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Interacting quantum many-body systems often generate exotic orders, either topological or conventional
competing orders. Understanding these phases and the phase transitions between them are common issues in
condensed-matter physics. How to characterize these states in a convincing and convenient way remains ambigu-
ous. Here, we report our numerical study on the interacting ν = 1

2 hard-core boson system with topological flat
bands based on the infinite density matrix group algorithm. We explicitly show that the entanglement spectral
flow can be used to diagnose the quantum phases emerging in the hard-core boson systems. In particular, the
subsequent charge pumping exhibits a linear, sinelike, and indiscernible dependence by the flux threading in
the fractional Chern insulator, supersolid, and solid state, respectively. The real-space boson occupancy in the
thermodynamic limit is further calculated for a better understanding of the respective state. We compare the
phase diagram obtained here with that obtained by the previously exact diagonalization method, and qualitative
differences are observed. Therefore, the infinite density matrix group algorithm provides a convincing and
convenient way to study the phase transition in such a strongly correlated topological system.
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I. INTRODUCTION

Understanding strongly correlated systems is extremely
challenging in condensed-matter physics. Exotic states have
been theoretically predicted or experimentally observed, ac-
companied by the development of a variety of concepts and
numerical methods. Conventionally, the phases can be clas-
sified by the concept of symmetry breaking proposed by
Landau. High-temperature superconductivity in cuprates is
one of the most famous symmetry-breaking states. The com-
petition and coexistence of superconductivity and multiple
competing orders, such as charge order, spin-density wave,
and even other exotic orders, renders the pairing mechanism
still controversial [1]. The emergence of the quantum Hall
state [2] opens a new paradigm to characterize and classify
phases of matter by topological order [3]. The precise quan-
tization of the Hall conductance of two-dimensional electron
gas at low temperature in a strong magnetic field, irrespective
of the material details and local disorders, is well charac-
terized by the topological invariants [4,5]. The fractional
quantum Hall state [6,7] is also a topologically ordered state
but with strong interactions. The usual fractional quantum
Hall state requires the Landau level, a topologically nontriv-
ial flat band realized in a strong magnetic field. Because of
its theoretical importance and promising future applications,
great interest and efforts have been devoted to realizing such
an exotic phase in a much broader context. Following the
pioneering work on the quantum anomalous Hall state or the
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Chern insulator state proposed by Haldane, where the integer
quantum Hall state without the Landau level is realized on
the honeycomb lattice with staggered flux threading [8,9], the
fractional Chern insulator (FCI) is further proposed. The FCI,
a highly correlated state analogous to the fractional quantum
Hall state in a continuum, requires the dominant effect of
interaction over kinetic energy and a topological band—a
nearly flat band with nonzero Chern number. Three groups
independently proposed candidate lattice models to produce
the topological flat band (TFB) on kagome [10], honeycomb
[11], and checkerboard lattices [11,12] by introducing the
staggered fluxes or spin-orbit interactions together with the
long-range hopping term in 2011. Since then, extensive works
[13–15] have been carried out to search for the FCI state in
the TFB system. Both the Abelian [16–18] and non-Abelian
[19–21] FCI are established in the fermionic and bosonic
systems. Several experimental schemes to realize the FCI in
cold-atom systems [22–24] have also been proposed.

On the other hand, strong correlations also trigger a vari-
ety of electronic ordered states by symmetry breaking. The
topological state, therefore, is challenged by other competing
orders. Whether the topological state is robust against the
quantum fluctuations remains unclear. Moreover, understand-
ing the phases neighboring the FCI and their phase transitions
can be a clue to search the FCI state in real materials. The-
oretically, the convincing and convenient way to diagnose
quantum phases is highly expected. The mean-field phase is
often destroyed by quantum fluctuations. For example, the
Chern insulating state predicted by mean-field studies [25–28]
on a honeycomb lattice in the presence of short-range re-
pulsive interactions was later shown to be complex charge
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or bond orders by more rigorous numerical methods [29,30].
The exact diagonalization (ED) method provides an unbiased
evaluation of the model system; however, the resultant phases
may be controversial due to the strong finite-size effect, es-
pecially in the ordered states [22]. In comparison, the infinite
density matrix renormalization group (iDMRG) algorithm al-
lows us to handle a larger system size and provides direct
access to the spontaneous symmetry-breaking states in the
thermodynamic limit [31]. Topological entanglement entropy
and charge pumping have been proposed to identify the FCI
nature [32–34]. However, a precise and straightforward way
to characterize other competing ordered states is still elusive.

In this paper, we revisit the quantum phases and their
transitions in the interacting ν = 1

2 hard-core bosonic TFB
systems in two typical lattice models. Our purposes are
twofold—compariing our diagnosis of the quantum phases
obtained by the iDMRG algorithm with that obtained by the
previous ED method [17], and more importantly finding the
convincing and convenient way to characterize the quantum
phase in a bosonic system. We show that the interaction-driven
phase transition can be determined by the evolutions of some
characteristic quantities. More importantly, we demonstrate
unambiguously that the distinct phases in hard-core bosonic
systems can be well diagnosed by the entanglement spectral
flows and the resultant charge pumping features. In particular,
we observe a linear dependence with 1

2 charge-transferring,
sinelike oscillation, and an insensitive response in the charge
pumping with a quantum flux insertion in the FCI, the super-
solid, and the solid state, respectively. The real-space boson
occupancy patterns in various phases are further shown for di-
rect visualizations. A comparison with the previous quantum
phase obtained by the ED algorithm shows that the iDMRG
algorithm offers a convincing and convenient way to identify
the quantum phases in strongly correlated bosonic systems.

II. MODEL AND METHOD

We study the interacting hard-core bosons on two typical
TFB lattice models, i.e., the extended version of the well-
known Haldane model on the honeycomb lattice [35] and the
checkerboard lattice [12]. The noninteracting Hamiltonian is
written as

H = −t1
∑

〈i j〉
(eiφ1 b†

i b j + H.c.) − t2
∑

〈〈ij〉〉
(eiφ2 b†

i bj + H.c.)

− t3
∑

〈〈〈i j〉〉〉
(b†

i b j + H.c.), (1)

where b†
i (bi) creates (annihilates) a hard-core boson at the

ith site. To generate the topological flat bands, the hop-
ping terms up to the third-nearest-neighbor (NN) and an
additional phase factor φ2 in the second-NN (honeycomb)
or φ1 (checkerboard) in the NN hopping processes are in-
cluded, as shown in Fig. 1. The optimal flatness ratio f
is about 50 for the honeycomb lattice model with parame-
ters (t1, t2, t3, φ1, φ2) = (1, 0.60,−0.58, 0, 0.4π ), and about
30 for the checkerboard lattice model with (t1, t2, t3, φ1, φ2) =
( − 1, 1/(2 + √

2),−1/(2 + 2
√

2), 0.25π, 0) [12,17], and it
will be adopted hereafter. To study the competition be-
tween the FCI and the other ordered states, we introduce the

FIG. 1. Two typical lattice models harboring a topological flat
band, where two red arrows in each lattice denote primitive lattice
vectors. (a) The Haldane model on the honeycomb lattice. Solid,
dashed, and dotted lines are the NN, second-NN, and third-NN
hopping processes, respectively. Additional phase factors in the
second-NN hopping process are denoted by arrows. (b) The checker-
board lattice model. Additional phase factors in the NN hopping
processes are denoted by arrows. The cyan lines mark the second-NN
hopping process, with solid and dashed lines for positive and nega-
tive t1, respectively. The dotted lines depict the third-NN hopping
process. The (2 × 4 × 4)-site lattice structures are chosen as typical
MPS unit cells used in iDMRG calculations, although other unit cells
are also studied.

short-range repulsive interactions between the hard-core
bosons expressed as

HI = V1

∑

〈i j〉
nin j + V2

∑

〈〈i j〉〉
nin j . (2)

Here, ni = b†
i bi is the number operator of bosons, and V1

and V2 denote the NN and second-NN repulsion strength be-
tween bosons, respectively. Recall that the bosonic systems
discussed in this paper remain strongly correlated even in
the absence of short-range repulsion due to the hard-core
constraints. The above lattice models were previously studied
using the ED algorithm [17].

We study the ground states of two lattice models by em-
ploying the iDMRG algorithm on an Lx × Ly cylinder, with
Lx the length and Ly the circumference of the cylinder. In
the iDMRG algorithm, a generic quantum state is compactly
represented by the products of the matrices, hence the name
matrix product state (MPS). For a local gapped Hamiltonian,
the entanglement of the ground state usually obeys the area
law. This allows us to faithfully represent such a ground state
with a fairly small bond dimension χ , the maximum allowed
matrix dimension in a MPS. In the same spirit, the Hamilto-
nian can also be written as a matrix product operator (MPO),
which is sandwiched between two identical copies of the
same MPS to express the energy expectation value as a ten-
sor network. The ground state is thus obtained by iteratively
optimizing each part of the MPS in this tensor network using
the iDMRG algorithm. Typically, we can choose an MPS unit
cell [36], which should be compatible with the translational
symmetry of a represented state, with Ly lattice unit cells
around the cylinder. Previous work on the iDMRG revealed
that the FCI state can be identified by topological entangle-
ment entropy [32,33] and a modular matrix [3,36,37]. The
momentum-resolved entanglement spectrum [34] reveals the
characteristic structure of edge modes. Hall conductance can
be obtained by inserting the flux into the cylinder [38–43]. To
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FIG. 2. Evolution of three characteristic quantities on the
second-NN interaction V2 with fixed V1 = 4 in both the honeycomb
(upper panels) and the checkerboard (lower panels) lattice model.
(a),(d) Ground-state energy E0, with the first derivative of the ground-
state energy dE0/dV2; (b),(e) the entanglement entropy S; and (c),(f)
the correlation length ξ . The iDMRG calculations are performed on
an infinite cylinder of a (2 × 4 × 4)-site MPS unit cell with different
bond dimensions χ labeled by colors. The notations for the respec-
tive phases in the middle panels will be discussed later.

accommodate the potentially translational symmetry-breaking
states, which enlarge the lattice unit cell, we choose 4 × Ly

lattice unit cells instead, i.e., an MPS unit cell with 8Ly lattice
sites. Several different sizes of Ly are attempted, and similar
results are observed.

III. QUANTUM PHASES AND TRANSITIONS IN THE TFB
LATTICE MODEL

We study the quantum phases and their transitions in the
two bosonic models by using the iDMRG algorithm, and we
compare them with the previous ED study [17]. We will focus
more on the phase transitions and how to characterize the
distinct quantum phases by the iDMRG method.

A. Honeycomb lattice model

We study the evolution of three quantities, i.e., the
ground-state energy E0, the entanglement entropy S, and the
correlation length ξ , in order to analyze the candidate phases
and phase transitions. In the honeycomb lattice model, three
distinct phases can be well observed from the dependence
of these quantities on the next-nearest-neighboring repul-
sion V2 with the fixed nearest-neighboring repulsion V1 = 4
as shown in the upper panels of Fig. 2. The continuity in

the first-order derivative of the ground-state energy dE0/dV2

and the entanglement entropy, together with the lambda-
like peaks in the correlation length ξ , strongly suggest the
second-order phase transition occurred at V2 ∼ 2.1 and 3.2,
respectively.

To diagnose these phases, we study the spectral flow ε

in the entanglement spectrum by adiabatically inserting flux
through the cylinder. The entanglement spectrum, obtained
by cutting the infinite cylinder into two halves, faithfully
captures the low-energy physics of edge modes [34]. For the
weak second-NN repulsion V2 (<2.1), a set of interpolating
entanglement states flows across the gap. This process resem-
bles the gapless edge modes on the boundary of the chiral
topological insulators [44], manifesting the nontrivial topol-
ogy of this phase. The entanglement spectrum can be further
resolved by charge sectors QL (Fig. 3), which labels the U (1)
charges of the left Schmidt states [38,42]. In the absence of
flux, the spectrum are exactly degenerate between the sectors
QL = ±n, with n an integer (only n = 0 and 1 are shown),
yielding the charge polarization 〈QL〉 = 0 on the left side of
the cylinder. The degeneracy shifts to between the sectors
QL = − 1

2 ± n
2 with odd n after a flux quanta insertion, which

results in the − 1
2 fractional charge accumulation on the left

side. Therefore, the exact 1
2 charge pumping by a flux quanta

insertion is observed [Fig. 3(d)]. Furthermore, the nearly lin-
ear evolution of 〈QL〉 on the inserting flux is also similar to
that in the fermionic and bosonic FCI states [38,42]. These
features provide convincing evidence that the present state is
a FCI state. The FCI nature can be further supported by the
fingerprint signature of the degeneracy sequence in the edge
excitations. Due to the translational symmetry preservation in
the y direction, each state in the entanglement spectrum can be
labeled by the quantum number ky. The first quasidegenerate
sequence of six in the low-lying entanglement spectrum is
{1, 1, 2, 3, 5, 7} (Fig. 6), agreeing with the prediction of chiral
Luttinger liquid theory for a Laughlin-like fractional quantum
Hall state [44]. The FCI reported here is much robust against
V2 than that revealed by the ED algorithm [17], where the
critical value of V2 ∼ 1.0. This may suggest that the strong
quantum fluctuations will destroy the FCI state since they are
overestimated in size.

In contrast, a large gap between the lowest entangle-
ment level and the higher levels is found in the stronger
V2 > 3.2 cases. The entanglement spectrum does not respond
to the threading flux, exhibiting the characteristic behavior
of the conventional insulators. Consequently, the insensitive
response of the charge pumping on the threading flux is ob-
served [Fig. 3(d)]. These features demonstrate unambiguously
that the present state is a solid state. In the intermediate inter-
action region of 2.1 < V2 < 3.2, a similar large gap exists in
the entanglement spectral flow, suggesting a solidlike feature.
However, a weak but visible sinelike feature is observed in
the charge pumping [orange line in Fig. 3(d)], suggesting a
metal-like feature. This feature is robust against the selected
parameters, although the amplitude of oscillations decreases
with increasing V2, manifesting its universality in this state.
Similar oscillations with flux insertion were observed in the
Berry phase in the Fermi-liquid phase, although with a dom-
inating linear dependence [16], signaling a metallic nature.
Considering the bosonic nature, the weak metallicity in the
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FIG. 3. Entanglement spectral flows with flux threading in
different phases demonstrated in the text. Left panels are for the hon-
eycomb lattice model with fixed V1 = 4. (a) The FCI phase at V2 =
0.1, (b) the supersolid state at V2 = 2.3, and (c) the solid state at V2 =
4. Right panels are for the checkerboard lattice model. (e) The FCI
phase at V1 = 0,V2 = 0, (f) the supersolid-I phase at V1 = 4,V2 =
1.5, and (g) the supersolid-II phase at V1 = 4,V2 = 2.2. Different
charge sectors with QL = 0 and ±1 in the entanglement spectrum
are coded by color. The lower panels (d) and (h) are the charge
pumping at respective phases for the honeycomb and the checker-
board lattice models. The amplitude of 100 × 〈QL〉 in the super-
solid and the solid state has been adopted to highlight the sinelike
oscillations.

fermionic state is believed to be associated with the weak
superfluid in the bosonic model. In fact, the V2 dependence
of the amplitude of sinelike oscillation agrees qualitatively
with that of the superfluid density (not shown). The superfluid
density is strongest near the phase boundary between the FCI
and the supersolid state, and it decreases with increasing V2. It

FIG. 4. Charge density profiles (upper panels) and corresponding
structure factors (lower panels) of ground states in different phases in
the honeycomb lattice model with fixed V1 = 4. Parts (a) and (d) are
for the FCI state at V2 = 0.1 with homogeneous distributions, (b) and
(e) are for the supersolid state at V2 = 2.3 with stripy distributions,
and (c) and (f) are for the solid state at V2 = 4. The expectation value
〈ni〉 has been explicitly shown. The data are obtained by the iDMRG
calculation with the bond dimension χ = 600.

is significantly suppressed in the solid state. These features are
similar to that observed in the ED method [17]. Therefore, the
state in the intermediate interaction region is more likely a su-
persolid state. This differs from the superfluid state diagnosed
by the ED method, where the solidity may be underestimated
by the strong finite-size effect [17]. Moreover, the visible
sublattice imbalance in the structure factor revealed by the
ED method, as well as the weak superfluidity, also suggests
the tendency of a supersolid state. The iDMRG algorithm pro-
vides a reliable way to study the phases and phase transitions
in a strongly correlated system.

The iDMRG algorithm offers great advantages to di-
rectly accessing the spontaneous symmetry-breaking state.
We show, therefore, the expectation value of the boson oc-
cupancy in the upper panels of Fig. 4. The FCI state is a
homogeneous state with averaged 1/4-filling on each site.
Unlike the superfluid in the common partially filled bosonic
system, the motion of the bosons is strongly suppressed by
the presence of the flat band, resulting in the bulk insulat-
ing FCI phase in the small-V2 region. In the intermediate
region, the distribution of bosons exhibits the stripy pattern
of a charge-density wave [Fig. 4(b)], in analogy to the stripy
antiferromagnetism in the Heisenberg Kitaev spin model [45]
and the interacting spinless fermion model on a honeycomb
lattice [29]. The induced inhomogeneity weakens the band
flatness, and therefore yields a weak superfluid density, in
agreement with the supersolid state argued before. The stripy
inhomogeneity can be continuously reduced to zero, i.e., the
homogeneous state in the FCI state. Similarly, the stripy
inhomogeneity can be further enhanced by introducing the
sublattice imbalance, leading to the solid state at strong V2. In
this sense, the phase transition that occurred in the honeycomb
lattice model is more likely a second-order transition, in ac-
cordance with the diagnosis from the characteristic quantities.
Interestingly, the sublattice charge imbalance [Fig. 4(c)] in
the present solid state exhibits the Knight’s-move-like feature
observed in the previous dipolar interacting spin system [22].
For completeness, we also show the structure factor defined as
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FIG. 5. V1-V2 phase diagrams for both (a) the honeycomb model
and (b) the checkerboard lattice model. FCI and SS denote fractional
Chern insulator and supersolid, respectively. The transition points
used to determine phase boundaries are marked by filled circles.
The iDMRG calculations are performed on an infinite cylinder of
a (2 × 4 × 4)-site MPS unit cell with bond dimension χ = 600.

S(q) = 1
2LxLy

∑
r,r′ eiq·(r−r′ )(〈nrnr′ 〉 − 〈nr〉〈nr′ 〉δq,0) [46]. The

resultant S(q) (lower panels in Fig. 4) is featureless in the
FCI state, peaked at (π, π ) in the supersolid state, and peaked
at (π/2, π ) (and the corresponding symmetric points) in the
solid state, respectively. These features are well consistent
with the density profile of the respective ground state in the
thermodynamic limit. In fact, the structure factor obtained by
the present iDMRG algorithm is similar to that from the previ-
ous ED results, although the superfluidity was overestimated
by ED calculations [17].

The full phase diagram of the honeycomb lattice model in
the V1-V2 space is plotted in Fig. 5(a), which shows qualitative
differences from the schematic phase diagram determined
by the ED method [17]. The key is that the superfluidity is
much suppressed in the iDMRG calculations. Therefore, the
previously diagnosed superfluid phase is substituted by the
supersolid phase, as well as the much robust FCI and solid
state.

B. Checkerboard lattice model

We now study the interaction-driven phase transition in
the checkerboard lattice model with fixed V1 = 4 using a
similar iDMRG algorithm. Three distinct phases are observed
according to the evolution of the above-mentioned character-
istic quantities, i.e., the ground energy E0, the entanglement
entropy S, and the correlation length ξ (right panels in Fig. 2).
The discontinuity of these quantities indicates that a first-
order phase transition occurred at V2 � 1, and 2, respectively.
The gapless edge modes in entanglement spectral flow and
the exact 1

2 unit charge pumping by a quanta flux threading
demonstrate unambiguously that the weak interacting state
(V2 < 1) is a FCI state. The FCI state is also evidenced by
the quasidegenerate sequence {1, 1, 2, 3, 5, 7} in the low-lying
entanglement (Fig. 6) as discussed in the honeycomb lattice
model. In contrast, the significant gap between the lowest
and higher entanglement levels [Figs. 3(f) and 3(g)], together
with the weak but visible sinelike oscillatory feature in the
charge pumping induced by flux threading [Fig. 3(h)], indi-
cates that the stronger interaction states (V2 > 1) are more like
a supersolid state (specified as supersolid-I and supersolid-II

FIG. 6. Low-level entanglement spectrum in the FCI state in both
the honeycomb (left panel) and the checkerboard (right panel) lattice
model at V1 = 0 and V2 = 0. Typical counting of {1, 1, 2, 3, 5, 7}
is clearly visible, consistent with chiral Luttinger liquid theory. A
(2 × 1 × 8)-site MPS unit cell is adopted in iDMRG calculations
with bond dimension χ = 800 in both cases.

states). It should be pointed out that the oscillations in charge
pumping decrease with the enhanced V2, and they are al-
most negligible for V2 > 4. Nevertheless, the state in the
strong V2 region remains a supersolid state since no additional
phase transition is observed up to V2 = 8. The reported quan-
tum phases are similar to the previous ED diagnosis [17].
However, significant deviation can also be found. The ED
predicted FCI state almost disappears and emerges in between
the two supersolid states.

We further show the boson occupancy in the upper panels
of Fig. 7 for a better understanding of the supersolid state. The
FCI state is a homogeneous state, as expected. In comparison,
the particles separate as far as possible for both sublattices and
the same sublattice, in supersolid-I and supersolid-II phases,
respectively. However, the boson occupancy on the sites with
a minority particle remains nonzero even with strong enough

FIG. 7. Charge density profiles (upper panels) and corresponding
structure factors (lower panels) of ground states in different phases in
the checkerboard lattice model with fixed V1 = 4. Parts (a) and (d) are
for the FCI state at V2 = 0 with homogeneous distributions, (b) and
(e) are for the supersolid-I state at V2 = 1.5, and (c) and (f) are for
the supersolid-II state at V2 = 2.2. Other notations are the same as in
Fig. 4.
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V2, which may be the reason for the weak superfluidity. More-
over, the boson occupancy in the supersolid-I state cannot
continuously transform into that in the FCI and supersolid-II
state, supporting the idea of the first-order phase transition
concluded based on the above-mentioned characteristic quan-
tities. The structure factor obtained by the iDMRG algorithm
(lower panels in Fig. 7) is the same as that obtained by the
ED method [17], in agreement with the corresponding density
profile. For completeness, we show the full phase diagram of
the checkerboard lattice model in Fig. 5(b). Though the phases
presented here are similar to those obtained with the ED diag-
nosis, the phase boundaries are quantitatively different from
that in the ED results. In particular, the FCI phase emerges
only in the lower V2 region in the iDMRG diagnosis, in sharp
contrast with the region V1 � V2 in the ED diagnosis.

IV. SUMMARY AND DISCUSSION

In summary, we study the interaction-driven phase transi-
tion in hard-core boson systems with half-filled TFBs in two
lattice models using the iDMRG algorithm. We propose an
efficient way to diagnose the distinct phases by examining the
entanglement spectral flows and the resultant charge pumping
features with flux threading through the cylinder. The 1

2 -FCI
state is characterized by the edge-mode-like entanglement
spectral flow and a linear dependence with 1

2 -charge pumping
on a quantum flux. We find that a robust sinelike charge
pumping feature exists in the supersolid state. In comparison,
the solid state features a large gap between the lowest and
higher entanglement levels in spectral flow and insensitive

response in charge pumping. The boson occupancy calculated
by the iDMRG algorithm enables us to visualize the distinct
phases. We demonstrate that phase diagrams presented here
deviate significantly from those reported before by the ED al-
gorithm, although they share similar phases, especially in the
checkerboard lattice model, where qualitative differences are
observed. We conclude that the iDMRG algorithm provides a
reliable and convenient method to study both the topologically
and conventionally ordered states.

In the iDMRG algorithm, the adopted MPS unit cell should
match the translational symmetry of the represented candidate
state. We try the 2 × 2 × 6 MPS unit cell in both the hon-
eycomb and the checkerboard lattice models. No qualitative
difference is observed in the FCI state, the supersolid state
in the honeycomb lattice model, and the supersolid-II phase
in the checkerboard lattice mode, where the unit cell matches
the representative ground state. This further supports our main
conclusion. In addition, the supersolid and the solid state are
not easy to distinguish, especially in the strong interaction
region, where the superfluidity is rather weak. Calculations
with larger system sizes and scaling analysis may give us a
definite answer.
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