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Anisotropic Kondo screening induced by spin-orbit coupling in quantum wires
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Using the numerical renormalization group method, we study a magnetic impurity coupled to a quantum
wire with Rashba and Dresselhaus spin-orbit coupling (SOC) in an external magnetic field. We consider the
low-filling regime with the Fermi energy close to the bottom of the band and report the results for local static and
dynamic properties in the Kondo regime. In the absence of the field, local impurity properties remain isotropic
in spin space despite the SOC-induced magnetic anisotropy of the conduction band. In the presence of the field,
clear fingerprints of anisotropy are revealed through the strong field-direction dependence of the impurity spin
polarization and spectra, in particular of the Kondo peak height. The detailed behavior depends on the relative
magnitudes of the impurity and band g factors. For the case of an impurity g factor somewhat lower than the
band g factor, the maximal Kondo peak suppression is found for a field oriented along the effective SOC field
axis, while for a field perpendicular to this direction we observe a compensation effect (revival of the Kondo
peak): The SOC counteracts the Kondo peak splitting effects of the local Zeeman field. We demonstrate that the
SOC-induced anisotropy, measurable by tunneling spectroscopy techniques, can help to determine the ratio of
Rashba and Dresselhaus SOC strengths in the wire.
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I. INTRODUCTION

The emergence of spin-orbit coupling (SOC) as a ma-
jor design principle in the development of new information
technologies [1,2], especially after the discovery of topolog-
ical insulators [3], has intensified studies of systems where
SOC is determinant in providing access to the spin degree
of freedom [4,5]. One of the main objectives is to incorpo-
rate spintronic ideas into contemporary technologies, which
are overwhelmingly reliant on semiconducting materials [6].
In this paradigm, one aims for spin injection, manipulation,
and detection using semiconductor structures similar to those
already in widespread use in standard semiconductor electron-
ics. Electron correlations and SOC may combine to produce
emergent behavior [7–10], as, e.g., in iridates, Sr2IrO4 [11].
The sensitivity of the Kondo effect [12,13], the quintessential
many-body phenomenon, to magnetic anisotropy [14–27] pro-
vides opportunities for novel devices. In this paper, the authors
use the numerical renormalization group (NRG) method [12]
to study in an unbiased manner an impurity in the Kondo
regime under the combined effect of SOC [28–38] and exter-
nal magnetic field. More specifically, we consider a magnetic
impurity in contact with a one-dimensional (1D) quantum
wire, which is subjected to Rashba [39] and Dresselhaus [40]
SOC, with the Fermi energy placed close to the bottom of the
band, which is the regime relevant for some of the proposed
applications [41–46].
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The main result is sketched in Fig. 1. The wire is oriented
along the x axis and, for simplicity, pure Rashba SOC is
considered here, hence the effective SOC magnetic field BSO

(antiparallel green arrows) points along the y axis. An external
magnetic field acts on both the impurity and the wire with
different g factors, denoted as gimp and gw, respectively. To
probe the physical origins of the various contributions to the
impurity total spin polarization, we consider two cases, viz.,
one with gimp = 0 and another with gimp �= 0. We consider
the case of T � TK , where TK is the Kondo temperature for
finite SOC and vanishing external magnetic field B. If B points
along the y axis (blue arrow), the Kondo peak is suppressed
(blue sketch). However, for B along the x or z axis (red
arrow), the Kondo peak persists (red sketch). The impurity
spin polarization is also anisotropic: For B along the y axis,
the impurity is only slightly polarized in the direction of B
(horizontal blue arrow), while for B along x or z axes, the im-
purity is considerably more polarized but the spin polarization
is oriented opposite to B (vertical red arrow). One might be
led to expect that the stronger suppression of the Kondo peak
for B applied along the y axis implies stronger polarization of
the quantum wire when the external magnetic field is applied
along this direction. However, this is not the case: The inset
to Fig. 1 shows that in the presence of SOC the wire spin
polarization, 〈Sw

i 〉 [47], is always reduced compared to the
zero SOC case, but the supression is actually greater for the
case of external field along the effective SOC-field direction.
The stronger suppression of the Kondo peak for B along the
y axis hence cannot be explained by the polarization of the
conduction electrons. This problem needs to be considered
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FIG. 1. Sketch of the main results. The impurity (purple sphere)
is coupled to the quantum wire (purple line). The antiparallel effec-
tive BSO magnetic field (green arrows) acts along the y direction. The
situation depicted is that for gimp = 0.4gw, with the impurity more
weakly coupled to the external magnetic field B than the quantum
wire. When B is applied along the y axis (large blue arrow), the
Kondo peak is suppressed and split (blue curve),with the impurity
polarized parallel to B (small blue arrow). When B is applied along
the z axis (red arrow), the Kondo peak is more robust (red curve), yet
the impurity polarization is stronger (small red arrow) and further-
more it points in a direction opposite to B. Inset: Spin polarization
of the wire, 〈Sw

i 〉, as a function of B applied along the different axes.
The black curve corresponds to zero SOC, α = 0.

with a capable numerical method that is able to capture the
full complexity of the problem, as we do in the following,
using NRG.

II. MODEL AND HYBRIDIZATION FUNCTION

A. Model

The wire Hamiltonian is

Hwire = ∑
k �

†
kHwire�k, (1)

Hwire = (εk − μ)σ0 + Btot · σ. (2)

Here �
†
k = (c†

k↑, c†
k↓), c†

kσ
creates an electron with wave vec-

tor k and spin σ =↑,↓, εk = −2t cos k is the tight-binding
dispersion relation where t is the nearest-neighbor hopping
matrix element, μ is the chemical potential, Btot = gwB + BSO

represents the combined effect of an external magnetic field
B = (Bx, By, Bz ) and an effective k-dependent spin-orbit mag-
netic field [5] BSO(k) = sin k(β,−α, 0), where the couplings
α and β (measured in energy units) are the Rashba [39] and
Dresselhaus [40] SOC strengths, respectively. The vector of
Pauli matrices σ = {σx, σy, σz} and the identity matrix σ0 act
on spin space. For simplicity, we set the Bohr magneton to

FIG. 2. Band structure of a quantum wire for γ = 0.5, θSO =
−π/2 (Rashba SOC), and different values of external field (a) B = 0,
(b) B = Bx̂, (c) B = Bŷ, (d) B = Bẑ, with B = 0.01.

μB = 1 and the factor 1/2 from S = σ/2 has been absorbed
into gw. We parametrize both SOCs as θSO = − tan−1 α/β,
such that β = γ cos θSO and −α = γ sin θSO, i.e., θSO is the
angle between the effective magnetic field BSO(k) (for positive
k) and the x axis. For pure Rashba SOC with β = 0 (θSO =
±π/2), the effective field points along the y axis (see Fig. 1),
while for pure Dresselhaus SOC with α = 0 (θSO = 0, π ), it
points along the x axis.

To study the Kondo state in this system, the quantum wire
is coupled to an Anderson impurity, which is modeled as

Himp =
∑

s

εd nσ + Un↑n↓ + gimpB · S, (3)

where d+
σ (dσ ) creates (annihilates) an electron with orbital

energy εd and spin σ =↑,↓, nσ = d+
σ dσ , and U represents

Coulomb repulsion. The third term accounts for the Zeeman
interaction of the impurity’s magnetic moment gimpS. The hy-
bridization between the impurity and the conduction electrons
is given by

Hhyb =
∑
kσ

(Vkd+
σ ckσ + H.c.). (4)

In this paper, we consider the case of Vk ≡ V . The Fermi
energy is close to the bottom of the band, μ = −1.0, and
we use the γ = 0 half-bandwidth D = 2t = 1.0 as the energy
unit. Unless stated otherwise, we use U = 0.5, εd = −U/2,
V = 0.07, and gw/gimp = 2.5 [48] (with gw = 1 and gimp =
0.4), |B| = 0.01. We take γ =

√
α2 + β2 = 0.5 as being fixed

and perform most calculations for θSO = −π/2 (i.e., Rashba
only). The Kondo temperature of this system is TK ≈ 1.16 ×
10−2.

The single-electron bands described by H are shown in
Fig. 2: panel (a) for zero B, and panels (b)–(d) for |B| =
0.01 oriented along x, y, and z axes. θSO = −π/2, BSO(k)
is oriented along the y axis, thus the bands for B along
the x and z axes are identical but they differ from those
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for B along the y axis, reflecting the anisotropy introduced
by SOC. The dependence of the direction of BSO on the
sign of k can be read from the difference in the splitting of
the bands in Fig. 2(c): k > 0 BSO opposes B, generating a
smaller band splitting, while k < 0 BSO aligns with B, in-
creasing the band splitting. In the other cases, the bands have
even parity.

B. Hybridization function

The impurity Green’s function Ĝimp(ω) can be written as

Ĝimp(ω) = [(ω − εd )σ0 − �̂(int)(ω) − �̂(0)(ω)]−1, (5)

where �̂(int)(ω) is the interaction self-energy, while �̂(0)(ω) =∑
k V̂ Ĝwire(k, ω)V̂ + is the hybridization self-energy, with

V̂ = V0σ0 and Ĝwire(k, ω) = [ωσ0 −Hwire]−1. One finds

�̂(0)(ω) =
∑

k

F (k, ω)[(cos k + μ + ω)σ0 + (ασy − βσx ) sin k − gwB · σ],

where

F (k, ω) = −V 2

2(αBy − βBx ) sin k + B2 + γ 2 sin2 k − (cos k + μ + ω)2
.

For a magnetic field applied along an arbitrary direction,
�̂(0)(k, ω) has finite off-diagonal terms and we have to deal
with a spin-mixing hybridization function [49,50]:

̂(ω) = 1

2i

∫ π

−π

[�̂(0)(k, ω − i0−) − �̂(0)(k, ω + i0+)]dk.

(6)

This positive-definite Hermitian matrix can be decomposed in
terms of Pauli matrices as ̂(ω) = ∑

i∈{0,x,y,z} di(ω)σi, where
all di(ω) are real quantities. In particular, d0(ω) is proportional
to the conduction-band density of states [51].

In the absence of SOC, for B = 0, only d0(ω) is nonzero,
while for B > 0, the coefficient di in the field direction is also
finite, with a value that does not depend on the field direction,
thus manifesting the spin isotropy. In the presence of SOC, the
rotation invariance is broken, see Fig. 3. For B = 0 [Fig. 3(a)],
again only d0(ω) is nonzero. For B = Bx̂ [Fig. 3(b)], d0(ω)
exhibits a small dip associated to the lifting of degeneracies
at k = 0 and π [see Fig. 2(b)], dx(ω) is finite, while dy(ω)
and dz(ω) remain zero. The results in Fig. 3(d), for the field
along z axis, are equivalent up to a permutation of the x and z
axes. For B = Bŷ [Fig. 3(c)], d0(ω) is different from the cor-

FIG. 3. Hybridization function coefficients di(ω) for (a) zero
field, and for (b)–(d) field oriented along the different axes.

responding curve in Figs. 3(b) and 3(d), and dy(ω) is different
from dx(ω) and dz(ω) in those panels. This clearly shows how
the y axis becomes distinct, since the Rashba SOC tends to
align the spins of the conduction electrons along this axis. The
anisotropy of �̂(0) affects the screening of the impurity local
moment (LM) [12], thus the SOC in the wire is experimentally
detectable by probing the properties of the Kondo state. The
problem bears some similarity with the problem of a quantum
dot with ferromagnetic leads [52–57], but the focus here is
on SOC anisotropy and the ensuing detailed form of the hy-
bridization function, with complex (and direction-dependent)
behavior close to the band edges.

C. Method

The model has been solved using the NRG method. This
numerical technique consists of discretizing the continuum of
conduction band states on a logarithmic mesh, tridiagonaliz-
ing the resulting star representation into a tight-binding chain
representation (Wilson chain), and iteratively diagonalizing
this chain model. The discretization has been performed using
the artefact-less scheme from Refs. [58,59] adapted to the
case of the matrix-valued hybridization function [49], which
produces significantly more accurate results than other ad hoc
procedures [50] and is particularly important for the purposes
of this paper, where the hybridization function is a 2 × 2
matrix with a nontrivial energy dependence. The technique
allows for arbitrary orientation of the SOC effective field and
the external magnetic field. Furthermore, the g factors are
allowed to be tensor quantities and are allowed to be different
in the nanowire and in the quantum dot. In all our calculations,
we have used the discretization parameter � = 2.5, which
controls the coarseness of the grid, and we have averaged the
results over Nz = 4 interleaved discretization meshes to re-
duce the discretization artifacts and thereby produce smoother
curves. The NRG iteration was performed with a version of
the code where the only conserved quantum number is the
total charge, thus the calculations are computationally rather
demanding. The truncation criterion has been set to 80 in units
of the characteristic energy scale, or 2000 states, whichever
was lower. The final spectral functions were obtained by
broadening with a log-Gaussian kernel with a 0.6 broadening
parameter.
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FIG. 4. Local density of states ρ(ω). (a) gimp = 0 and (b) gimp =
0.4 with γ = 0.5 for both panels. Insets: Closeups on the Kondo
peak.

III. RESULTS

A. Impurity local density of states

The total impurity LDOS ρ(ω) = − 1
π

Im Tr Ĝimp(ω) is
shown in Fig. 4 for zero field and for fields along the
three axis. Two different g-factor values are used: gimp = 0
[Fig. 4(a)] and gimp = 0.4 [Fig. 4(b)]. The Kondo peak is sim-
ilarly suppressed for B ‖ ŷ for both g-factor values, slightly
more so for finite gimp (see insets), while for B ‖ x̂ or ẑ
there is a noticeable quantitative difference: the splitting and
suppression is much more prominent for vanishing gimp. Thus,
the picture that emerges is the following: for gimp = 0 the band
polarization results in the inset to Fig. 1 explain the Kondo
suppression for any direction of the external magnetic field.
However, when the impurity Zeeman effect is turned on, the
Kondo suppression for B ‖ ŷ is largely unaffected, while for
B ‖ x̂ or ẑ it is partially erased, as if the band polarization
and the impurity Zeeman effect were canceling each other. In
other words, for B ‖ x̂ or ẑ, a finite Zeeman term at the impu-
rity [gimp = 0.4, Fig. 4(b)] seems to partially compensate the
broad splitting caused by the band polarization [Fig. 4(a)], as
it increases the LDOS spectral weight around ω = 0, partially
reconstructing the Kondo peak.

B. Spin-resolved local density of states

We now reexamine the spectra by resolving them along the
magnetization axis defined by the applied external magnetic
field, see Fig. 5. The three rows of panels show the results
as couplings are gradually turned on: (i) γ = 0, gimp = 0,
(ii) γ = 0.5, gimp = 0, (iii) γ = 0.5, gimp = 0.4. For all rows
gw = 1.0. At zero SOC (first row), the results do not depend
on the field direction [60]. The very asymmetric Kondo peak
in the first row is caused by the fact that, for μ = −1.0 and
γ = 0, the Fermi energy seats exactly on top of the van Hove
singularity at the bottom of the band. It should be noted
too that when the curves in Figs. 5(a) and 5(b) are added
(not shown), there is a splitting of the Kondo peak that is
associated to the presence of this van Hove singularity, and
to a lesser extent, to the quantum wire polarization by the
external magnetic field. In the second row, since gimp = 0, the
suppression of the Kondo peak and the partial polarization of
the impurity is induced by the band polarization as well. In
the presence of SOC (second row), B ‖ ŷ differs from B ‖ x̂

FIG. 5. Spectral function resolved along the axis of the applied
magnetic field, ρσi (ω), with i ∈ {x, y, z}; left and right panels cor-
respond to the two projections. Top row: Zero SOC and gimp =
0 (reference results). Middle row: Rashba SOC [γ = 0.5, θSO =
−π/2] and gimp = 0. Bottom row: Rashba SOC and gimp = 0.4. In
all panels gw = 1.0, i.e., the quantum wire is spin polarized. The
insets show a closeup of the vicinity of the Fermi energy. The tuples
straddling both panels for each row indicate the respective values of
[γ , θSO, gimp].

or ẑ. In addition, since the introduction of SOC moves the van
Hove singularity at the bottom of the band to lower energies,
away from the Fermi energy, the Kondo peak becomes less
asymmetric compared to the γ = 0 results in the first row.
Resolving the spectra along the external field direction allows
us to see that the Kondo effect is affected more strongly
when B ‖ ŷ, since, as is more clearly seen in the insets, the
Kondo peak polarization is parallel to the applied field for
B ‖ ŷ and antiparallel for B ‖ x̂ or ẑ. The inclusion of a finite
gimp (third row) changes this picture only quantitatively, with
the impurity becoming less antiferromagnetically correlated
with the polarized band for B ‖ x̂ and ẑ, and becoming more
ferromagnetically correlated with the band for B ‖ ŷ. This
picture is reinforced by calculating the impurity polariza-
tion as a function of temperature, see Fig. 6, where one can
see that, at low temperatures, for B ‖ ŷ and gimp = 0 [open
symbols in Fig. 6(c)], the impurity is barely correlated with
the band, becoming ferromagneticaly correlated with it for
gimp = 0.4 (solid symbols). On the other hand, for B ‖ x̂ and
ẑ, [Figs. 6(b) and 6(d)], there is a clear Kondo correlation
of the impurity with the band for gimp = 0 (open symbols),
which is somewhat weakened by the impurity Zeeman term
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FIG. 6. Impurity spin polarization 〈Si〉 versus temperature. Same
parameters as in Figs. 3 and 4, except for (a), where γ = 0. In (a)–
(d), open and solid symbols correspond to gimp = 0 and gimp = 0.4,
respectively. Note that in (a), since γ = 0, 〈Si〉 is the same for all i
axes, thus only the x axis result is shown. In (b)–(d), i = x, y, and
z, respectively. Note that the impurity polarization, for directions
perpendicular to the applied external field [for example, 〈Sy〉 and
〈Sz〉, for B ‖ x̂, (b)], vanish identically, and therefore are not shown.
In each panel, a sketch of the impurity’s LDOS, corresponding to
gimp = 0, is shown.

(gimp = 0.4, solid symbols). Jointly, these results establish the
revival alluded to in Fig. 1, as moving the external field from
ŷ to x̂/ẑ strengthens the Kondo effect (see Fig. 9 too).

C. Temperature dependence of the impurity spin polarization

Now, we track the impurity spin polarization, 〈Si〉 [61], as
the temperature is reduced from T = D to ≈0, see Fig. 6. By
following how the spin components evolve through the three
SIAM fixed points, we gain some intuition on how the SOC
affects the Kondo state properties. In addition, by comparing
the results for gimp = 0 (open symbols) and gimp = 0.4 (solid
symbols), we discern which effects arise from the band po-
larization alone and which are the consequence of the local
Zeeman field. An external magnetic field |B| = 0.01 is ap-
plied along the same i axis along which the impurity spin
magnetization −〈Si〉 is measured. The results in Fig. 6(a),
without SOC (γ = 0), are the same for all three directions
(thus, only the x axis result is shown). The temperature vari-
ation of the impurity magnetization reveals the crossovers
between the three SIAM fixed points: free orbital (FO) →
LM → strong coupling (SC). At the FO fixed point (T � D),
the spin magnetization is negligible for both values of gimp

because of the strong charge fluctuations. At the LM fixed
point, the local spin starts to form for T � U = 0.5 and the
open and solid symbols curves start to separate: For gimp = 0,
the impurity polarizes in response to the band polarization and
its spin antialigns with the band polarization due to antiferro-
magnetic Kondo exchange coupling (thus −〈Si〉 < 0), while
for gimp = 0.4 the impurity Zeeman term will counteract this
effect (thus −〈Si〉 � 0). As the temperature decreases further
(T ≈ U/5 = 0.1), the charge fluctuations die down and, for

M

FIG. 7. Impurity spin magnetization −〈Si〉 vs |B| for field along
different directions, for gimp = 0.4.

gimp = 0.4, −〈Si〉, reaches a maximum at the LM fixed point
and decreases toward the SC fixed point. Because the Zeeman
effect is too small to suppress Kondo, the magnetization set-
tles into an −〈Si〉 < 0 plateau located above that for gimp = 0.

The results for finite SOC are shown in Figs. 6(b) and 6(d).
For B ‖ ŷ [Fig. 6(c)], by comparison to the results just de-
scribed for zero SOC (γ = 0), we see that the combination of
SOC and B ‖ BSO considerably weakens the Kondo state re-
sulting from finite B and γ = 0 [Fig. 6(a)], since the −〈Si〉 ≈
0 plateau for gimp = 0 indicates that the impurity is barely
correlated to the band, and −〈Si〉 > 0 for gimp = 0.4. On
the other hand, for B ‖ x̂ or ẑ [Figs. 6(b) and 6(d)], where
B ⊥ BSOC, the situation is quite different, as it is clear that the
Kondo state was strengthened in relation to both the zero-SOC
case [Fig. 6(a)] and the finite SOC with B ‖ ŷ case [Fig. 6(c)],
illustrating the Kondo revival shown in Fig. 9.

FIG. 8. Spin-down projected Kondo peak position ωmax
↓ as a

function of B, for gimp = 0.4. The impurity spin polarizes (mag-
netizes) along (opposite to) the external field for B ‖ ŷ, while the
reverse occurs for B ‖ x̂ or ẑ. In other words, the impurity spin
correlates antiferromagnetically with the band spins in the latter case,
and ferromagnetically for the former case. This is in accordance with
the result sketched in Fig. 1.
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FIG. 9. (a) Local density of states ρ(ω) vs ω and θ for α = 0.4
and β = 0.3 (θSO ≈ −0.295π ). (b) ρ(ω = 0) vs θ − θSO for gimp =
0 (blue open symbols) and gimp = 0.4 (red solid symbols), where
−π/2 � θ − θSO � π/2 determines the orientation of the external
magnetic field in the xy plane in relation to θSO. Note that the curves
have a π periodicity. gw = 1 for both panels.

D. Field dependence of impurity magnetization
and Kondo splitting

In Fig. 7, we present how the gimp = 0.4 impurity magneti-
zation −〈Si〉 for i = x, y, z, varies with external field intensity
(0 � B � 0.01), for the field applied along the i axis. The re-
sults for B ‖ ŷ (blue curve) and B ‖ x̂ and �̂z (red curve) evolve
smoothly with field intensity, with the B ‖ ŷ curve seemingly
having plateaued around B = 0.01. Thus, the B = 0.01 results
presented in the previous sections may be considered as rep-
resentative, i.e., there is nothing special about the B = 0.01
value. In Fig. 8, we show the spin-down projected Kondo peak
position, denoted as ωmax

↓ , as a function of B (0 � B � 0.01),
for gimp = 0.4. As for the case of the impurity magnetiza-
tion, Fig. 7, both curves evolve smoothly with external field,
showing again that the B = 0.01 value is representative of the
physical phenomena discussed above.

E. Combined effect of Rashba and Dresselhaus SOC

We now consider the generic case with both Rashba and
Dresselhaus SOC. Based on what has been shown so far,
we anticipate that an analysis of the Kondo peak height as

a function of the field direction provides information about
the direction of BSOC. Since θSOC is associated with the ratio
α/β, its precise determination (e.g., using scanning tunneling
spectroscopy) in conjunction with additional measurements
[62–64] would give access to the absolute values of α and β.
Figure 9(a) shows a 3D plot of the impurity’s LDOS for the
magnetic field in the xy plane as a function of the polar angle θ

between the x axis and the field direction. One can clearly see
that the Kondo peak (at ω = 0) suffers strong variations as a
function of θ . This can be observed in more detail in Fig. 9(b),
which shows the impurity LDOS at the Fermi energy (i.e.,
Kondo peak height) as a function of θ − θSO, the direction of
the external magnetic field in relation to θSO, from −π/2 to
π/2. Open (blue) symbols are for gimp = 0, while solid (red)
symbols are for gimp = 0.4. We note that the spin symmetry
of the Hamiltonian requires that the curves in Fig. 9(b) should
be symmetric around θ = θSO. The somewhat delicate NRG
numerics at ω = 0 is responsible for the observed lack of
perfect symmetry. Two broad ρ(0) maxima occur orthogo-
nally to θSOC = − tan−1 α/β. This is in agreement with the
results described above as a revival of the Kondo peak for
B ⊥ BSOC. The presence of other features in the curves in-
dicates that a better strategy to find θSO is by exploiting the
expected symmetry around θSO. In any case, this method of
finding the Rashba and Dresselhaus couplings can be used
as a complementary technique to other proposed procedures
[62–64].

A very interesting recent experimental result [65] has
shown a similar magnetic-field-revealed anisotropy in an InSb
quantum wire proximity coupled to a superconductor. In that
case, it is the superconducting gap that undergoes a revival
when the magnetic field is rotated away from the SOC-
induced effective magnetic field.

IV. SUMMARY AND CONCLUSIONS

We have shown that Rashba and Dresselhaus SOC in a
quantum wire can be investigated through their combined
effect on the Kondo ground state of a quantum impurity
coupled to the wire. Although SOC breaks the spin isotropy
through the introduction of an effective magnetic field BSO,
this anisotropy is only manifested when an external magnetic
field B is applied. In that case, the Kondo state properties,
like the height of the Kondo peak as well as its Zeeman
splitting, are strongly dependent on the relative orientation
of BSO and B. The maximum suppression of the Kondo peak
occurs for BSO ‖ B. Since the orientation of BSO is given by
θSO = tan−1 α/β, where α and β parametrize the Rashba and
Dresselhaus interaction, determination of θSO can be used to
estimate α/β. Finally, it would be interesting, as a possible
follow-up work, to study the role of the ratio gimp/gw more
systematically.
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FIG. 10. (a) Impurity LDOS for different values of α in the
interval 0.34 < α < 0.52, for U = 0.5, εd = −U/2, V = 0.07. The
chemical potential μ = −1 places the Fermi energy close to the
bottom of the band. (b) TK vs α as obtained from (a) by measuring
the Kondo peak width. All results obtained at zero external magnetic
field.

APPENDIX: KONDO TEMPERATURE DEPENDENCE
WITH SPIN-ORBIT INTERACTION

The study of the influence of SOC in the Kondo effect
started in the early ’90s [28] and has become more popular as
spintronics has developed [29–38]. Given the early prevalence
of 2D systems in spintronics, a majority of works in this
subject have been in 2D systems. With the advent of the
Kitaev chain model [41], more attention has been given to
1D systems [35,36,38]. However, just a couple of works have

explored 1D models away from the particle-hole symmetric
point [36,38]. Nonetheless, this is exactly where quite a bit
of attention has been raised recently due to its connection to
Majorana fermions in quantum wire/superconductor hybrid
systems. In addition, there is a constraint imposed in the Zee-
man energy EZ , in relation to the superconducting gap � and
the chemical potential μ (measured from the bottom of the 1D
band), viz., EZ >

√
�2 + μ2 [66], so Majorana bound states

can be observed, which is fulfilled, before Zeeman energy
suppresses superconductivity, for small values of μ. Thus, in
this Appendix we show results for the Kondo temperature as
a function of SOC strength for μ = −1 (i.e., at the bottom
of the band for zero-SOC). In Fig. 10(a), we show the im-
purity LDOS for four different values of α in the interval
0.34 < α < 0.52 and with vanishing external magnetic field.
In Fig. 10(b), we show the Kondo temperature TK as a function
of α, showing a decrease of TK as α increases. We estimate
TK from the Kondo peak width. We avoid smaller values of
α because the proximity of the Fermi energy (thus, of the
Kondo peak) to the van Hove singularity splits the Kondo peak
and makes it difficult to obtain the Kondo temperature. These
results are in general agreement with literature results for 1D
models similar to ours [36,38]. The reason for the decrease
of Tk with SOC is that the band becomes broader at finite
SOC, suppressing the hybridization at the Fermi energy, thus
increasing the ratio U/�, which exponentially suppresses TK .
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