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Using the exact diagonalization technique, we determine the energy spectrum and wave functions for finite
chains described by the two-spin (Kugel-Khomskii) model with different types of intersubsystem exchange
terms. The obtained solutions provide the possibility to address the problem of quantum entanglement inherent
in this class of models. We put the main emphasis on the calculations of the concurrence treated as an
adequate numerical measure of the entanglement. We also analyze the behavior of two-site correlation functions
considered a local indicator of entanglement. We construct the phase diagrams of the models involving the
regions of nonzero entanglement. The pronounced effect of external fields, conjugated to both spin variables in
the regions with entanglement, could both enhance and weaken the entanglement depending on the parameters
of the models.

DOI: 10.1103/PhysRevB.102.155125

I. INTRODUCTION

Entanglement is one of the main manifestations of the
quantum nature of the matter being intensively studied in con-
nection with the development of quantum computers [1–13].
The problem of entanglement has been studied in detail for
nanosystems, especially for quantum dots [14]. Such systems
are used for the design of quantum information processing
systems.

In solids, which are traditional for condensed-matter
physics, things are not so clear. Many standard solid-state
systems are entangled. There can be no doubt that electrons
in a metal are entangled [15], but how to verify this directly
experimentally, using the accepted criteria, is the question.
The conventional method for determining entanglement (we
do not mention here Bell inequalities [16,17], which are very
efficient in optics but not in solids, and other exotic methods)
involves the determination of the density matrix, which is
quite computationally problematic, even for a relatively small
cluster. The most promising would be to extract information
about entanglement from correlation functions related directly
to the system at hand. There are many efficient methods for
calculating correlation functions, both numerically and ana-
lytically, for strongly correlated systems with a large number
of degrees of freedom, in particular, in the thermodynamic
limit. Moreover, many correlators are experimentally deter-
mined. Another important issue is how one can manage the
degree of entanglement. The influence of external fields on
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entanglement is crucial here since it provides the possibility to
control an entangled system in quantum information process-
ing. We note that these fields may be of a completely different
nature: from the magnetic field to elastic stresses.

The most vivid example of the entanglement in condensed
matter is represented by the models involving two kinds of
interacting spin variables. Two-spin models themselves usu-
ally appear in the description of specific features of transition
metal compounds with coupled spin and orbital degrees of
freedom; that is why such models are often referred to as spin-
orbital ones (sometimes, the term Kugel-Khomskii model is
used) [18–20]. Unusual effects related to the spin-orbital cor-
relations and the corresponding quantum entanglement are
widely discussed in the current literature. In particular, the
possibility of extraordinary spin-orbital quantum states and
transitions between them was pointed out [21–27].

The simplest version of the Kugel-Khomskii model, the
SU (2) × SU (2) model with SU (2) symmetries for both spin-
1/2 and pseudospin-1/2 operators (Ŝ and T̂) and a positive
factor at spin-pseudospin interaction, was used in an early
attempt in the context of the entanglement [28].

Later on, entanglement was sought in various other re-
lated models: SU (2) × XY [29], SU (2) × XXZ [30], and
SU (2) × SU (2) with additional spin-orbit anisotropy [25].
Briefly, the results of this analysis amount to the detection
and characterization of the significant entanglement area, the
degree of entanglement (mainly through the von Neumann
entropy), and sometimes an indication of the possible complex
entangled excitations [31]. All the mentioned works estimate
the entanglement, the phase boundaries, etc., numerically for
finite chains.
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In contrast to the cited works, here, we focus on how to
manage the degree of entanglement. This can be done by
mixing different intrasubsystem and intersubsystem interac-
tions and by applying and switching external fields. Here, we
consider these two issues.

We consider several versions of the spin-orbital model with
both symmetric and nonsymmetric spin-pseudospin interac-
tions. We also introduce different kinds of external fields and
study their effect on the entanglement. In addition, we show
the relationship between the degree of entanglement and pair
correlators between the orbital and spin degrees of freedom.

In general, the Hamiltonian of the model reads

Ĥ = Ĥs + Ĥt + Ĥts. (1)

Here, Ĥs and Ĥt are Heisenberg-type interactions in the spin
pseudospin-spin subsystems:

Ĥs = J
∑
〈i,j〉

ŜîSj, Ĥt = I
∑
〈i,j〉

T̂iT̂j, (2)

and Ĥts is the interaction between subsystems. Depending on
the compound and its symmetry, Ĥts can be written as

Ĥ(1)
ts = K

∑
〈i,j〉

(̂SîSj)(T̂iT̂j), (3)

Ĥ(2)
ts = K

∑
〈i,j〉

(̂SîSj)
(
T z

i T z
j

)
, (4)

Ĥ(3)
ts = K

∑
〈i,j〉

(
Sz

i Sz
j

)(
T z

i T z
j

)
, (5)

Ĥ(4)
ts = K

∑
〈i,j〉α

(
Sα

i Sα
j T α

i T α
j

)
. (6)

In (2)–(6) i, j are vectors of the nearest neighbors, and Ŝi
and T̂i are spin and pseudospain operators, related to orbital
degrees of freedom. Hereafter, we consider the most common
case where S = 1/2, T = 1/2. α is a spin and pseudospin
component index.

Note here that a broad class of Hamiltonians of this type
can be simulated not only in the framework of solid-state
strongly correlated systems but also by ultracold atoms in
traps [22,23]. In this case, the Kugel-Khomskii model may
be applicable to the bosonic atoms with an integer spin. Note
also that in transition metal compounds (such as ruthenates or
vanadates), we are sometimes dealing with integer values of
effective spin and orbital quantum numbers.

The additional terms in the Hamiltonian related to the
presence of external magnetic fields in both subsystems can
be written as

Ĥ f = −Hs

∑
i

Ŝz
i − Ht

∑
i

T̂z
i , (7)

where Hs and Ht are fields in spin and pseudospin systems,
respectively. An efficient magnetic field in a pseudospin sys-
tem occurs, for example, as a result of the action of elastic
stresses during uniaxial compression of a crystal. We note
that in this model, in contrast to multisublattice magnets,
the fields Hs and Ht can be steered in opposite directions.
Moreover, hereafter, we consider also staggered fields in both
subsystems.

The entanglement of the two systems can be determined
if the density matrix is known. There are several quantitative
criteria divided into two main courses. One is based on the
calculation of von Neumann entropy [20,25,28,30,31], while
the second one requires a partial trace of the density matrix
by the degrees of freedom of one of the subsystems. We
note right away that, qualitatively, all criteria give the same
result. Nonetheless, they may differ quantitatively. Here, we
use the so-called concurrence. Naturally, since we use the
exact diagonalization of the Hamiltonian [32–36] method, any
other criterion can also be calculated.

As mentioned, we study entanglement between two
subsystems—spin and orbital. Concurrence [4] is defined as

C =
√

2{1 − tr1[tr2 (̂ρ)2]}, (8)

where ρ̂ is the density matrix of the entire system, tri (̂ρ) is the
partial trace of the density matrix in one of the subsystems,
and i is the subsystem index (in our case, spin or pseudospin).
Thus defined, concurrence for two single particles takes val-
ues from C = 0 in the absence of entanglement to C = √

3/2
in the textbook Einstein-Podolsky-Rosen pair.

We compare the entanglement obtained in terms of the
strict criterion based on C with the behavior of the local
correlation functions of the operators Ŝi and T̂j. It turns out
that paired correlators provide minimal information about
entanglement, even if the operators belong to different sites.
Moreover, the range of parameters where the state of the
system is most entangled could be found with the correlators
of the four operators, more precisely, their gradients.

Naturally, the inclusion of sufficiently high uniform exter-
nal magnetic fields (7) suppresses entanglement. Nonetheless,
in the range of interest, when the magnetic field has the
same order of amplitude as the exchange integrals J, I, K ,
entanglement is not suppressed. Furthermore, as will be seen
below, in some cases the external field surprisingly increases
the entanglement. There is a dramatic change, however, in the
regions with the strongest entanglement in the phase diagram.
The most vivid effect is the shrinking of entanglement areas
along specific directions or at points in the phase diagram
under the influence of external fields.

II. METHODS

We consider the Kugel-Khomskii model (1) and (2) with
the conventional symmetric spin-pseudospin interaction (3)
and the related models with asymmetric [Eqs. (4) and (5)]
and symmetric [Eq. (6)] interactions for a small linear clus-
ter. We accurately determine the many-particle ground state
wave function in the framework of the exact diagonalization
method. The maximum cluster size is limited by computing
resources; nevertheless, the key characteristics of the system
are stable for variations in the chain size. We study the cases of
both zero field and strong external field in each subsystem and
focus mainly on how to manage the degree of entanglement.

This leads to a nontrivial and unobvious behavior of entan-
glement between spin and orbital degrees of freedom.

We have studied in detail one-dimensional systems with
different boundary conditions: an open chain and a ring. For
the whole range of the considered parameters, the open chain
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appeared to be more convenient for calculation. In addition,
as mentioned earlier, we consider mainly the case of nonzero
external fields when the problem with the ground state acci-
dental degeneracy is insignificant (for the zero-field limit we
simply set relatively small fields). We should also note that the
anisotropy [25] removes the problem even without external
fields.

Hereinafter, we consider the open chain with the exact
diagonalization method. We calculate the ground state wave
function, which allows us to evaluate the von Neumann en-
tropy, any entanglement criterion, and correlation functions in
each subsystem and between them. The Hamiltonian matrices
for the systems under study are very sparse, so it is natural
to use the sparse matrix format. The maximum available size
of the chain for comprehensive calculation is determined by
the computational resources, mainly by the RAM size, so we
extrapolate the results to 1/N → 0.

In our work, we have mainly used the QuTiP package,
which simplifies the work with quantum objects [37,38]. In
particular, the package has a convenient interface for con-
structing the many-particle Hamiltonian using a large number
of direct products of various spin operators. All objects in the
package are, by default, converted to sparse format, which
significantly simplifies their further processing. The exact di-
agonalization procedure was performed in the QuTiP package
as well. A typical calculation for a chain of ten sites for 3600
points takes about a day. Results for N = 8, 9, 10 slightly
differ qualitatively and allow fine extrapolation to 1/N → 0.
When possible, we compare the results with the earlier works
on entanglement.

III. KUGEL-KHOMSKII MODEL WITH
Ĥts = ∑

(ŜiŜj )(T̂iT̂j ) INTERACTION

First, we consider the Kugel-Khomskii model (1) and (2)
with the most common form (3) of spin-pseudospin interac-
tion. We recall that in the mean field, all four common phases
are realized: FM-FM, AFM-AFM, FM-AFM, and AFM-FM
[39]. For large absolute values of K < 0 compared to I and
J , this system prefers ferromagnetic (FM) or antiferromag-
netic (AFM) ordering in both subsystems simultaneously. The
opposite case, large K > 0, favors FM in one subsystem and
AFM in the other.

For infinite system, quantum fluctuations destroy long-
range order even at T → 0, and the state structure is governed
by the local order, i.e., correlation functions on distinct sites.
We address a finite chain but, to avoid going into the redundant
details, will mark different phases (technically, different local
orders) by local correlation functions.

In the mean field, FM order in, e.g., the spin subsystem
can be characterized by the unidirectional average of spins
〈Ŝi〉, and AFM order can be characterized by a checkerboard
pattern (in one-dimensional average spin directions altering
from site to site). In terms of local correlators (irrespective of
the long-range order) FM structure corresponds to 〈ŜiŜj〉 > 0
for any pair of sites. As for AFM, the sign of the correlation
function 〈ŜiŜj〉 is negative for nearest-neighbor sites i, j and
changes when i and j take a step from one another. The same
naturally holds for the pseudospin subsystem.

FIG. 1. Entanglement C (8) for intersubsystem exchange (3)
∼(ŜiŜj)(T̂iT̂j) with negative K = −1 and external fields. In contrast
to the case of K = +1, here, the C maximum occurs not at a sin-
gle point but at a segment of the diagonal line. (a) Hs = Ht � 1.
(b) Hs = 1,Ht � 1. (c) Hs � 1,Ht = 1. (d) Hs = 1 and Ht = 1.
(e) Staggered fields |Hs| = |Ht | = 1 in both subsystems. Here, Hs

and Ht stand for external fields in spin and pseudospin subsystems.

In the quantum case, we adopt the following classifica-
tion: FM, 〈ŜiŜj〉 > 0 for close neighbor pairs i, j, and AFM,
〈ŜiŜj〉 < 0 for nearest neighbors and altering thereafter. We do
not deal with the exhaustive classification and the fine de-
tails of the state structure but, rather, superficially mark the
local correlation. The foregoing does not necessarily mean
the phase transitions with distinct order parameters but, rather,
short-range order rearrangement.

Hereafter, we study how entanglement changes across local
order boundaries, i.e., among the areas with different patterns
of local correlations.

A. Entanglement and the sign of intersubsystem exchange K

We begin with the case of a negative intersubsystem ex-
change K < 0.

Figure 1(a) presents a measure of entanglement: concur-
rence C [see Eq. (8)] for negative intersubsystem exchange
K = −1. As can be expected, nonzero entanglement is ob-
served in the area of negative exchanges in both subsystems,
and its maximum is achieved for comparable values of J , I ,
and K . This acknowledges that not only the binding inter-
action K between subsystems but also local interactions J
and I are decisive for the entanglement. For K > 0 the same
conclusion holds (see below).
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FIG. 2. Entanglement C (8) for intersubsystem exchange (3)
∼(ŜiŜj)(T̂iT̂j) with positive K = +1. The maximum entanglement
is achieved at single point. (a) Hs = Ht � 1. (b) Hs = 1,Ht � 1.
(c) Hs � 1,Ht = 1. (d) Hs = 1 and Ht = 1. (e) Staggered fields
|Hs| = |Ht | = 1 in both subsystems. Here, Hs and Ht stand for
external fields in spin and pseudospin subsystems.

For K = −1, the phase (local order) boundary and the
structure of the C maximum differ significantly from the case
with K = +1 [see Fig. 2(a)]. The maximum of entanglement
arises at a segment, while for K = +1 it arises at a single
point.

Figures 1(a) and 2(a) qualitatively reproduce the known
results [28,31]. The spin-pseudospin structure in the finite-
entanglement area corresponds to AFM spin and AFM
pseudospin local orders (this is supported by the inter-
subsystem local correlation functions; see Sec. S1 of the
Supplemental Material [40]). In Sec. IV, we discuss the inter-
connection of the entanglement and local correlators, which is
much less studied, in depth.

It appears that nonzero external fields change the degree of
entanglement in different ways. We will discuss this in more
detail in Sec. III B. Nevertheless, let us first note once more
that for both signs K ≷ 0 the significant entanglement appears
in the intuitive case of AFM exchanges in both subsystems,
J, I > 0.

B. Entanglement and external fields

We now discuss the effect of external fields on the entan-
glement. Let us note once again that in the spin-orbital model
different fields can be introduced in different subsystems, even
if they act in opposite directions.

It is intuitive that sufficiently large external field suppresses
the entanglement, as it strengthens the tendency to form a
common ferromagnetic state. We will discuss below that the
entanglement area transformation under strong external field
is not so trivial, especially in the very frustrated case J ∼ I ∼
K , where entanglement typically has a maximum.

With a negative sign in the intersubsystem exchange, K =
−1, the initial zero-field picture under the influence of an
external field shifts, almost without deformation, along the
corresponding coordinate axis [see Figs. 1(b) and 1(c)].

The case of two simultaneously acting fields is more
peculiar. A local area of strong entanglement is formed, hav-
ing a tooth shape [see Fig. 1(d)]. The result is practically
independent of the mutual orientation of the fields. With
magnification of the field amplitude, the localization effect
increases, although is not transformed qualitatively, so we
put the corresponding figure in Sec. S2 of the Supplemental
Material [40].

The effect of the staggered fields (similar in both sub-
systems) is even more amazing [see Fig. 1(e)]. The area of
substantial entanglement in the J − I plane is dramatically en-
larged, and the nonzero entanglement appears in the domains
where it was negligible in all other cases under discussion.

Similar effects are observed with a positive sign in the
intersubsystem exchange, K = +1. Here, also, the initial
zero-field pattern under an external field shifts along the
corresponding coordinate axis [see Figs. 2(b) and 2(c)]. Nev-
ertheless, some deformation of the initial structure is observed
with the nonmonotonic behavior of entanglement with in-
creasing J or I .

With two simultaneously nonzero fields, as well as for K =
−1, the local area of entanglement is formed [see Fig. 2(d)].
Moreover, the situation is almost unrelated to the mutual ori-
entation of the fields, and as the field amplitude increases, the
localization effect of a region of strong entanglement becomes
more pronounced.

The destructive effect of the staggered fields in the case
of positive K = +1 is much stronger than for K = −1 [see
Fig. 2(e)]. Only a sharp narrow segment near |J| ∼ |I| � 1
survives against the smooth concurrence background.

IV. INTERRELATION BETWEEN SPIN-PSEUDOSPIN
CORRELATION FUNCTIONS AND ENTANGLEMENT

Correlation functions between spin (pseudospin) degrees
of freedom provide important information about the system
state structure. On the one hand, we can find the local structure
in the spin and pseudospin subspace that allows us to roughly
distinguish FM- and AFM-like local ordering. On the other
hand, irreducible intersubsystem correlators may be sensi-
tive to entanglement effects. We study this question in detail
below.

It would be natural to expect a one-site intersubsystem
correlator 〈ŜiT̂i〉 to be related to entanglement. Nevertheless,
our analysis shows that in the general case, a chain-averaged
single-site spin-pseudospin correlator does not provide ac-
curate information about the entanglement region. For an
example, compare Fig. 3(a) with Fig. 1(a): the single-site spin-
pseudospin correlator reproduces only one small segment of
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(a) Spin-pseudospin single-site correlator (b) Spin-pseudospin two-site correlator

-2 0 2
I

-2

0

2

J

FM-FM

AFM-AFMFM-AFM

AFM-FM

(c) Gradient of the two-site
correlator

FIG. 3. K = −1. (a) The chain-averaged single-site spin-pseudospin correlator does not provide accurate information on the entanglement.
(b) The two-site spin-pseudospin correlator reveals the entanglement region boundaries. (c) The gradient of the two-site correlator allows us to
select the area of entanglement. The order structure in spin and pseudospin subsystems is designated.

the entanglement area borders (this is also the case for other
types of intersystem interaction considered below).

Thus, one should address a two-site correlator: 〈ŜiŜjT̂iT̂j〉.
In Fig. 3(b), the two-site spin-pseudospin correlator
〈ŜiŜjT̂iT̂j〉 (i, j are the nearest neighbors) is shown for
K = −1. According to Fig. 1(a), the two-site spin-pseudospin
correlator reasonably reproduces the entanglement
region boundaries. Note that one-site and two-site
irreducible correlators (covariances) 〈ŜiT̂i〉 − 〈Ŝi〉〈T̂i〉,
〈ŜiŜjT̂iT̂j〉 − 〈ŜiŜj〉〈T̂iT̂j〉 lead to the same result for phase
boundaries as the initial correlators.

A much clearer picture of the boundaries is visible in
Fig. 3(c), where the gradient (in the parameter space) of a
two-site spin-pseudospin correlator is presented. The gradient
structure allows one to distinguish the entanglement in the
phase diagram precisely.

In Fig. 4, similar data are shown for positive spin-
pseudospin exchange K = +1. In Fig. 4(a), the single-site
spin-pseudospin correlator does not provide information
on the entanglement area [compare with Fig. 2(a)]. In
Fig. 4(b), similar to Fig. 3(b), the two-site spin-pseudospin
correlator reasonably reproduces boundaries of the entan-
glement region. Finally, the gradient of a two-site spin-
pseudospin correlator selects the entanglement [Fig. 4(c)]
accurately.

Thus, in this section, we propose a criterion (purely em-
pirical) for indicating the region of quantum entanglement in
complex many-particle systems. It requires neither checking
Bell’s inequalities nor calculating the full density matrix. The
corresponding two-site correlator can be determined either
numerically, but with much less wasting of resources, or even
analytically [24].

V. OTHER TYPES OF SPIN-PSEUDOSPIN INTERACTIONS

Hereinafter, we consider other possible types of spin-
pseudospin interaction that up to now have not been inves-
tigated, at least in the context of entanglement.

A. Pseudospin anisotropic interaction: Ĥts = ∑
(ŜiŜj )(T z

i T z
j )

In this section, we consider what changes in the en-
tanglement pattern entail a nontrivial, less symmetric spin-
pseudospin interaction. This refers to the Hamiltonian (1) and
(2) with the interaction between the subsystems (4)—
Heisenberg-type interaction in Ĥts for spins and Ising-type
interaction for pseudospins (note that this kind of interaction
along with (3) was already proposed in the pioneering work
on spin-orbital physics in compounds of transition metal ele-
ments [18]).

(a) Spin-pseudospin single-site correlator (b) Spin-pseudospin two-site correlator

-2 0 2
I

-2

0

2

J

FM-FM

AFM-AFMFM-AFM

AFM-FM

(c) Gradient of the two-site
correlator

FIG. 4. K = +1. Analogous to Fig. 3. (a) The chain-averaged single-site spin-pseudospin correlator does not provide accurate information
on the entanglement. (b) The two-site spin-pseudospin correlator reveals the entanglement region boundaries. (c) The gradient of the two-site
correlator allows us to select the area of entanglement. The order structure in spin and pseudospin subsystems is designated.
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FIG. 5. Entanglement C (8) for intersubsystem exchange (4) ∼
(ŜiŜj)(T z

i T z
j ) with negative K = −1. At zero external fields, the en-

tangled state is realized at half of the phase plane. (a) Hs = Ht � 1.
(b) Hs = 1,Ht � 1. (c) Hs � 1,Ht = 1. (d) Hs = 1 and Ht = 1.
(e) Staggered fields |Hs| = |Ht | = 1 in both subsystems. Here, Hs

and Ht stand for external fields in spin and pseudospin subsystems.

The most dramatic changes occur in the case of the neg-
ative intersubsystem exchange constant K = −1. Here, in
addition to the region J, I � 0, a whole new region of signifi-
cant entanglement C (8) arises [see Fig. 5(a)]. More than half
of the investigated region is occupied by an entangled state
separated by the trivial line I = 0.

For the other sign of the intersubsystem exchange constant,
K = +1, there are no qualitative changes in the entanglement
structure in Fig. 6(a) in comparison with the similar one in
Fig. 2(a) for symmetric intersubsystem interaction (3). Here,
the entanglement area is qualitatively the same; a distinct
“shark tooth” is formed near the origin. On the other hand,
quantitative changes in the fine structure are rather significant.

The response of the spin-orbital system to a nonzero field
for K = −1 differs qualitatively from the previous case [see
Figs. 1(b)–1(e)]. The picture does not change qualitatively
when the external field is nonzero in the spin subsystem.
Only a shift is observed along the corresponding coordinate
axis [J; Fig. 1(b)]. On the contrary, the external field in the
pseudospin subsystem destroys the entangled state in a quarter
of the phase plane [J > 0, I < 0; Fig. 1(c)]. If there is a
nonzero external field in both subsystems, a sharp peak of
entanglement is formed near the origin [see Fig. 1(d)]. As in
Sec. III B, the mutual orientation of the fields does not affect
the structure of entanglement significantly.

Finally, the staggered field drastically changes the whole
entanglement pattern. Qualitatively, the picture seems to be

FIG. 6. Entanglement C (8) for intersubsystem exchange (4)
∼ (ŜiŜj)(T z

i T z
j ) with positive K = +1. At zero external fields, the

entangled state is realized at the J, J > 0 domain. (a) Hs = Ht � 1.
(b) Hs = 1,Ht � 1. (c) Hs � 1,Ht = 1. (d) Hs = 1 and Ht = 1.
(e) Staggered fields |Hs| = |Ht | = 1 in both subsystems. Here, Hs

and Ht stand for external fields in spin and pseudospin subsystems.

rotated from the zero-field case by π/4 counterclockwise.
Significant entanglement appears in the half plane (pseu-
dospin subsystem exchange I < 0).

At K = +1 [Figs. 6(a)–6(e)], the zero-field maximum en-
tanglement is localized nearly at a single point, and when the
external field is nonzero in one of the subsystems, there is a
tendency to isolate the area of maximum entanglement from
the rest of the region with zero entanglement. This tendency
is especially pronounced for Hs � 1,Ht = 1 [see Fig. 6(c)].
When there are two nonzero external fields, a sharp peak in
entanglement is formed near the origin [Fig. 6(c)] which is
insensitive to the mutual orientation of the fields.

The effect of the staggered field (“counterclockwise rota-
tion”), significant entanglement for I < 0), is similar to that
for K = −1 except for inessential details. We cannot help
mentioning that Figs. 5(e) and 6(e) resemble some of the
works of Zaha Hadid.

B. Spin and pseudospin anisotropic interaction:
Ĥts = ∑

(Sz
i S

z
j )(T z

i T z
j )

Here, we discuss the case when the intersubsystem inter-
action is even less symmetrical and has an Ising form in the
parts in Ĥts referring to both spins and pseudospins. This
is the Hamiltonian (1) and (2) with interaction between the
subsystems (5). This interaction is the Ashkin-Teller one [41],
although the model (1), (2), and (5) technically differs from
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FIG. 7. Entanglement C (8) for intersubsystem exchange (5)
∼(Sz

i Sz
j )(T z

i T z
j ) with negative K = −1. At zero external fields, the

entanglement is realized at 3/4 of the phase plane (except for the FM-
FM region) with sharp maxima near the origin. When external field in
the spin or pseudospin subsystem is nonzero, the entanglement in the
corresponding quadrant disappears completely. (a) Hs = Ht � 1.
(b) Hs = 1,Ht � 1. (c) Hs � 1,Ht = 1. (d) Hs = 1 and Ht = 1.
(e) Staggered fields |Hs| = |Ht | = 1 in both subsystems. Here, Hs

and Ht stand for external fields in spin and pseudospin subsystems.

the Ashkin-Teller model for which the exact solution exists
[42].

The case of K = −1 is of special interest here. The entan-
glement is realized here at three quarters of the phase plane
(two of the entanglement regions are, of course, symmetrical),
and there are three sharp peaks near the origin; in addition,
all areas of entanglement are separated by lines J, I = 0. For
the opposite sign of the spin-pseudospin exchange K = +1,
the entanglement pattern is realized, which is qualitatively
similar to Fig. 6(a)—entanglement in the quarter of the phase
diagram and the shark tooth near the origin (we will not give
the corresponding figures).

Now, we address the nonzero field case. When the
magnetic field is nonzero in one of the subsystems, the en-
tanglement in the corresponding quadrant completely decays,
and the situation in the other quadrants does not change quali-
tatively [with the increase of entanglement “edges” along one
of the coordinate axes; see Figs. 7(b) and 7(c)]. When two
external fields are nonzero simultaneously, a sharp peak is
formed near the coordinate origin with weak entanglement
in the quadrant J > 0, I > 0 and zero entanglement in the
remaining regions [see Fig. 7(d)].

The effect of the staggered field is even more dramatic. The
entanglement is almost or completely destroyed in the whole

FIG. 8. Entanglement C (8) for intersubsystem exchange (6)
∼(Sα

i Sα
j T α

i T α
j ) with negative K = −1. At zero external fields, the

superentanglement is formed in the FM-FM region of the phase
plane. When external fields are nonzero, the entanglement disap-
pears, leaving a sharp peak near the origin. (a) Hs = Ht � 1.
(b) Hs = 1,Ht � 1. (c) Hs � 1,Ht = 1. (d) Hs = 1 and Ht = 1.
(e) Staggered fields |Hs| = |Ht | = 1 in both subsystems. Here, Hs

and Ht stand for external fields in spin and pseudospin subsystems.

phase plane, except the peak at the origin. Note, however, that
the concurrence is nonzero in the J < 0, I < 0 quadrant.

The nonzero field case for the opposite sign, K = +1,
differs in small details from the one just discussed, and we
will not comment on it here.

C. Model interaction: Ĥts = ∑
(Sα

i Sα
j T α

i T α
j )

Here, we consider an even more exotic case: a model inter-
action (6). This interaction looks very peculiar (and slightly
resembles the compass model [43–45]); nevertheless, we dis-
cuss it for completeness of classification. With both signs of
K , the most striking feature is the arising superentanglement
at J, I < 0, that is, with both intersubsystem exchanges being
ferromagnetic. The behavior of entanglement in the region
J, I > 0 qualitatively (and semiquantitatively) resembles the
case of Figs. 1(a) and 2(a).

Here, all the nonzero field cases are peculiar. When a
magnetic field is nonzero in any of the subsystems, the entan-
glement in the corresponding quadrant dramatically decays,
leaving mainly a sharp peak near the origin [see Figs. 8(b)
and 8(c)]. The presence of magnetic fields in two subsystems
results in a peak near the origin insensitive to the mutual
direction of the fields [Fig. 8(d)].
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The effect of the staggered field here looks like that in
the model just considered [compare Figs. 8(e) and 7(e)]. The
entanglement is almost or completely absent in the whole
phase plane, except for the peak at the origin. The concurrence
is considerable within the J < 0, I < 0 quadrant.

Since, as in the previous section, for K = +1, the concur-
rence structure appears to be qualitatively the same, we will
not comment on that case.

VI. CONCLUSIONS

In this paper, the problem of quantum entanglement was
addressed in terms of the behavior of finite chains described
by different types of two-spin models. The analysis was per-
formed by the exact diagonalization technique, allowing us to
find comprehensive quantitative information concerning the
systems under study. We were mainly focused on the behav-
ior of concurrence, which is a good numerical measure of
the entanglement. We determined the regions of pronounced
entanglement at various relations between the characteristic
parameters of the models. We have also revealed certain simi-
larities in the behavior of concurrence and that of the two-site
correlation functions (the latter can be considered a local
indicator of entanglement).

We have also demonstrated the possibility to provide ef-
ficient control of the entanglement pattern by external fields
(and by switching on nontrivial interactions). In particular,
external fields can induce considerable entanglement in the
areas where zero-field entanglement is clearly absent. On
the other hand, the inverse effect is possible—the concerted
action of the fields in both spin subsystems diminishing the
entanglement.

We emphasize that due to the different physical origins of
effective spin and pseudospin the applied fields may have a
completely different nature, from the magnetic field to elastic
stresses. For example, the simplest field-dependent part of a
spin-orbital Hamiltonian has the form hSz + �T z, where h is
the magnetic field in energy units and � is the energy gap in-
duced by local distortions [46]. Note that here the superscript

z correspond to the z axis in different spaces, spin and orbital
ones. Depending on the ground state of the main Hamiltonian,
such fields can affect the ground state in various ways, thus
either enhancing or suppressing the entanglement.

The common experimental realization of the entanglement
effects is related to the spin-orbital excitations, referred to
as orbitons [47–52]. This issue has recently drawn additional
interest in connection to the so-called Higgs and Goldstone
modes in condensed-matter physics [53–55].

Ultracold atoms bring a new perspective to spin-orbital
physics. Namely, a broad class of Hamiltonians of this type
can be simulated not only in the framework of solid-state
strongly correlated systems but also by ultracold atoms in
the traps [22,23,56]. Then, the Kugel-Khomskii model can
also involve an integer spin. In such experiments, a variety
of artificial external fields can be introduced by tuning laser
beams or by the trap geometry rearrangement.

However, the role of quantum entanglement in the spin-
orbital (spin-pseudospin) excitations has not been addressed
properly yet. We believe that our present work could be a good
step forward in this direction.
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