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Quantum quench and charge oscillations in the SU(3) Hubbard model: A test of time evolving block
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We introduce the notion of non-Abelian tensors and use them to construct a general non-Abelian time evolving
block decimation (NA-TEBD) scheme that uses an arbitrary number of Abelian and non-Abelian symmetries.
Our approach increases the speed and memory storage efficiency of matrix product state based computations by
several orders of magnitude and makes large bond dimensions accessible even on simple desktop architectures.
We use it to study post-quench dynamics in the repulsive SU(3) Hubbard model and to determine the time
evolution of various local operators and correlation functions efficiently. Interactions turn algebraic charge
relaxation into exponential and suppress coherent quantum oscillations rapidly.
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I. INTRODUCTION

Matrix product state based numerical renormalization ap-
proaches such as Wilson’s original numerical renormalization
group (NRG) method [1,2] or the density matrix renormal-
ization group (DMRG) introduced by Steven R. White [3–5],
proved to be extremely powerful tools to study low-energy
properties of strongly interacting many-body systems. Though
the original methods were designed to address the ground
state properties of zero and one-dimensional quantum sys-
tems, modern offsprings of NRG and DMRG earned wide
applications: The time-evolving block decimation (TEBD)
algorithm [6,7], time dependent DMRG [8], or the time de-
pendent variational principle (TDVP) algorithms [9] allow
one to study the evolution of closed quantum systems in real
or imaginary time, while in two dimensions, the projected
entangled paired states (PEPS) approach [10,11] has been pro-
posed as a viable extension of MPS states. For gapless models
multiscale entanglement renormalization ansatz (MERA) is a
suitable choice [12], while tree tensor network states (TTNS)
represent another promising direction for models with long-
ranged interactions [13,14]. DMRG, however, continues to be
a very attractive and robust approach for systems with long-
ranged interactions as well as for one- and two-dimensional
systems (see, e.g., Ref. [15]) and provides a valid alternative
to more sophisticated approaches, which often display less
favorable computational scaling with the so-called bond di-
mension [16,17].

Exploiting the symmetry of the problem as much as one
can is always a crucial ingredient in numerical simulations:
It reduces the computational cost and boosts up the accuracy.

It is straightforward to implement Abelian symmetries, such
as parity or charge conservation, in most MPS and tensor net-
work algorithms [18,19]. Handling non-Abelian symmetries
is, however, much more challenging. It has been known for
a long time how to treat non-Abelian symmetries in NRG
[1,2,20,21] and DMRG [22] simulations, and SU (2) sym-
metry has also been implemented in TEBD [23], in TTNS
[24], and in PEPS [25], yet a unified non-Abelian tensor
framework incorporating non-Abelian symmetries remained a
challenge.

In Ref. [26], we introduced the general structure of non-
Abelian tensors (NA tensors), which provides the requested
unified framework, and applied this approach to describe
the time evolution of the S = 1 Heisenberg chain and to
study quasiparticle dynamics. NA tensors, depicted in Fig. 1,
are objects that carry symmetry labels (representation la-
bels) as internal arguments, and have external legs, which,
however, may be tied to the aforementioned internal sym-
metry labels. Line directions indicate regular or conjugate
representations. We remark that our NA tensors resemble
the previously introduced Q-spaces tensor class [27,28], but
the treatment of symmetry dependent parts of the tensor
networks is substantially and conceptually different in our
construction. The structure we introduce here encodes in a
natural way non-Abelian MPS structures, Clebsch-Gordan co-
efficients, 6J and 9J symbols [29], and provides a technically
transparent framework to handle non-Abelian symmetries, in
general.

In this work, we give a detailed account of this math-
ematical and computational framework and demonstrate
its performance on an experimentally relevant system, the

2469-9950/2020/102(15)/155108(14) 155108-1 ©2020 American Physical Society

https://orcid.org/0000-0001-5491-4033
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.155108&domain=pdf&date_stamp=2020-10-07
https://doi.org/10.1103/PhysRevB.102.155108


WERNER, MOCA, LEGEZA, AND ZARÁND PHYSICAL REVIEW B 102, 155108 (2020)

T({Γ})

i1 i2
in

j1

j2 jm

FIG. 1. Graphical representation of an NA tensor T ({�}) j1 j2 ... jm
i1 i2 ...in

.
Incoming and outgoing legs correspond to lower and upper in-
dices. Tensor blocks are labeled by the representation indices {�} =
(�1, . . . , �k ).

fermionic SU(3) Hubbard model,

Ĥ = −J
∑

α

L−1∑
l=1

(c†
l,αcl+1,α + H.c.) + U

L∑
l=1

∑
α �=α′

nl,αnl,α′ .

(1)

Here J denotes the hopping amplitude between nearest-
neighbors sites, U represents the local strength of the
interaction, and ni,α is the number operator at a given site,
ni,α = c†

i,αci,α . This model displays an overall SU(3) × U(1)
symmetry, which we use to obtain a compact NA-MPS
description of the time evolution. In the following, if not
explicitly displayed, energies and time are measured in units
of J and J−1, respectively.

The one-dimensional model, Eq. (1) is not just of pure
theoretical interest. Both its attractive [30] and its repulsive
versions [31] have been realized by ultracold atoms trapped in
optical lattices, where the real-time dynamics can be carefully
observed. Here we study the SU(3) version of the experiment
realized in Ref. [32] with 87Rb atoms: We prepare an initial
state with groups of three atoms placed on every third site
(see Fig. 2). As we demonstrate, in the absence of inter-
actions charge oscillations relax to the average occupation
algebraically, and long-ranged spatial correlations develop. A
finite interaction strength changes this behavior dramatically,
rapidly suppresses coherent charge oscillations, and induces
exponential charge equilibration.

The paper is structured as follows: We introduce non-
Abelian matrix product states in Sec. II A. Non-Abelian
tensors (NA tensors) and their algebraic properties are pre-
sented in Sec. III. We describe the generalized non-Abelian
TEBD algorithm in Sec. IV, while results for various quanti-
ties such as the charge oscillation or the entanglement entropy
growth in the SU(3) Hubbard model are presented in Sec. V.

J

3U
FIG. 2. Initial state of the SU(3) Hubbard chain. Fermions sit in

groups of three on every third site of the optical lattice.

FIG. 3. Left-canonical MPS tensor diagram corresponding to
Eq. (2).

We benchmark the efficiency of our code in Sec. VI and
summarize our results and conclusions in Sec. VII. Certain
technical details have been relegated to appendices.

II. NON-ABELIAN MATRIX PRODUCT STATES

A. MPS representation of quantum states

The MPS representation of a state |�〉 can be written as
[5,11]

|�〉 =
∑

a1,...aL−1

∑
σ1,...σL

A[1] a1
σ1

A[2] a2
a1σ2

. . .A[L]
aL−1σL

× |σ1〉 ⊗ |σ2〉 ⊗ · · · ⊗ |σL〉 . (2)

Here the states |σl〉 span the local Hilbert space Hl at site
l . In case of the SU(3) Hubbard chain, e.g., each site has
23 = 8 states. Representation Eq. (2) possesses an enormous
gauge freedom, and the ‘matrices’ A[l] are not uniquely de-
fined. In the following, we use the so-called ‘left-canonical’
MPS representation, where the MPS is obtained by using the
left Schmidt states of the so-called Schmidt decomposition
[5,11,33]. To achieve this, we cut the system into two parts
at bond l and perform a Schmidt decomposition with this
partitioning to yield

|�〉 →
∑

a

λ[l]
a |a〉l ⊗ |ā〉l . (3)

Here |a〉l and |ā〉l refer to the left and right orthonormal
Schmidt states, respectively. Making a cut at the bond l + 1
yields a similar decomposition with another set of left Schmidt
states, |a〉l+1. These latter can, however, also be built up from
the states |a〉l and the local states |σ 〉l+1 at site l + 1, as

|a′〉l+1 =
∑
a,σ

(A[l+1])a′
aσ |a〉l ⊗ |σ 〉l+1 . (4)

Iterating this equation leads to the MPS representation,
Eq. (2). Due to the orthogonality of Schmidt states the A’s
satisfy the ‘half-unitary’ conditions,∑

σ,a

A[l] a′
a σ

(
A[l] a′

a σ

)∗ = δa′
a′ . (5)

One can similarly introduce ‘right-canonical’ MPS based on
the right Schmidt states |ā〉l , however, since TEBD can be
formulated purely in terms of left-canonical matrices, we do
not discuss them here.

Notice that the ‘matrices’ A[l] are rather tensors than matri-
ces, since they have three indices. The two ‘incoming’ states
|a〉l and |σ 〉l in Eq. (4) appear as lower indices, while the
‘outgoing’ state |a′〉l+1 is displayed as an upper index. This
leads us to the pictorial representation in Fig. 3. It is useful to
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associate incoming arrows with lower (‘ket’) indices and out-
going arrows with upper (‘bra’) indices. The aforementioned
gauge symmetry implies namely that incoming legs can only
be contracted with ‘outgoing’ ones.

B. Locally generated global symmetries for lattice models

Generic Hamiltonians display various symmetries, which
help us to organize states. Here we consider symmetries with
unitary representations, where each element g of a symmetry
group G corresponds to some unitary operator, Û (g), which
commutes with the Hamiltonian,[

Ĥ, Û (g)
] = 0 , ∀g ∈ G . (6)

Eigenstates of the Hamiltonian can then be labeled by the
irreducible representations (‘quantum numbers’) of the group
G and can thus be organized into multiplets,

H = span{|�; t�, m�〉} . (7)

Here we have grouped states into ‘sectors’ according to the
representation index �. Within each sector �, t� labels the
multiplets, while m� is a symmetry-related internal quan-
tum number. States within a multiplet (�; t� ) are transformed
among each other under the action of the Û (g)’s and are
degenerate.

For multiple symmetries, that is G = G1 ⊗ · · · ⊗ GnS , rep-
resentation indices form a list � = (�1, . . . , �nS ). In case of
the SU(3) Hubbard model, discussed here, the global sym-
metry is SU(3) × U(1), and, accordingly, multiplets will be
labeled by SU(3) representations and U(1) charges (i.e., parti-
cle number).

Here we restrict ourselves to locally generated global sym-
metries, for which Û (g) factorizes as

Û (g) = Û1(g) ⊗ Û2(g) ⊗ · · · ⊗ ÛL(g) , (8)

with the Ûi(g)’s operating only at site i. In this case, the local
Hilbert space at each lattice site i can also be organized into
multiplets (sectors),

Hi = span{|�loc; τ�loc , μ�loc〉i} , (9)

with the �loc labeling local representations, τ�loc denoting the
associated local multiplets, and μ�loc the internal index of
the given representation. Hereinafter, for clarity, multiplet and
internal labels associated with a single site shall be denoted
by Greek letters, while states or multiplets for multisite (sub)
systems are denoted by Latin letters.

C. Generalization of MPS for non-Abelian symmetries

The easiest way to obtain the non-Abelian MPS (NA-MPS)
representation of a state |�〉 is to exploit Schmidt decomposi-

tion introduced in Sec. II A. The construction in Eqs. (3) and
(4) carries over in the presence of non-Abelian symmetries,
too. The only modification is that Schmidt states are now
grouped into multiplets, |a〉 → |�; t�, m�〉, and Schmidt states
constructed on neighboring bonds l and l + 1 are related via
the Clebsch-Gordan coefficients of the symmetry group G,

|�′; t�′ , m�′ 〉l+1 =
∑
�,�loc

∑
t�,τ

�loc

∑
α{�}

A[l+1](�,�loc, �′)t�′
t� τ

�loc α{�}

×
∑

m�,μ
�loc

C(�,�loc, �′)m�′ α{�}
m� μ

�loc |�; t�, m�〉l

⊗ |�loc; τ�loc , μ�loc〉l+1 . (10)

Here, to emphasize their tensor character, the usual Clebsch-
Gordan coefficients have been denoted in a somewhat unusual
way, (�, m�; �loc, μ�loc |�′, m�′ )α{�} → C(�,�loc, �′)m�′ α{�}

m� μ
�loc ,

with α the so-called outer multiplicity label [34]. This la-
bel is usually introduced for more complex groups such as
SU(n > 2) or cubic symmetries, e.g., where certain irre-
ducible representations occur multiple times in the product
of two other representations. The outer multiplicity label
is usually dropped for symmetries such as O(3) or SU(2),
but it proves extremely useful to keep it even in these sim-
ple cases. The interpretation of Eq. (10) is simple: We use
Clebsch-Gordan coefficients to construct the multiplets �′
from representations � and �loc and then mix these with the
NA tensor A(�,�loc, �′) to obtain the appropriate Schmidt
state. In the construction above, we have tacitly assumed that
the state |�〉 is a ‘singlet,’ i.e., that it transforms according
to the trivial representation, � = 0. Then the trivial symmetry
structure of |�〉 ensures that Schmidt states form multiplets.
The construction can, however, be easily generalized to the
case � �= 0 (see Appendix A for details).

We pause here for a moment to investigate the structure of
the tensors appearing in the construction above. The Clebsch-
Gordan coefficient and the matrix A are both four-leg tensors,
organized into blocks according to the three representation
labels, {�} = (�,�loc, �′). The external legs of these tensors
are, however, tied to the block’s considered. Certain legs,
such as the t’s, τ , the m’s and μ, depend only on a par-
ticular representation, which we displayed as a label. The
outer multiplicity label α, however, depends on all three �’s.
These dependencies play a crucial role in what follows: As we
shall see, only tensor legs with identical dependencies can be
contracted. This is already clear in Eq. (10), where summation
over the multiplicity label α enforces the symmetry labels of
A[l] and C to be identical.

Equation (10) is graphically represented in Fig. 4. We can
rewrite Eq. (10) by simply suppressing the (quite obvious)
dependency of the legs as

|�′; t ′, m′〉l+1 =
∑
�,�loc

∑
t,τ

∑
α

A[l+1]({�})t ′
t τ α

∑
m,μ

C({�})m′ α
m μ |�; t, m〉l ⊗ |�loc; τ, μ〉l+1. (11)

The direct relationship between Eqs. (11) and (4) can be established by summing over the outer multiplicity label α [see also
Fig. 4(b)], ∑

α

A[l+1]({�})t ′
t τ αC({�})m′ α

m μ = A[l+1]({�})t ′ m′
t m τ μ . (12)
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Iterating Eq. (11), we arrive at the left-canonical NA-MPS representation of the state |�〉,
|�〉 =

∑
{�loc

l }

∑
{�l }

∑
{tl }

∑
{τl }

∑
{αl }

A[1]({�}[1] )t1
τ1 α1

A[2]({�}[2] )t2
t1 τ2 α2

. . . A[L]({�}[L] )tL−1 τL αL

∑
{ml }

∑
{μl }

C({�}[1] )m1 α1
0 μ1

C({�}[2] )m2 α2
m1 μ2

. . .

×C({�}[L] )0 αL
mL−1 μL

∣∣�loc
1 ; τ1, μ1

〉 ⊗ ∣∣�loc
2 ; τ2, μ2

〉 ⊗ · · · ⊗ ∣∣�loc
L ; τL, μL

〉
, (13)

where we have added a site label l to the general notation
(�l−1, �

loc
l , �l ) → {�}[l], with �l denoting the representation

indices of Schmidt states on the left of bond l . The formally
introduced representation index �0 = 0 stands for the ‘empty’
site, l = 0, while �L = 0 is just the trivial representation to
which the state |�〉 belongs. (Generalization to �L �= 0 states
is discussed in Appendix A).

Figure 5 shows a graphical representation for the NA-MPS
state in Eq. (13). It is constructed as a two layer structure, with
the lower layer containing symmetry/representation-specific
information, encoded through Clebsch-Gordan coefficients.
The upper layer has, of course, also some knowledge
about the underlying symmetry, since its blocks are la-
beled by the irreducible representations, but does not contain
representation-specific information. This two-layer structure
is somewhat similar to those in the SU(2) symmetric im-
plementations presented in Refs. [23,24]. Here, however, we
also keep track of outer multiplicities in a very general way,
which allows us to treat symmetries beyond SU(2) in a unified,
transparent, and symmetry group independent manner.

Our goal is to eliminate the lower layer and perform
DMRG or TEBD only on the upper layer, which can thus be
considered as a full-fledged representation of the state |�〉.
Removing the Clebsch layer improves efficiency in two ways:
(i) Since bond indices tl in the upper layer stand for multiplets
instead of states, the bond dimension Mmult of the upper layer
corresponds to a much larger conventional (‘nonsymmetric’)
bond dimension. (ii) The representation indices {�}[l] must re-
spect symmetry-specific selection rules. These selection rules
allow for a very efficient sparse block storage, tensor multipli-
cation, and singular value decomposition (SVD) [35].

FIG. 4. Adding a site to the left subsystem. (a) Schmidt states
of the new, ‘larger’ subsystem form multiplets classified by the
irreducible representations (�′). (b) Corresponding tensor diagram,
representing Eqs. (11) and (12). Contracting the label α yields
a standard MPS representation, Eq. (2), which does not exploit
symmetries.

Although we refer to the tensor structure introduced as
non-Abelian, it naturally incorporates familiar Abelian sym-
metries, too. For Abelian symmetries such U (1) or parity
(Z2), e.g., all representations are one dimensional, all ‘Cleb-
sches’ are just ones for blocks allowed by the selection rules,
and the regular MPS structure is recovered with efficient
sparse block tensors in the decomposition.

III. NA TENSORS

A. NA tensors and dependencies

The tensors A[l], and the Clebsch-Gordan coefficients C
in Eqs. (11) and (13), have the same fundamental struc-
ture, which we refer to as non-Abelian tensor (NA tensor).
General NA tensors T ({�}) j1 j2... jm

i1 i2...in
, have a structure shown

in Fig. 1: They have a block structure with blocks labeled
by lists of symmetry labels (representation indices), {�} =
(�1, . . . , �k ), with each �i referring to a list of quantum num-
bers used [36]. They have, furthermore, external incoming and
outgoing legs. Since many blocks contain only zeros by selec-
tion rules, an efficient sparse block storage can be achieved by
storing only nonzero blocks. Block sizes usually depend on
the specific set of representations {�} and can have different
block sizes at every site.

The legs of NA tensors have implicit dependence on the
tensor’s internal symmetry labels. The label t in Eq. (11),
e.g., runs over multiplets belonging to a given representation
�. Similarly, the index m can take dim(�) different values.
Thus both t and m depend on the representation index �.
The outer multiplicity index α depends on all three repre-
sentation indices labeling a given (nonvanishing) symmetry
block of the Clebsch-Gordan tensor, as well as that of the
tensor A[l]. Generally, any given leg of an NA tensor depends
on a given subset of the representations {�}, labeling the
blocks.

τ1 τ2 τ3 τLμ1 μ2 μ3 μL

m1 m2 m3 mL-1

α1 α2 α3 αL

t1 t2 t3 tL-1A[1] A[2] A[3] A[L]

C C C C

FIG. 5. Representation of the NA-MPS in Eq. (13). Multiplet
indices tl , τl and the outer multiplicity indices αl are shown in black,
while internal μl , ml indices of the representations are marked by or-
ange. The upper layer is free from internal indices of representations
but has a block structure, as classified by the representation labels
{�}. Clebsch-Gordan coefficients form the lower layer.
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B. Multiplication rules

The MPS representation in Eq. (13) (see also Fig. 5) al-
lows us to introduce multiplication rules. By construction,
the tensors A[l] and C belonging to the same site are glued
together such that the three representation indices {�}[l] =
(�l−1, �

loc
l , �l ) are always the same. This is, in fact, enforced

by the contraction of the outer-multiplicity index α. Similarly,
we may notice that only those tensor blocks of A[l] and A[l+1]

are contracted through the index tl , where the corresponding
representation �l (associated with the bond between sites l
and l + 1) is identical. Similar observations can be made by
investigating the Clebsch-Gordan tensors.

These observations lead us to the general (graphical) con-
traction rule:

(i) Incoming legs of NA tensors can be contracted with
outgoing legs provided that all their dependencies match.

(ii) The resulting tensor’s blocks are labeled by the rep-
resentation tensor indices of the original tensors, but the
matched representation indices are listed only once.

In large tensor networks, such as the ones displayed in
Figs. 15 and 16, virtually all legs are contracted, but the
rules above would result in NA tensors whose blocks are
still labeled by all representation indices �loc

l and �l , while
most of the representation indices are redundant in the sense
that remaining legs do not depend on them. Note also that
Eq. (13) contains a summation over representations index
sets, {�l} and {�loc

l }. It is therefore useful to introduce the
following rule,

(iii) If there is one or more representation indices in the
result tensor that no remaining (uncontracted) legs depend
on, then blocks must be summed over these representation
indices.

This rule eliminates redundant representation indices.
At the end of this section, let us compare our NA tensors

with the ‘QSpaces’ tensors introduced by Andreas We-
ichselbaum [27,28]. The main difference between the two
approaches is the handling of Clebsch-Gordan coefficients.
In Ref. [27] tensors are more complicated objects: They have
not just blocks, but every block consists of more layers: One
layer contains the representation-independent parts of the ten-
sor (this layer correspond to our A[l] tensors), while other
layers contain the Clebsch-Gordan coefficients (or their var-
ious combinations) for different symmetries. In these abstract
tensors structural and Clebsch-Gordan blocks are grouped
together for every enabled set of representation labels. This
multilayer structure leads to sophisticated multiplication rules
[28]. In contrast, in our approach we separate completely the
Clebsch-Gordan coefficients from the structural A[l] tensors
and collect them into the C tensor, whose mathematical struc-
ture is essentially the same as that of the A[l] tensors. As a
result, our NA tensors are conceptually simpler objects with
relatively simple multiplication rules.

IV. TIME EVOLVING BLOCK DECIMATION WITH
NA TENSORS

A. Basic steps of TEBD

We now demonstrate the NA-MPS approach on one
of the simplest MPS algorithms, the time evolving block

Δt / 2 Δt / 2

Δt / 2 Δt / 2

Δt Δt

Δt Δt

Δt Δt

=

SVD

(a) (b)

FIG. 6. (a) Time evolution with second order Trotter-Suzuki ap-
proximation, yielding a sequence of two-site operations, generated
by the even and odd bond parts of the Hamiltonian. (b) SVD is used
after each step to restore the original MPS structure.

decimation (TEBD). This method, originally introduced by
Guifré Vidal [6,7], has since been exhaustively used to sim-
ulate one-dimensional quantum systems in out of equilibrium
[37–41]. We consider here Hamiltonians with nearest neigh-
bor interactions,

Ĥ =
L−1∑
i=1

ĥ(2)
i,i+1 , (14)

with ĥ(2)
i,i+1 acting on sites i and i + 1. Within TEBD, one

divides Ĥ into parts acting on even and odd bonds,

Ĥ = Ĥeven + Ĥodd =
∑

k

ĥ(2)
2k,2k+1 +

∑
k

ĥ(2)
2k+1,2k+2 , (15)

and ‘Trotterizes’ the time evolution operator e−iĤt , i.e., di-
vides time into small segments of length 	t , and then applies a
second order Trotter-Suzuki approximation [42,43], e−i	t Ĥ ≈
e−i	t Ĥeven/2e−i	t Ĥodd e−i	t Ĥeven/2. This procedure yields the time
evolution, represented in Fig. 6. Time evolution occurs on
bonds, and after each step, singular value decomposition
(SVD) can be used to reconstruct the original MPS structure
of the state |�(t )〉.

B. TEBD with NA-MPS

We now extend TEBD to non-Abelian MPS’s to obtain the
non-Abelian version of TEBD (NA-TEBD). Here we focus
on the key steps and use a graphical language (see Fig. 7).
Technical details are relegated to Appendices B and D.

The crucial step is the construction of a reduced evolution
operator Ured, which incorporates unnecessary Clebsch-
Gordon coefficients and time evolves only the upper layer
of the NA-MPS state. The overall construction of the Ured

is presented in Fig. 7. To obtain Ured, we compute the over-
lap 〈�̃|U |�〉, with both states being written in the NA-MPS
form [such an overlap is graphically displayed in panel (a) in
Fig. 7]. Using the orthogonality properties of ‘Clebsches’ (see
Appendix B), we can eliminate all but four Clebsch-Gordan
tensors, which are then incorporated into the reduced evolu-
tion operator [panel (b) in Fig. 7]. This leaves us with the
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Ured Ured

Ured* *
U 1/dimUred =

* *
* *

*
*

U

(a)

* *
* * *

U 1/dim

(b)

(d)(c)

FIG. 7. (a) Matrix element of the time evolution operator be-
tween two NA-MPSs. (b),(c) Almost all Clebsch-Gordan tensors can
be eliminated using orthogonality relations, leading to a reduced time
evolution operator. (d) The reduced tensors Ured act then directly on
the top layer of the NA-MPS.

reduced two-site propagator, Ured({�})τl αl τl+1 αl+1

τ ′
l α′

l τ ′
l+1 α′

l+1
, acting on

sites l and l + 1 [panel (c) in Fig. 7].
Notice that this eight-leg NA tensor is labeled

by a total of eight representation indices: {�} =
(�l−1, �

loc
l , �loc

l
′
, �l , �

′
l , �

loc
l+1, �

loc
l+1

′
, �l+1). The indices τ

depend just on local representations, while the dependencies
of the outer multiplicities α read dep(αl ) = (�l−1, �

loc
l , �l ),

dep(αl+1) = (�l , �
loc
l+1, �l+1), dep(α′

l ) = (�l−1, �
loc
l

′
, �′

l ),
and dep(α′

l+1) = (�′
l , �

loc
l+1

′
, �l+1). Notice that, numerically,

it is sufficient to compute the reduced evolution operator Ured

only once.
Having discarded the Clebsch layer, the reduced operator

now acts only on the upper layer of the A[l] tensors. From now
on, there is no significant difference between the NA-TEBD
and the usual TEBD; the upper layer of NA-MPS behaves in
the simulations like a normal MPS that is updated at each time
step, only the singular value decomposition step, discussed
in more detail in Appendix D, requires some care [see also
Fig. 7(d)].

Since NA-TEBD is formulated in terms of the upper layer
of the NA-MPS, one does not need to take care of inter-
nal states of multiplets, and necessary numerical resources
are determined by the bond dimension of the upper layer,
Mmult. Due to the block structure of the A[l] tensors, the SVD
transformation can be performed separately according to the
representation indices of the Schmidt states. In this way, we
can reach bond dimensions in the range of tens of thousands
in terms of usual, nonsymmetric, or Abelian states even on
simple desktop computers.

V. APPLICATION TO THE SU(3) HUBBARD MODEL

We now illustrate the advantages of NA-TEBD by sim-
ulating a quantum quench on the one-dimensional Hubbard
model, Eq. (1), at 1

3 filling. In this case, the local Hilbert space
is d = 23 = 8 dimensional. The model defined by Eq. (1)
possesses a U(1) charge symmetry, generated by the total

TABLE I. SU (3) local states and representations. SU(3) repre-
sentations are denoted by Young tableaux.

�loc = (F loc, Qloc ) dim(�loc ) dim(τ ) States

(•, 0) 1 1 |0〉
c†

1|0〉
( ; 1) 3 1 c†

2|0〉
c†

3|0〉
c†

1c†
2|0〉

( ; 2) 3 1 c†
2c†

3|0〉
c†

3c†
1|0〉

(•, 3) 1 1 c†
1c†

2c†
3|0〉

charge,

Q̂ ≡
∑

l

q̂l , with q̂l =
∑

α

(c†
l,αcl,α − 1/2) ,

and an SU(3) symmetry generated by the eight SU(3)
generators,


̂i ≡
∑

l

λ̂i
l , with λ̂i

l =
∑
α,β

c†
l,αλi

αβcl,β .

Here the λi denote the usual Gell-Mann matrices, satisfying
the SU(3) Lie algebra, [λi, λ j] = i f i jkλk . The Hamiltonian
commutes with all generators above and has a corresponding
SU(3) × U(1) symmetry.

The local Hilbert space at each site is spanned by four
multiplets, organized according to the total charge Qloc and
an SU (3) representation label, typically specified by a Young
tableau (see Table I). In the case of SU(3), possible Young
tableaux consist of two lines, and the length of these lines F ≡
(m1, m2) specify the representation [44]. The local represen-
tation label is therefore a composite label, �loc

l = {F loc, Qloc}.
We start our simulations from a state |�(0)〉0, where three

particles are localized at every third site (see Fig. 2),

|�(0)〉0 =
3∏

α=1

∏
l=3k

c†
lα|0〉 . (16)

This state has clearly an MPS structure and is, moreover, an
SU(3) singlet.

A. Noninteracting time evolution

To test our NA-TEBD approach, we first consider time
evolution in the case U = 0. Then the problem is exactly
solvable, and we can compute all correlation functions and
expectation values analytically. We just need to observe that
for U = 0, the time evolved wave function |�(t )〉0 can be
written as a Slater determinant,

|�(t )〉0 =
3∏

α=1

∏
l=3k

c†
lα (t )|0〉 , (17)

with the time evolved operators expressed as

c†
lα (t ) =

∫ π

−π

dp

2π
e−i l·pe−i 2J cos(p) t cα (p) . (18)
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FIG. 8. Charge oscillation at the origin, n0(t ), and at the first
nearest neighbor, n1(t ), in the absence of interactions, U = 0, for
various bond dimensions.

The occupation at site l = 0 can then be expressed as

nU=0
0 (t ) = 〈�(t )|

∑
α

c†
0,αc0,α|�(t )〉0 . (19)

This expectation value can be evaluated by Wick’s theorem,
yielding

nU=0
0 (t ) =

∑
l=3k

∫∫ π

−π

dp dp′

(2π )2
e−i l·(p−p′ )e−i 2J t (cos(p)−cos(p′ )) .

(20)

Carrying out the summation over l yields the 2π periodic delta
function, δ2π (3(p − p′)), which can be used to eliminate one
of the momentum integrals, finally yielding

nU=0
0 (t ) = 1 + 2 J0(2

√
3 J t ) (21)

for the noninteracting case, U = 0, with J0 the Bessel function
of the first kind. The value of n1(t ) follows simply from
particle number conservation,

nU=0
1 (t ) = 1 − J0(2

√
3 J t ) . (22)

Thus charge oscillations decay algebraically as 1/
√

t in the
noninteracting case.

As shown in Fig. 8, this algebraic decay is well captured
by NA-TEBD for short times, however, to capture the second
oscillation, fairly large bond dimensions ∼M � 20 000 are
needed, corresponding to keeping Mmult = 2500 multiplets.
With NA-TEBD simulations, we can easily reach these bond
dimensions on a simple work station, which would be quite
hopeless without exploiting the SU(3) symmetry.

We can test the accuracy of our computations also by
investigating the increase of the bond entropy for U = 0. We
can compute this latter by using the approach of Peschel and
Eisler [45]. To compute the entanglement entropy in a nonin-
teracting system, we consider a long enough segment L of the
infinite one-dimensional system and compute the correlator
Cl,l ′∈ L(t ) ≡ 〈�(t )|c†

lαcl ′α|�(t )〉0, which, for a noninteract-
ing system contains all information on the reduced density

0
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6

8

10

12

0 1 2 3 4 5

S
v
N

t

M = 394
M = 1990
M = 9800

M = 20500
M = 44900

exact

FIG. 9. Entropy growth for U = 0, as a function of bond dimen-
sions. Small oscillations are observed on top of an overall linear
entropy growth. Very large (M ≈ 45 000) effective bond dimensions
are needed to recover the exact results (blue line) up to times t ≈ 4.5.

operator. The correlator Cl,l ′∈ L(t ) can be evaluated along sim-
ilar lines as the expectation value, n0(t ), and is given by

CU=0
ll ′ (t ) = 1

3 + 1
3 ei π

3 (l+l ′ )(1 + ei π
3 (l+l ′ )) Jl−l ′ (2Jt

√
3) .

(23)

As shown in Ref. [45], the entanglement entropy between the
segment L and the rest of the system can be expressed just in
terms of the eigenvalues ξ of Cl,l ′∈ L(t ) as

SL
vN(t ) = −3

∑
ξ

(ξ ln(ξ ) + (1 − ξ ) ln(1 − ξ )) , (24)

where the factor 3 is due to the SU(3) flavor degeneracy. For
large enough segments, this is just twice the entanglement
entropy of two halves of an infinite system,

SvN(t ) = 1
2 lim

L→∞
SL

vN(t ) . (25)

Computing the eigenvalues ξ numerically, we can thus de-
termine the complete time dependence of the entanglement
entropy, SvN(t ).

The (numerically determined) exact entanglement entropy
is compared with the NA-TEBD results in Fig. 9. The initial
state is a product state and therefore completely unentangled
at t = 0. However, entanglement is generated with time. The
Neumann entropy starts to increase roughly linearly, as pre-
dicted for gapless systems [46], but is modulated by small
oscillations, reflecting the presence of coherent charge oscilla-
tions. NA-TEBD breaks down approximately where the bond
dimension is insufficient to keep track of the entanglement
entropy. In this gapless system, the conformal central charge
is quite large, c = 3, implying a fast increase of entanglement
entropy. Indeed, numerical computations are quite demanding
in this model, and bond dimensions in the range of M ∼
40–50 000 are needed to reach time scales t � 4J−1.

B. Interaction effects

Interactions change the previous results dramatically. As
shown in Fig. 10, charge oscillations become rapidly damped
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FIG. 10. Charge on the initially triple-occupied site as a func-
tion of time for different interaction strengths U . The NA-TEBD
multiplet bond dimension has been set to Mmult = 1500, which
corresponds to a (usual) bond dimension M ≈ 12 000. For small in-
teraction strengths U � 1.2 we observe damped oscillations around
the thermalized occupation n = 1. Inset: extracted damping rate as a
function of U .

with increasing U . In the regime, U � 1, charge oscilla-
tions are suppressed exponentially in time compared to free
fermion oscillations, δnU �=0

0 (t ) ∝ e−γ t · J0(2
√

3 J t ). The ex-
tracted damping rate γ increases quadratically for small and
moderate couplings, U � 1, as expected from perturbation
theory, and shown in the inset of Fig. 10. Both the exponential
damping and the quadratic dependence of the damping rate on
U agree well with recent theoretical predictions on nonequi-
librium dynamics of perturbed systems [47–49].

In the regime, U � 1, the time evolution of the entangle-
ment entropy is very similar to the one in the noninteracting
case. As shown in Fig. 11, apart from transient oscillations, the
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FIG. 11. Entropy growth for U = 1, as a function of time, for
various bond dimensions. Similar to Fig. 9, apart from small os-
cillations, the entropy grows linearly. The growth rate is slightly
smaller than in the noninteracting case. Curves with the two largest
(M ≈ 73 000 and M ≈ 42 000) effective bond dimensions start to
deviate at time t ≈ 4.5.

entropy growth is approximately linear in time, with a growth
rate slightly reduced compared to the noninteracting case (see
Fig. 9). This slight reduction of the entropy growth rate allows
us to reach somewhat larger simulation times. Yet, for U = 1,
this effect is quite small: To reach times t � 4 very large bond
dimensions in the range of M ≈ 50 000 are still needed.

Our preliminary results indicate that for large interaction
values, U � 1, the behavior of the system changes sub-
stantially. The entropy growth rate decreases rapidly, and
signatures of dynamical trion (three-body bound state) forma-
tion in a negative temperature state appear in spite of the large
repulsive interaction [50].

NA-TEBD can also be used to compute time dependent
correlation functions. The precise numerical procedure is out-
lined in Appendices B and E. For the sake of simplicity, here
we focus on the scalar operator n̂l , which commutes with the
symmetry generators, and acts directly on the upper NA-MPS
layer (see Appendix B). From this point on, the computation
of correlation functions follows the same line as for Abelian
symmetries or nonsymmetrical MPS states [5].

Figure 12 shows the time evolution of the connected
correlator,

Cconn
nn (x, t ) ≡ 〈n̂0(t )n̂x(t )〉 − 〈n̂0(t )〉〈n̂x(t )〉, (26)

for no and intermediate interactions, U = 0, 0.5, and 1.
This correlation function is negative, indicating that excess
particle densities emerge due to the quantum propagation
of particles originally sitting at the origin. The connected
negative correlations trace a light cone, indicating that cor-
relations and entanglement are both created by particles (or
collective modes) traveling with a velocity v ∼ t . For U =
0 clear charge oscillations are observed. These are created
by the coherent motion of particles. These oscillations are
quickly removed by interaction-induced dissipative processes.
The correlation light cone is, however, not suppressed by
interactions.

Our results are in agreement with former works: Both the
linear growth of entanglement entropy [46] and the emergence
of light cones in correlation functions [51,52] are generic
features in global quenches of one-dimensional models of
bosons, fermions, or spin chains without disorder. The ex-
ponential suppression of algebraic charge oscillations due to
interactions is also expected on general grounds for small
interaction strengths [47–49]. The presence of three SU (3)
flavors, however, makes it necessary to use very large bond
dimensions to uncover these features, and for the SU(3) Hub-
bard model it is essential to exploit the total SU (3) × U (1)
symmetry.

VI. NUMERICAL EFFICIENCY OF NA-TEBD

The SU(3) Hubbard model provides an ideal testbed to
investigate the numerical efficiency of NA-TEBD. A detailed
analysis of the run times and the memory usage is presented
in Figs. 13 and 14, respectively.

Figure 13 presents the CPU time as a function of effective
bond dimension M for various symmetry combinations used.
Using as many symmetries as possible makes our calcula-
tions tremendously efficient. Using just one U(1) symmetry
speeds up the calculations by a factor of ∼20, and we can
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FIG. 12. Connected part (26) of equal time charge-charge correlations. Labels indicate the values of U for each panel. Data for different
time slices are shifted vertically: dashed horizontal lines indicate the shifted “zero level” for the corresponding time slice. Times are indicated
on each line in units of 1/J . Correlators are displayed as continuous blue lines, and the areas between correlators and their corresponding “zero
levels” are filled by red. Correlations spread relativistically with a velocity v ∼ J for small and moderate values of U , but interactions quickly
remove density oscillations.

gain an additional factor of ∼20 in speed by exploiting the
two additional U(1) symmetries. However, using SU(3) ×
U(1) symmetry rather than U(1) × U(1) × U(1) increases the
speed of our calculations by an additional factor of ∼100,
yielding an overall speed-up factor of about ∼100 000.

Similar efficiency is reached with memory storage space.
With our 20 GB memory, we can reach bond dimensions
of about M ∼ 1000 without symmetries, M ∼ 10 000 if we
exploit the U(1) × U(1) × U(1) non-Abelian symmetry, but
M ∼ 100 000 if we use our non-Abelian approach. To reach
these latter bond dimensions with just Abelian symmetries,
one would need a memory of around ∼2 TB.

We notice that at low bond dimensions, highly symmetric
versions may perform worse (see Figs. 13 and 14) due to the
overhead caused by the bookkeeping of many quantum num-
bers. The overhead is the largest in the U(1) × U(1) × U(1)
version, where every representation label � consists of three
U(1) charges. The many different possible charge combina-
tions lead to tensors containing a very large number of very
small blocks, which results in a significant memory and CPU
overhead, dominating for low bond dimensions. Interestingly,
the SU(3) × U(1) version performs much better even at low
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FIG. 13. CPU times of NA-MPS as a function of effective bond
dimension M for calculations exploiting various symmetries. Using
non-Abelian symmetries rather than Abelian ones speeds up the
computations by almost two orders of magnitude.

bond dimensions: Keeping SU(3) multiplets at hand instead
of the individual states drastically reduces the number of ten-
sor blocks and makes the above mentioned overhead almost
negligible.

VII. CONCLUSIONS

In this work, we gave a detailed description of our non-
Abelian matrix product state (NA-MPS) approach, which we
applied here for the SU(3) Hubbard model. We construct the
MPS state as a two-layer structure, where the ‘core’ of the
MPS, i.e., the first layer is written in terms of multiplets
and tied through the so-called outer multiplicity labels to a
second, Clebsch-Gordan layer. The latter can be consistently
eliminated, thereby introducing a very efficient algorithm,
where internal labels are suppressed. This approach leads
to a 100-fold speed-up of the code and a 100-fold memory
reduction with respect to simple Abelian codes in case of the
SU(3) Hubbard model. We can thereby reach extremely large
bond dimensions even on a small work station or even on a
PC computer. This efficiency increase is even more dramatic
for higher SU(N) symmetries, not studied here. This increased
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FIG. 14. Memory usage of NA-MPS as a function of effective
bond dimension M. Non-Abelian symmetries reduce memory usage
with respect to Abelian computations by about two orders of magni-
tude and allow us to reach extremely high accuracy.
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efficiency allows us to reach much better accuracies compared
to codes using only Abelian symmetries. Unfortunately, the
dramatic increase in bond dimensions amounts only in a rela-
tively small (logarithmic) increase in the time span of our sim-
ulations in the particular case of the SU(3) Hubbard model.

We then introduced an NA-MPS based TEBD algorithm,
NA-TEBD, which we used to investigate charge relaxation,
starting from an initial state with three particles placed at
every third site of the Hubbard chain. For U = 0 we de-
rived exact results for the single particle correlation functions,
densities, and the entanglement entropy, which we used to
benchmark our direct NA-TEBD simulations. In the absence
of interactions, we observe algebraically decaying coherent
charge oscillations, accompanied by a light-cone spread of
correlations, and a linear growth of the entanglement entropy.
Remarkably large bond dimensions were needed to capture
even the first few oscillations in this noninteracting case.

Interactions induce exponential damping with a rate γ ∼
U 2 for U � 1, indicative of a perturbative behavior for these
moderate values of U . At the same time, the spread of cor-
relations or the entropy growth rate remain barely affected.
Our preliminary results indicate that dramatic changes occur
in the dynamics for larger values of U [50], but the detailed
investigation of these interesting phenomena are beyond the
scope of the present paper.

The tensor structure developed is quite rich and opens
many possibilities to study correlations and correlated dy-
namics: We can use it to construct tree tensor network
states (NA-TTNS) or use them to study dissipative dynamics
through Lindbladian evolution of matrix product operators
(NA-MPO) with high accuracy using non-Abelian symmetries
[53]. Of course, we can also extend our approach to perform
NA-DMRG calculations or NA-DM-NRG calculations.
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APPENDIX A: DESCRIPTION OF NONTRIVIAL
MULTIPLETS USING NA-MPS

In the construction of NA-MPS (Sec. II C) we used the fact
that for a state |�〉 belonging to the trivial representation � =
0 the Schmidt states can be sorted into multiplets. This state-
ment is a consequence of the orthogonality theorem of group
characters χ� (g) = tr{R� (g)} [34]. The orthogonality relation
reads as

∫
dμ(g)χ�1 (g)χ�2 (g)∗ = δ�1,�2 . For direct products

of representations the characters are simply multiplied, there-
fore the orthogonality relation introduces a constraint on
the Clebsch-Gordan coefficients: The trivial representation
(� = 0) appears only in product spaces of representation—
conjugate representation pairs, with outer multiplicity one.

* * *

* * *
* * * *

* *
* *

* *
*
*

(a) (b)

(c)(d)

FIG. 15. (a) Scalar product of two NA-MPS’s. The symbol ‘*’
attached to a tensor indicates the complex conjugation. (b) As a result
of Eq. (B1), the Clebsch-Gordan tensors (formally introduced) at the
first grid location are dropped. (c),(d) Visualising the contraction of
the Clebsch layer by using the orthogonality Eq. (B2) and construct-
ing the so-called ‘reduced scalar product.’

In all other products the trivial representation is missing. As
a consequence of this constraint, for a trivial state |�〉 the
Schmidt pairs are members of multiplets that are conjugates
of each other.

For a state |��, m〉 of a nontrivial representation � �= 0,
it is not possible to directly write the MPS in the form of
(13), since Schmidt states obtained after decomposition are
not sorted into multiplets. However, the problem can be cir-
cumvented by introducing an additional site that contains a
multiplet for a single � representation. Using this auxiliary
site we define a new pure state for the whole chain as

|�̃〉 =
∑

m

1√
dim(�)

|��, m〉|�, m〉 , (A1)

where |�, m〉 denotes the state at the auxiliary site. The |�̃〉
state defined thus belongs to the trivial representation, i.e., it
can be used to build an NA-MPS. The auxiliary site is placed
in the rightmost position of the chain in our construction.
Performing a partial trace on |�̃〉 over the auxiliary site state,
we obtain the density matrix of the real system.

ρ̂ =
∑

m

1

dim(�)
|��, m〉〈��, m| . (A2)

APPENDIX B: NA-MPS STATES

In this section we present some details on how the reduced
matrix elements, like the reduced evolver in Fig. 7, can be
constructed by employing the Clebsch-Gordan coefficients’
sum rule. We start with a short description on how to perform
the scalar product of two NA-MPSs.

1. Scalar product

In Fig. 15(a) we introduce the graphical representation for
the scalar product of two NA-MPS’s, which, by ‘integrating’
the Clebsches layer, can be simplified to what we call ‘reduced
scalar product,’ i.e. a scalar product involving only the upper
MPS layer [displayed in Fig. 15(d)].
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FIG. 16. Left: Matrix element of a scalar operator Ô between two
Schmidt states. Right: Definition of the reduced matrix element of the
scalar operator as in Eq. (B4).

First, we formally add a trivial site to the left belong-
ing to the representation �0 = 0. The appearing C(�0 =
0, �loc

1 , �1)m1 α
0 μ1

Clebsch-Gordan coefficients imply that α is
one dimensional, since 0 ⊗ �loc

1 contains only one multiplet
of �loc

1 , and furthermore

C
(
�0 = 0, �loc

1 , �1
)m1 α=1

0 μ1
= δ

�1

�loc
1

δm1
μ1

. (B1)

Using this equation, we graphically obtain the result presented
in Fig. 15(b). To move on, we use the orthogonality relation∑

m,μ

C(�,�loc, �′)m′ α
m μ′ (C(�,�loc, �̃′)m̃′ α̃

m μ′ )∗ = δ�′
�̃′ δ

m′
m̃′ δ

α
α̃ ,

(B2)

to eliminate locally the Clebsch-Gordan tensors and move site
by site [a typical iteration is presented in Fig. 15(c)], to finally
reach the right end of the chain [displayed in Fig. 15(d)],
where the layers of C tensors have disappeared from the
expression, that is, the scalar product of the full NA-MPSs
is given by the ‘reduced scalar product’ of the upper layers.
Notice the double line structure connecting the two NA-MPS
states: The first line carries the label of a local multiplet,
while the second line carries the outer multiplicity labels, α,
assuring via their dependencies that representation labels of
corresponding bonds and local states all match in both states.

2. Matrix elements of scalar operators

Let us consider an operator Ô, which only acts on a spa-
tially localized subset of sites on the left of bond l . For now,
we assume that this operator is a ‘scalar’, i.e., it commutes
with all symmetry operations Û (g). A trivial example in case
of the SU(3) Hubbard model is the particle number operator,
nl = ∑

α c†
lαclα , or any function of this operator. Another (not

independent) example is the Casimir operator Cl = ∑
i λ̂

i
l λ̂

i
l .

These operators belong to the trivial representation � = 0.
Therefore acting with them on a Schmidt state does not
change the quantum numbers of the latter. In general, we can
therefore write (see also Fig. 16)

l〈�′; t ′, m′|Ô|�; t, m〉l = δ�
�′δ

m
m′O(�)t

t ′ . (B3)

The reduced matrix elements O(�l )t
t ′ can be easily ob-

tained by tracing over m and m′,

O(�)t
t ′ = 1

dim(�)

∑
m

l〈�; t ′, m| Ô|�; t, m〉l . (B4)

This relationship is shown in the right panel of Fig. 16. The
rectangular box labeled as ‘1/dim,’ represents the operation

1
dim(�)δ

m′
m that again can be represented as an NA tensor.

Equation (B3) is a special case of the Wigner-Eckart the-
orem for scalar operators. The general case is discussed in
Appendix E.

APPENDIX C: THE UPPER LAYER OF THE NA-MPS

As we have discussed in Sec. II C, in the NA-TEBD algo-
rithm, the upper layer of the NA-MPS can be treated in all
respects as a conventional MPS state (without symmetry). We
now show in detail that the upper layer of the NA-MPS does
indeed encode an MPS state but on a very complicated basis
of Hilbert space.

Consider the NA-MPS state defined in Eq. (13) and rep-
resented in Fig. 5. The lower layer specifies the following
product states (complemented with the auxiliary site intro-
duced in Appendix A),

|{�}[1], τ1, α1; {�}[2], τ2, α2; . . . ; {�}[L], τL, αL〉 =
∑
{μl }

∑
{ml }

C({�}[1] )m1 α1
0 μ1

C({�}[2] )m2 α2
m1 μ2

. . .C({�}[L] )0 αL
mL−1 μL

× ∣∣�loc
1 τ1, μ1

〉 ⊗ ∣∣�loc
2 τ2, μ2

〉 ⊗ · · · ⊗ ∣∣�loc
L τL, μL

〉
. (C1)

Here, as before, {�}[l] = (�l−1, �
loc
l , �l ) and �0 = �L = 0. These states span the singlet sector of the Hilbert space of the chain

(extended by the auxiliary site at the rightmost position) and form an orthonormal basis due to the orthogonality relation of
the Clebsch-Gordan coefficients, Eq. (B2). The state notation is slightly redundant, since representation sets {�}[l] and {�}[l+1]

at adjacent grid positions share the same �l representation index. This constraint will be essential in determining the Schmidt
decomposition of the state. We can write an arbitrary singlet state on this basis as

|�〉 =
∑
{�loc

l }

∑
{�l }

∑
{τl }

∑
{αl }

�{�}[1],τ1,α1; {�}[2],τ2,α2; ...; {�}[L],τL,αL
|{�}[1], τ1, α1; {�}[2], τ2, α2; . . . ; {�}[L], τL, αL〉 .

To build the MPS, we need a Schmidt decomposition of
this state that translates to the SVD of the �... expansion

coefficient. First we need to divide the indices into two parts.
Let the cut position be between the sites l and l + 1. Then by
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performing the SVD of the coefficient, we get the following
expression,

�{{�}[1],τ1,α1; ... ;{�}[l],τl ,αl} {{�}[l+1],τl+1,αl ; ... ;{�}[L],τL,αL}
=

∑
tl

U{{�}[1],τ1,α1; ... ;{�}[l],τl ,αl} tl 
[l](�l )tl

×Vtl {{�}[l+1],τl+1,αl+1; ... ;{�}[L],τL,αL} . (C2)

The {�}[l] and {�}[l+1] representation sets contain the
common representation �l , so by performing SVD, the
Schmidt values 
[l](�l )tl are also labeled according to �l .

Equation (C2) is analogous to the nonsymmetric equation,
therefore the rows of the U matrix and the columns of the
V matrix are again orthonormal (half-unitarity), and the nor-
malization condition 〈�|�〉 = 1 translates to

∑
�l

∑
tl

|
[l](�l )tl |2 = 1. (C3)

The previously introduced left-canonical A[l] tensor is defined
by U , while the right-canonical states can be defined in a
similar way using the V matrices

U{{�}[1],τ1,α1; ... ;{�}[l],τl ,αl} tl =
∑
tl−1

∑
τl

∑
αl

U{{�}[1],τ1,α1; ... ;{�}[l−1],τl−1,αl−1} tl−1
A[l]({�}[l] )tl

tl−1 τl αl
Vtl {{�}[l+1],τl+1,αl ; ... ;{�}[L],τL,αL}

=
∑
tl+1

∑
τl+1

∑
αl+1

B[l+1]({�}[l+1])tl
τl+1 αl+1 tl+1

Vtl+1 {{�}[l+1],τl+2,αl+2; ... ;{�}[L],τL,αL} . (C4)

From the half-unitarity of U and V matrices, we limitedly get the half-unitarity of the A[l] and B[l] tensors, as well as the relation
between them. ∑

�l−1

∑
�loc

l

∑
tl−1

∑
τl

∑
αl

A[l]({�}[l] )tl
tl−1 τl αl

(
A[l]({�}[l] )

t ′
l

tl−1 τl αl

)∗ = δ
tl
t ′
l

(C5)

∑
�l+1

∑
�loc

l

∑
tl+1

∑
τl+1

∑
αl+1

B[l+1]({�}[l+1])tl
τl+1 αl+1 tl+1

(
B[l+1]({�}[l+1])

t ′
l
τl+1 αl+1 tl+1

)∗ = δ
tl
t ′
l

(C6)

A[l]({�}[l] )tl
tl−1 τl αl


[l](�l )tl = 
[l−1](�l−1) B[l]({�}[l] )tl−1
τl αl tl (C7)

These equations are completely analogous to the orthogonality equations Eq. (5) for the first left-canonical matrix.
To conclude this Appendix, we can say that the upper layer of the NA-MPS state can be understood as a conventional MPS

wave function interpreted on a basis defined in Eq. (C1). The resulting Schmidt weights and the properties of the left and
right canonical tensors are similar to those of the regular MPSs, so adapting already developed algorithms to our NA-MPS and
eliminating the Clebsch-Gordan layer does not require conceptual modifications.

APPENDIX D: DETAILS OF THE IMPLEMENTATION OF NA-TEBD

In Sec. IV B we briefly introduced the basic steps to implement the NA-TEBD algorithm. In this Appendix, we present the
technical details of the implementation. Let’s first consider the equation defining the reduced evolver Ured graphically defined in
Fig. 7,

Ured
(
�l−1, �

loc
l , �l , �

loc
l

′
, �′

l , �
loc
l+1, �

loc
l+1

′
, �l+1

)τl αl τl+1 αl+1

τ ′
l α′

l τ ′
l+1,α

′
l+1

=
∑
ml−1

∑
μl

∑
ml

∑
μl+1

∑
ml+1

∑
μ′

l

∑
m′

l

∑
μ′

l+1

1

dim(�l+1)
C

(
�l−1, �

loc
l , �l

)ml αl

ml−1 μl
C

(
�l , �

loc
l+1, �l+1

)ml+1 αl+1

ml μl+1

×U
(
�loc

l , �loc
l+1, �

loc
l

′
, �loc

l+1
′)τl μl τl+1 μl+1

τ ′
l μ′

l τ ′
l+1,μ

′
l+1

(
C

(
�l−1, �

loc
l

′
, �′

l

)m′
l α′

l

ml−1 μ′
l

)∗(
C

(
�′

l , �
loc
l+1

′
, �l+1

)ml+1 α′
l+1

m′
l μ′

l+1

)∗
. (D1)

We now explicitly display representation indices that label the blocks of each tensor. As stated in Sec. IV B, the blocks of the
reduced tensor Ured have a total of eight representation indices.

We want to formulate TEBD for purely left-canonical MPS’s, but this requires some tricks [7], since SVD always results in a
left-canonical and a right-canonical tensor. The algorithm can be constructed in four steps:

(1) Contract the tensors A[l] and A[l+1] for the two neighboring sites,

W
(
�l−1, �

loc
l , �l , �

loc
l+1, �l+1

)tl+1

tl−1 τl αl τl+1 αl+1
=

∑
tl

A[l](�l−1, �
loc
l , �l

)tl
tl−1 τl αl

A[l+1](�l , �
loc
l+1, �l+1

)tl+1

tl τl+1 αl+1
. (D2)

(2) Construct the time evolved tensor,

W̃
(
�l−1, �

loc
l

′
, �l

′, �loc
l+1

′
, �l+1

)tl+1

tl−1 τ ′
l α′

l τ ′
l+1 α′

l+1
=

∑
�loc

l

∑
�loc

l+1

∑
�l

∑
τl

∑
αl

∑
τl+1

∑
αl+1

Ured
(
�l−1, �

loc
l , �l , �

loc
l

′
, �′

l , �
loc
l+1,

×�loc
l+1

′
, �l+1

)τl αl τl+1 αl+1

τ ′
l α′

l τ ′
l+1,α

′
l+1

W
(
�l−1, �

loc
l , �l , �

loc
l+1, �l+1

)tl+1

tl−1 τl αl τl+1 αl+1
. (D3)
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(3) On the right, we multiply by the appropriate Schmidt weights,

�̃
(
�l−1, �

loc
l

′
, �l

′, �loc
l+1

′
, �l+1

)tl+1

tl−1 τ ′
l α′

l τ ′
l+1 α′

l+1
= W̃

(
�l−1, �

loc
l

′
, �l

′, �loc
l+1

′
, �l+1

)tl+1

tl−1 τ ′
l α′

l τ ′
l+1 α′

l+1

[l+1](�l+1)tl+1 . (D4)

This step is essential for numerical stability.
(4) Execute the SVD on the �̃ tensor. We can do this separately for each block in �l

′,

�̃
(
�l−1, �

loc
l

′
, �l

′, �loc
l+1

′
, �l+1

)tl+1

tl−1 τ ′
l α′

l τ ′
l+1 α′

l+1
⇒

∑
t ′
l

Ã[l]
(
�l−1, �

loc
l

′
, �l

′)t ′
l

tl−1 τ ′
l α′

l

̃[l](�l

′)t ′
l
B̃[l+1]

(
�l

′, �loc
l+1

′
, �l+1

)tl+1

t ′
l τ ′

l+1 α′
l+1

.

(D5)

(5) The new Ã[l+1] tensor for the right site is obtained from W̃ by utilizing the orthogonality equation, Eq. (C5),

Ã[l+1](�l
′, �loc

l+1
′
, �l+1

)tl+1

t ′
l τ ′

l+1 α′
l+1

=
∑
�l−1

∑
�loc

l
′

∑
tl−1

∑
τ ′

l

∑
α′

l

W̃
(
�l−1, �

loc
l

′
, �l

′, �loc
l+1

′
, �l+1

)tl+1

tl−1 τ ′
l α′

l τ ′
l+1 α′

l+1

(
Ã[l](�l−1, �

loc
l

′
, �l

′)t ′
l

tl−1 τ ′
l α′

l

)∗

(D6)

Apparently, the algorithm can be implemented using purely left-canonical A[l] tensors, but we also need to store and update
the 
[l](�l )tl Schmidt weights, provided by the SVD step 4.

APPENDIX E: HANDLING NONSCALAR OPERATORS

In the NA-TEBD algorithm, we have seen that the reduced
shape of a scalar operator belonging to two adjacent lattice
sites can be easily determined by contractions with Clebsch-
Gordan tensors. However, this method is difficult to generalize
for handling distant interactions, or for calculating distant
correlations, since the reduced coupling contains all the lattice
locations between interacting lattices at once, meaning that
we would store a huge multilattice operator, which quickly
leads to depletion of computing and storage capacities. This
problem can be circumvented by generalizing Eq. (B3), which
is possible by the Wigner-Eckart theorem. For this we need
the notion of irreducible tensor operators (henceforth simply
tensor operators). These are operator multiples of Ô(�op)M ,
with (M ∈ {1 . . . dim �op)}), which are transformed by Û (g)
symmetry transforms as represented by �op, as follows,

Û (g) Ô(�op)M Û (g)† =
∑
M ′

[R�op ]M
M ′Ô(�op)M ′

. (E1)

As an example, consider the standard spin operator, which is
the combination of the three spin components (Ŝx, Ŝy, Ŝz). The
spin operators form a three-dimensional (Sop = 1) multiplet,
whose elements

ŜM = (−Ŝ+/
√

2 , Ŝz , Ŝ−/
√

2) , (E2)

provided that the state space is expressed in the basis of the
eigenvalues of the spin component Ŝz. Here Ŝ± = Ŝx ± iŜy are
the usual spin-shift operators.

The Wigner-Eckart theorem follows from the observation
that if we act on the states of a multiplet of a representa-
tion � with elements of the operator multiplet of �op, the
result will transform under the product representation � ⊗
�op. This product can be grouped again into multiplets using
the Clebsch-Gordan coefficients. Therefore, for the matrix
elements of the tensor operators we obtain the following equa-
tion,

〈�′; t ′, m′|Ô(�op)M |�; t, m〉 =
∑

α

O({�})t α
t ′

(
C({�})m′ α

m M

)∗
,

(E3)

where {�} = (�,�op, �′) represents the representation in-
dices that appear. Comparing this with Eq. (B3) we notice
that O{�}t α

t ′ is a reduced matrix element, but it contains
three different representation indices for general tensor oper-
ators and an α outer-multiplicity index that is contracted with
the Clebsch-Gordan tensor. The reduced matrix element can
be obtained from Eq. (E3) using the orthogonality relation
Eq. (B2)

O({�})t α
t ′ =

∑
m,m′,M

1

dim(�′)
C({�})m′ α

m M

×〈�′; t ′, m′|Ô(�op)M |�; t, m〉 . (E4)
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