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Heisenberg-Kitaev model in a magnetic field: 1/S expansion
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The exact solution of Kitaev’s spin-1/2 honeycomb spin-liquid model has sparked an intense search for Mott
insulators hosting bond-dependent Kitaev interactions, of which Na2IrO3 and α-RuCl3 are prime examples.
Subsequently, it has been proposed that also spin-1 and spin-3/2 analogs of Kitaev interactions may occur in
materials with strong spin-orbit coupling. As a minimal model to describe these Kitaev materials, we study
the Heisenberg-Kitaev Hamiltonian in a consistent 1/S expansion, with S being the spin size. We present a
comprehensive study of this model in the presence of an external magnetic field applied along two different
directions, [001] and [111], for which an intricate classical phase diagram has been reported. In both settings,
we employ spin-wave theory in a number of ordered phases to compute phase boundaries at the next-to-leading
order in 1/S and show that quantum corrections substantially modify the classical phase diagram. More broadly,
our work presents a consistent route to investigate the leading quantum corrections in spin models that break
spin-rotational symmetry.
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I. INTRODUCTION

The combined effects of strong electron-electron interac-
tion and spin-orbit coupling has stimulated the search for
unconventional phases of matter in transition metal oxides
with partially filled 4d and 5d shells [1–6]. As originally
demonstrated by Jackeli and Khaliullin [7], the effective spin
model for these Mott insulators in edge-sharing octahedral
geometries contains, in general, bond-dependent Ising-like
exchange interactions, which lie at the heart of Kitaev’s
honeycomb model [8]. The S = 1/2 Kitaev model on trico-
ordinated lattices is exactly solvable by mapping it onto a
model of free Majorana fermions coupled to Z2 gauge fields,
showing a gapless spin-liquid ground state [8]. Interestingly,
this spin liquid becomes a non-Abelian topological spin liquid
upon applying a small magnetic field [8,9]. At intermediate
field strengths, and depending on the orientation of the field,
recent numerical studies have uncovered the existence of a
further, presumably gapless, field-induced spin-liquid phase
[10–18] between this low-field topological spin liquid and the
high-field polarized phase.

On the experimental side, it is now well established that
Kitaev-type interactions are relevant for the honeycomb iri-
dates [19,20] and for α-RuCl3 [21–23], in which the Ir4+

and Ru3+ ions form effective j = 1/2 local moments. Nev-
ertheless, the realization of quantum spin liquids in the strong
spin-orbit coupling regime has remained a challenge because
more realistic models for these compounds include additional
interactions that tend to drive different kinds of long-
range magnetic order [24–28]. In α-RuCl3, the long-range
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magnetic order can be suppressed by applying an in-plane
magnetic field [5,29–33]. Remarkably, for tilted field direc-
tions, an approximately half-integer quantized thermal Hall
conductance [34] has been found, indicative of a gapped topo-
logical spin liquid with chiral Majorana edge mode [35–37].
Signatures of a new phase, intermediate between the low-field
ordered and high-field polarized phases, have also been ob-
tained for in-plane magnetic fields from magnetocaloric effect
[38] and magnetostriction measurements [39].

On the theoretical side, there is growing evidence that
much of the rich physics of S = 1/2 Kitaev model is also
present for larger values of S. A new class of spin-1 Ki-
taev materials was recently proposed [40], with a number
of specific materials presented as candidates, e.g., the lay-
ered antimonates A3Ni2SbO6 (A = Li, Na) [41]. The S = 1
Kitaev model is not exactly solvable, although it shares many
of the properties of its S = 1/2 version [42–46], including
the behavior in the presence of a magnetic field [47–49].
Furthermore, different Cr-based compounds have recently
been proposed as candidates for S = 3/2 Kitaev systems
[40,50,51]. More generally, higher-S effective spin-orbital
models with bond-dependent interactions have also been dis-
cussed [52–54].

The nearest-neighbor Heisenberg-Kitaev model [24] has
emerged as a minimal model to describe the various Kitaev
materials, with further symmetry-allowed interactions being
important in some of them. Remarkably, the Heisenberg-
Kitaev model displays highly nontrivial behavior already in
the classical limit, S → ∞. While the spin liquid phases
shrink to isolated points in the phase diagram, with high
ground-state degeneracy, the physics in applied magnetic
fields is extremely rich due to the non-Heisenberg interac-
tions, and there is a plethora of field-induced phases with
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complex magnetic ordering [55–58]. A systematic study of
this physics away from the classical limit, i.e., for different
spin sizes S, is lacking.

In this paper, we therefore study the nearest-neighbor
Heisenberg-Kitaev model in an external magnetic field using
an expansion in 1/S. Our primary focus is the stability of the
ordered phases, following the work of Ref. [55], for the two
field directions: [001] and [111] in the cubic spin-space basis
[5]. Specifically, we analyze the model by applying spin-wave
theory both to the ordered [58,59] and the high-field polarized
phases [55,56,60,61]. Importantly, the noncollinearity of the
canted ordered states requires nonlinear spin-wave theory for
a consistent 1/S expansion [62,63], which, for small values
of S, introduces sizable modifications to the classical phase
diagrams obtained in Ref. [55].

Finally, we remark that our work goes beyond the inves-
tigation of Kitaev materials. We present a well-defined 1/S
expansion [62–64] that can be applied to any generic spin
model lacking SU(2) symmetry. It thus stands as an acces-
sible analytical formalism beyond linear spin-wave theory to
complement numerical methods, e.g., exact diagonalization
or density matrix renormalization group, which are typically
used to study complex magnetic systems but restricted to
small clusters.

The remainder of this paper is organized as follows. In
Sec. II, we describe our model and develop a theoretical
framework to consistently account for next-to-leading order
terms in 1/S. Our method is then applied to the cases of
h ‖ [001] and [111] in Secs. III and IV, respectively, where
we also show phase diagrams and magnetization curves for
specific values of S. We conclude in Sec. V. Details of our
calculations, a number of analytical results and spin-wave
spectra for the several phases studied in our work are given
in the appendices.

II. MODEL AND SPIN-WAVE THEORY

As a minimal model to describe the physics of Kitaev ma-
terials, we consider the nearest-neighbor Heisenberg-Kitaev
(HK) Hamiltonian [24,26]

H = J
∑
〈i j〉

Si · S j + K
∑
〈i j〉γ

Sγ
i Sγ

j − h ·
∑

i

Si, (1)

where γ ∈ {x, y, z} labels the three different links on the hon-
eycomb lattice. For convenience, we absorb all constants that
appear in the effective moment gμBS of each pseudospin
into the field h := gμBμ0H. In addition, from now on we
shall parametrize the HK couplings as J = A cos ϕ and K =
2A sin ϕ, where A > 0 is an overall energy scale [26].

Because the Kitaev term breaks spin-rotational symmetry,
the response of the system acquires a strong dependence
on the direction of the external field h. Here, we give all
field directions in the cubic spin basis {x̂, ŷ, ẑ} and label
them in the form [xyz], so that h ‖ [xyz] reads h ∝ xx̂ +
yŷ + zẑ. In α-RuCl3, the cubic axes x̂, ŷ, and ẑ point along
nearest-neighbor Ru-Cl bonds. Therefore, the [111] direction
(often referred to as c∗ axis) is perpendicular to the hon-
eycomb plane, whereas the in-plane crystallographic a and
b axes in the monoclinic notation are along the [112̄] and
[1̄10] directions, respectively [5]. Hence, h ‖ [001] describes

a configuration in which the magnetic field lies along an
intermediate direction in the ac∗ plane.

At zero field, the HK model realizes four different ordered
states as a function of the interaction parameter ϕ: Besides the
usual ferromagnetic and Néel antiferromagnetic states near
the Heisenberg limits ϕ = π and 0, respectively, stripy and
zigzag states are stabilized for increasing Kitaev interactions
[26]. In the classical limit, formally corresponding to S → ∞,
the Kitaev spin-liquid phases near ϕ = ±π/2 shrink to iso-
lated points in the phase diagram, which are characterized by
extensive classical ground-state degeneracies [42,65].

The ordered moments in the Néel, stripy, and zigzag phases
point along the cubic spin-space axes at zero field [5]. Conse-
quently, for a field along the [001] direction, the spins in these
phases can always align perpendicular to an infinitesimal field
and cant homogeneously towards the magnetic field axis at
small finite fields, until a continuous phase transition towards
the polarized state is reached at some critical field strength.

This situation changes dramatically for a field along the
[111] direction. In this case, the stripy and zigzag states cannot
align perpendicular to this axis, prohibiting a homogeneous
canting towards the magnetic field axis. The inhomoge-
neously canted stripy and zigzag states therefore compete
with other states that allow an energetically more efficient
canting mechanism, potentially leading to metamagnetic tran-
sitions between different ordered phases at intermediate field
strengths. In fact, for this field configuration, the classical
analysis of Ref. [55] found six novel field-induced phases in
addition to the canted versions of four zero-field phases. Two
of these field-induced phases have unit cells consisting of at
least 18 sites (or may be even incommensurate [57]) and cover
only a very small region of the phase diagram. One might
therefore speculate that these two phases may be destabilized
upon the inclusion of quantum fluctuations for small values
of S. Representative spin configurations of the other four
field-induced phases, dubbed vortex, antiferromagnetic (AF)
vortex, ferromagnetic (FM) star, and AF star in Ref. [55],
together with those of the canted stripy and canted zigzag
states, are shown in Fig. 1. These four field-induced phases
have magnetic unit cells of six and eight sites and span a
comparatively large parameter region in the phase diagram.
Their fate at small values of S therefore represents an impor-
tant open problem, which we address in this work.

A. Classical reference states

The starting point for our spin-wave analysis is the
parametrizations of the classical phases that arise from the
Hamiltonian, Eq. (1), for a given field direction. On gen-
eral grounds, each phase is characterized by a magnetic unit
cell composed of Ns spins, so that a particular parametriza-
tion specifies a total of Ns pairs of angles. By labeling the
different sites in the magnetic unit cell with the subindex
μ ∈ {1, . . . , Ns}, we then attribute to each spin an azimuthal
and a polar angle, denoted here by φμ and θμ, respectively,
with the polar angles measured with respect to the field
direction [55]. To fix the parametrization angles {φ, θ} ≡
{φ1, . . . , φNs , θ1, . . . , θNs}, we minimize the classical ground-
state energy of Eq. (1).
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Canted zigzagCanted stripy

AF starFM star

(b)(a)
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(c) (d) AF vortexVortex

FIG. 1. Spin configurations of ordered phases of the HK model
in a [111] field, projected onto a plane perpendicular to [111]. The
respective magnetic unit cells are shown in dashed lines. Unequal
lengths of the projected spins in the canted zigzag, canted stripy, and
AF star configurations reflect the occurrence of nonuniform canting.

In this work, we focus on the four field-induced phases
displayed in Figs. 1(c)–1(f), in addition to the high-field polar-
ized phase (not shown) and the canted versions of the stripy,
zigzag [Figs. 1(a) and 1(b)] and Néel (not shown) phases. In
fact, as we shall see below, quantum fluctuations typically
tend to destabilize states with large magnetic unit cells in
favor of small-unit-cell states. For the purposes of this work,
we hence make the simplifying assumption that the two addi-
tional large-unit-cell phases found in Ref. [55], which cover
only a very small region of the phase diagram, are entirely
destabilized by quantum fluctuations at the small values of S
we are interested in.

B. Linear spin-wave theory

In order to set up the spin-wave theory, for a given value
of the interaction parameter ϕ, we rotate the spin coordinate
system so that the transformed Hamiltonian bears a ferromag-
netic ground state. This involves a set of Ns rotations which
map the laboratory {x̂, ŷ, ẑ} basis onto local {êμ1, êμ2, êμ3}
bases which have êμ3 pointing along the classical spin

direction in magnetic sublattice μ. In this basis, we then
employ the Holstein-Primakoff transformation [66]

S3
iμ = S − a†

iμaiμ,

S−
iμ = a†

iμ

√
2S − a†

iμaiμ,

S+
iμ =

√
2S − a†

iμaiμ aiμ,

(2)

where a†
iμ (aiμ) is a bosonic creation (annihilation) operator.

The additional subindex i runs from 1 to Nc, the number of
magnetic unit cells. By expanding the spin ladder operators in
powers of a†

iμaiμ/2S, one can then rewrite the Hamiltonian as

a power series in 1/
√

S,

H =
∞∑

n=0

S2− n
2 Hn , (3)

where each term is labeled according to its order n in bosonic
operators.

In the linear spin-wave (LSW) regime, interactions be-
tween magnons are neglected, so that only the terms up to
order n = 2 in Eq. (3) are retained. As the expansion is per-
formed around a configuration that minimizes H0, the linear
term H1 vanishes, and we end up with a simple quadratic
Hamiltonian. After applying a Fourier transform, one finds

HLSW = S2Egs,0 + S

2

∑
k

(α†
kMkαk − TrAk ). (4)

Here, S2Egs,0 ≡ S2H0 is the classical ground-state energy
and α

†
k = (a†

k1, . . . , a†
kNs

, a−k1, . . . , a−kNs ). Moreover, Mk is
a 2Ns × 2Ns matrix that can generically be written in terms of
two Ns × Ns submatrices, Ak and Bk, as

Mk =
(
Ak Bk

B†
k AT

−k

)
. (5)

After a Bogoliubov transformation [67] (see Appendix A for
details), we obtain

HLSW = S2Egs,0 + SEgs,1 + S
∑
kμ

εkμb†
kμbkμ, (6)

where b†
kμ (bkμ) creates (annihilates) a magnon with momen-

tum k and energy εkμ, μ labels the Ns magnon bands, and

Egs,1 = 1

2

∑
k

(∑
μ

εkμ − TrAk

)
(7)

is the next-to-leading order (NLO) contribution in 1/S to the
ground-state energy,

Egs

(
ϕ, h,

1

S

)
= S2

∞∑
n=0

(1

S

)n

Egs,n(ϕ, h). (8)

In the absence of a magnetic field, the term TrAk equals
SEgs,0, such that it combines with the leading term S2Egs,0

into S(S + 1)Egs,0. We emphasize, however, that this does
not happen for h �= 0. In Appendix B, we present the LSW
spectra of several of the ordered phases considered here for
both h ‖ [001] and h ‖ [111].
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FIG. 2. Magnetization mh as a function of field h in the HK
model with J = A cos ϕ and K = 2A sin ϕ in a magnetic field h ‖
[001], at leading (black) and next-to-leading (blue) order in 1/S
for S = 1/2 and different values of ϕ. To aid the comparison, the
horizontal axes have been rescaled by the respective classical critical
fields hc0. Red arrows highlight an unphysical saturation of the mag-
netization curve, suggesting that, except in the Heisenberg limit (a),
phase transitions occur below the classical critical field in (b)–(d).
Green arrows indicate the positions of the corrected critical fields
according to Secs. II E and II F.

C. Quantum corrections to the magnetization

The theory presented in Sec. II B provides the means to
calculate the NLO contribution in 1/S to the T = 0 magneti-
zation per site,

mh = − 1

N

∂Egs

∂h
= −S2

N

∂

∂h

[
Egs,0 + Egs,1

S
+ O

( 1

S2

)]
, (9)

where N = NsNc denotes the total number of sites. With
Eq. (9) at hands, let us consider a few results for h ‖ [001].
As mentioned before, the classical ground state in this setting
is characterized by spins canting uniformly toward the [001]
direction from h = 0 up to the classical critical field, hc0. At
this point, all spins become parallel to h and the classical
ordered phase gives way to a fully polarized high-field phase.
Consequently, the magnetization increases linearly with the
field at leading order in 1/S, reaching its saturation at hc0.

However, such a simple picture changes shape as soon as
quantum fluctuations are taken into account. While the SU(2)
symmetric point generically exhibits a decrease in mh in the
canted Néel phase [62], see Fig. 2(a), a markedly different
behavior emerges upon considering K �= 0, see Figs. 2(b)–
2(d). For sufficiently high fields, the 1/S correction to mh

becomes positive, causing the NLO curves to cross their clas-
sical counterparts and saturate below hc0. Yet, because the
polarized state is not an eigenstate of the full HK Hamiltonian,
Eq. (1), quantum fluctuations take place even for h � hc0 and
prevent the magnetization from saturating at any finite field in
the high-field phase [55,56]. Hence, the portions of the NLO
magnetization curves right below hc0 for K �= 0 are guaran-
teed to be unphysical. Although we have presented results for
S = 1/2 and h ‖ [001] in Fig. 2, such an inconsistency applies
for all finite values of S and also for other field directions.

We interpret these results as evidence for a reduction of the
critical field hc upon the inclusion of quantum corrections, for
the presented values of ϕ. Below, we address the question of
how this correction to the critical field can be computed in a
systematic expansion in 1/S.

D. Quantum corrections to the direction of magnetic moments

In LSW theory, the angles {φ, θ} that parametrize the di-
rections of the spins in the ordered phases are determined
via the minimization of the classical Hamiltonian H0(φ, θ).
Consequently, the linear term H1(φ, θ) vanishes. Neverthe-
less, in dealing with noncollinear magnetic orders such as
the canted phases discussed in Sec. II C, additional single-
boson contributions stem from the cubic term, H3, and lead
to a renormalization of the parametrization angles, {φ, θ} →
{φ̃, θ̃}, which affects physical observables already at NLO
order in 1/S [62,63]. In the following, we provide an outline
of this procedure and connect it to the results presented in
Sec. II C.

We consider the effects of H3 in our calculations at the
mean-field level [62]. We begin by writing H3 in normal order
with respect to the Bogoliubov quasiparticles b†

kμ and bkμ,

H3 = :H3: + H(1)
3 , (10)

such that in :H3: all creation operators b†
kμ are placed to

the left of annihilation operators bkμ. Since :H3: only yields
corrections beyond NLO in 1/S [64,68–70], it will not be
considered here, so that we are left with the single-boson
term, H(1)

3 . The new parametrization angles, φ̃ and θ̃, are then
determined by rendering the complete linear term zero,

S3/2H1(φ̃, θ̃) + S1/2H(1)
3 (φ̃, θ̃) = 0. (11)

In the spirit of Eq. (3), one can expand the new angles
around their classical values in a power series in 1/S,

φ̃μ =
∞∑

n=0

(1

S

)n

φ̃μn ≡ φμ + 1

S
δφμ + O

( 1

S2

)
, (12)

θ̃μ =
∞∑

n=0

(1

S

)n

θ̃μn ≡ θμ + 1

S
δθμ + O

( 1

S2

)
, (13)

where φ̃μ0 ≡ φμ, θ̃μ0 ≡ θμ, φ̃μ1 ≡ δφμ, θ̃μ1 ≡ δθμ, and μ =
1, . . . , Ns. After expanding Eq. (11) up to order S1/2, we en-
counter a system of linear equations that can be solved for δφμ

and δθμ. Their precise expressions, together with a detailed
derivation of the linear system for the HK Hamiltonian, are
given in Appendix C.

With the values of {δφμ, δθμ}, we can compute the magne-
tization curves from the relation

mh = 1

N

∑
iμ

h
h

· 〈Siμ〉 = S
∑

μ

cos θμ

−
∑

μ

(
sin θμδθμ + cos θμ

N

∑
k

〈
a†

kμakμ

〉) + O
(1

S

)
,

(14)

where the expectation values are calculated with respect to the
vacuum of the Bogoliubov quasiparticles. Although Eqs. (9)
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and (14) are derived from different definitions and even re-
quire different levels of calculation within spin-wave theory,
they must produce identical results, as both consistently in-
clude all contributions up to NLO order in 1/S [62,63]. We
have explicitly checked for different values of ϕ that Eqs. (9)
and (14) indeed lead to the same magnetization curves. This
nontrivial crosscheck corroborates the calculations presented
below which involve the angle corrections.

Notably, Eq. (14) provides a new way to interpret the
plots in Fig. 2: While the second term inside the parentheses
always leads to a reduction in the magnetization, the first
term can be either positive or negative, depending on the
sign of δθμ. Therefore, an increase in the magnetization can
be understood as a consequence of a decrease in the canting
angles (δθμ < 0), which expresses a tendency for premature
alignment of the spins along the direction of the magnetic
field. This supports our claim that the critical field is reduced
to a value hc � hc0 upon the inclusion of quantum corrections
for the presented values of ϕ. We emphasize that, even though
the corrections to the magnetization computed in Eqs. (9) and
(14) are equivalent, the calculation of the angle corrections
required in the latter approach turns out to be essential for the
determination of the quantum corrections to the critical field,
as we discuss now.

E. Quantum corrections to second-order transition lines:
Ordered side

We can now turn to the goal of constructing a consistent
1/S expansion for the critical field hc, which will ultimately
enable us to investigate the effect of quantum fluctuations on
the phase diagram for arbitrary values of S. To start with, we
must address the question of how to consistently define the
critical field. While this is simply a matter of energy level
crossings for first-order phase transitions, the answer is not at
all obvious in the case of continuous phase transitions. Thus,
let us focus on the latter case for a moment. If we were to base
ourselves solely on properties of the ordered phases and on the
results for ϕ = 0, any of the following, apparently equivalent,
defining conditions would seem to fit: (i) the saturation of the
magnetization; (ii) the vanishing of quantum fluctuations; (iii)
cos θ̃μ(hc) = 1 for all spins in the unit cell, μ = 1, . . . , Ns.
However, our discussion in Sec. II C allows us to rule out
the first two immediately, since neither of these properties
characterize the polarized phase in the presence of the Kitaev
term.

Hence, we move on to the last criterion, which is most
intimately connected to a semiclassical picture. In terms of the
notation introduced in Sec. II D, the condition cos θ̃μ(hc) = 1
can be written as

1 − 1

S
tan θμ(hc) δθμ(hc) + O

( 1

S2

)
= 1

cos θμ(hc)
. (15)

However, we can simplify Eq. (15) by noting that all ordered
phases which undergo continuous field-induced phase transi-
tions in this study entail uniform canting at the classical level
and are thus governed by the equation cos θμ(h) ≡ cos θ (h) =
h/hc0 for all μ. With this, we arrive at

1/hc

1/hc0
= 1 − 1

S
tan θ (hc0) δθ (hc0) + O

( 1

S2

)
, (16)

which gives a consistent 1/S expansion not for hc, but for
1/hc, provided that the products tan θμ(h) δθμ(h) are analytic
at hc0 and converge to the same value for all μ as h → h−

c0.
At first glance, it might seem that Eq. (16) implies that the

NLO contribution to 1/hc is zero, since tan θ (hc0) = 0. This is
indeed what happens for pure Heisenberg interactions. Never-
theless, as proven analytically for h ‖ [001] in Appendix C,
δθ (hc0) actually diverges upon the inclusion of the smallest
Kitaev exchange. In fact, it does so in a way that, except at
the Kitaev points ϕ = ±π/2, the product tan θ (hc0) δθ (hc0) is
always unique and finite, thus meeting the requirements for
the validity of Eq. (16).

Another observation here is that Eq. (16) follows directly
from the condition cos θ̃μ(hc) = 1, without the need to postu-
late the existence of a 1/S expansion for any specific function
of hc. This way, 1/hc emerges as a natural quantity to be
considered in this framework. In general, there is of course
a one-to-one correspondence between the expansions of 1/hc

and hc, which can be used to deduce the coefficients of one
expansion from those of the other. However, as in any asymp-
totic series, when explicitly evaluating the truncated series at
finite values of S, the numerical values obtained depend on
whether one considers the inverse of the expansion of 1/hc

or the expansion of hc itself. In fact, as we shall see below,
the results obtained by evaluating the expansion of 1/hc for
small values of S turn out to be more consistent with the
physical expectation. When computing explicit corrections
to the critical field, we therefore evaluate Eq. (16) directly,
without further solving for hc.

Finally, we emphasize that, even after assuming that the
classical magnetic order is characterized by uniform canting,
our formalism allows the corrections to the canting angle to
vary between different magnetic sublattices at fields below
the classical critical field, h < hc0. Such a distinction will
prove to be important later on, when we deal with a particular
manifestation of quantum order-by-disorder (Sec. IV C).

F. Quantum corrections to second-order transition lines:
Disordered side

As an alternative to the procedure described in Sec. II E,
one can construct a consistent 1/S expansion for 1/hc by ap-
plying spin-wave theory to the high-field polarized phase. The
occurrence of a continuous transition to a symmetry-broken
ordered phase is then signaled by the closure of the magnon
excitation gap, which expresses the condensation of magnons
in the system. Parenthetically, we note that the transition be-
tween the high-field phase and a topological Z2 spin liquid
would involve the closure of a vison gap instead, but this is
beyond the realm of a 1/S expansion.

While the classical phase boundaries are obtained from
LSW theory [55], NLO contributions generally require one
to consider both cubic and quartic terms of the spin-wave
Hamiltonian, Eq. (3). As the classical reference state in the
polarized phase is collinear, the cubic part of the spin-wave
Hamiltonian is identically zero (see Appendix D for further
details), so that we can focus solely on the quartic terms.

Once more, we begin by writing H4 in normal order,

H4 = :H4: + :H(2)
4 : + H(0)

4 . (17)

155134-5



CÔNSOLI, JANSSEN, VOJTA, AND ANDRADE PHYSICAL REVIEW B 102, 155134 (2020)

Here, :H(2)
4 : and H(0)

4 represent the (also normal-ordered)
quadratic and zero-order contributions which result as a
byproduct of the bosonic commutation relations. Since H(0)

4
consists of a momentum-independent shift in the ground-state
energy and :H4: describes magnon decay processes, which
only yield corrections beyond NLO in 1/S [64,68–70], they
can both be neglected. At NLO, the 1/S expansion is therefore
equivalent to a Hartree-Fock approximation in this phase.
The quantum corrections to the magnon spectrum thus follow
entirely from

H(2)
4 = 1

2

∑
k

β
†
k�kβk, (18)

which differs from :H(2)
4 : by momentum-independent terms.

Further details on the calculation of the static self-energy �k
and explicit results for h ‖ [001] are given in Appendix D.
After adding Eq. (18) to H2, we arrive at

H2 + H(2)
4 = 1

2

∑
k

β
†
k (Sσ3�k + �k )βk, (19)

where �k = diag(εk1, εk2, ε−k1, ε−k2) and σ3 =
diag(1Ns,−1Ns ) is a 2Ns × 2Ns generalization of the diagonal
Pauli matrix.

The corrected spectrum Ekμ is then determined by applying
nondegenerate perturbation theory to Eq. (19). Because we
have expressed the perturbation in terms of the bosons which
diagonalize the (unperturbed) LSW Hamiltonian, the result is
simply

Ekμ = Sεkμ + �
μμ

k . (20)

Note that only the diagonal elements of �k enter the spectrum.
Together with the fact that �k is Hermitian, this guarantees
that Ekμ is real. For explicit results in the case of h ‖ [001],
see Appendix D.

With this, one can use Eq. (20) to read off the first two
terms in the 1/S expansion of the spin-wave gap

�
(
ϕ,

1

h
,

1

S

)
= S

∞∑
n=0

(1

S

)n

�n

(
ϕ,

1

h

)
. (21)

By attributing the index μ = 1 to the lower band of the spec-
trum and denoting the instability wave vector, i.e., the wave
vector at which the gap closes at leading order, by Q = Q(ϕ),
we find that �0 ≡ εQ1 and �1 ≡ �11

Q for h above, but not too
far from, the classical critical field hc0.

Now we are in the position to construct another 1/S ex-
pansion for 1/hc, based on the criterion � → 0 as h → hc.
There is but one final caveat to bear in mind: The expan-
sion of a physical observable in the vicinity of a quantum
phase transition is well defined only if the observable itself
is analytic at this transition [71,72]. Figure 3(a) illustrates two
different behaviors for the evolution of the gap � as a function
of the reduced magnetic field t ≡ (h − hc0)/hc0: Above the
Néel phase, the gap closes at wave vector Q = 0 and follows
�0 ∝ t . In contrast, in those cases where the gap closes at
Q �= 0, we have �0 ∝ t1/2, hence �0 is nonanalytic at hc0

whereas �2
0 is analytic. In the first case, �0 ∝ t , we employ
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0.0

1.0

2.0

3.0 (a)

10−10 10−8 10−6 10−4 10−2 100

101

103

105
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FIG. 3. (a) Leading-order and (b) NLO contributions to the
magnon gap in the polarized phase for ϕ = 0.3π (blue) and ϕ =
0.7π (red) with h ‖ [001]. The two values of ϕ are representative
for the cases of vanishing (blue) and finite (red) instability wave
vectors Q, respectively. These different behaviors justify the need
for different conditions to determine the expansion of 1/hc.

the condition �(1/hc) = 0 to arrive at

1/hc

1/hc0
= 1 + 1

S h

�1

(∂�0/∂h)

∣∣∣∣
hc0

+ O
( 1

S2

)
, for Q = 0.

(22)
In the second case, �0 ∝ t1/2, we instead expand �2 and use
the condition �2(1/hc) = 0 [71,72] to find

1/hc

1/hc0
= 1 + 2

S h

�0�1

(∂�2
0/∂h)

∣∣∣∣
hc0

+ O
( 1

S2

)
, for Q �= 0.

(23)
Interestingly, the NLO contribution to Eq. (23) results from

the product of �0, which vanishes at hc0, and �1. Therefore,
1/hc will only have a correction of order 1/S if �1 diverges as
t−1/2 at criticality. As displayed in Fig. 3(b), this is precisely
what happens for Q �= 0. In contrast, when Q = 0, Fig. 3(b)
shows that �1 converges at hc0, supporting the need to employ
Eq. (22) in this case.

G. Quantum corrections to first-order transition lines

So far, we have tackled the issue of how phase boundaries
related to continuous transitions change at NLO in 1/S. We
now aim to do the same for discontinuous transitions. In
this case, quantum corrections to the phase boundaries follow
from a direct comparison between the ground-state energies of
competing phases. By noting that Eq. (7) gives the complete
NLO term in Eq. (8) for an arbitrary magnetic order, we thus
conclude that LSW theory is sufficient to study the displace-
ment of first-order transition lines, in contrast to the case of
continuous transitions.

Consider a point (ϕ, 1/h) = (ϕt0, 1/ht0 ) in parameter
space, lying on top of a classical first-order transition line.
One way to evaluate the shift in the phase boundary is to
compute the quantum correction to 1/ht0 while keeping ϕ

fixed. By demanding the equality of the ground-state ener-
gies of the phases above (a) and below (b) the transition,
Ea(ϕt0, 1/ht, 1/S) = Eb(ϕt0, 1/ht, 1/S), and assuming a 1/S
expansion for 1/ht , we find

1/ht

1/ht0
= 1 + 1

S ht0

Eb1 − Ea1
∂
∂h (Eb0 − Ea0)

∣∣∣∣
1

ht0

+ O
( 1

S2

)
. (24)

Conversely, one can also study the displacement of a phase
boundary by tracking the change in ϕt0 for a fixed value of h.
The condition El (ϕt, 1/h, 1/S) = Er (ϕt, 1/h, 1/S), where the
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subindices denote the ground states to the left (l) and to the
right (r) of the transition line, then yields

ϕt

ϕt0
= 1 − 1

S

El1 − Er1
∂
∂ϕ

(El0 − Er0)

∣∣∣∣∣
ϕt0

+ O
( 1

S2

)
. (25)

When computing first-order phase boundaries in the ϕ-h
plane in the next sections, we shall alternate between Eqs. (24)
and (25). In general, both schemes are fully equivalent order
by order in the expansion. However, when evaluating the
truncated series at particular small values of S, the numerical
estimates for the phase boundaries can differ. We will use
Eq. (24) when we wish to compare the displacement of a
certain phase boundary with respect to the critical field above
it. Equation (25), in turn, will prove most useful in studying
horizontal shifts in phase boundaries.

III. RESULTS FOR h ‖ [001]

In this section, we apply the theory presented above to
extract concrete results for the HK model in a [001] field. In
principle, the fact that we have developed a consistent 1/S
expansion enables us to evaluate phase diagrams for arbitrary
values of S. We expect reliable results for large enough S
and/or sufficiently away from the Kitaev limits ϕ = ±π/2,
where the 1/S expansion breaks down below hc0 due to a mas-
sive degeneracy of classical states [42,44]. In the following,
we shall focus primarily on the cases S = 1/2, 1, 3/2, and 2.
As discussed in the introduction, the first three cases might
be of relevance for current experiments [5,6,41,50]. The case
S = 2 already turns out to be quite close to the classical limit
S → ∞ qualitatively [55].

A. Critical field

Let us begin by discussing the changes in the critical field.
In Secs. II E and II F, we provided two alternatives to evaluate
the expansion

1/hc

1/hc0
= 1 +

∞∑
n=1

(1

S

)n

cn (26)

up to order n = 1. As they were based on distinct physical
observables and were derived from different classical refer-
ence states, the resulting expressions for c1 involve apparently
unrelated quantities. Yet, after applying both for a range of
values of ϕ in the interval with nonzero hc0, we find that
Eq. (16) and the combination of Eqs. (22) and (23) are in
fact fully equivalent, see Fig. 4. In addition to confirming the
accuracy of our calculations, such an equivalence suggests
that one of the methods can be dismissed in favor of the
other, even when different field directions are studied. For
our purposes, the expansion based on the corrected canting
angles turns out to be more efficient, since the application of
spin-wave theory to ordered phases is at any rate necessary to
analyze first-order phase transitions.

Figure 4 also shows that the corrections to the critical field
are finite everywhere except at the Kitaev points ϕ = ±π/2.
Nonetheless, we see that c1 is, if not greater than, often
comparable to 1. According to Eq. (16), this means that the
condition tan θ δθ (hc0)  S seldom holds for small values of

K
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M2

K
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K’

Canted Neel

Canted
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Canted
stripy

−0.50 −0.25 0.00 0.25 0.50 0.85

0.0

0.5

1.0

1.5

2.0

FIG. 4. O(1/S) coefficient c1 in the expansion of the inverse of
the critical field, see Eq. (26), as a function of ϕ in the HK model
with couplings J = A cos ϕ and K = 2A sin ϕ in a magnetic field
h ‖ [001]. Results using Eq. (16) in the ordered phases (blue open
circles) are fully equivalent within our numerical precision with those
that follow from applying Eq. (22) for instability wave vector Q = 0
and Eq. (23) for Q �= 0 in the disordered phase (black diamonds).
The inset shows the locations in the first Brillouin zone of the various
instability wave vectors corresponding to different intervals of ϕ

(M1, M3, and �) and different field directions (K, K′, and M2). The
blue line is a guide to the eye. Green dots at ϕ = 0 and ϕ ≈ 0.83π

denote points where the leading-order correction to the critical field
vanishes.

S, and hence that the applicability of a 1/S expansion for hc is
limited, as anticipated in Sec. II E.

In fact, a 1/S expansion for hc only becomes reliable in the
vicinity of two special values of ϕ for which c1 = 0. One of
these is naturally the Heisenberg point, ϕ = 0, where quantum
fluctuations vanish for h � hc0. The other occurs near the edge
of the canted zigzag phase, at ϕ ≈ 0.83π . To the best of our
knowledge, there is no special symmetry emerging at this
point, so that its precise position should shift as higher orders
in 1/S are considered. However, it marks a change in the sign
of c1, which indicates that the critical field increases in a small
region to the right of ϕ ≈ 0.83π .

Besides the continuous order-to-disorder quantum phase
transitions as functions of the field, the classical phase dia-
gram of the HK model in a [001] field has two discontinuous
order-to-order transition lines as functions of the interaction
parameter ϕ. Here, we consider only the transition between
the canted Néel and stripy states for ferromagnetic K < 0.
As the classical boundary is a line of constant ϕ, we compute
the NLO contribution using Eq. (25). For the small values
of S considered here, we expect the other transition line near
the antiferromagnetic Kitaev point at ϕ = π/2 to be superim-
posed by a quantum-spin-liquid phase [14,47,49,51], which
cannot be described within a semiclassical formalism such as
spin-wave theory [73].

B. Phase diagram

The resulting phase diagrams for a field along the [001] di-
rection are shown for different values of S in Fig. 5. There we
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FIG. 5. Phase diagram of the HK model at T = 0 with J = A cos ϕ and K = 2A sin ϕ in a magnetic field h ‖ [001], at next-to-leading order
in 1/S for (a) S = 2, (b) S = 3/2, (c) S = 1, and (d) S = 1/2. Dot-dashed and solid lines mark continuous and first-order phase transitions,
respectively, whereas the light dotted lines represent the classical phase boundaries, which formally correspond to the limit S → ∞ [55].
The yellow dots added to the S = 1 and S = 1/2 diagrams show the h = 0 phase boundaries according to (c) an infinite density matrix
renormalization group study [45] and (d) 24-site exact diagonalization results [26]. In both cases, the red stripes below the horizontal axis
indicate the domains of spin liquid phases. Note that the AF Kitaev spin liquid near ϕ = π/2 is expected to cover a sizable field range [16,55],
which is not contemplated by our semiclassical expansion [73].

can see that NLO contributions (solid and dot-dashed lines)
lead to substantial quantitative modifications as compared to
the classical phase boundaries (light dotted lines). We find
pronounced reductions in the critical field in large parts of the
phase diagram, especially in the central portion of the canted
zigzag and near the triple point separating the canted stripy,
canted Néel, and polarized phases. Note that the determination
of the corrections to the location of this triple point necessarily
involves 1/S expansions of different observables, leading to
the nonmonotonic behavior of the order-disorder transition
line visible near ϕ ≈ −0.15π .

Furthermore, the phase diagrams reflect the fact that the
canted Néel is more stable than the canted stripy by exhibit-
ing a leftward shift in the boundary between both phases.
This feature is also observed in numerical studies performed
at h = 0 for both S = 1/2 [26,74–76] and S = 1 [45]. For
comparison purposes, we reproduce the 24-site exact diago-
nalization and infinite density matrix renormalization group
results from Refs. [26] and [45], respectively, as yellow dots
in Figs. 5(d) and 5(c). At h = 0, our spin-wave calculations
show the Néel-stripy transition occurring at ϕt ≈ −0.193π for
S = 1/2, which is in good quantitative agreement with the
result ϕED

t ≈ −0.189π from Ref. [26]. Similar conclusions
follow from comparing our estimation to the data obtained
in other numerical studies for S = 1/2 and S = 1. In the

latter case, our result ϕt ≈ −0.170π coincides with that from
Ref. [45] up to the third decimal place.

Finally, we call attention to the rightmost portion of the
canted zigzag phase, where the NLO contributions to 1/hc

indicate an increase in the critical field. The validity of the
1/hc expansion there ends as soon as the classical domain of
the canted zigzag vanishes. However, this does not imply that
the phase boundary with the polarized phase drops abruptly to
zero. By extrapolating the curve, one can estimate its intercept
with the ϕ axis to be ϕt ≈ 0.880π for S = 1/2, which agrees
well with the exact diagonalization result ϕED

t ≈ 0.900π [26].
In the case of S = 1, our calculations yield ϕt = 0.862π ,
which is once more in good quantitative agreement with the
numerical result ϕiDMRG

t ≈ 0.87π from Ref. [45].

C. Magnetization curves

We further investigate corrections to field-dependent ob-
servables at NLO in 1/S. In Fig. 6, we combine NLO
magnetization curves from above and below hc0 with the in-
formation on the corrections to 1/hc for S = 1/2, 1, and 3/2.
Figures 6(a)–6(c) show that the reduction in hc at ϕ = 0.4π

eliminates the ill-behaved portion of the magnetization below
hc0 (dashed lines) and allows one to smoothly interpolate
between the polarized and ordered phase down to the smallest
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FIG. 6. Magnetization per site mh in units of S as a function of
the field h in units of hc0 in the HK model with J = A cos ϕ, K =
2A sin ϕ, and a magnetic field h ‖ [001], at NLO in 1/S. Left panels:
ϕ = 0.4π above Néel phase for (a) S = 3/2, (b) S = 1, (c) S = 1/2.
Right panels: ϕ = 0.7π above zigzag phase for (d) S = 3/2, (e)
S = 1, (f) S = 1/2. The vertical dashed lines mark the positions of
the 1/S-corrected and classical critical fields, hc and hc0, respectively.
Red curves correspond to the partially polarized phase, whereas blue
curves were obtained for the ordered phases below. The dashed
portions of the blue curves should therefore be discarded, for they
lie in the interval [hc, hc0], which is now occupied by the partially
polarized phase. Still, one cannot extend the red curve below hc0

because the classical polarized state is unstable in this region.

values of S. While this tendency remains true for most of the
extent of the canted Néel, it breaks down near the Kitaev
point, ϕ = π/2, or for values of ϕ lying within the range
of other ordered phases. As an example, consider the case
of ϕ = 0.7π , illustrated in Figs. 6(d)–6(f), for which the
canted zigzag appears at low fields. Here, the correction to
the magnetization in the limit h → h+

c0 is much larger than that
observed for ϕ = 0.4π . Thus, a reasonable interpolation be-
tween the low and high-field portions is not possible at small
S, despite the substantial reduction in the critical field. One
must therefore go beyond NLO in 1/S to obtain magnetization
curves which are fully consistent in the vicinity of hc for small
values of S. In fact, we can extend this conclusion to all values
of ϕ covered by the canted zigzag and canted stripy phases,
as previous LSW calculations indicate that 1/S corrections
reduce the S = 1/2 magnetization in the limit h → h+

c0 by at
least ∼35% in this entire interval [55].

IV. RESULTS FOR h ‖ [111]

In the previous section, we have seen that our approach
provides a consistent way to gauge the stability of the different
ordered phases and capture nontrivial changes in the phase
boundaries. We can now move on to the more intricate case
of h ‖ [111]. As discussed above, we restrict our analysis
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FIG. 7. O(1/S) coefficient c1 in the expansion of the inverse of
the critical field, see Eq. (26), as a function of ϕ in the HK model
with couplings J = A cos ϕ and K = 2A sin ϕ in a magnetic field h ‖
[111], obtained from the spin-wave calculation in the ordered phase
[Eq. (16)]. The blue line is a guide to the eye. Green dots at ϕ = 0
and ϕ ≈ −0.47π denote points where the leading-order correction to
the critical field vanishes. Gaps in the data correspond to intervals of
ϕ in which the transition to the polarized phase is discontinuous.

to ordered phases with at most eight sites per magnetic unit
cell. Such a simplification should represent an excellent ap-
proximation, though, for it only modifies small slivers of the
classical phase diagram [55] and incorporates an overall ten-
dency for magnetic orders with large unit cells to be destroyed
by quantum fluctuations. Furthermore, this does not affect the
classical stability of any region of the phase diagram [77].

A. Critical field

In Fig. 7, we present the NLO contributions to 1/hc for all
of the continuous phase transitions that appear in the semiclas-
sical limit. As in the case of h ‖ [001], the corrections to the
critical field are finite everywhere except at the Kitaev points.
Moreover, the results for the canted Néel are roughly similar
in both field directions. None of the remaining continuous
transitions, however, have a direct counterpart in a [001] field;
they involve two vortex phases which emerge at intermediate
fields for opposite signs of the Kitaev coupling. On the right-
hand side of the diagram (K > 0), the AF vortex displays
pronounced corrections to 1/hc0 even away from ϕ = π/2.
On the left-hand side (K < 0), the corrections inside the vor-
tex change sign at ϕ ≈ −0.47π before diverging to −∞ at the
FM Kitaev point. Hence, much like the behavior uncovered
for the canted zigzag when h ‖ [001], the critical field should
increase near the left end of the vortex phase for every S,
which is qualitatively consistent with the early simulations of
Ref. [9]. However, we note that for ϕ ≈ −0.5π , we expect the
ferromagnetic Kitaev spin liquid to emerge for small values of
S, which is not captured by our semiclassical calculation.

B. Phase diagram

We now combine the results presented above with those
extracted for first-order phase transitions to assemble phase
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FIG. 8. Phase diagrams of the HK model as in Fig. 5 but now for a magnetic field h ‖ [111]. Note that the dot-dashed lines representing
the critical fields fall below the lower classical boundaries of the vortex and AF vortex phases for small S and an increasing range of ϕ values,
leading to a complete disappearance of the AF vortex phase and a strong suppression of the vortex order for S � 1. Note also that the AF
Kitaev spin liquid near ϕ = π/2 is expected to cover a sizable field range [16,55], which is not contemplated by our semiclassical expansion
[73].

diagrams for S = 1/2, 1, 3/2, and 2. Similarly to the pre-
vious case, we find a substantial reduction of the critical
field between the ordered phases and the partially polarized
phase upon the inclusion of 1/S corrections in large parts
of the phase diagram, Fig. 8. Furthermore, we observe a
trend whereby phases with large magnetic unit cells tend to
be destabilized upon decreasing S, in agreement with the
general expectation. For S � 1, the AF vortex phase is com-
pletely suppressed and the polarized phase reaches down to
the AF star or canted zigzag, depending on S and ϕ. On the
ferromagnetic-K side of the diagram, the change in the sign
of c1 at ϕ ≈ −0.47π , see Fig. 7, implies that a finite portion
of the vortex phase remains stable at NLO in 1/S. However,
because this phase becomes more concentrated around the
ferromagnetic Kitaev point, higher-order corrections in 1/S
or nonperturbative approaches are necessary to validate its
stability for small values of S.

By using Eq. (24), we also verify that the boundary be-
tween FM star and the polarized phase is shifted down for
decreasing S. By employing Eq. (25) in turn, we find that
the FM star phase is suppressed by its neighboring ordered
phases as well. From its right side, the whole boundary with
the canted Néel undergoes a leftward shift. A similar trend is
seen from its left side: Except near the transition to the polar-
ized phase, the boundary with the canted stripy is displaced
to the right. Intriguingly, this displacement increases as one
follows the classical phase boundary down to the FM Klein
point, (ϕ, h) = (−π/4, 0), where the Hamiltonian exhibits a

degenerate (quantum) ground-state manifold in consequence
of a hidden SU(2) symmetry [24,26,55,78]. This shifts the
FM star phase, which reaches down to h = 0 at and to the
right of the Klein point in the classical limit, to finite fields.
Furthermore, by performing LSW calculations at h = 0, we
find that an order-by-disorder mechanism selects the stripy
over the FM star everywhere except at the FM Klein point,
in agreement with the general expectation [24]. Therefore, a
finite domain of the canted stripy should exist beneath the
FM star for every ϕ �= −π/4. The extent of such a domain
cannot be determined along the lines of Sec. II G, though, for
1/ht diverges when S → ∞. As an alternative, we estimate
the transition line by expanding the equality Ea(ϕ, ht, 1/S) =
Eb(ϕ, ht, 1/S) around (ht, 1/S) = (0, 0). Here, the indices
correspond to the FM star and canted stripy phases above (a)
and below (b), respectively, the transition line. Solving for ht ,
we obtain

ht (ϕ) =
√

2

S

√√√√ Ea1 − Eb1

∂2

∂h2 (Eb0 − Ea0)

∣∣∣∣∣
h=0

+ O
(

1

S

)
, (27)

which gives the lower boundary of the FM star for ϕ > −π/4.
As visible in Fig. 8, the FM star turns out to be shifted to finite
fields for all values of ϕ, even right at the SU(2) symmetric
Klein point.

Similarly, NLO contributions in 1/S computed via Eq. (25)
favor the canted zigzag over the AF star by moving the bound-
ary between the two to the left. However, the correction to the
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boundary now vanishes as one approaches the AF Klein point,
(ϕ, h) = (3π/4, 0). On the other hand, by applying the same
scheme as in Eq. (27), we find a large suppression of the AF
star from below, which is especially drastic for S = 1/2. Put
together, these results show that the region of stability of the
AF star diminishes considerably upon lowering S.

Finally, we turn to the transition between the canted zigzag
and the polarized phase. Differently from the case of h ‖
[001], we observe a rightward displacement of the boundary
for all finite h. This suggests that the canted zigzag order is
particularly stable in a [111] field, as reflected by the large
domain it occupies in the diagrams with small values of S, see
Fig. 8. By inspecting the limit h → 0, we find that the tran-
sition between the zigzag and the ferromagnet takes place at
ϕt ≈ 0.899π for S = 1/2, which is in remarkable agreement
with the exact diagonalization result ϕED

t ≈ 0.900π [26]. For
S = 1, our estimation ϕt ≈ 0.877π also agrees well with the
infinite density renormalization group result ϕiDMRG ≈ 0.87π

[45].
In summary, our results indicate a strong suppression at

NLO in 1/S of the various large-unit-cell and multi-Q classi-
cal phases that arise when h ‖ [111]. This generally agrees
with the numerical results for S = 1/2 on small clusters
[9,15,16,79].

C. Direction of ordered moments: Canted Néel phase

As we have seen in the previous subsection, an interest-
ing competition between order-by-disorder and field-selection
effects is generally at work at low fields. On one hand, this
can lead to shifts in phase boundaries, as in the cases of
the transitions between the canted stripy and FM star, and
between the canted zigzag and AF star. On the other hand,
it can also induce intriguing responses of the direction of the
ordered moments to the magnetic field within the same phase.
Such a situation occurs in the canted Néel, as we discuss
now. First, consider the classical limit, S → ∞, of the HK
model. Since all three neighbors of an arbitrary spin have
the same configuration in the Néel state, the classical Kitaev
term adds up to an effective Heisenberg interaction and hence
preserves SU(2) spin symmetry at zero field. Therefore, when
exposed to a small magnetic field, the classical spins initiate
uniform canting from the plane perpendicular to the field axis,
regardless of which direction this may be.

Quantum corrections, however, lift the SU(2) degeneracy
at zero field and are expected to favor states whose ordered
moments lie along the cubic axes in spin space by virtue of
an order-by-disorder mechanism [80,81]. Except for specific
field directions, the set of states selected by quantum fluctua-
tions will have no overlap with that selected by the field. This
leads, in general, to a competition between the fluctuation ef-
fects, most relevant at small fields, and field-selection effects,
which dominate at high fields.

In Fig. 9(a), we show the quantum corrections to the cant-
ing angles in the canted Néel phase in a [111] field for a
representative value of ϕ. On one hand, we see a divergence
of the corrections as h → h−

c0, which we now know is related
to the reduction of hc. On the other hand, the plot exhibits two
features that distinguish the canted Néel order in a [111] field
from all other magnetic orders considered here, including its
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FIG. 9. Spin-wave-theory results for ϕ = 0.3π and h ‖ [111].
(a) Corrections to the classical canting angle for spins in the two
sublattices of the canted Néel phase. Although the individual angles
diverge in the opposing limits of h → 0 and h → hc0, the ratio of δθ1

to δθ2 shows that the spins tend, respectively, to an antiparallel and a
parallel state. (b) Magnetization curves in leading (black) and NLO
(blue with markers) order for S = 1/2. Note that the divergence of
δθ1 and δθ2 as h → 0 does not manifest itself in the magnetization.

counterpart in a [001] field. First, NLO corrections in 1/S im-
pose a fundamental change to the classical parametrization by
rendering the canting nonuniform for every h < hc0. Second,
both δθ1 and δθ2 strongly diverge as h → 0. No traces of this
low-field divergence, however, appear in observables such as
the magnetization, see Fig. 9(b).

As hinted above, the key to understanding such an odd
behavior lies in the breaking of the classical SU(2) spin sym-
metry: An order-by-disorder mechanism locks the zero-field
Néel order to one of the xyz axes [80,81]. Since none of
the selected states lie on the ab plane, uniform canting in
[111] field cannot be reconciled with the presence of quantum
fluctuations. This explains not only the difference between δθ1

and δθ2 in Fig. 9(a) but also their divergence at low fields.
Indeed, if it were not so, the corrections would be suppressed
at large but finite S. This, however, would be inconsistent with
the expectation that the competition between fluctuation and
field-selection effects should persist for all finite S and small
enough fields.

By tracking the ratio of δθ1 to δθ2 rather than their indi-
vidual values, we can find further information hidden in the
low-field divergence. As shown by the black curve in Fig. 9(a),
δθ1/δθ2 converges to −1 as h → 0. Given that θ1 = θ2 = π/2
at h = 0, this implies that the system still approaches an an-
tiparallel state as h → 0. Therefore, while the 1/S expansion
fails to connect high- and low-field parametrizations at NLO,
it suggests that, for an infinitesimal field, the system orders in
a collinear Néel state lying outside of the plane perpendicular
to the field axis, in agreement with the outcome of the order-
by-disorder mechanism.

Ultimately, one can interpret these results as a sign of
noncommutativity of the limits h → 0 and S → ∞ in a [111]
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1/26/1 3/13/1- 6/1--1/2 0
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FIG. 10. Left panels: NLO contribution to the ground-state ener-
gies of the vortex and AF vortex phases of the HK model in a [111]
field from LSW theory, illustrating the order-by-disorder mechanism.
The blue lines are fits of cosine functions to guide the eyes. Right
panels: Projections of the 120◦ spin configurations selected by quan-
tum fluctuations onto the plane perpendicular to the [111] direction.

field. After all, the classical parametrizations are obtained by
taking S → ∞ before h → 0 and are thus completely oblivi-
ous to the order-by-disorder mechanism taking place at h = 0.

D. Order-by-disorder in noncollinear states: Vortex phases

Finally, we comment on the calculations performed in the
vortex and AF vortex phases in further detail to illustrate how
an order-by-disorder mechanism acts on noncollinear states at
higher orders in 1/S. As described in Ref. [55], both of these
phases display an accidental U(1) degeneracy which manifests
itself as a free angle ξ in their classical parametrizations:
φμ = φμ(ξ ). This means that the leading-order term in the
1/S expansion of the azimuthal angles, Eq. (12), is not fully
fixed by the minimization of the classical ground-state energy
because, unlike higher-order terms in the spin-wave Hamilto-
nian, H0 = Egs,0 does not depend on ξ . The appropriate value
of ξ is thus determined by minimizing the contribution of
quantum fluctuations to the zero-point energy.

Following the usual prescription of order-by-disorder anal-
yses, we have employed LSW theory to compute the NLO
contribution to the ground-state energy, Eq. (7), as a func-
tion of ξ . Figure 10 shows that the results pertaining to the
vortex (AF vortex) are well fitted by a cosine function with
a period of 2π/3 (π/3) and a minimum at ξ ∗ = 0 (ξ ∗ =
π/6). When these values of ξ are substituted back into the
classical parametrizations, they generate 120◦ orders whose
projections onto the ab plane are parallel or perpendicular to
the bonds of the lattice [82]. Therefore, the states selected
by the leading-order quantum fluctuations are not only non-
collinear but also noncoplanar. We emphasize that, even in
cases such as these, the NLO contribution to the ground-state
energy follows entirely from LSW theory. Indeed, suppose

we have computed the 1/S corrections, δφμ and δθμ, to the
parametrization angles. The leading-order contributions of
such terms to Eq. (8) are then determined by expanding Egs,0

and Egs,1 around {φμ(ξ ∗), θμ}. However, because this set of
angles minimizes the classical energy, the NLO term from
Egs,0 is zero, and Eq. (8) only receives contributions beyond
those given by LSW theory at O(S0) [62,63].

Yet, in calculating corrections to the critical field, we have
taken the analysis one step further: By using the 120◦ orders
selected within LSW theory as reference states [83], we have
implemented the scheme described in Sec. II D to compute
δφμ and δθμ. While the corrections to the polar angles, δθμ, al-
ways turn out to be determinate, we find that the deviations to
the azimuthal angles, δφμ, cannot be expressed independently
in any of the two phases. Instead, they are all given in terms
of one of the unknowns, say ξ ′ ≡ δφ1. In the vortex phase, we
have δφμ = ±ξ ′, where the upper (lower) sign applies to odd
(even) μ, corresponding to the two crystallographic sublat-
tices of the honeycomb lattice. Remarkably, the structure of
δφμ in this state is completely analogous to the continuous
degeneracy appearing in the classical parametrization [55],
i.e., ξ is simply substituted by ξ ′/S in Eq. (12). By con-
trast, the angle corrections in the AF vortex phase introduce
an asymmetry between the two crystallographic sublattices,
since δφμ = ξ ′ [δφμ = −(ξ ′ + δξ ′)] for odd (even) μ, with
δξ ′ = δξ ′(ϕ, h). As ξ ′ appears in a role similar to the one
played by ξ at the level of LSW theory, it is to be determined
by the minimization of Egs,2.

To summarize, for noncollinear states, corrections to the
spin angles arising from the cubic terms in the spin-wave
Hamiltonian are finite but do not contribute to the ground-
state energy at NLO in the 1/S expansion. An accidental
continuous degeneracy that occurs at the classical level resur-
faces in the 1/S corrections to the parametrization angles as
a free parameter ξ ′, which is fixed by minimizing the term
of O(S0) of the ground-state energy. The resurgence of such
a free parameter is therefore necessary to provide the full
angle dependence of the energy at higher orders in the 1/S
expansion. This guarantees that the energy can be determined
consistently order by order and that its minimization fixes the
correct values of the spin angles.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have studied the effects of quantum
fluctuations in the HK model in an external magnetic field. We
have applied nonlinear spin-wave theory both to the ordered
and the polarized phases to derive a consistent 1/S expansion
for various observables, allowing us to compute the quantum
corrections to the phase diagram at NLO in 1/S. Our results
indicate substantial modifications to the phase boundaries,
including an overall tendency of the high-field polarized phase
to suppress ordered phases. This effect was found to be espe-
cially strong for the several large-unit-cell and multi-Q phases
that arise in the classical limit for h ‖ [111] [55]. In particular,
one of the two magnetic vortex states is completely destabi-
lized for S � 1, whereas the other is significantly suppressed.
Given that our phase diagrams in Figs. 5 and 8 involve an
extrapolation of the 1/S expansion to small S, more detailed
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numerical studies are called for, in particular for S = 1/2 and
S = 1.

We have also computed explicitly the quantum corrections
to different observables, such as the direction of the ordered
moments, the magnetization, and the spectrum. Our results
for the magnetization curves are consistent with the general
trend that the transition from an ordered phase to the partially
polarized phase is shifted towards lower fields upon increasing
1/S. The 1/S correction to the critical field can be computed
either in the ordered phase, by evaluating the angle corrections
to the direction of the ordered moments, or in the partially
polarized phase, by tracing the spectral gap. We have ex-
plicitly demonstrated that these two, seemingly independent,
approaches yield the same results.

Our findings may be relevant for higher-spin Kitaev mate-
rials. For instance, the antimonates A3Ni2SbO6 (A = Na, Li)
are candidates for S = 1 Kitaev systems [40]. Similar to
α-RuCl3, they realize a zigzag ground state at low temper-
atures and zero field [41,84]. Interestingly, both compounds
show metamagnetic transitions towards field-induced inter-
mediate ordered phases. The lower transition has initially been
interpreted in terms of a spin-flop mechanism [41]; however,
recent magnetostriction experiments on Na3Ni2SbO6 appear
to be inconsistent with such a simple scenario and suggest
a picture of an anisotropy-governed competition of different
antiferromagnetic phases [85]. In contrast to the S = 1/2
Kitaev materials [7,86], the Kitaev interaction in the S = 1
systems is expected to be antiferromagnetic [40]. This al-
lows a description of the zigzag magnetic order fully within
the nearest-neighbor HK model. Our work demonstrates that
nontrivial field-induced transitions between different types of
antiferromagnetic orders, involving changes in the ordering
wave vector and the geometry of the magnetic unit cell, are
natural in such a situation. In order to make a more con-
crete comparison of our predictions for the HK model with
the experimental results on the antimonates, in-field neutron
diffraction measurements and/or angle-dependent thermody-
namic measurements on single crystals would be desirable.
This should allow one to elucidate the role of the observed
anisotropy [85] and the nature of the field-induced phases.

The Cr-based monolayers that have been proposed as can-
didates for S = 3/2 Kitaev systems [50] show a ferromagnetic
ground state [87,88] but may potentially be driven to other
magnetic or paramagnetic states by epitaxial strain [51]. Our
results show that, in such a setup, an external field could
also induce nontrivial intermediate phases, and it would be
interesting to search for signatures of the corresponding meta-
magnetic transitions.

In a broader context, the framework developed here can
be applied to other spin models with interactions that break
SU(2) spin-rotational symmetry as well. This includes ex-
tensions of the HK Hamiltonian with additional interactions
[3,4,27,56] or on other lattices [77,89–93], different classes
of compass models [52], and the anisotropic Hamiltonian
used to characterize magnetically ordered phases in rare-
earth pyrochlores [94,95]. Our approach complements the
numerical simulations such as exact diagonalization or density
matrix renormalization group that work directly at the de-
sired values of S but are typically constrained to small lattice
sizes.
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APPENDIX A: BOGOLIUBOV TRANSFORMATION

In this Appendix, we give some more details on the di-
agonalization of the LSW Hamiltonian in Sec. II B. This is
accomplished by means of a bosonic Bogoliubov transfor-
mation [67], whereby one diagonalizes the modified matrix
σ3Mk, with σ3 = diag(1Ns,−1Ns ) being a 2Ns × 2Ns gener-
alization of the diagonal Pauli matrix. This procedure yields
solutions of the form

σ3MkVkμ = εkμVkμ

σ3MkW−kμ = −ε−kμW−kμ, (A1)

with εkμ > 0 for all k, μ. Each eigenvector with a negative
eigenvalue can be related to an eigenvector with a positive
eigenvalue, yet opposite momentum, via the relation W−kμ =
σ1V ∗

−kμ, where

σ1 =
( 0 1Ns

1Ns 0

)
. (A2)

Furthermore, one can impose the normalization conditions
[67]

V †
kμσ3Vkν = −W †

−kμσ3W−kν = δμν,

V †
kμσ3W−kν = 0. (A3)

With this, we obtain the Bogoliubov quasiparticles {b†
kμ, bkμ}

by means of the transformation βk = Tkαk, where T−1
k is

generally a nonunitary matrix whose first (last) Ns columns
correspond to Vkμ (W−kμ).

APPENDIX B: LSW SPECTRA: ORDERED PHASES

In this Appendix, we present a compilation of magnon
spectra for the magnetically ordered phases in LSW theory.
Spectra at NLO are presented in Appendix D. Figure 11 il-
lustrates how the LSW spectrum evolves upon increasing the
magnitude of h ‖ [001] in the canted Néel, canted zigzag, and
canted stripy phases. The plots shown for the canted zigzag
and canted stripy combine the spectra of two degenerate mag-
netic domains of each phase. The dispersion remains gapless
up to hc0 in all three phases, reflecting an accidental contin-
uous degeneracy related to rotations of the magnetic orders
around h. Such pseudo-Goldstone modes acquire a gap due to
quantum fluctuations [64], as an order-by-disorder mechanism
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FIG. 11. Linear spin-wave spectra in the ordered phases in a h ‖ [001] magnetic field for different values of h and ϕ. The right column of
the panel represents data immediately below the classical critical field hc0. The corresponding path along high-symmetry lines of the Brillouin
zone is shown in Fig. 12. The plots related to the canted zigzag and canted stripy superimpose the spectra of two degenerate magnetic domains.

selects states which present canting in either the xz or yz plane.
In the canted Néel, the low-energy portion of the dispersion
gradually changes from a linear to a quadratic shape as the
field increases, whereas the opposite trend takes place in the
canted stripy. Moreover, as h → h−

c0, one can identify band
crossings in each case which also appear in the LSW spectra
of the high-field polarized phase. In the canted zigzag and
canted stripy, a second band is lowered down to the M1 and
M3 points as we approach hc0, while the gap closes at the �

point as well.
Turning to the case of a [111] field, Fig. 12, we see that only

three of the ordered phases remain gapless for h > 0. These,
however, are but other examples of pseudo-Goldstone modes,
as they correspond precisely to the canted Néel, vortex,
and AF vortex, in which accidental continuous degeneracies
may be lifted by order-by-disorder effects, as discussed in
Sec. IV C. The spectra of the vortex phases were computed
with respect to the classical reference state that minimizes the
zero-point energy within LSW theory. The plots correspond-
ing to the canted zigzag and canted stripy now combine the
spectra of three degenerate magnetic domains.

APPENDIX C: COMPUTATION OF ANGLE
CORRECTIONS

In this Appendix, we give details on the calculation of
angle corrections in the ordered phases by considering the
cubic terms in the spin-wave Hamiltonian, cf. Sec. II D. It is

convenient to locally rotate the spin coordinate system so that
the Hamiltonian bears a ferromagnetic ground state in the new
reference frame. By using these rotations, we can relate the
spin operators in the global {x̂, ŷ, ẑ} basis to the ones in the
new local {êμ1, êμ2, êμ3} bases via the rotations⎛

⎜⎝
Sx

iμ

Sy
iμ

Sz
iμ

⎞
⎟⎠ = R(φμ, θμ)

⎛
⎜⎝

S1
iμ

S2
iμ

S3
iμ

⎞
⎟⎠. (C1)

When dealing with noncoplanar states induced by a magnetic
field h, it is useful to carry out this procedure in three steps
represented by the decomposition

R(φμ, θμ) = RT
1 RT

2 (φμ)RT
3 (θμ). (C2)

The matrix R1 consists of a global rotation of the original
{x̂, ŷ, ẑ} basis into a new reference frame {ê0

1, ê0
2, ê0

3}, which
is defined so that the unit vector ê0

3 ‖ h. The two remaining
unit vectors may be chosen arbitrarily within the plane per-
pendicular to ê0

3. The second step is encoded in the matrix
R2(φμ), which rotates the {ê0

1, ê0
2, ê0

3} about the ê0
3 axis to give

{ê0
1μ, ê0

2μ, ê0
3μ}. The rotation angle φμ is selected in such a way

that the orientation of the classical spin on the sublattice μ

lies on the plane generated by the ê0
1μ and ê0

3μ ≡ ê0
3 vectors.

Finally, one maps {ê0
1μ, ê0

2μ, ê0
3μ} onto the target {ê1μ, ê2μ, ê3μ}

basis by performing a rotation R3(θμ) around ê0
2μ.
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Now let us gear the formalism to treat the HK Hamiltonian.
For convenience, we begin by breaking Eq. (1) into different
parts

H =
∑

γ=x,y,z

H(γ ) + Hh, (C3)

where the H(γ ) denote spin-spin interaction parts and Hh is
the Zeeman term. If we identify the nearest neighbor of site
μ in unit cell i along a γ bond by the subindices jνγ , we can
write the spin-spin interaction terms as

H(γ ) =
∑

iμ

′(
JSiμ · S jνγ

+ KSγ

iμSγ

jνγ

)

=
∑

iμ

′ 3∑
m,n=1

γ μ
mnSm

iμSn
jνγ

, (C4)

with

γ μ
mn = J

3∑
�=1

R�m(φμ, θμ)R�n(φνγ
, θνγ

)

+ KRγ m(φμ, θμ)Rγ n(φνγ
, θνγ

). (C5)

The primed sum in Eq. (C4) indicates that the sum over μ

only runs through half of the Ns sites in the magnetic unit cell,
all of which belong to the same crystallographic sublattice
of the honeycomb lattice. The Zeeman term can in turn be

expressed as

Hh = −h ê0
3 ·

∑
iμ

Siμ = −h
∑
iμν

rμ
ν Sν

iμ. (C6)

Because the coefficients rμ
ν (θμ) are constructed from the rota-

tion matrix R3(θμ), it follows that rμ
2 = 0.

This construction allows one to write any n-boson term
of the spin-wave Hamiltonian in a compact manner. Here,
however, we are specifically interested in the linear and cubic
contributions. The interaction parts of the n = 1 term read

H(γ )
1 = 1√

2

∑
iμ

′[(
γ

μ
13 + iγ μ

23

)
a†

iμ + (
γ

μ
31 + iγ μ

32

)
a†

jνγ
+ H.c.

]

=
√

Nc

2

∑
μ

(
γ

μ
13 + iγ μ

23

)
a†

0μ, (C7)

while the field part is

Hh1 =
√

Nc

2

h

S

∑
μ

rμ
1

(
a†

0μ + a0μ

)
. (C8)

In both of the expressions above, we have applied a Fourier
transform, akμ = N−1/2

c
∑

k e−ik·riμ aiμ. Thus, a†
0μ is an opera-

tor that creates a boson with momentum k = 0. Moreover, the
last step in Eq. (C7) made use of the fact that γ μ

mn = γ
νγ

nm.

155134-15



CÔNSOLI, JANSSEN, VOJTA, AND ANDRADE PHYSICAL REVIEW B 102, 155134 (2020)

As discussed in Sec. II D, one must account for 1/S correc-
tions to the classical parametrization angles, {φ, θ} → {φ̃, θ̃}
at NLO in the spin-wave Hamiltonian. If we employ the short-
hand notation γ̃ μ

mn = γ μ
mn(φ̃, θ̃) and r̃μ

1 = rμ
1 (θ̃), we get

H1(φ̃, θ̃) =
√

Nc

2

∑
μ

[∑
γ

(
γ̃

μ
13 + iγ̃ μ

23

) + h

S
r̃μ

1

]
a†

0μ

+ H.c. (C9)

As long as we stop the expansion of the spin-wave Hamil-
tonian at order n = 3, it is consistent to expand the corrected
angles to first order in S−1, as in Eqs. (12) and (13). This yields
H1(φ̃, θ̃) = S−1δH1 + O(S−2) with

δH1 =
√

Nc

2

∑
μ

[
∇Zμ|

φ,θ

(
δθ

δφ

)
a†

0μ + H.c.
]

(C10)

and

Zμ(φ̃, θ̃) =
∑

γ

(
γ̃

μ
13 + iγ̃ μ

23

) + h

S
r̃μ

1 . (C11)

The gradient of Zμ is then given by

∇Zμ =
(

∂Zμ

∂φ̃1
, . . . ,

∂Zμ

∂φ̃Ns

,
∂Zμ

∂θ̃1
, . . . ,

∂Zμ

∂θ̃Ns

)
. (C12)

Each of the partial derivatives above can be written more
explicitly as

∂Zμ

∂φ̃ν

=
∑

γ

∂

∂φ̃ν

(
γ̃

μ
13 + iγ̃ μ

23

)
,

∂Zμ

∂θ̃ν

=
∑

γ

∂

∂θ̃ν

(
γ̃

μ
13 + iγ̃ μ

23

) + δμν

h

S

∂ r̃μ
1

∂θ̃ν

. (C13)

With this, we proceed to the cubic term, n = 3. Since we
are only accounting for NLO effects in 1/S, it suffices to eval-
uate all γ μ matrices at the classical parametrization angles,
(φ, θ). We thus obtain

H(γ )
3 = − 1

4
√

2

∑
iμ

′{(
γ

μ
13 − iγ μ

23

)
a†

iμaiμaiμ

+ 4a†
iμa†

jνγ

[(
γ

μ
13 + iγ μ

23

)
a jνγ

+ (
γ

μ
31 + iγ μ

32

)
aiμ

]
+ (

γ
μ
31 − iγ μ

32

)
a†

jνγ
a jνγ

a jνγ

} + H.c. (C14)

and

Hh3 = − h/S

4
√

2

∑
iμ

rμ
1 a†

iμ(a†
iμ + aiμ)aiμ. (C15)

After combining Eqs. (C14) and (C15), one can use the fact
that H1(φ, θ) = 0 to simplify H3 considerably. The result is

H3 = − 1√
2

∑
iμγ

′[(
γ

μ
13 + iγ μ

23

)
a†

iμa†
jνγ

a jνγ

+ (
γ

μ
31 + iγ μ

32

)
a†

jνγ
a†

iμaiμ + H.c.
]
. (C16)

According to our discussion in Sec. II D, we must now cast
Eq. (C16) into normal order, H3 = :H3: + H(1)

3 . By using

Wick’s theorem, one finds that the residual linear term, H(1)
3 ,

depends on the averages

mμν,γ = 〈
a†

iμa jνγ

〉
, �μν,γ = 〈

aiμa jνγ

〉
,

nμ = 〈a†
iμaiμ〉, δμ = 〈aiμaiμ〉. (C17)

To avoid ambiguity, we have explicitly indicated the bond type
γ involved in the parameters �μν,γ and mμν,γ . In fact, this
distinction is essential here due to the anisotropy introduced
by the Kitaev exchange. Our considerations from Appendix A
allow us to express all of the quantities above in terms of the
eigenvectors of σ3Mk with positive eigenvalues. If we denote
by δγ the vector that connects a site μ to its nearest neighbor
ν along a γ bond, we obtain

mμν,γ = 1

Nc

∑
kλ

e−ik·δγ V ∗
kλ,Ns+νγ

Vkλ,Ns+μ,

�μν,γ = 1

Nc

∑
kλ

e−ik·δγ V ∗
kλ,Ns+νγ

Vkλ,μ,

nμ = 1

Nc

∑
kλ

|Vkλ,Ns+μ|2,

δμ = 1

Nc

∑
kλ

V ∗
kλ,Ns+μVkλ,μ. (C18)

The single-boson term H(1)
3 then reads

H(1)
3 = −

√
Nc

2

∑
μγ

′[
m∗

μγ

(
γ

μ
31 + iγ μ

32

)
+ �μγ

(
γ

μ
31 − iγ μ

32

) + nνγ

(
γ

μ
13 + iγ μ

23

)]
a†

0μ + H.c.
(C19)

The corrected reference state is determined by demanding
the additional linear term to be zero, H(1)

3 + δH1 = 0. From
Eqs. (C10) and (C19), one can see that this leads to a system
of linear equations

∇Zμ

∣∣
φ,θ

(
δθ

δφ

)
= xμ, μ = 1, . . . , Ns, (C20)

with coefficients

xμ =
∑

γ

[
nνγ

(
γ

μ
13 + iγ μ

23

) + m∗
μγ

(
γ

μ
31 + iγ μ

32

)
+ �μγ

(
γ

μ
31 − iγ μ

32

)]
. (C21)

Although we have developed the results with reference to the
HK Hamiltonian, it is worth noting that the formalism remains
valid for other spin models under a suitable adaptation of the
γ μ matrices, Eq. (C5).

To illustrate the procedure, we present some explicit results
for h ‖ [001]. In this case, all ordered phases are coplanar, so
that the azimuthal angles φμ are exempt from 1/S corrections.
Moreover, the fact that order-by-disorder mechanisms do not
interfere with the uniform canting allows us to compute a sin-
gle quantity, δθ = δθμ for all μ ∈ {1, . . . , Ns}, in each phase.
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FIG. 13. Representation of the domains of the canted stripy and
canted zigzag phases used to obtain the results in Eqs. (C24) and
(C23). Each of the four magnetic sublattices is labeled by a number
from 1 to Ns = 4.

In the canted Néel phase, we have

δθ = cot θ

3J + K

[(
J

∑
γ=x,y,z

+K

2

∑
γ=x,y

)
(�γ + mγ − n1)

]
.

(C22)
Interestingly, the expression above singles out the source of
the divergence of δθ at h = hc0. In the presence of a nonzero
Kitaev interaction, the LSW Hamiltonian becomes nondiag-
onal in the Holstein-Primakoff bosons {a†

kμ, akμ} at h = hc0.
This fact, which basically follows from the polarized state not
being an eigenstate of the Hamiltonian, causes the mean-field
averages �γ ≡ �12,γ , m12,γ ≡ mγ , and n1, as well as the
entire term in square brackets in Eq. (C22), to have nonzero
values. Therefore, we conclude that δθ diverges as cot θ when
h → hc0, whereas the product tan θ δθ is generally nonzero
and finite away from the Kitaev point ϕ = π/2.

In the treatment of the canted stripy and canted zigzag
phases, one must bear in mind that a magnetic field along
the [001] direction partially lifts the degeneracy between the
three magnetic domains [5]. In the case of the canted stripy
(zigzag), the pattern with stripes (zigzag chains) running par-
allel (perpendicularly) to the z bonds becomes unfavorable.
By using the configurations represented in Fig. 13, one finds

δθ = cot θ

J + K

[(
J + K

2

)
(�32,x + m∗

32,x − n2)

− K

2
(�34,y + m∗

34,y + n4)

]
(C23)

for the canted zigzag and

δθ = cot θ

2J

[
J
∑
γ=y,z

(�34,γ + m∗
34,γ − n4)

+ K

2
(�32,x + �34,y + m∗

32,x + m∗
34,y + n2 − n4)

]

(C24)

for the canted stripy. Note that Eqs. (C23) and (C24) are also
proportional to cot θ , so that the argument presented below
Eq. (C22) applies for all ordered phases in a [001] field.

APPENDIX D: QUANTUM CORRECTIONS TO THE
SPECTRUM: PARTIALLY POLARIZED PHASE

Finally, we discuss details concerning the computation of
the magnon spectrum at NLO in the 1/S expansion. In gen-
eral, the NLO contributions are generated by the cubic and
quartic terms of the spin-wave Hamiltonian. For simplicity,
consider only the partially polarized phase. In this case, the
classical reference state is collinear, such that combinations
of the type S±

iμS3
jν do not appear after one performs the re-

quired rotations to the spin coordinate system. Consequently,
no contributions with an odd number of bosons are produced
by the Holstein-Primakoff transformation. For this reason, we
shall focus solely on the quartic terms of the spin-wave Hamil-
tonian. The decoupling H4 = :H4: + :H(2)

4 : + H(0)
4 leads to a

quadratic term with a general form

:H(2)
4 : = f1

∑
kμ

:a†
kμakμ:

+
∑

k

[
f2(k):a†

k1a†
−k2: + f3(k):a−k1a†

−k2:
]

+ f4

∑
kμ

:a†
kμa†

−kμ: + H.c., (D1)

with functions f1, . . . , f4, which generically depend on the
wave vector k and the parameters in the Hamiltonian. Note,
however, that f1 and f4 are independent of k because they
multiply pairs of bosons related to the same sublattice. Now
one uses the Bogoliubov transformation to rewrite Eq. (D1) in
terms of the Bogoliubov quasiparticles, reading

H(2)
4 = 1

2

∑
k

β
†
k

(
n∑

n=1

Skn

)
βk + H.c. (D2)

with

Sk1 = f1

4∑
μ=1

|pμ〉〈pμ|

Sk2 = f2(k)|p1〉〈p4| + f2(−k)|p2〉〈p3|
Sk3 = f3(k)|p3〉〈p4| + f3(−k)|p2〉〈p1|

Sk4 = f4

2∑
μ=1

(|pμ〉〈pμ+2| + |pμ+2〉〈pμ|) (D3)

and

〈pμ| = (Vk1,μ Vk2,μ W−k1,μ W−k2,μ) (D4)

for μ = 1, . . . , 4. Thus, we find the self-energy

�k =
4∑

n=1

Skn + H.c., (D5)

which is evidently Hermitian.
As in Appendix C, we can use Wick’s theorem to compute

the coefficients fn in terms of the averages from Eq. (C17).
While laborious, this procedure is straightforward. In the case
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FIG. 14. Nonlinear spin-wave spectra (dots) in the [001] high-field polarized phase including NLO contributions in 1/S for S = 1/2. The
dashed lines correspond to the LSW results. Each row illustrates the effect of lowering the magnetic field from 130% to 100.1% of the classical
critical field hc0 at a constant value of ϕ. Plots (a)–(c) show data for ϕ = 0.3π , whereas (d)–(f) and (g)–(i) correspond to ϕ = 0.62π and
ϕ = 1.687π , respectively. The spectrum acquires a finite and nonzero gap as h → h+

c0 above the canted Néel phase, whereas the gap diverges
as one approaches the transition to the canted zigzag or canted stripy phases. This is consistent with the discussion regarding the reduction of
the critical field in Sec. II F.

of h ‖ [001], the results simplify considerably due to the fact
that all averages from Eq. (C17) are real and obey the relations

n1 = n2 = n,

δ1 = δ2 = 0,

mx = my,

�x = −�y and �z = 0.

(D6)

Taking all of this into account, we arrive at

f1 = J
2

(
3n −

∑
γ

mγ

)
+ K (n − mx − �x )

f2(k) = (J�x − Kn)(eik·δx − eik·δy )

f3(k) = J
∑

γ

(mγ − n)eik·δγ

+ K[2mzeik·δz − n(eik·δx + eik·δy )]
f4 = 0.

(D7)

Here, δγ denotes the nearest-neighbor vector along the γ

bond. In units of the lattice constant, a possible set of
choices is δx = (−1/2,

√
3/2), δy = (−1/2,−√

3/2), and

δz = (1, 0). Along with the eigenvectors of the Bogoliubov
transformation, Eq. (A1), the expressions above complete
the information necessary to compute the spectrum to NLO
in 1/S.

Examples of the resulting spectra are shown in Fig. 14.
Overall, this panel is a good illustration of the key concepts
discussed in Sec. II F. First, note how magnon interactions at
ϕ = 0.3π lead to a finite gap, �1, as h → h+

c0. In contrast, the
spectra immediately above the transitions to the canted zigzag
and canted stripy are shown to diverge at the corresponding
instability wave vectors, Q = M1, M3, as h → h+

c0. Both of
these observations are consistent with the considerations from
Sec. II F. A common feature of all dispersions is that interac-
tions cause the energy of the excitations to increase. Finally,
we note that the nonlinear spin-wave spectra in the bottom row
of Fig. 14 display a kink at the � point, which becomes more
pronounced as one approaches hc0. This may be understood
as an enhancement of the asymmetry between the kx and ky

directions already seen in the LSW spectrum, possibly due
to three-magnon decay processes. Further clarification on this
point is left for future work.
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