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Thermoelectric properties of elemental metals from first-principles electron-phonon coupling
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The Seebeck coefficient is one of the key ingredients in thermoelectric properties, and it is often calculated
based simply on the electronic band structure, within the frame of Boltzmann’s transport theory and the constant
relaxation time approximation. Despite the simplicity and popularity of this approximation, its validity is not
fully justified even in lightly doped semiconductors, and it breaks down completely in metals. On the other hand,
more sophisticated first-principles approaches are available but require the computation of the full electron-
phonon coupling. Here, we demonstrate with several simple (alkali and noble) metals viz., Li, Na, K, Cu, Ag,
Au, and Pt, that the variational approach based on ab initio couplings can reproduce experimental Seebeck
coefficients quantitatively, whereas the constant relaxation time approximation yields significant quantitative
discrepancies and often fails to predict the correct sign. Calculations of the electrical resistivity of these metals
via the variational approach are also reported.
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I. INTRODUCTION

Thermoelectric (TE) effects hold great promise in energy
saving and efficiency applications, through the ability to con-
vert (waste) heat into electricity or vice versa. The Seebeck
effect relates a thermal gradient to a voltage difference and
is directly related to the entropy flow per particle, making it
a sensitive probe of phase transitions and thermodynamics
(reviewed, e.g., in Ref. [1]). Many efforts [2,3] have been
devoted to improve the TE figure of merit (ZT), requiring
a material to have high power factor (product of electrical
conductivity σ and square of Seebeck coefficient S2) and low
thermal conductivity. However, intriguing interdependencies
among these transport properties make systematic improve-
ment very challenging [4]. To find new TE materials with
better performance, in addition to experiments, computations
have played an important role in interpreting the TE behavior,
understanding the underlying mechanism, and even predicting
TE properties for new materials via density functional theory
(DFT), high throughput [5–7], or machine learning techniques
[8–10].

Accurate calculation of TE properties is vital in the in-
telligent materials search framework, either for a detailed
understanding of the physics or to guarantee high-fidelity data.
The most widely used first-principles computational method
is to solve the Boltzmann transport equation (BTE) by the
constant relaxation time approximation (CRTA) [11–13]. This
approximation is not applicable rigorously even for the sim-
plest case, i.e., free electrons with a spherical Fermi surface
since the electron-phonon scattering is anisotropic. However
the CRTA has the strong advantage of efficiency—it only
needs band energies and derivatives as input—and it works
surprisingly well, even beyond its formal range of applicabil-
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ity in many cases, for instance in Refs. [14,15]. For lightly
doped semiconductors, the current state of the art is the
full wave vector dependent solution of Boltzmann’s equation
[16–18], using an electron-phonon coupling (EPC) scattering
kernel calculated from first principles and making an effec-
tive relaxation time approximation: Each electron state has
a single averaged scattering time, in the mean field of all
other electrons in equilibrium. This approach has only started
to be applied to transport in metals recently [19–21], in part
because most metal Fermi surfaces are much larger than the
pockets found in lightly doped semiconductors. This implies
heavier numerical grid integrations involving all points in the
Brillouin zone (BZ), instead of a small fraction. A simple
variational approach (VA) was developed by Allen in the
1970s [22] based on spatial harmonics of the Fermi surface.
Allen’s method has been extended by Eiguren and Gurtubay
[23] to solve an explicit Helmholtz equation on the numerical
Fermi surface (FS), but we will use the standard approach, in
its fully inelastic expression.

In 2014 we showed that the CRTA yields the wrong sign
for the Seebeck coefficient in lithium, whereas the VA works
very well [24]. Lithium should have electrons as the majority
charge carriers, and this is borne out by Hall effect measure-
ments [25,26]. One would usually expect S < 0, which the
CRTA produces, but in Li the true S is positive and increases
with temperature. It remains an open question whether the
failure of CRTA in lithium is only a special case or if it occurs
widely in other materials: In the transition metal series there
are many instances of both positive and negative S.

The Seebeck coefficients of Cu, Ag, Au, and Pt have
recently been studied by Kou and Akai using the Korringa-
Kohn-Rostoker coherent potential approximation (KKR-
CPA) method, which yields the correct sign with some
quantitative discrepancies [27]. The same method was also
adopted to predict the behavior of S under high pressure and
temperature for Pt [28].
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In this paper, we extend the comparison between CRTA
and VA to other elemental metals, including sodium and
potassium (alkali metals with negative S), and four noble
metals, viz., copper, silver, gold, and platinum, which have
filled d bands, s-like nearly-free-electron (NFE) conduction,
but for which S > 0 in Cu, Ag, and Au, and S < 0 in Pt. The
choice of elements covers a variety of cases to extract insight
on the validity of the two computational approaches. We find
that the CRTA fails often in metals, where the details of the
band dispersion as well as the varying strength of the EPC
both matter in detail for the value and even the sign of S. The
VA is robust and efficient, requiring a one-shot FS integral for
a closed form solution of the BTE.

II. COMPUTATIONAL DETAILS

The electronic band structures, electronic velocities, den-
sity of states (DOS), phonon dispersion, and EPC matrix
elements are calculated within density functional theory
(DFT) and density functional perturbation theory (DFPT)
[29,30], carried out using the ABINIT package [31–33].
The exchange and correlation functional is treated with the
generalized gradient approximation and the Perdew-Burke-
Ernzerhof functional (GGA-PBE). See the Appendix for more
details. For each studied metal, an unshifted 24 × 24 × 24 k-
point grid and 12 × 12 × 12 q-point grid are employed,
ensuring good convergence for transport properties. A 36 ×
36 × 36 k-point grid and 12 × 12 × 12 q-point grid yield
nearly the same resistivity and Seebeck coefficient for Pt,
which has the most complex Fermi surface among the studied
cases. The EPC matrix elements on the coarse q grid are
Fourier interpolated onto the dense k grid. We note that the
small FS pockets in doped semiconductors makes k-point
convergence more stringent than in metals, and the VA being
a full integral over the FS is less sensitive than individual
state lifetimes. The plane-wave basis functions with kinetic
energies up to 20 Hartree are used in alkali metals and 25
Hartree in noble metals. Test calculation with 40 Ha of cutoff
energy for Au yields a very similar result. We also examine the
effect of spin-orbit coupling, for heavy elements such as Au
and Pt. The band shape can be slightly altered, as compared in
Ref. [34] for Au, and in certain compounds, such as bismuth
[35] or lead [36], the phonons can be altered as well.

The Seebeck coefficients are calculated using at least two
methods, both within the frame of Boltzmann’s transport the-
ory. The first method takes the CRTA solution to the BTE,
as implemented in the BOLTZTRAP code [11,12]. Within the

CRTA, S is independent of the lifetime chosen. The second
method is the VA, adopting the lowest-order variational ap-
proximation (LOVA) to the Boltzmann transport equation,
as derived by Allen [37]. In our work only electron phonon
scattering is considered, which is the main mechanism and
has a strong temperature dependence in pure metals, and the
Fermi smearing effect is fully considered. Via VA, the elec-
trical resistivity is also calculated. Details of both methods
are described in Appendix A. A significant advantage of the
VA is that the full distribution of occupations is in a realistic,
out-of-equilibrium state. In standard relaxation time approx-
imations, each lifetime is calculated presuming equilibrium
occupations for all other states, as a single electron is excited
and then relaxes back (exponentially) to its ground state. In
the VA an effective steady state is posited with a functional
form for the occupation departure from equilibrium, giving
full transport coefficients in a single integral. One limitation is
for very small Fermi surfaces, where dense wave-vector grids
must be used. This problem is present in all EPC methods,
but RTA lifetimes are always well defined, even for T = 0 in
a semiconductor with the chemical potential in the gap. As
shown in the Appendix, the VA functional forms by Allen
include a 1/N (εF ) factor, which will fluctuate strongly near
a band edge and is not defined in the gap.

III. RESULTS AND DISCUSSION

For each metal, the ambient-condition crystal structure is
considered in this work, i.e., body centered cubic (bcc) for
the alkali metals and face centered cubic (fcc) for the noble
metals. These structures also turn out to be the ones that
occur in the widest temperature range. Lithium and sodium
are known to transform to a closed-packed 9R phase at low
temperatures (<∼77 K for Li and <∼35 K for Na) [42].

DFT optimized lattice constants are used for calculations
of band structures and transport properties [43]. As listed in
Table I, the calculated values agree well with experiments
measured at room temperature, with errors all being less than
2%. GGA typically overestimates lattice constants, which is
the case for Cu, Au, and Pt, but interestingly, underestimation
is found for Li, Na, K, and Ag. Note that thermal expansion is
not taken into account in the present study. Test calculations
on Au with slightly larger lattice constant (corresponding to
1000 K) show that the influence on transport properties is
quite small, e.g., S at 1200 K is only 9% smaller than that
of the relaxed lattice constant.

TABLE I. Calculated lattice constant (in Å), transport electron phonon coupling constant λtr, and electron-phonon mass enhancement
parameter λ for the alkali and noble metals. Experimental and other reported values are also listed.

Li Na K Cu Ag Au Pt

a (This work) 3.436 4.199 5.123 3.655 4.061 4.104 3.945
a (Expt. at RT) [26,38] 3.491 4.225 5.225 3.597 4.079 4.065 3.912

λtr (This work) 0.236 0.142 0.071 0.126 0.128 0.137/0.219 (SOC) 0.534/0.700 (SOC)
λtr (Ref. [39]) 0.35 0.14 0.11 0.13 0.12 0.15 0.66
λ (This work) 0.411 0.220 0.101 0.137 0.150 0.193/0.220 (SOC) 0.699/0.461 (SOC)
λ (Ref. [21,39–41]) 0.4 ± 0.1 0.16 ± 0.03 0.13 ± 0.03 0.15 ± 0.03 0.13 ± 0.04 0.17 ± 0.05 0.31,0.559,0.612,0.58
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FIG. 1. Calculated band structure and density of states (DOS) for Li, Na, K, Cu, Ag, Au, and Pt. For heavy elements Au and Pt, results
with spin orbit coupling (SOC) are also included.

We first examine the electronic band structures, which are
well known in the literature but essential to understand the
transport properties. In particular, band energies are the only
ingredient for the CRTA approach. The alkali metals have one
s valence electron, thus NFE-like behavior is expected. This
is a good approximation for Na and K, since the Fermi energy
(εF ) crosses a band with a parabolic shape, as shown in Fig. 1.
But in Li, εF is very close to a distortion of the NFE band
structure, which corresponds to the spherical Fermi surface
bulging towards the N point on the boundary of the first BZ
(Fig. 3). In Fig. 2, it clearly shows that the DOS in Li has
a significant increase near εF , whereas it is close to a linear
relationship for Na and K (in the tail of a square root DOS).

For Cu, Ag, and Au, the outermost valence electron is
also one s electron in addition to the fully filled d orbitals,
and the bands near εF resemble the parabolic band in alkali
metals, but with two kinks, one above and one below the εF ,
which correspond to the Fermi surface touching the Brillouin
zone boundary at X and L points (Fig. 3), respectively. The
electron filling of the Fermi sphere is the combination of the
influence of the inner d states and the lattice constant, causing
the DOS to deviate from the NFE picture (Fig. 2). The energy
dependence of the DOS near εF is monotonic decreasing for
Cu but more complex for Ag and Au. On the other hand, Pt

atoms have 5d9 and 6s1 electrons, yielding an εF crossing both
the d and s bands. Its DOS at εF is close to a maximum and
decreases faster on the higher energy side. The Fermi surface
of Pt is more complex: The Fermi surface of the s electrons is
significantly distorted from the spherical shape (red color in
Fig. 3), and the d-electron Fermi surface is holelike (a small
hole pocket in yellow and a complex hole network in green).
Purely based on the DOS, holelike transport behavior may
be expected from Cu and Pt, but both metals have negative
Hall coefficients so that the majority charge carriers are still
electrons. For Au and Pt, band structures including SOC are in
good agreement with former DFT calculations [34,44]. SOC
has a noticeable effect on the band structure, in particular for
the filled bands.

The other ingredient of electron phonon coupling—phonon
dispersion—is shown in Appendix B (Fig. 8). The DFPT
calculated phonon dispersion curves are in reasonably good
agreement with experiments, with a maximum error over all
elements of less than 9% for the highest frequency. The slight
overestimation in Li and K is likely due to the smaller lat-
tice constants from DFT compared with measurements, and
likewise, the underestimation in Au can be related to the
larger lattice constant adopted in the phonon calculation or
the neglect of SOC. Excepting Pt, a clear trend can be seen
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FIG. 2. Calculated density of states near the Fermi energy for Li, Na, K, Cu, Ag, Au, and Pt. For heavy elements Au and Pt, results with
spin orbit coupling (SOC) are also included.

in the alkali and noble metals; for each group the phonons
become softer with increasing atomic number, maintaining
a similar shape of the dispersion curves. SOC is found to
slightly upshift the phonon frequencies, yielding improved
agreement for Au.

The transport properties are determined by the electron
phonon interactions, but it is nontrivial to understand EPC
simply based on the Fermi surfaces and phonon dispersions;
the transport electron phonon coupling constant [Eq. (A11)
in Appendix A] characterizes the integrated average strength
of EPC related to transport properties. In alkali metals, as
shown in Table I, λtr decreases monotonically from Li to K be-
cause of improved Fermi surface nesting in Li and the harder
phonons. On the other hand, in noble metals, λtr increases
slightly from Cu to Au, related to Fermi nesting phonon
frequency changes. Note that λtr = 0.14 for Cu was reported
by Savrasov and Savrasov [45], which is quite close to our
result. The other noble metal Pt has the largest transport EPC
constant among the studied metals, contributed by its complex
Fermi surface that allows more effective Fermi nesting. For
heavier elements Au and Pt, λtr is apparently larger when in-
cluding SOC. We also listed the estimated values based on the
experimental resistivities [39], which are generally consistent

with our predictions. The electron-phonon mass enhancement
parameter λ is also calculated and compared with literature
values in Table I.

Now let us turn to the temperature dependence of the
electrical resistivity ρ (Figs. 4 and 9). For the alkali met-
als, only the bcc structure is considered in our calculations,
which should be compared with experiments. Also note that
ρ is calculated with the variational approach [Eq. (A14) in
Appendix A], which does not require any empirical param-
eter or fitting to experimental data. The CRTA approach is
not adopted for ρ because of the undetermined relaxation
time: The intrinsic electron temperature variation of ρ in the
CRTA is almost negligible (less than 1 part per thousand over
1500 K), and the full T dependency is due to the variation
of the effective electron lifetime following EPC. The VA
calculated results are in good agreement with the measured
data [46] for Li; in particular the temperature dependence
is well reproduced. The DFT value in the elastic resistivity
formula initially used by Allen and then Savrasov is linear
at high T by construction, but the exponent in our inelastic
formula can vary, which is visible in the plots for Pt and K.
For Na the agreement is good up to room temperature, then the
measured ρ increases faster. For K, the agreement holds only
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FIG. 3. Calculated Fermi surfaces of Li, Na, K, Cu, Ag, Au, and Pt.

at very low temperature (below 50 K), and the measurements
are highly nonlinear at higher temperature. Both departures
from the Bloch-Grüneisen behavior are probably linked to
the pre-liquid phase just below the very low melting temper-
atures: Stronger fluctuations of density and structure create
an additional internal resistivity—the study of the electrical
resistance in a unified Boltzmann type formalism across the
melting point would be a very interesting topic for future re-
search. For the noble metals, excellent agreement is obtained
between calculations and experiments [47–49], for both low
and high temperatures, even for Pt with a complex Fermi
surface. It is interesting to point out that the transport EPC
constants reflect the relative magnitudes of ρ in these metals.

Finally, the temperature dependence of the Seebeck coef-
ficients S are computed with both CRTA and VA approaches
and compared with experimental data [47–62], as shown in
Fig. 5. It is worth noting that S in metals is a more delicate
quantity than ρ, due to the cancellation effect from, respec-
tively, the electronlike and holelike charge carriers above and
below the Fermi energy [Eqs. (A4) and (A14) in Appendix A].
For the studied alkali metals, Li is the only one that exhibits an
abnormal positive sign of S. The variational prediction yields
not only the correct sign but also a quantitative agreement
with experiments. On the contrary, CRTA predicts a negative
S, implying that the constant relaxation time fails even in a

simple monovalent metal such as Li. As it was explained in
Ref. [24], the positive S in Li can be attributed to the peak
in the DOS near the Fermi energy due to band bending near
the edge of the BZ. This leads to a higher scattering rate
for electrons above the εF than holes below the εF . For Na
and K, both methods predict the correct negative sign of S;
however, the quantitative agreement is excellent for VA, while
CRTA largely underestimates the magnitude. Even for metals
with normal sign of S, VA is a much more accurate method
(though certainly heavier numerically) compared with CRTA.
The melting transition appears as a jump (Li) or a kink (Na)
of the experimental Seebeck coefficient, as opposed to the
divergence in ρ.

Cu, Ag, and Au are three noble metals that have positive
Seebeck coefficients. Again, CRTA predicts wrong signs here,
i.e., negative S. For VA, excellent agreement is achieved in
Cu at all temperatures. In Ag, there is slight underestimation
when compared with the data of Ref. [57] (LB [58Cu]), and
moderate underestimation when compared with the data of
Ref. [58] (LB [56Ru]). The small “hump” at very low tem-
perature from the Ref. [60] (LB [65Sc]) experimental data is
probably caused by phonon drag, which is not included in the
present study. Test calculations considering thermal expansion
(larger lattice constant) yield larger S, suggesting that the
agreement can be improved further. In Au, the VA predicted
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FIG. 4. Electrical resistivity as a function of temperature for Li, Na, K, Cu, Ag, Au, and Pt, compared with experimental data [46–49]. For
heavy elements Au and Pt, results with spin orbit coupling (SOC) are also included.

S agrees with experiments for temperature below ∼500 K and
overestimates for higher temperatures. Interestingly, a clear
saturation of S at high temperature can be noticed in the mea-
sured data, which is different from the other studied metals.
A possible explanation is that the ‘kink’ in the electronic
structure above εF in Au is closer than for Cu or Ag, and
more accurate GW calculations predict that this ‘kink’ should
be even closer [34], which may contribute to the saturation.
Including SOC yields a slightly bent curve, with higher values
at low temperature and lower for high temperatures, compared
with the result without SOC. The shape of the T dependence
with SOC has a better agreement with experiment.

For Pt, the measured data are scattered at low temperature,
with S < 0 in Ref. [58] (LB [56Ru]) but S > 0 below ∼200 K
in Refs. [57,62] (LB [73Mo] and [58Cu]). The small positive
“hump” again arises due to the phonon drag effect. Ignoring
the phonon drag peak, our VA predicted S is always negative
and agrees reasonably well with the experimental data. Likely
due to the complex Fermi surface, S in Pt has a normal sign,
while CRTA wrongly predicts a positive S. The several sheets
allow many interband (s-d) scatterings involving phonons,
which will have very different relaxation times, again un-
derscoring effects beyond the pure electronic dispersion. The

SOC calculations improve the resistivity with respect to exper-
iment but overestimate the Seebeck coefficient—clearly we
are pushing the boundaries in accuracy of semilocal DFT band
structures with perturbative SOC (in the pseudopotential) and
neglecting changes of the band energies with temperature.

IV. CONCLUSIONS

In summary, we have calculated the electrical resistivity
and Seebeck coefficients entirely from a first-principles vari-
ational formalism, for selected alkali (Li, Na, and K) and
noble metals (Cu, Ag, Au, and Pt), combining electron phonon
scatterings, electron band structures, density of states, Fermi
surfaces, and phonon dispersion curves. Among these, Li,
Cu, Ag, and Au have abnormal positive Seebeck coefficients.
The theoretical predictions are compared with experimental
data, and quantitative agreement is achieved with only a few
exceptions, viz., the underestimation of resistivity for K and
Na, understood as a signature of the approaching melting
transition. The constant relaxation time approximation is also
used to compute the Seebeck coefficients, but it fails to predict
the correct sign for Li, Cu, Ag, and Au with positive S and for
Pt with negative S. CRTA also significantly underestimates the
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FIG. 5. Seebeck coefficient as a function of temperature for Li, Na, K, Cu, Ag, Au, and Pt, compared with experimental data [50–62]. For
heavy elements Au and Pt, results with spin orbit coupling (SOC) are also included.

magnitude of S for Na and K. We have demonstrated that the
variational approach has remarkable accuracy in predicting
the transport properties of metals. This includes those with
an abnormal sign for the Seebeck effect and complex Fermi
surfaces involving d electrons and even for metals with very
low S which are numerically challenging. The addition of spin
orbit coupling does not seem to improve simultaneously ρ and
S for Au and Pt. The SOC effect is probably of the same order
of magnitude as other corrections such as anharmonicity and
thermal expansion (related to the exceptional ductility of Au)
and intrinsic exchange correlation errors in the DFT. The case
of Au in particular, with high temperature saturation of S, war-
rants further study with even more accurate levels of theory.
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APPENDIX A: AB INITIO SEEBECK COEFFICIENT

1. Computational details

We explicitly treat 1 valence electrons for Li (2s1), Na
(3s1), and K (4s1); 11 valence electrons for Cu (3d104s1), Ag
(4d105s1), and Au (5d106s1); and 10 valence electrons for Pt
(5d96s1). The lattice constants were fully relaxed (stresses
below 0.01 GPa) yielding the lattice constants given in
the main text. To check the “purely electronic” SOC effect, the
same lattice constants are used, relaxed without SOC. The
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pseudopotentials employed are generated by the FHI-98PP
[63] (no SOC) and the Hartwigsen-Goedecker-Hutter codes
[64] (SOC).

2. The Boltzmann transport equation

In bulk materials, the transport properties of electrons un-
der a uniform electric field E and temperature gradient ∇T
are often described by the semiclassical Boltzmann’s transport
equation (BTE), i.e.,

−vk · ∂ fk

∂T
∇T − vk · e

∂ fk

∂εk
E = −∂ fk

∂t

∣∣∣∣
scatt

, (A1)

where e is the absolute value of the charge of an electron, vk
is the group velocity at state k (short for kn, wave number
and band index), εk is the energy of the electron at state k,
and fk is the probability distribution function at state k. The
term on the right hand side of Eq. (A1) is due to the scat-
tering of electrons, e.g., with phonons, electrons, impurities,
defects, etc.

3. The relaxation time approximation

The BTE can be solved by assuming relaxation time that
characterizes the average time between scatterings. The partial
derivative of the scattering term in Eq. (A1) can be approxi-
mated as

−∂ fk

∂t

∣∣∣∣
scatt

= fk − f 0
k

τk
, (A2)

where τk is the relaxation time that depends on k. In cases
that the relaxation time has a weak k dependence, the cal-
culation of the transport properties can be much simplified
with a constant relaxation time. Thus the k dependence only
resides in the band structure. This approach has been adopted
by the BOLTZTRAP [11,12] and BOLTZWANN [13] codes. An
energy-dependent conductivity tensor can be defined as

σαβ (ε) = Nse
2
∑

k

τkvα (k)vβ (k)δ(ε − εk )

→ Nse
2τ

∑
k

vα (k)vβ (k)δ(ε − εk ) , (A3)

where Ns is a spin factor of 2 if the bands are spin degenerate
and not spinors. In the collinear spin case there are 2 σ tensors,
one for each spin. The Seebeck coefficient can be written as

Sαβ = 1

eT

∫
σαβ (ε)(ε − εF )

( − ∂ f
∂ε

)
dε∫

σαβ (ε)
( − ∂ f

∂ε

)
dε

. (A4)

4. The variational solution

The BTE can also be solved by a variational method, as de-
rived by Allen [37]. A critical difference with any RTA is that
all electrons populations are modified simultaneously, which
is more realistic for a steady state current, and incorporates
correlations between couplings and band dispersions in differ-
ent parts of the Brillouin zone. Under weak perturbations, fk
can be expanded around the equilibrium Fermi-Dirac function
f 0
k , only keeping the linear order deviation [65],

fk ≡ f 0
k − φk

∂ f 0
k

∂εk
, (A5)

and the scattering term can be written in terms of the function
φk with the scattering matrix Qkk′ .

−∂ fk

∂t

∣∣∣∣
scatt

=
∑

k′
Qkk′φk′ . (A6)

The electric and heat currents can be expressed as

je = −e Ns

∑
k

vkφk

(
− ∂ f

∂εk

)

jQ = Ns

∑
k

εkvkφk

(
− ∂ f

∂εk

)
. (A7)

To solve the BTE, Allen proposed basis functions com-
posed of products of the k-dependent Fermi-surface harmon-
ics (FSH) Fα (k) and energy-dependent polynomials ζn(ε)
defined as follows,

χαn(k) = Fα (k)ζn(εk )

N (εk )vα (εk )
, (A8)

where N (εk ) is the density of states at energy εk, and Fα (k) =
vα (k)/vα (ε) with α the Cartesian direction (α = x, y, z) and
v2

α (ε) = [
∑

k v2
α (k)δ(εk − ε)]/N (ε). We adopt the lowest-

order variational approximation (LOVA), in which only the
lowest nonzero FSH (the normalized Fermi velocity) is used.
One can see from the normalization by N (εk ) that the ansatz
is explicitly built for metals: Applications to semiconductors
work only if the doping is such that the chemical potential is
within the conduction or valence band.

The zeroth and first order energy polynomials are usually
adequate for converged results. ζ0 = 1, and ζ1 = √

3 ε/πkBT ,
where kB is the Boltzmann constant. In terms of these basis
functions, the scattering operators in Eq. (A6) are calculated
as:

(Qnn′ )αβ = 2πVcellN (εF)

h̄kBT

∫
dεdε′dω

∑
s,s′=±1

f (ε)[1 − f (ε′)] × {[n(ω) + 1]δ(ε − ε′ − h̄ω) + n(ω)δ(ε − ε′ + h̄ω)}

×α2
AllenF (s, s′, α, β, ε, ε′, ω) × J (s, s′, n, n′, ε, ε′) . (A9)

Here Vcell is the volume of the unit cell, h̄ is the reduced Planck constant, n is the Bose Einstein distribution, and ω is the
phonon frequency. α2

AllenF and J are, respectively, the transport spectral function and the joint energy polynomial defined as

α2
AllenF (s, s′, α, β, ε, ε′, ω) = 1

2N (εF )

∑
kk′

∣∣gqν

kk′
∣∣2

δ(εk − ε)δ(εk′ − ε′)δ(ωq − ω)

× [Fα (k) − sFα (k′)][Fβ (k) − s′Fβ (k′)] (A10)
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with gqν

kk′ = �ηqν/
√

2Mωqν 〈ψk|δV qν |ψk′ 〉 being the electron-
phonon coupling (EPC) matrix between electrons at k at k′,
through phonon mode ν at point q. k′ − k = q + g with g
a reciprocal lattice vector. We omit the sums over electron
bands, which are systematically carried out along with the
sum over wave vectors k and k′. Both intra and interband
transitions are taken into account in all cases. M is the atomic
mass, and �ηqν are the phonon eigenvectors. δV qν is the defor-
mation potential. ψk j is the wave function for state k j. Here
only the scattering of electrons by phonons is considered. The
transport spectral function α2

AllenF is analogous to the Eliash-

berg spectral function for superconductivity but weighted by
contributions from electron velocities.

In analogy to the superconducting EPC constant, a trans-
port EPC constant can be defined as following, which can
characterize the strength of EPC relevant to transport.

λtr = 2
∫ ∞

0
dω

α2
trF (ω)

ω
, (A11)

where the (usual, adiabatic, or on-shell) transport spectral
function α2

trF (ω) is:

α2
trF (ω) = N (εF )

∑
kk′

∣∣gqν

k jk′ j′
∣∣2

(vkα − vk′α )2δ(εk − εF )δ(εk′ − εF )δ(ωq − ω)∑
kk′ (vkα − vk′α )2δ(εk − εF )δ(εk′ − εF )

. (A12)

For the sign of the Seebeck coefficient S a crucial quantity is the joint function J (s, s′, n, n′, ε, ε′) in Eq. (A9):

1

4

[
ζn(ε)

N (ε)v(ε)
+ s

ζn(ε′)
N (ε′)v(ε′)

][
ζn′ (ε)

N (ε)v(ε)
+ s′ ζn′ (ε′)

N (ε′)v(ε′)

]
. (A13)

With the electric and heat currents [Eq. (A7)], and assuming
Q−1

nn′ can be truncated by keeping only the upper left 2 × 2
part of the matrix, the electronic transport coefficients can be
found as

ραβ = 1

2e2
(
Q−1

00

)
αβ

≈ 1

2e2
(Q00)αβ

Sαβ = − πkB√
3e

(
Q−1

01

)
αβ(

Q−1
00

)
αβ

≈ πkB√
3e

∑
γ

(Q01)αγ

(
Q−1

11

)
γ β

. (A14)

5. Umklapp and normal processes

By wrapping the wave vectors into the first Brillouin zone,
we treat all transitions on the same footing and the expressions
above are universal. We detail here briefly the distinctions
which are made between Umklapp and normal scattering, and
some possible pitfalls. It has been traditional since Peierls
to separate scattering processes into normal and Umklapp,
depending on whether or not the sum of wave vectors goes
outside the first Brillouin zone, i.e., whether g = 0 in the
quasimomentum conservation above, and to consider that only
Umklapp processes are resistive both for electron and phonon
transport. It has been shown by several authors that this dis-
tinction is not universal: As noted by Maznev and Wright [66]
the U/N separation is ambiguous and depends on the choice
of unit cell. Further, this distinction is insufficient: Normal
processes can be resistive and Umklapp processes are not
always resistive (in the sense that the thermal current can keep
the same direction).

In the example of phonon scattering, with an isotropic
Debye approximation, ωq = vs|q| and the group velocity is
vg(q) = ∇qωq = vsq̂. In this case

q + q′ = q′′ → (A15)

vs|q|vsq̂ + vs|q′|vsq̂′ = vs|q′′|vsq̂′′ (A16)

ωqvg(q) + ωq′vg(q′) = ωq′′vg(q′′). (A17)

Here it is clear that the heat current is conserved if g = 0. In
the general case with band dispersion, however, conservation
of quasimoment is different from conservation of current flow
(as noted in the hypotheses of Ziman [65] chapter VIII which
presumes a strict Debye dispersion).

A counterintuitive phonon case is shown in the cartoon of
Fig. 6: A normal process combining the same phonon twice
conserves both energy and momentum, stays within the first
Brillouin zone (1BZ), and yet arrives in a segment of the
phonon dispersion with negative group velocity, producing a
heat current in the opposite direction. The process is normal
and yet resistive. The inverse can happen with a slightly larger
q which goes beyond the 1BZ: It will arrive in the 2BZ (Umk-
lapp process) at a point which has positive group velocity and
hence does not backscatter the velocity, though usually the
final velocity will be lower and the process is still resistive.

More common (due to energy conservation) are normal
transitions combining two acoustic modes into a low lying

FIG. 6. Example dispersion with a “normal” two phonon process
which produces a negative thermal current contribution and is there-
fore resistive.
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FIG. 7. Example Fermi surface with a “normal” phonon process
which produces a negative (resistive) current contribution (along x)
and an Umklapp process which does not backscatter the charge
current (remains positive along x) but only deflects it.

optical one, with much lower group velocity, often negative,
at the edge of the 1BZ. Again there is a reduction or even
inversion in the thermal current contribution (resistive).

A similar qualitative reasoning is often applied for elastic
scattering of electrons in an isotropic parabolic band, by De-
bye phonons, but suffers from the same limitations. vg(k) =
1
h̄∇kεk = h̄2

m∗ k and all electrons stay at the Fermi level εF .
Even in this model, for realistic electron phonon coupling,
there is resistivity associated both to N and U processes (see,
e.g., Ziman [65] chapter IX), as the charge current will always
be changed by the scattering. Intuition would still hold that it
is changed more by U processes. However, any nonparabolic
dispersion destroys the link between vg(k) and k, and for
“gnarly” Fermi surfaces the velocity can be arbitrarily ori-
ented with respect to k: vg and k can be orthogonal and
even antiparallel for a nonspherical Fermi surface (cartoon
Fig. 7). Thus a “normal” can generate not just a reduction but
a negative contribution to the current, and a resistive Umklapp
transition can preserve a positive current contribution.

APPENDIX B: PHONON DISPERSION

As an essential ingredient of the electron-phonon coupling,
DFPT calculated phonon dispersion curves of the alkali and

FIG. 8. DFPT calculated phonon dispersion curves, compared with experimental data [67–73], for Li, Na, K, Cu, Ag, Au, and Pt. For
heavy elements Au and Pt, results with spin orbit coupling (SOC) are also included.
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FIG. 9. Logarithmic-scale electrical resistivity as a function of temperature for Li, Na, K, Cu, Ag, Au, and Pt, compared with experimental
data [46–49]. For heavy elements Au and Pt, results with spin orbit coupling (SOC) are also included.

noble metals are shown in Fig. 8, together with experimental
data for comparison. Overall there is very good agreement of
our calculations with measured dispersion in all cases (within
a few percent for all frequencies). The calculated phonons
have a slight overestimation for the alkali metals and slight
underestimation for the noble metals, which can be attributed
to the DFT lattice constants (Table I), i.e., smaller for alkali
metals and larger for noble metals. In general GGA produces
larger lattice constants, and additional refinement with semi-
core electrons may produce even better agreement for the
alkalis.

APPENDIX C: LOW-TEMPERATURE
ELECTRICAL RESISTIVITY

To better illustrate the low-temperature electrical resistivity
comparison with experiments, we include here logarithmic-
scale plots for all the studied metals (Fig. 9). The general
agreement is rather good above 20 K, considering that Li
and Na are not bcc below ∼77 and ∼35 K, respectively. At
lower temperatures, i.e., below 20 K, the numerical integra-
tion would require finer k grids to obtain converged results,
and the experimental data is complicated by electron-electron
scattering and impurity effects.
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