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Channel-selective non-Fermi liquid behavior in the two-channel Kondo lattice
model under a magnetic field
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Stimulated by anomalous behaviors found in non-Kramers f -electron systems in an applied magnetic field,
we study a two-channel Kondo lattice model by using a cluster extension of the dynamical mean-field theory
combined with the continuous-time quantum Monte Carlo method. We include the effect of the external magnetic
field in two ways: the Zeeman coupling to conduction electron spins and an effective coupling to the quadrupole
degree of freedom through the crystalline electric field splitting. We show that the magnetic field suppresses
the antiferroic-spin order (physically, corresponding to the antiferroic-quadrupole order) and yields a channel-
selective non-Fermi liquid state where one of the two channels (physically, spin-up or spin-down) exhibits non-
Fermi liquid behavior while the other shows Fermi liquid behavior, before entering the Fermi liquid regime
in higher fields. This anomalous state appears in a dome-shaped region which extends from the antiferroic-
spin ordered phase to the paramagnetic phase. We find that the composite correlation, which is a measure of
differentiation in the Kondo coupling between the two channels, is enhanced in this dome-shaped region. We
also find that the specific heat coefficient is enhanced in this region on the paramagnetic side, indicating heavy
fermion behavior not only in the vicinity of the critical field where the antiferroic-spin order vanishes but also
in a certain region of the field and temperature. We discuss the results in comparison with the ordinary Kondo
lattice model. We also discuss the implication of our findings to the peculiar behaviors observed in the 1-2-20
compounds such as PrIr2Zn20, PrRh2Zn20, and PrV2Al20 under a magnetic field.
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I. INTRODUCTION

f -electron systems provide a good playground for com-
petition between itinerant and localized nature of electrons
[1–3]. In these systems, f electrons comprise localized de-
grees of freedom whose nature depends on the ground-state
multiplet determined by electron correlations, the spin-orbit
coupling, and the crystalline electric field (CEF). When the
multiplet is a Kramers doublet, the localized degrees of
freedom are described by pseudospins. In this case, the hy-
bridization between the localized magnetic moments and
conduction electrons yields two competing interactions: the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [4–6]
and the Kondo coupling [7]. The RKKY interaction is an
effective exchange interaction between the localized moments
mediated by the conduction electrons, which favors magnetic
ordering. Meanwhile, the Kondo coupling is the bare coupling
between the conduction electron spins and the localized mag-
netic moments, which prefers singlet formation between the
conduction electrons and the localized moments. The compe-
tition between these two leads to the so-called Doniach phase
diagram, where a magnetically ordered phase meets with a
paramagnetic (PM) phase at a quantum critical point (QCP)
[8]. In the PM region, the singlet formation by the Kondo
coupling leads to a logarithmic temperature dependence of
the electrical resistivity and heavy fermion (HF) behavior
with strong enhancement of the effective electron mass at
low temperature, which is called the Kondo effect [1]. In

addition, unusual behaviors, such as non-Fermi liquid (NFL)
behavior and superconductivity, are observed near the QCP
[9–12]. This picture called the Doniach paradigm provides
comprehensive understanding of many f -electron systems
with Kramers doublet, while several interesting behaviors be-
yond it have been discussed, e.g., in the presence of magnetic
frustration [13,14].

On the other hand, when the ground-state multiplet of the
localized degrees of freedom is a non-Kramers doublet, the
system has orbital degrees of freedom described by multipole
operators, instead of the magnetic degrees of freedom. In
particular, when the multiplet is a �3 doublet, which may
appear in, e.g., U4+ and Pr3+ ions under the cubic CEF, the
system has quadrupole degree of freedom. The possibility of
the Kondo effect caused by the coupling to the quadrupole
degree of freedom was first proposed by Cox, by introducing
a two channel model [15]. In the subsequent studies, the
two-channel Kondo model with a single quadrupole impurity
was solved, e.g., by the Bethe ansatz [16] and the conformal
field theory [17], which revealed that overscreening of the
quadrupole by conduction electrons leads to NFL behavior.
It leads to anomalous temperature (T ) dependence at low
temperature, such as ln T in the specific heat and the magnetic
susceptibility, and

√
T in the electrical resistivity [17,18].

Besides the impurity problem with a single quadrupole,
the two-channel Kondo lattice (TCKL) model, which has the
quadrupole degree of freedom at each lattice site, has also
been studied for understanding of the systems with dense
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quadrupoles such as UBe13. For instance, numerical studies
based on the dynamical mean-field theory (DMFT) [19] re-
vealed NFL behavior at low temperature when the system
remains as a PM state [20]. The possibility of symmetry
breaking was also pointed out, for instance, an antiferro-
magnetic state, an odd-frequency superconducting state [21],
and a channel-symmetry broken state [22]. (Note that the
quadrupole and spin degrees of freedom are described by
pseudospins and channels, respectively, following the conven-
tion by Cox [15].) More recently, the DMFT combined with
the continuous-time quantum Monte Carlo (CTQMC) method
[23,24] uncovered the phase diagram of the TCKL model
while changing electron filling and temperature. Among many
phases, an interesting state appears with a ferroic channel
order in doped regions close to half filling; it is regarded as
a “composite state” in which electrons in one of the two chan-
nels form a “spin singlet” with local moments while electrons
in the other channel are rather free [25–27]. Thus the phase
diagram for the quadrupole Kondo systems is richer than
the Doniach phase diagram for the ordinary Kondo system
due to the interplay between quadrupole and spin degrees of
freedom.

Recent discovery of a family of compounds called Pr-based
1-2-20 systems has brought further progress in the research
of the quadrupole Kondo systems [28–31]. The chemical for-
mula is given by PrTr2X20, where Tr is a transition metal
ion and X is Zn or Al. In these materials, the Pr3+ cation
is surrounded by the 16 Zn or Al ions, which leads to the
�3 non-Kramers doublet under the cubic CEF and strong
coupling between the quadrupoles and conduction electrons.
Indeed, an antiferroic-quadrupole (AFQ) order was observed
at low temperature and NFL behavior was found above the
critical temperature in PrIr2Zn20 [28], PrRh2Zn20 [29], and
PrV2Al20 [30]. The NFL behavior is in good agreement with
the theoretical results obtained by the 1/N expansion for
the two-channel Anderson lattice model [32]. In addition, in
Y1−xPrxIr2Zn20 where Pr is diluted by nonmagnetic Y, the
temperature dependences of the electrical resistivity and the
specific heat are well explained by the impurity two-channel
Kondo model [33]. In the diluted materials, quadrupole fluc-
tuations were also observed in ultrasonic measurements [34].
Although the magnetic Kondo effect may compete with the
quadrupole Kondo effect in these non-Kramers systems, a
recent theoretical study pointed out that the quadrupole in-
teractions play a dominant role in PrIr2Zn20 and PrRh2Zn20

[35].
Interestingly, the 1-2-20 compounds exhibit peculiar be-

haviors under a magnetic field. For instance, PrIr2Zn20 and
PrRh2Zn20 show HF behavior in a certain range of the
magnetic field where the AFQ order is suppressed [36,37].
Anomalous enhancement of the Seebeck coefficient was also
reported [37,38]. Furthermore, the thermal expansion for
PrIr2Zn20 in this field region cannot be explained by a CEF
model, whereas the higher-field behavior is well accounted
for [39]. On the other hand, PrV2Al20 shows anomalous en-
hancement of the resistivity around the critical field where
the quadrupole order disappears [40]. The temperature de-
pendence deviates from the scaling relation of NFL behavior
expected from the two-channel Anderson model below 8 K in
a certain range of the magnetic field [41]. These experimental

results suggest that the 1-2-20 systems exhibit unconventional
behaviors not only near the critical field but also in a certain
range of temperature and magnetic fields. This is in stark
contrast to the ordinary Kramers Kondo systems where the
NFL behavior is limited to a narrow critical region in the
vicinity of the QCP.

Theoretical understanding is, however, still limited for
the field effects on the non-Kramers quadrupole systems.
The magnetic phase diagrams were studied by a mean-field
calculation [42], classical Monte Carlo simulations [43,44],
and the Landau theory [45]. These analyses were performed
for effective models describing the quadrupole degree of
freedom. Models explicitly including the coupling to conduc-
tion electrons were also studied by slave-particle mean-field
approximations and the Landau theory [46–48]. However,
effects of quantum fluctuations arising from the interplay
between quadrupole and spin degrees of freedom as well as
spatial fluctuations have not been fully elucidated thus far,
despite their importance for understanding of not only the
magnetic phase diagram but also the unconventional NFL and
HF behaviors observed in experiments.

In this paper, we study the TCKL model in a magnetic
field by using a cluster extension of the DMFT (CDMFT)
combined with the CTQMC method as the impurity solver.
The cluster extension enables us to study the effect of mag-
netic fields on the competition and cooperation between the
quadrupole and spin degrees of freedom, taking into account
spatial correlations beyond the previous studies by the single-
site DMFT [21,25–27]. Our model includes two types of the
magnetic fields. One represents the ordinary Zeeman cou-
pling for the conduction electrons, and the other an effective
coupling to the quadrupole degree of freedom through the
modulation of the CEF splitting. Performing extensive numer-
ical simulations for the two types of the fields, we show that
the antiferroic-spin (AF-spin) ordered phase (corresponding
to the AFQ ordered phase in non-Kramers quadrupole sys-
tems) is suppressed while increasing the magnetic fields, and
eventually, the system shows FL behavior in the high-field PM
state. In the intermediate region, we find an interesting state in
which one of the two channels shows NFL behavior while the
other remains as a FL. We call this the channel-selective NFL
(CS-NFL) state. Interestingly, the CS-NFL state appears in a
dome-shaped region that extends from the AF-spin ordered
state to the PM state. We find that the composite correlation
is enhanced in this region, and in addition, the specific heat
coefficient is also enhanced on the paramagnetic side at low
temperature. Thus the HF behavior is found not only near
the critical field where the AF-spin order disappears but also
in a certain range of field and temperature. We discuss our
findings in comparison with the ordinary Kramers Kondo
system and the unconventional behaviors discovered in the
1-2-20 systems.

This paper is organized as follows. In Sec. II, we introduce
the model and method used in this study. We also introduce
the definitions of the physical quantities and how to compute
them. We present the results in Sec. III. First, we display
the phase diagram determined by the AF-spin order param-
eter and the specific heat in Sec. III A. Next, we discuss the
composite correlation and the relation to the enhancement of
the specific heat coefficient in Sec. III B. Then, in Sec. III C,
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we unveil the CS-NFL behavior by analyzing the temperature
dependence of the self-energy. We also study how these results
depend on the Kondo coupling in Sec. III D. In Sec. IV,
we discuss the results for the TCKL model, in comparison
with those for the ordinary Kondo lattice model (Sec. IV A)
and also with the experimental results for the 1-2-20 systems
(Sec. IV B). Finally, Sec. V is devoted to the summary.

II. MODEL AND METHOD

A. Model

We study the TCKL model under a magnetic field, whose
Hamiltonian is given by

H = HTCKL + HZeeman + HCEF. (1)

The first term describes the electrons coupled to the
quadrupole degree of freedom as

HTCKL =
∑

kασ

(εk − μ)c†
kασ

ckασ + J
∑

iα

siα · Si, (2)

where ckασ (c†
kασ

) is an annihilation (creation) operator of a
conduction electron with momentum k, channel α = 1, 2, and
pseudospin σ = ↑,↓. Note that, following the conventions in
the previous studies [25–27], the channel α and pseudospin
σ represent the spin and orbital degrees of freedom in real
systems, respectively. The first term in Eq. (2) describes the
kinetic energy of the conduction electrons. For simplicity,
we assume the electron hopping only for nearest-neighbor
sites on a three-dimensional cubic lattice, which yields the
dispersion relation εk = −2t

∑
γ=x,y,z cos(kγ a), where k =

(kx, ky, kz ) and a is the lattice constant; μ is the chemical
potential. We set 6t = 1 as the energy unit and a = 1 as the
length unit. The second term in Eq. (2) denotes the coupling
between the conduction electrons and the local quadrupole
moments; siα = 1

2�σσ ′c†
iασ σσσ ′ciασ ′ is the pseudospin-1/2 op-

erator for a conduction electron at site i in channel α (σ is
the Pauli matrix, and ciασ and c†

iασ are Fourier components
of ckασ and c†

kασ
, respectively), and Si represents another

pseudospin-1/2 operator representing the local quadrupole
degree of freedom at site i, which we call the local moment
hereafter. For simplicity, we assume that the interaction is
onsite and isotropic in quadrupole space. We take J = 0.8,
except in Sec. III D.

The second and third terms in Eq. (1) represent the cou-
pling to two types of external magnetic fields. The second
term represents the Zeeman coupling for the conduction elec-
trons, which is given by

HZeeman = −hZeeman ·
∑

iσ

s̃iσ , (3)

where s̃iσ = 1
2�αα′c†

iασ σαα′ciασ ′ is the spin-1/2 operator of a
conduction electron at site i for orbital σ . In the following
study, we apply the magnetic field to the z direction, namely,
hZeeman = (0, 0, h), and hence,

HZeeman = −h
∑

iσ

s̃z
iσ = −h

2

∑

i

(ni1 − ni2), (4)

where s̃z
iσ is the z component of the spin and niα =∑

σ c†
iασ ciασ is the number operator for the conduction elec-

trons in channel α at site i. Note that Eq. (4) splits the energy
of the two channels as the channel degree of freedom in the
present model describes the spin in real systems.

On the other hand, the third term in Eq. (1) represents
another effect of the magnetic field through the CEF level
splitting. While the magnetic field does not directly couple
to the non-Kramers doublet in the ground state, it couples
to the magnetic excited states. This coupling perturbs the
non-Kramers doublet through the CEF, which is effectively
described by the Zeeman-like term in the second-order per-
turbation as

HCEF = −hCEF

∑

i

Sz
i . (5)

In the limit of a weak magnetic field h, hCEF is expected to be
proportional to h2 [42].

The two terms, HZeeman and HCEF, affect the system in
a different way. Near half filling (two conduction electrons
per site on average), the system prefers AF-spin ordering at
low temperature in the absence of the magnetic field [27].
Although both HZeeman and HCEF destabilize the AF-spin
order, the former induces a composite order, while the latter
simply leads to a PM state; we show the phase diagram while
changing h and hCEF in Appendix. In the following sections,
we perform the calculations by assuming

hCEF = 7
4 h2, (6)

for which the system undergoes a transition from the AF-spin
ordered state to the PM state without going through the com-
posite ordered state stabilized by HZeeman, as shown by the
dotted curve in Fig. 9 in Appendix.

B. Method

We use the CDMFT [19,49] to study the model in Eq. (1)
by taking a two-site cluster composed of neighboring sites on
the cubic lattice. The cluster extension enables us to directly
incorporate staggered orders like the AF-spin order under a
uniform magnetic field. We adopt the CTQMC technique as
the impurity solver in the CDMFT calculations [23,24]. In
each CDMFT loop, we perform 2 × 109 samplings in the
CTQMC calculations. We obtain the local Green functions
by taking the summation over N = 163 points in momentum
space. All the calculations are performed by fixing the elec-
tron filling at n = 1

2

∑
iασ 〈c†

iασ ciασ 〉 = 0.9, where the sum of i
is taken for the two sites within the cluster. This corresponds
to 10% hole doping from the half filling.

The self-consistent solution is obtained when the values
of the local Green functions at each Matsubara frequency
converge within the statistical errors. For the calculation of
the internal energy 〈H〉 to obtain the specific heat [see Eq. (8)
below], we follow the method described in Appendix of
Ref. [26], by performing additional 10 CDMFT loops with
5 × 109 samplings and another 10 loops with 1010 samplings
for sufficient precision.

C. Physical observables

We discuss the finite-temperature properties of the model
in Eq. (1) by calculating the following physical quantities.
First, to identify the AF-spin ordered phase, we introduce the
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AF-spin order parameter for the conduction electrons, which
is defined by

mAF =
∑

α

|〈s1α − s2α〉|, (7)

where s1α and s2α represent the pseudospins at site 1 and 2
within the two-site cluster, respectively. We also compute the
specific heat per site by taking T derivative of the internal
energy as

C = 1

N

d 〈H〉
dT

, (8)

where 〈H〉 is calculated by the method described in Appendix
of Ref. [26].

In addition, following Ref. [25], we calculate the compos-
ite correlation, which is defined by

� = 1

2

2∑

i=1

〈(si1 − si2) · Si〉. (9)

This quantity measures differentiation in the couplings of the
two channels to the local moment. As HZeeman is a symmetry
breaking field for the the channel degree of freedom, � be-
comes always nonzero under the magnetic field. Nonetheless,
it plays an important role in this study to discuss the CS-NFL
behavior.

Furthermore, in order to distinguish the FL and NFL be-
haviors, we analyze the imaginary part of the self-energy. In
the CDMFT, the self-energy on the lattice is related with that
within the cluster as [50]

�λλ′
(k, iωn) = 1

2

2∑

i, j=1

�λλ′
i j (iωn)eik·(ri−r j ), (10)

where λ = (ασ ) and ωn = πT (2n + 1) is Matsubara fre-
quency; ri denotes the position vector for site i within the
cluster. We calculate Eq. (10) only for k = 0, while we con-
firm the results for k = (π, π, π ) are qualitatively the same.
In Sec. III C, we show the results for the diagonal sums in each
channel as

�α (iωn) =
∑

σ

�λλ(0, iωn). (11)

The FL theory predicts that the retarded self-energy satisfies
Im�R(ω, T ) ∝ ω2 + π2T 2 and Re�R(ω, T ) ∝ ω for ω → 0
in three dimensions. Hence, the self-energy at the small-
est Matsubara frequency ω0 = πT is expected to behave as
Re�(iω0) ∝ T 3 and Im�(iω0) ∝ T at low temperature [51].
To measure the deviation from this FL behavior, we estimate
the power να defined as

Im�α (iω0) ∝ T να (12)

by fitting the T dependence of Im�α (iω0). The value of να

characterizes the nature of the system: FL for να ∼ 1, NFL
for 0 < να < 1, and an insulator for να < 0.

III. RESULTS

In this section, we present our CDMFT results. We show
the h-T phase diagram in Sec. III A and enhancement of the

FIG. 1. Temperature dependences of (a) the AF-spin order pa-
rameter mAF in Eq. (7) and (b) the specific heat per site C in Eq. (8)
for several values of h. (c) Phase diagram of the model in Eq. (1)
as a function of h and T . The contour plot shows the value of
mAF. The white line indicates the phase boundary for the AF-spin
ordered phase connecting the onset temperature of mAF. The data are
calculated for J = 0.8 and n = 0.9.

composite correlation and the specific heat in Sec. III B. We
elaborate on the CS-NFL behavior by analyzing the imaginary
part of the self-energy in Sec. III C. We also discuss the J
dependence of the phase diagram in Sec. III D.

A. Phase diagram

Figure 1(a) shows the T dependence of the AF-spin or-
der parameter mAF defined in Eq. (7) for several values of
the magnetic field h. At zero field, mAF becomes nonzero
below T � 0.055. While increasing h, the onset temperature
decreases and vanishes to zero at h � 0.30. Correspondingly,
the specific heat per site C defined in Eq. (8) exhibits a sharp
peak at the same temperature, as shown in Fig. 1(b). The
results indicate that the system exhibits a phase transition from
the high-temperature PM state to the low-temperature AF-spin
ordered state in the region of h � 0.30.
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FIG. 2. Temperature dependences of (a) � in Eq. (9) and (b) C in
Eq. (8) divided by T for several h. The data are calculated for J = 0.8
and n = 0.9.

The phase diagram is shown as a function of h and T
in Fig. 1(c). The contour color represents the value of mAF

and the gray line indicates the phase boundary connecting the
onset temperature of mAF. The result shows that the AF-spin
ordered phase is realized in the low-T and low-h region. In
the region for h � 0.28, mAF appears to grow continuously
while lowering T , suggesting a continuous phase transition.
On the other hand, on the verge at h � 0.30 where the phase
boundary is almost vertical, the transition might be turned
into a discontinuous one. We will return to this point in
Sec. III B.

We note that mAF slightly decreases with T in the AF-
spin ordered phase under the magnetic field; see the plots for
h = 0.08, 0.16, and h = 0.24 in Fig. 1(a). This is due to singlet
formation in one of the two channels under the magnetic
field as follows. While increasing h, the electron density in
the channel 1 is increased due to the Zeeman coupling in
Eq. (4) and becomes close to half filling 〈ni1〉 � 1. Then,
the coupling J prefers singlet formation between si1 and Si,
which reduces the local moment of the conduction electrons,
si1, and consequently, mAF. This is indeed confirmed by the
enhancement of � discussed in the next section.

B. Composite correlation and heavy fermion behavior

Next, we show the results of the composite correlation �

[Eq. (9)] in Fig. 2(a). Since � measures the difference be-
tween the couplings to the local moment in the two channels,
it is zero at h = 0 where the two channels are equivalent.
For h > 0, however, � becomes nonzero even in the high-
temperature PM state, as the Zeeman term in Eq. (4) is a
symmetry breaking field for the channel degree of freedom.
As shown in Fig. 2(a), � increases as decreasing T . The

FIG. 3. h dependences of � and C/T at several T . The red
shaded regions in (b)–(d) represent the AF-spin ordered phase, while
the other white regions are the PM phase.

low-T values of � is largely enhanced in the intermediate-h
region, and reduced for larger h. This enhancement is related
with the decrease of mAF mentioned in the end of the previous
section: � becomes large when the channel 1 approaches half
filling and the singlet formation is promoted. This in turn re-
duces the coupling to the channel 2 and leaves the conduction
electrons in channel 2 more freely down to low temperature.

In the ordinary Kondo systems, the coupling to local mo-
ments leads to HF behavior at low temperature. To examine
such behavior, we plot C divided by T in Fig. 2(b). Note
that the integral of C/T in terms of T gives the entropy per
site, and C/T is called the specific heat coefficient giving a
measure of the effective electron mass in the low-temperature
limit. The result indicates that C/T is enhanced in the field
region where � becomes large. This means that the sys-
tem retains larger residual entropy at low temperature in this
intermediate-h region.

To examine the correlation between � and C/T more
carefully, we plot their h dependences at several T in Fig. 3.
At all temperatures plotted here, � has a broad peak in the
intermediate-h region, except for small anomalies at the phase
transition from the AF-spin ordered phase to the PM phase
in Figs. 3(c) and 3(d). The height of the broad peak grows
gradually as decreasing temperature. On the other hand, C/T
shows more notable temperature dependence. At sufficiently
high temperature in the PM phase, C/T is almost flat as a
function of h, as exemplified in Fig. 3(a). Below T � 0.055,
C/T shows a sharp peak corresponding to the phase transition,
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as shown in Fig. 3(b) for T = 0.038. At lower temperatures,
C/T increases not only in the AF-spin ordered phase but also
in the PM phase. Thus the overall h dependence of C/T at
low temperature looks similar to that of �, as discussed in
Fig. 2. We note, however, that C/T has more complicated h
dependence than �: It shows two humps at the lowest tem-
perature, one inside the AF-spin ordered phase at h ∼ 0.1 and
the other in the PM phase at h ∼ 0.3-0.4. The former appears
in the region where the channel 1 prefers singlet formation,
while the latter corresponds to the HF behavior discussed
later in relation to the CS-NFL state in Sec. III C. We also
note that, in the higher-h region, � and C/T exhibit different
behavior as shown in Figs. 3(c) and 3(d); while � decreases
monotonically as increasing h, C/T shows a minimum and
increases gradually for higher h. This will also be discussed
in Sec. III C.

The small anomaly of � at low temperature in Figs. 3(c)
and 3(d) appears to signal a discontinuous change of �. mAF

also shows a jump while changing h in the low-temperature
region (not shown). This is also consistent with the behavior of
C/T ; while C/T is enhanced at relatively high T and h � 0.28
as shown in Fig. 3(b), such an anomaly disappears at lower T
and higher h. Thus all these observations suggest that the AF-
spin ordering transition is of second order in the high-T and
low-h region, but it turns into a first-order one in the low-T
region near h ∼ 0.30, while it is difficult to precisely locate
the tricritical point between them.

We summarize the h and T dependences of � and C/T
in Figs. 4(a) and 4(b), respectively. As shown in Fig. 4(a),
� is enhanced in a dome-shaped region. The dome extends
from the inside of the AF-spin ordered phase to the outside
PM phase and � changes smoothly across the phase bound-
ary, besides the small anomaly associated with the possibly
first-order phase transition in the low-temperature region. On
the other hand, C/T is also enhanced in a similar region, but
most pronounced in a more limited area for 0.30 � h � 0.40
below T � 0.02 in the PM phase. We also note that C/T
becomes large along the second-order phase boundary for
smaller h and at h ∼ 0.10 inside the AF-spin ordered phase
discussed above. We will discuss the pronounced enhance-
ment of C/T in relation to the CS-NFL behavior in the next
section.

C. Channel-selective non-Fermi liquid behavior

In order to understand the origin of the enhancement of
C/T in the PM phase, we analyze the imaginary part of
the self-energy which represents the scattering of conduction
electrons by the local moments, following the procedure in
Sec. II C. The temperature dependences of Im�α (iω0) are
plotted for several h in Figs. 5(a) and 5(b) for the channel
α = 1 and 2, respectively. In the high-h region, Im�α (iω0)
decreases while decreasing temperature, but turns to increase
and approaches zero at low temperature in both channels.
This is because hCEF in Eq. (5) aligns the local moments
in parallel and reduces the scattering at low temperature;
the minimum temperature of Im�α (iω0) roughly corresponds
to the energy scale of the internal magnetic field for con-
duction electrons, JhCEF. While decreasing h, Im�α (iω0)
gradually grows to have larger negative values in both chan-

FIG. 4. Contour plots of (a) �, (b) C/T , the power of T depen-
dences of Im�α (iω0), να , for the channel (c) α = 1 and (d) α = 2
[see Eq. (12)]. The white lines indicate the phase boundary for the
AF-spin ordered phase as in Fig. 1(c).

nels down to h ∼ 0.40. For h � 0.40, however, Im�α (iω0)
exhibits contrasting temperature dependence between the
two channels: Im�1(iω0) continues to decrease down to the
lowest temperature calculated here, while Im�2(iω0) shows
an upturn similarly to those for larger h. This differentia-
tion of Im�α (iω0) indicates a large difference between the
two channels with respect to the scattering from the local
moments.

We estimate the power να defined in Eq. (12) for each
channel by fitting the results in Figs. 5(a) and 5(b). The fit-
ting is done for five adjacent T points including the focused
temperature. The results are plotted in Figs. 5(c) and 5(d) for
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FIG. 5. Temperature dependences of Im�α (iω0) for the channel
(a) α = 1 and (b) α = 2, and the exponent να [Eq. (12)] for (c) α =
1, (d) α = 2, and (e) ν2 − ν1 for several h.

α = 1 and 2, respectively. In the high-h region, να approaches
1 in both channels at low temperature, indicating that the FL
state is realized. While decreasing h, να is suppressed in both

channels, but for h � 0.40, ν1 and ν2 behave differently; ν2

turns to increase as decreasing h and approaches ∼1 at low
temperature, while ν1 is further suppressed to ∼0 at the lowest
temperature calculated here. To clearly show the differenti-
ation, we plot ν2 − ν1 in Fig. 5(e). This suggests that the
channel 1 behaves as a NFL state, while the channel 2 is FL
in the region of h � 0.40. We call this peculiar differentiation
the CS-NFL behavior.

To clarify this peculiar behavior more explicitly, we sum-
marize the estimates of να on the h-T plane in Figs. 4(c) and
4(d) for α = 1 and 2, respectively. The FL state where να ∼ 1
for both α = 1 and 2 is extended in the high-h PM region at
low temperature. On the other hand, near the phase boundary
of the AF-spin ordered phase, there is a window for 0.3 �
h � 0.4 where the CS-NFL behavior appears with ν1 ∼ 0 and
ν2 ∼ 1. In this region, � and C/T are enhanced as plotted in
Figs. 4(a) and 4(b), respectively. Thus our results indicate that
the scattering from the local moments is differentiated in the
region where � becomes large, and it leads to the CS-NFL
state with the HF behavior in C/T .

The differentiation between ν1 and ν2 is found not only in
the PM region but also inside the AF-spin ordered phase, as
shown in Figs. 4(c) and 4(d). The result indicates that the CS-
NFL behavior appears in coincidence with the dome-shaped
region where � is enhanced in Fig. 4(a). This is reasonable
because the scattering from the local moments can be channel
selective when the composite correlation grows, irrespective
of the AF-spin ordering.

We note that, in the region of 0.4 � h � 0.5 between the
CS-NFL and FL, both two channels appear to behave as
NFL with 0 < να < 1. This NFL region roughly corresponds
to the dip in C/T found in Fig. 3(d). We also note that ν1

becomes negative near h ∼ 0.10, suggesting that the channel
1 is insulating while the channel 2 remains metallic. In this
field region, we find that the electron filling in the channel
1 is almost fixed at half filling. Thus it is regarded as the
channel-selective Kondo insulating state. This is the regime
where the suppression of mAF and another enhancement of
C/T are observed in the previous sections. We note that the
field range of the channel-selective Kondo insulator depends
on the electron filling of the system.

D. J dependence

We study the J dependence of the CS-NFL state with
enhanced �. Figure 6(a) shows the phase diagram with the
contour plot of � at a smaller J = 0.4. In this case, the AF-
spin ordered phase shrinks, and at the same time, the
dome-shaped region where � is enhanced also shrinks; con-
sequently, the dome is mostly contained within the AF-spin
ordered phase. The result suggests that the HF behavior asso-
ciated with the CS-NFL is hardly seen in the PM phase outside
the AF-spin ordered phase. On the other hand, as plotted in
Fig. 6(b), both the AF-spin ordered state and the dome-shaped
region of � are extended for a larger J = 1.2, and notably,
the latter region is significantly extended to the PM state in
a relatively wider region compared to the case with J = 0.8
in Fig. 4. In this case, the HF behavior appears in the wider
region (not shown). These results indicate that the magnitude
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FIG. 6. Contour plots of � at (a) J = 0.4 and (b) J = 1.2. The
white lines indicate the phase boundaries for the AF-spin ordered
phase determined by the onset temperature of mAF.

of J plays an important role in the parameter range of the
CS-NFL and the HF behavior.

It is worth noting that the AF-spin ordered phase continues
to extend while increasing J near half filling. This is in con-
trast to the ordinary Kondo lattice model where the AF phase
is taken over by a paramagnetic state for sufficiently large J
because of the Kondo singlet formation.

IV. DISCUSSION

A. Schematic phase diagram and comparison to the ordinary
Kondo lattice model

Bringing the obtained results together, we draw schematic
phase diagrams for the TCKL model in a magnetic field for
large and small J in Figs. 7(b) and 7(c), respectively. For
comparison, we also show a schematic phase diagram for
the ordinary Kondo lattice model in Fig. 7(a). In the case of the
Kondo lattice model, the phase diagram is a variant of the
Doniach phase diagram introduced in Sec. I [9,52,53], where
the magnetically ordered phase competes with the PM phase.
When the magnetic phase transition remains continuous down
to zero temperature, NFL behavior appears in the quantum
critical region near the QCP. In contrast, the phase diagram
for the TCKL model becomes more complicated owing to
the existence of both channel and spin degrees of freedom.
The primary difference lies in the appearance of crossover by
enhancement of the composite correlation in the dome-shaped
region. This crossover defines the region where the system
exhibits the CS-NFL behavior. The CS-NFL region depends
on the magnitude of J: It extends from the AF-spin ordered
phase to the PM phase when J is large [Fig. 7(b)], while it
is included inside the AF-spin ordered phase when J is small
[Fig. 7(c)]. When J is large, in addition, in the CS-NFL region

FIG. 7. Schematic phase diagrams as functions of the magnetic
field h and temperature T for (a) the ordinary Kondo lattice model,
(b) the TCKL model with large J and (c) small J . The solid and
dashed lines indicate the phase boundaries and crossovers. See the
text for details.
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FIG. 8. (a) hCEF dependence of mAF in Eq. (7) at h = 0 and (b) h
dependence of mAF and m�x in Eq. (A1) at hCEF = 0. The red (blue)
hatched region represents the AF-spin (�x) ordered phase, while the
white region is the PM phase. We take J = 0.8, T = 0.01, and n =
0.9.

on the PM side, the system shows HF behavior with enhanced
C/T at low temperature. Meanwhile, in the PM state outside
the CS-NFL region, the NFL behavior is observed in both
channels before entering the higher-h FL region as discussed
in Sec. III C; the NFL state is expected to extend in a wide
region of T and h because it is not rooted in the QCP but in
the overscreening nature inherent in the two-channel systems.
Thus the TCKL model exhibits much richer field-induced
behavior than the Kondo lattice model.

We note that the phase diagram for the TCKL model also
varies depending on the relation of the magnetic fields in
Eq. (6). Since the Zeeman field h splits the energy levels of the
two channels, the CS-NFL dome is shrunk (extended) while
increasing (decreasing) the coefficient in Eq. (6) from the cur-
rent value 7/4. When the coefficient is decreased sufficiently,
the phase diagram is changed qualitatively, as an additional
phase with a composite order intervenes between the AF-spin
ordered and PM phases; see Fig. 9 in Appendix [note that the
composite order parameter is different from � in Eq. (9)].
Such a more complicated case is out of scope of the present
study, as such successive transitions have not been observed
yet in experiments.

B. Implication to the 1-2-20 systems

Finally, let us discuss the possible implications of our re-
sults to the Pr-based 1-2-20 systems. As described in Sec. I,
HF behavior was observed by the enhancement of C/T as
well as T 2 coefficient of the electrical resistivity in PrIr2Zn20

and PrRh2Zn20 under a magnetic field [36,37]. The interesting

FIG. 9. Phase diagram of the model in Eq. (1) as a function of
h and hCEF at J = 0.8, T = 0.01, and n = 0.9. The red dotted curve
follows the relation in Eq. (6).

point is that the HF behavior is observed not only in the
vicinity of the QCP where the AFQ order disappears but
also in a certain range of the field and temperature between
the AFQ and FL states. Similar behavior is obtained in our
results for the TCKL model: C/T is enhanced in the CS-NFL
region in the PM state where the composite correlation is
enhanced. Hence, our finding provides a scenario that the
HF behavior in these materials is caused by the NFL state
in one of the spin components of conduction electrons, say
spin-up, under the magnetic field (note that the channel in the
TCKL model corresponds to spin in real materials). As men-
tioned above, the electrical resistivity in experiment shows T 2

behavior with enhanced coefficient in this region, which is
compatible with FL. It is left for future study to clarify how
the resistivity behaves in the CS-NFL region in the TCKL
model. In addition, anomalous enhancement of the Seebeck
coefficient was observed in the slightly higher-field region in
experiments [37,38]. Since the region appears to correspond
to the NFL region between the CS-NFL and FL states in our
results, a possible scenario is that fluctuations from the NFL
in both channels contribute to the enhancement of the Seebeck
coefficient. The calculation of the Seebeck coefficient is also
left for future study.

In PrV2Al20, the AFQ phase extends in a wider
range of field and temperature compared to PrIr2Zn20 and
PrRh2Zn20 [40]. Correspondingly, NFL behavior peculiar to
the quadrupole Kondo systems was observed, e.g., in the

√
T

scaling of electrical resistivity, in a much wider region below
30 K [41]. Below 8 K, however, this scaling no longer holds
and the system exhibits power-law divergence in the specific
heat [41]. This suggests a crossover from NFL to HF states
while decreasing temperature. These behaviors are at least
qualitatively consistent with our results for the TCKL model
for large J . Indeed, a large c- f coupling has been pointed out
for PrV2Al20 compared to PrIr2Zn20 and PrRh2Zn20 [54–56].

These comparisons suggest the possibility that the peculiar
behaviors in the 1-2-20 compounds, NFL, FL, and HF states
and crossover between them, can be qualitatively understood
by the TCKL model including the two types of the magnetic
fields. In particular, our scenario proposes that there are two
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types of the NFL regimes, and the HF behavior is associ-
ated with one of them, namely, the CS-NFL state in the PM
region (spin-selective NFL in reality). Such a scenario would
be tested by systematically investigating the compounds with
different magnitude of J (c- f coupling) and also by applying
pressure to control the bandwidth and J .

V. SUMMARY

In summary, we have clarified unconventional behaviors in
the TCKL model in the magnetic field. To reproduce a realistic
situation in quadrupole Kondo systems, we incorporated two
different types of the magnetic fields: the Zeeman splitting
for the conduction electrons and the CEF splitting for the
localized moments. By using the CDMFT combined with the
CTQMC method, we unveiled that the model exhibits the CS-
NFL state in which only one of the channels behaves as a NFL
while the other remains as a FL. This peculiar state appears in
the dome-shaped region extending from the AF-spin ordered
state to the PM state, where the composite correlation between
the conduction electron spin and localized moment is en-
hanced by the magnetic field through the imbalance between
the two channels. Furthermore, we found HF behavior with
an increase of C/T in the CS-NFL state protruding to the PM
side. Thus the HF behavior in our TCKL model is observed in
a certain region of the field and temperature near the AF-spin
ordered state. These behaviors are in stark contrast to those in
the ordinary Kondo lattice model where the NFL behavior is
limited to a narrow quantum critical region. We also showed
that the extent of the CS-NFL region depends on the value
of J as well as the relative magnitude of the two types of the
magnetic fields. We discussed that our findings of the CS-NFL
and HF behaviors may provide a unified understanding of
the experimental results in the 1-2-20 compounds such as
PrIr2Zn20, PrRh2Zn20, and PrV2Al20.

While our results have unveiled interesting properties of
the TCKL model, there remain several issues to be clarified.
One is the effect of anisotropy in the quadrupole degree
of freedom. In our model, we assume the isotropic cou-
pling between the conduction electron spins and the localized
moments, but in reality, the coupling could be anisotropic re-
flecting the crystal symmetry. Indeed, the 1-2-20 compounds
exhibit different behavior depending on the direction of the
magnetic field [40,57–59]. It would be interesting to study
the effect of anisotropy by extending our model. Another
interesting issue is the possibility of superconductivity. In
some 1-2-20 compounds, superconductivity is found inside
the AFQ phase [28,54,58]. While the superconductivity was
studied for the TCKL model by the DMFT [27], it would
be intriguing to investigate this issue by a straightforward
extension of our CDMFT which can treat the competition

between superconductivity and the AF-spin order on an equal
footing.
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APPENDIX: EFFECTS OF TWO TYPES
OF MAGNETIC FIELDS

In this Appendix, we discuss the effects of the two types of
magnetic fields, h and hCEF in Eqs. (4) and (5), respectively.
In the main text, the two fields are applied simultaneously
with the relation in Eq. (6), but here we study their effects
independently.

Figure 8(a) shows the AF-spin order parameter mAF as a
function of hCEF. We set h = 0 with J = 0.8, T = 0.01, and
n = 0.9. We find that mAF is gradually suppressed by hCEF

and continuously goes to zero, which indicates a second-order
phase transition from the AF-spin ordered phase to the PM
phase. On the other hand, h leads to qualitatively different
behavior as shown in Fig. 8(b). Here we set hCEF = 0. In this
case, mAF disappears abruptly at h � 0.3. For larger h, we find
that another order parameter becomes nonzero that is defined
by

m�x = 1

2

∑

〈i, j〉

∑

αα′σ

〈
c†

iασ σ x
αα′c jα′σ

〉
. (A1)

Note that this is the x component of �c(0) in Eq. (15) in
Ref. [27], which corresponds to a different type of the com-
posite correlation from Eq. (9).

Figure 9 shows the phase diagram in the plane of hCEF and
h at T = 0.01. We take J = 0.8 and n = 0.9. The AF-spin
ordered phase remains robust with spin canting up to hCEF �
0.8. On the other hand, the �x ordered phase is fragile against
hCEF since the singlet formation is destroyed by hCEF. The red
dotted curve corresponds to the relation in Eq. (6) used for the
calculations in the main text. The result shows that when the
coefficient in Eq. (6) is decreased sufficiently, the �x ordered
phase intervenes between the AF-spin ordered and PM phases,
as stated in Sec. IV A.
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