Fermi liquids. We summarize the
main physics and leave mathematical and technical details
to the original literature. After the adiabatic insertion of a
flux 2π through the hole of the cylinder, the many-body
Hamiltonian is gauge equivalent to the Hamiltonian prior to
the insertion of the flux. Thus all eigenstates are the same.
Still, by simple electrodynamics, the cylinder now spins due
to the electromotive force and the total (angular) momentum
of the system is �Px = 2πLyn (where n is the average particle
number per site). In a Fermi liquid, the quasiparticles exci-
tation near the Fermi surface acquire a momentum because
the Fermi distribution is shifted in the x direction. A simple
integration by parts yields �PFS

x = LyVFS/2π , where VFS is

Φ
α1
γ1

β1
δ1

γ2

β2
δ2

α2

(a) Z1

Z2

X1
X2

(b)

t
λλ

FIG. 9. Details on the quantum emulator presented in Fig. 6 of
the main text. (a) Each block emulating the toric code degrees of
freedom consists of two MCBs which are threaded by a flux. When
EC is the largest scale, each MCB is a two-level system in which Z
and X gates (Pauli matrices) can be defined as bilinears of Majoranas,
see Eq. (F1). Virtual superexchange induces a pseudomagnetic Ising
coupling between adjacent MCBs. Note that our convention of label-
ing Majoranas in vertical boxes is the counterclockwise 90◦ rotation
of panel (a), whence Z gates are always along the elongated sides
of the rectangle. (b) The Majorana modes and the fermions on the
quantum dot are coupled by hopping matrix elements of amplitude
λ, λ̄, t .

the volume enclosed by the Fermi surface. In a Fermi liquid,
the only momentum carrying particles are the quasiparticles
and therefore �Px = �PFS

x (mod 2πLy) and thus

VFS

4π2
= n (mod 1), (C1)

where the addition mod 1 formally stems from crystalline
momentum-conservation modulo reciprocal lattice vectors
and physically accounts for fully filled bands.

We consider a slightly different setup in the OSM phase.
For the state |π〉σ , we consider a gauge choice of the negative
bonds as depicted in Fig. 8(a) and thread a flux π through the
whole of the cylinder. This flux π in the physical U (1) field
can be absorbed into a reconfiguration of σ spins, Fig. 8(b).
Despite having inserted only half a flux, it is thus evident that
the Hamiltonian after flux insertion Hπ is related to H0 of
Eqs. (1) by a simple unitary transformation,

Hπ = W (m)H0W
(m), (C2)

where W (m) = ∏
b∈C σ x

b is given by the magnetic string along
the dashed contour presented in Fig. 8(b). Obviously, Hπ and
H0 have the same spectrum, and the ground state has evolved
from |GSπ 〉 to W (m) |GSπ 〉.

We now demonstrate that, under the assumption h > 0 and
at half filling, W (m) |GSπ 〉 carries the momentum transferred
to the cylinder and at the same time the fermionic distribu-
tion function is unaffected. Thus, the momentum balance is
accounted for by the deconfining gauge sector. Indeed, we
can exploit that translation by one lattice site in the x direc-
tion can be equivalent to application of

∏
r=(0,y)

∏
b∈+r

σ x
b =∏

r=(0,y)(−1)n̂r Qr which acts solely on the gauge sector and
leaves the fermions invariant. We can then use∏

r=(0,y)

(−1)n̂r QrW
(m) |GSπ 〉 = eiπLy〈n̂r〉W (m) |GSπ 〉 . (C3)

Here, we used that [Qr,W (m)] = 0, Qr |GSπ 〉 = |GSπ 〉 and a
homogeneous density. At half filling, the momentum balance
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(b)
(a)

(c)

n

FIG. 10. Configurations of average flux � = π/8 and associated fermionic ground-state energies as a function of filling.

between �Px = πLyn (from electrodynamics) and �P|π〉σ
x =

πLy〈n̂r〉 trivially reproduces n = 〈n̂r〉 (valid only at half filling
n = 1/2) without resorting to the Fermi surface.

We now relax one of the two assumptions outlined above
and consider a filling away from 1/2. Then, in the OSM phase,
the Luttinger-Oshikawa theorem implies a balance which is
shifted by 1/2 as compared to Eq. (C1):

VFS

4π2
+ 1

2
= n (mod 1). (C4)

Finally, we relax the second assumption for the derivation
of the modified Luttinger theorem and comment on the case
in which h < 0 in which the ground state obeys Qr |GS0/π 〉 =
− |GS0/π 〉. [Clearly, one may construct ground states for this
case analogous to Eqs. (2) in the main text.] For spinless
fermions, the model Eqs. (1) at negative h is related to the
same model at positive h by a particle-hole transformation
cr ↔ c†

r ; σ x,z
b → −σ x,z

b . Therefore, all the conclusions ob-
tained for Eqs. (1) at h > 0 are applicable to h < 0, as well.

APPENDIX D: DIAGRAMMATIC RULES

In this Appendix, we present the diagrammatic rules for
imaginary time-ordered, ground-state correlators of fermionic

operators Or(τ ) ∈ {cr(τ ), c†
r (τ )} and σ z

b (τ ) insertions

C({r; b; τ }) = −〈GS|T
[ ∏

n

Orn (τn)
∏

m

σ z
bm

(τm)

]
|GS〉 .

(D1)

(1) Draw ◦ for cr(τ ), • for c†
r (τ ), × for σ z

b (τ ) at the
corresponding position r, b in real space.

(2) Only configurations with an even number of operators
per site can be nonzero, N◦ + N• + N× ∈ 2N0 (gauge-field
operators σ z

b are associated to both adjacent sites r ∈ ∂b).
(3) Connect operators associated to a given site as fol-

lows:
(a) For two operators at times τ1, τ2, draw a wavy line

which means D(τ1, τ2) = e−2h|τ1−τ2|.
(b) For 2l > 2 operators at times τm (m ∈ {1, . . . 2l}),

encircle the operators which means e−2h
∑2l

k=1(−1)k (T {τm})k ,

where T time orders the string of times {τm} in ascending
order.
(4) Evaluate all × by 〈0|σ z

b |0〉
σ

(〈π |σ z
b |π〉

σ
) in the OM

(OSM) phase.
(5) Connect all ◦ and • in all possible combinations ac-

cording to the standard rules for fermionic diagrammatics
with solid lines representing the ordinary Green’s function
GFS(r1, r2; τ1, τ2) = −〈FS0/π |T [cr1 (τ1)c†

r2
(τ2)]|FS0/π 〉.

Derivation of these rules.

(c)(a) (b)

(d) (g)(e)

(f)
n

FIG. 11. Configurations of average flux � = π/4 and associated fermionic ground-state energies as a function of filling.
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(1) We use |GS〉 = ∏
r P̂r |FS〉c |0/π〉σ , and pass

the projectors over the string of operators to find that
〈GS|T [Orn (τn) . . . Or1 (τ1)σ z

b′
m
(τ ′

m) . . . σ z
b′

1
(τ ′

1)]|GS〉 vanishes,
unless an even number of operators is associated to each
site (each σ z

b is associated to both adjacent sites r ∈ ∂b).
Therefore,

(a) all fermionic operators are connected by “electric”
strings of σ z (includes the possibility of two fermions on
the same position, i.e., strings of zero extension);

(b) all electric strings are either closed or end in
fermionic operators.
[We used P̂r = [1 + Qr]/2 and we will repeatedly use

QrOr′ = (−1)δr,r′ Or′Qr and Qrσ
z
b = (−1)δr∈∂bσ z

b Qr.]
(2) The interaction picture representation of the

fermionic operators Or ∈ {cr, c†
r } is Or(τ ) = eH0τ Ore−H0τ =

Ōr(τ )e2hQrτ , where Ō(τ ) = eHcτ Ore−Hcτ . Similarly, the
interaction picture representation of σ z

b (τ ) = σ z
b e2h

∑
r∈∂b Qrτ .

(3) We (i) explicitly time order the string of operators
in C({r, τ }), (ii) use the representation Or(τ ) = Ōr(τ )e2hQrτ ,
σ z

b (τ ) = σ z
b e2h

∑
r∈∂b Qrτ that we just derived, (iii) then pass all

e2hQrτ to the right of all Ōr(τ ), σ z
b using again QrŌr′ (τ ) =

(−1)δr,r′ Ōr′ (τ )Qr, Qrσ
z
b = (−1)δr∈∂bσ z

b Qr, and (iv) finally, use
Qr |GS〉 = |GS〉 to obtain Feynman rule No. 3 (e.g., exponen-
tials of the kind e−2h|τ−τ ′| represented by wavy lines).

(4) At this point, the correlator has been evaluated to
be C({r, τ }) = −〈GS|T [Ōrn (τn) . . . Ōr1 (τ1)σ z

b′
m
. . . σ z

b′
1
]|GS〉 ×

(exponentials represented by wavy lines). The only gauge
field (= spin σ ) dependence in the operators is now inside Hc

entering Ō(τ ) and in the strings of σ z. We can thus replace
all gauge fields by the ground state (e.g., all up in zero flux)
configuration σ z → 〈σ z〉|0〉/|π〉, Hc → H0/π

(5) We have brought the correlator to the
form C({r, τ }) = −〈FS|T [Ōrn (τn) . . . Ōr1 (τ1)] | FS〉 ×
(exponentials represented by wavy lines). Now we can use
the standard Wick’s theorem for fermions, this is Feynman
rule No. 4.

Analogous rules hold upon Wick-rotation to real time τ →
it , |τ1 − τ2| → i|t1 − t2|.

APPENDIX E: HIGGS TRANSITION

In this Appendix, we present details on the transition from
deconfined to confined phases and a derivation of the effective
field theory.

1. Zero-flux case (starting point: orthogonal metal)

a. Propagator of e particles

The propagator of D(r f , ri; τ f , τi ) entering Eq. (8) of the
main text is defined according to diagram Fig. 4(e) by

D(r f , ri; τ f , τi ) = D(τ f , τi )δr f ,ri + J
∫

dτD(τ f , τ )D(τ, τi )δ<r f ,ri>

+J2
∑

b,b′s.th.
r f ∈∂b,ri∈∂b′

∫
dτdτ ′D(τ f , τ )

〈
σ z

b (τ )σ z
b′ (τ ′)

〉
D(τ ′, τi )

[
1 − δ<r f ,ri> − δr f ,ri

]
.

Here, δ<r f ,ri> = 1 for nearest neighbors, it vanishes otherwise.
The resummation of nonintersecting strings of × insertions, Fig. 4(e) of the main text, is given by

D(r f , ri; iω) = D(iω)δr f ,ri + J
∑

rn.N. of r f

〈
0|σ z

〈r,r f 〉|0
〉
σ

D(r, ri; iω)D(iω). (E1)

In momentum space, this implies D(q, iω) = D(iω) +
2J[cos(qx ) + cos(qy)]D(iω)D(q, iω) which immediately im-
plies Eq. (9) of the main text. The inclusion of fermionic
hopping, see Fig. 3(f), implies Dt (q, iω) = D(q, iω) +
2t̄[cos(qx ) + cos(qy)]D(q, iω)Dt (q, iω) and thus

Dt (q, iω) = 4h

ω2 + 4h(h − 2(J + t̄ )[cos(qx ) + cos(qy)])
.

(E2)

b. Self-interaction of electric strings

To obtain the mean-field expectation value of Z , we first
analyze nonlinearities in D(q, iω), which we extract from the
connected part of four-point correlation functions.

In the absence of t , the nonlinearity stems from Fig. 5(a) of
the main text, i.e.,

V ({r, τ }) = J4
{∑

r

4∏
n=1

δ<rn,r>

×e−2h[(T {τ })4−(T {τ })3+(T {τ })2−(T {τ })1]

−D(τ1, τ2)D(τ3, τ4) − D(τ1, τ3)D(τ2, τ4)

−D(τ1, τ4)D(τ3, τ2)
}
. (E3)

We remind the reader that for more than two wavy lines
on a given site, the time dependence of interaction is rather
complicated in view of Feynman rule No. 3. Since we only
keep the connected part of the four-point correlator, we have
subtracted the contributions which correspond to two e-
particle propagators running through each other without
interaction.
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(a) (c)(b)

(d) (g)(e)

(f)

n

FIG. 12. Configurations of average flux � = 3π/8 and associated fermionic ground-state energies as a function of filling.

For the derivation of the continuum field theory, we evalu-
ate Eq. (E3) at zero incident frequencies and obtain (β = 1/T
is the inverse temperatue, viz., the infrared cutoff)∫ ∏

n

dτnV ({r, τ }) =
{

J4

h2

(
3β2 − 6β/h + 9/(2h2)

)

−3
J4

h2
(β − 1/(2h))2

}∑
r

δ<rn,r>

� −J4 3β

h3

∑
r

δ<rn,r>. (E4)

The bare value of the coefficent λ ∼ a2J4/h follows from
comparison of Eqs. (E4) and (10) of the main text. We remind
the reader that in Eqs. (10), the field φ was rescaled by

√
4ha2

to compensate the numerator of the Green’s function and to
obtain the continuum limit.

c. Interactions between fermions and strings

In the presence of t perturbations, there are new operator
insertions which would imply mutual impact of fermionic
excitations and string in Fig. 3(e). The inclusion of nearest-
neighbor hopping t yields a local in time interaction:

V (rc, rc† , rD1 , rD2 ) = t
[
δrc,rD1

δrc† ,rD2
+ 1 ↔ 2

]
δ〈rc,r

†
c 〉. (E5)

Upon rescaling of fields (fermions are rescaled by a), this
yields a coupling constant g ∼ hta2(cos( p̂x ) + cos( p̂y)) in the
long-wavelength limit of φ fields.

2. π-flux case (starting point: orthogonal semimetal)

a. Propagator of e particles

In the π -flux case the, the resummation

D(r f , ri; iω) = D(iω)δr f ,ri+J
∑
r n.N.
of r f

〈
π |σ z

〈r,r′〉|π
〉
σ

× D(r, ri; iω)D(iω) (E6)

contains the expectation value of σ z with respect to the π -flux
state. Thus, we have to consider a matrix Green’s function,

D(q, iω) =
(

D11(q, iω) D12(q, iω)

D21(q, iω) D22(q, iω)

)
, (E7)

where the unit cell is as in Fig. 7. The Fourier transform of
Eq. (E6) in matrix notation is thus

D(q, iω) = D(iω)1γ

+ 2JD(iω)[cos(qx )γx − cos(qy)γz]D(q, iω) (E8)

(a) (c)(b)

(d) (e) (f)

n

FIG. 13. Configurations of average flux � = π/2 and associated fermionic ground-state energies as a function of filling.
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(b)

(c)

(e)(a) (d)

n

FIG. 14. Configurations of average flux � = 5π/8 and associated fermionic ground-state energies as a function of filling.

and therefore

D(q, iω) = 4h{ω2 + 4h(h − 2J[cos(qx )γx − cos(qy)γz])}−1.

(E9)

This propagator has two transitions happening simultane-
ously: one at q = (0, 0) and one at q = (0, π ) (recall that q ∈

(−π/2, π/2) × (−π, π )). The inclusion of t implies a shift
J → J + t̄ where t̄ = 2tGFS(r, r′; τ, τ ) and r, r′ are nearest
neighbors.

b. Self-interaction of electric strings

The φ4 theory for the π flux can be regarded as [ �φ =
(φ1, φ2) lives on the two basis sites of the unit cell, Fig. 7]

S[ �φ] =
∫

dτ (dq) �φ(−q, τ )

[−∂2
τ + 4h(h − 2J[cos(qx )γx − cos(qy)γz])

]
2

�φ(q, τ ) + λ

4!
[φ1(x, τ )4 + φ2(x, τ )4]. (E10)

The locality of interactions in real space of Fig. 4(b) implies the φ4
1 + φ4

2 form of interactions and λ ∼ a2J4/h. To derive the
critical theory, we diagonalize the quadratic term, the bottom of the band is near qx = 0 and gapped, so it is sufficient to only
consider the wave functions of the lower band. Then

S[φ0] =
∫

dτ (dq)φ−(−q, τ )

[ − ∂2
τ + 4h(h − 2J[

√
cos(qx )2 + cos(qy)2])

]
2

φ−(q, τ ) + λ

4!
[φ−(x, τ )4]. (E11)

A factor of order unity has been absorbed into λ. In a sub-
sequent step, we expand near the position of the minima of
the φ− field: φ−(x, τ ) � φ0(x, τ ) + φπ (x, τ )eiπy, where both
φ0 and φπ are slow fields. We group them into a complex
field φ = φ0 + iφπ and obtain the effective theory (the rel-
ative weight of φ4

0 + φ4
π and φ2

0φ
2
π follows from momentum

conservation):

S[φ] =
∫

dτd2x φ̄
[ − ∂2

τ − v2∇2 + 4h(h − 2J
√

2))
]
φ

+ λ

2
|φ|4. (E12)

Again, we absorbed a factor of order one into λ.
We now discuss the real-space pattern of the condesned

Higgs field φ assuming a parametrization φ0 ∼ cos(ϕ), φπ ∼
sin(ϕ), where ϕ is the XY angle which orders at the transition.
Then, in a given unit cell,⎛
⎝φ1

φ2

⎞
⎠ ∝ cos(ϕ)

(√
2 − √

2√
2 + √

2

)
+ (−1)y sin(ϕ)

(√
2 + √

2√
2 − √

2

⎞
⎠,

(E13)

where the vector structure follows from the eigenstates of
cos(qx )γx − cos(qy)γz at q = 0, q = (0, π ). Translational in-
variance in x direction implies φ1 = φ2 and thus

cos(ϕ) − (−1)y sin(ϕ) = 0, (E14)

while additionally imposing translational symmetry in y di-
rection implies that the equation shall be valid for any row
y. This is impossible, therefore the Higgs field (φ1, φ2)(x)
always condenses in an inhomogeneous state, breaking the
crystalline symmetries of the model.

c. Interaction between fermions and strings

To obtain the effective interaction of fermions and strings,
we consider the microscopic interaction, Fig. 5 of the main
text,

Hint = t
∑

r

[c†
1(r)c2(r)φ1(r)φ2(r)

+ c†
2(r)c1(r + 2êx )φ2(r)φ1(r + 2êx )

+ c†
1(r)c1(r + êy)φ1(r)φ1(r + êy)

+ c†
2(r)c2(r + êy)φ2(r)φ2(r + êy)] + H.c. (E15)

We consider only the coupling to the critical modes, i.e.,

�φ(x) � φ0(x)
1√

4 − 2
√

2

(−1 + √
2

1

)

+ (−1)yφπ (x)
1√

4 − 2
√

2

(
1

−1 + √
2

)
. (E16)
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(a) (c)(b)

(d) (g)(e)

(f)

n

FIG. 15. Configurations of average flux � = 3π/4 and associated fermionic ground-state energies as a function of filling.

Thus we obtain

φ1(r)φ2(r) � φ2
0 + φ2

π

2
√

2
+ (−1)yφ0φπ, (E17)

φ2(r)φ1(r + 2êx ) � φ2
0 + φ2

π

2
√

2
+ (−1)yφ0φπ, (E18)

φ1(r)φ1(r + êy) � −φ2
0 + φ2

π

2
√

2
+ φ2

0 − φ2
π

2
, (E19)

φ2(r)φ2(r + êy) � φ2
0 + φ2

π

2
√

2
+ φ2

0 − φ2
π

2
. (E20)

We can now study the low-energy theory
near the Dirac nodes, using the spinor ψ =
(ψ1,π/2, ψ2,π/2, ψ2,−π/2, ψ2,−π/2), where 1,2 denotes the
sublattice position and ±π/2 the y coordinate in the Brillouin
zone (0, π ) × (−π, π )). The effective kinetic Hamiltonian
near the Dirac nodes takes the form

h(p) = −w[pxγx1τ − pyγyτz]. (E21)

Interactions between fermions and critical electric strings are
given by

Sint ∼ a2th
∫

dτd2x

{
|φ|2ψ̄

[
h(−i∇)

w

]
ψ

+2
√

2φ0φπψ̄ (−i∇x )τxγxψ

−
√

2
[
φ2

0 − φ2
π

]
ψ̄ (−i∇y)ψ

}
. (E22)

APPENDIX F: ANALOGUE QUANTUM COMPUTER
USING MAJORANA COOPER PAIR BOXES

In this Appendix, we provide further details about the
implementation of fermionic Z2 gauge theories using analog
quantum computers based on Majorana Cooper pair boxes.

The basic building block, Figs. 6(b) and 9(a), to emulate
the toric code sector of our model is a pair of MCBs. A
standard setup for each such MCB (here 1 for top and 2 for
bottom) consists of two Kitaev wires which are contacted to
a mesoscopic superconductor. The whole box is capacitively
coupled to the ground by EC (N̂1,2 − N0)2 (eigenvalues of N̂1,2

are integers, in this convention the condensate can absorb two
units). The parity of the total number of electrons on the island

fixes the parity of the Majorana sector, e.g., αβγ δ = −1. In
this subspace, we introduce Pauli-Matrices, see Ref. [50] and
Fig. 9(a):

Z = iαβ
.= iγ δ, (F1a)

X = iαγ
.= iδβ. (F1b)

We used the projector onto the low-energy subspace at
.=.

Hopping matrix elements, see Fig. 9(b), between the Majorana
end modes at the wires and electrons in the dots are

Hλ = λγαγlαreiφ̂l /2−iφ̂r/2 + H.c. [top part of Fig. (9(b)) ], (F2)

Hλ̄ = λ̄γrbδbreiφ̂rb/2−iφ̂br/2 [bottom right of Fig. (9(b))], (F3)

Ht = tc†αc†αe−iφ̂r/2 + H.c. [top right in Fig. (9(b))]. (F4)

We will drop the subscript of matrix elements and assume
λ̄, λ and t to have the same amplitude everywhere as displayed
in Fig. 9(b).

A pair of adjacent MCBs is coupled by superexchange
processes HSX = 2|λ|2 cos(�)Z1Z2/EC , such that for en-
closed flux � < π/2 the effective logical qubit states are
|↑1,↓2〉 , |↓1,↑2〉 and σ z = Z1/2 − Z2/2, σ x = X1X2. We
project the toric code sector onto the logical, low-energy sub-
space, and obtain Eqs. (1) of the main text using perturbation
theory [50,51]:

w ∼ −|t |2 sin(�/2)/EC, (F5)

K ∼ −|λ̄|4 cos(��)/E3
C, (F6)

h ∼ C1|t |2|λ̄|4|λ|3/E8
C + C2|t |6|λ̄|4/|λ|3E6

C (F7)

(with � dependent parameters C1,2). The impact of the star
term without fermionic parity, which has a coupling

h′ = |λ̄|4
E4

C

(
C3

|λ|4
E3

C

− C4
|t |4
E3

C

− C5
|t2λ̄|4
|λ|6EC

)
, (F8)

can be mitigated by appropriate tuning of |t/λ| since the
dimensionless parameters C1,2,3,4,5 are positive for small flux
� through a pair of MCBs.

155143-13



KÖNIG, COLEMAN, AND TSVELIK PHYSICAL REVIEW B 102, 155143 (2020)

(b)

(a) (c)

n

FIG. 16. Configurations of average flux � = 7π/8 and associated fermionic ground-state energies as a function of filling.

APPENDIX G: OSM-OM TRANSITION: FLUX
CONFIGURATIONS

In this Appendix, we present numerical details on the flux
configurations underlying the transition from OSM to OM, as
discussed in Sec. II B of the main text.

To illustrate the physics at the small to large Fermi sur-
face transition, we numerically diagonalized the Hamiltonians
associated to a variety of flux configurations with average
flux � = kπ/8, k = 0, . . . , 8 and determined fermionic en-
ergy Ec,� and particle density (=filling) n at temperature
T = w/100, for system size 40 × 40, and chemical potential
EF ∈ [−w,w] (step size �EF = w/20). Clearly, at k = 0, 8,
simple analytical calculations could be used to check the
numerical results. We subsequently fitted the numerical data
to a symmetric eighth-order polynomial and thereby obtained

an approximate function Ec,�(n) for each of the 38 configura-
tions. The chosen range of chemical potentials allows reliable
fits within a density n ∈ [0.25, 0.75]. Finally, we determined
the flux associated to the minimal total energy Etot (K, ρ) =
min�,config’s[−K� + 2Ec,�(ρ)] and plotted it as a density plot
in Fig. 1(b). We have explicitly checked that particle-hole-
symmetry is present in the phase diagram and therefore only
plot n > 1/2.

In Figs. 10–16, we summarize the considered flux config-
urations, along with the associated numerical data and fits of
Ec,�(n). In the schematic pictures of the lattice, blue bonds
represent hopping matrix elements −w and red dots a π flux
threading a plaquette. We considered three types of 16-site
unit cells (shaded gray in the figures), thus the starting point
of the numerics are the 16 × 16 momentum space matrix
Hamiltonians.
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