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Improved solid stability from a screened range-separated hybrid functional by satisfying
semiclassical atom theory and local density linear response
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Semiclassical neutral atom theory is an important constraint of the state-of-the-art development of exchange-
correlation functionals for solid-state physics. Based on this theory, we construct a screened range-separated
hybrid functional for strongly bound bulk solids, which also satisfies the accurate linear response of the local
density approximation. The constructed functional shows remarkable performance and is competitive with other
popular screened hybrids. Our comprehensive assessment of the constructed screened hybrid for the general
purpose solid-state structural properties, structural phase transition, prototypical ferroelectric properties, band
gaps, and optical absorption spectra is showing its accuracy for the diverse nature of solid-state properties.
Moreover, when applied to general purpose chemical applications, the constructed functional is also reasonably
accurate and competitive. Accurate screened hybrids based on semiclassical neutral atom theory are appealing for
various solid-state and material science applications and are also attractive for the development of the dielectric-
dependent hybrids for interfaces and surfaces.
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I. INTRODUCTION

The Kohn-Sham (KS) formalism [1] of density func-
tional theory (DFT) [2] is one of the most successful
computational tools for the ground-state electronic structure
calculations of solids. Due to the development of simple
and accurate exchange-correlation (XC) functional approx-
imations [3–5], the KSDFT has achieved a very attractive
ratio between the computational time and accuracy. The
most effective XC approximations for predicting the equi-
librium lattice constants, atomic radii, atomic distances and
angles, and bulk moduli of strongly bound bulk solids, are
the semilocal XC functionals, which are classified on the
first three rungs of the Jacob’s ladder [6–8], in function of
their sophistication. Thus, on the first rung lays the local
density approximation (LDA) [1], whose XC energy per par-
ticle εLDA

xc [n↑(r), n↓(r)] depends only on the spin-densities
n↑(r), and n↓(r). (We recall that εxc is defined by Exc =∫

dr nεxc.) The next rungs are represented by generalized
gradient approximations (GGAs) that depends on gradients
of spin densities εGGA

xc [n↑(r), n↓(r),∇n↑(r),∇n↓(r)], and
meta-GGAs which use as additional ingredients the spin-
dependent kinetic energy densities τ↑ and τ↓, such that
εMGGA

xc [n↑(r), n↓(r),∇n↑(r),∇n↓(r), τ↑(r), τ↓(r)].
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Nonempirical meta-GGAs [4,9–18] have been constructed
to satisfy many exact conditions [19], being usually accu-
rate for ordinarily extended [16] and finite systems [20], and
recognizing various types of interactions [21], but because
of their dependence on τ↑ and τ↓, they are often used in
the generalized KSDFT scheme, considering their nonlocal,
orbital-dependent XC potential [22]. However, the nonempir-
ical GGAs are much simpler, being usually specialized on
a given property or class of systems. Thus, there are sev-
eral GGA functionals accurate for equilibrium structure of
strongly bound bulk solids [23–28]. Between them, we focus,
in this article, on the SG4 GGA [28] that recovers the modi-
fied fourth-order gradient expansion (MGE4) of the exchange
energy

εMGE4
x = εLDA

x

(
1 + μMGE2s2 + μMGE4s4

)
, (1)

derived from the semiclassical neutral atom with an infinity
number of electrons [29,30]. The second- and fourth-order
coefficients are μMGE2 = 0.26 and μMGE4 = −0.195, re-
spectively. Here s = |∇n|/[2(3π2)1/3n4/3] is the well-known
reduced gradient of the density, which is invariant under the
uniform density scaling [31,32]. Note that, while the regular
GE4 is dependent on the Laplacian of the density ∇2n being
fulfilled only by meta-GGAs, the simple MGE4 can be used
in the development of any semilocal functional.

In spite of their accuracy, the semilocal XC approximations
do not incorporate important physics of many-body systems
such as the many electron self interaction problem [33–37]
and the ultranonlocality [38–40], which are essential for the
excitation energies, exciton, and optical properties of elec-
tronic systems. The traditional way to improve the overall
functional performance, including these difficult properties,
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is to mix the nonlocal Hartree-Fock (HF) with the semilocal
exchange, resulting the hybrid functional [41–66].

The most efficient and used hybrid functionals in solid-
state calculations are the short-range (SR) screened hy-
brids [44], which combine the SR HF exchange with the
long-range (LR) semilocal exchange, using usually the fol-
lowing decomposition of the Coulomb operator [67–75]

1

|r − r′| = wSR,ω
ee + wLR,ω

ee

= Erfc(ω|r − r′|)
|r − r′|︸ ︷︷ ︸

SR

+ Erf(ω|r − r′|)
|r − r′|︸ ︷︷ ︸

LR

, (2)

where ω is the range-separation parameter. We recall that
the Coulomb operator can be splitted using various meth-
ods [57,76], but the error function (Erf) is the most used.
Thus, the ω-dependent SR and LR exchange functionals
are defined as ESR,ω

x = 1
2

∫
dr n(r)

∫
du 1−Erf(ωu)

u nx(r, r +
u) and ELR,ω

x = 1
2

∫
dr n(r)

∫
du Erf(ωu)

u nx(r, r + u), where
nx(r, r + u) is the exchange hole at position r + u around
an electron at r. Therefore, the knowledge of the HF and
semilocal exchange holes is required to develop screened hy-
brid functionals. While the HF exchange hole is well known
in terms of the occupied one-particle orbitals φi {nHF

x (r, ŕ) =
−[

∑occ
i φ∗

i (r)φi(ŕ)]2/[2n(r)]}, the semilocal exchange hole
can be constructed using several techniques, such as Taylor
series expansion [77], density matrix expansion [11] or re-
verse engineered methods [61,75,78]. The most used is the
reverse engineered technique where the semilocal exchange
functional is reversed in order to construct its underlying
exchange hole. In general, a dimensionless exchange hole
shape function J GGA(s, y) is used to construct the exchange
hole model as, nx(r, r + u) = n(r)J GGA(s, y), where y =
kF u and kF = (3π2n)1/3 is the Fermi wave vector. The con-
struction of the J GGA(s, y) is based on the recovery of exact
constraints [61,75,78,79], and it has been used for the de-
velopment of the screened hybrids for solids, such as the
popular HSE [44], HSEsol [80], and HSEint [81], based on the
PBE GGA [82], PBEsol GGA [23], and PBEint GGA [66,83]
functionals, respectively.

In this paper, we develop the SR screened hybrid of the
SG4 GGA named SRhSG4, whose correlation functional has
been modified from SG4 correlation, such that the entire func-
tional will recover the accurate LDA linear response, which
is an important condition for solid-state systems, fulfilled by
various functionals, from GGAs [23,28], to meta-GGAs [9],
and global [63] and LR-screened hybrids [48]. We recall that
the LDA linear response behavior can be approached by XC
functionals if the second-order term of the XC gradient expan-
sion vanishes. The constructed SRhSG4 functional performs
remarkably for both strongly bound bulk solids and localized
systems. The performance of the present functional shows
its great accuracy for the solid-state lattice constants, bulk
moduli, cohesive energies, the magnetic properties, properties
of the prototype ferroelectric, structural phase transition, band
gaps, and optical absorption spectra. It performs better than
the semilocal SG4 functional and overall more accurate than
the hybrids based on the PBE and PBEsol. We also study the

XC multiplicative potentials, computed using the optimized
effective potential (OEP) method [84,85].

The present paper is organized as follows. In Sec. II we
will briefly overview the SG4 GGA functional and the reverse
engineered SG4 exchange hole, and we present the develop-
ment of SRhSG4 XC functional. We also discuss the SRhSG4
correlation potential computed by the OEP method, and we
test the SRhSG4 for the Hooke’s atom model system. In
Sec. III, we perform a careful assessment of the SRhSG4 for
various solid-state properties (equilibrium lattice constants,
bulk moduli, cohesive energies, magnetic properties of Fe, Co,
and Ni, structural phase transition of Si and Zr, ferroelectric
properties, band gaps, and optical properties), and we also
show the SRhSG4 performance for small molecules. Last,
in Sec. IV we provide our conclusions and discuss future
prospects of the functional.

II. THEORY

A. Short review of SG4 GGA functional

The SG4 exchange functional has been constructed to
recover the MGE4 of Eq. (1), to satisfy the Lieb-Oxford
bound [86–88], and to give the exact exchange ionization
potential of the nonrelativistic noble atom with an infinity
number of electrons [89]. The SG4 exchange enhancement
factor, defined by εSG4

x = εLDA
x Fx(s), has the following expres-

sion [28]

Fx = 1 + κ1 + κ2 − κ1
(
1 − μ1s2

κ1

)
1 − (

μ1s2

κ1

)5 − κ2

1 + μ2s2

κ2

, (3)

where κ1=0.5603, κ2 = 0.2437, μ1 = 0.042, and μ2 =
0.218.

The SG4 correlation energy per particle is [28]

εSG4
c = εLDA

c + φαt3
H (rs, ζ , t ), (4)

where t = |∇n|/[2ksφn] is the reduced gradient for cor-
relation, with ks = (4kF /π )1/2 being the Thomas-Fermi
screening wave vector, and φ = [(1 + ζ )2/3 + (1 − ζ )2/3]/2
is a spin-scaling factor, ζ = (n↑ − n↓)/n is the relative spin
polarization, and H is the PBE-like gradient correction with
the following correlation parameter:

β = β0 + σ t
(
1 − e−r2

s
)
, (5)

with β0 = 3μMGE2/π2 fixed from LDA linear response, σ =
0.07 fitted to jellium surface energies, and α = 0.8 minimiz-
ing the information entropy of an ensemble of one-electron
densities [90,91].

In the construction of SRhSG4, we use the simpler expres-
sion with α = σ = 0, while the coefficient β0 will be chosen
such that the entire XC functional fulfills the LDA linear
response.

B. Functional construction

1. SG4 shape function and screened exchange functional

The SG4 exchange hole has been constructed in
Ref. [48], using the Henderson-Janesko-Scuseria (HJS) re-
verse engineered model, which has the following shape
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TABLE I. Parameters of the βfit (ν ), see Eq. (13).

a1 a2 a3 a4 a5 β0 β∞

0.31949543 0.00029179 96.36612588 4.06915863 0.00000034 0.06584 0.07903

function [78]

J GGA(s, y) =
{[

9A
4y2

+ B + CF (s)y2 + EG(s)y4

]
e−Dy2

− 9

4y4
(1 − e−Ay2

)

}
e−s2H(s)y2

, (6)

where A = 0.757211, B = −0.106364, C = −0.118649,
D = 0.609650, E = −0.0477963 are fixed from uniform
electron gas limit and the functions F (s) and G(s), and H(s)
are fixed by the small-u behavior, normalization and energy
sum rules [78]. The function H(s) has been computed numer-
ically and is provided in Table II of Ref. [78].

The SR exchange enhancement factor is

FωSG4,SR
x (s, ω, kF ) = −8

9

∫
dy yJ GGA(s, y)Erfc(ωy/kF )

(7)
and has an analytic form given by Eq. (43) of Ref. [78].

Finally, the screened hybrid based on the SG4 GGA func-
tional becomes

ESRhSG4
xc (α,ω) = αESR−HF

x (ω) + (1 − α)ESR−SG4
x (ω)

+ ELR−SG4
x (ω) + ESG4

c (β ), (8)

where ELR−SG4
x (ω) = ESG4

x − ESR−SG4
x (ω) and ESR−SG4

x (ω) is
given by

ESR−SG4
x (ω) =

∫
dr n(r)εLDA

x FωSG4,SR
x (s, ω, kF ). (9)

The coefficients

α = 1/4, ω = 0.11 bohr−1 (10)

are fixed from the adiabatic connection method [92], and by
fitting the band gap of few semiconductors [93], respectively.
Same values of the parameters are used in HSE and HSEsol
functionals.

2. Correlation energy functional from linear response criterion

The LDA linear response formalism applied to SR
screened hybrid has been developed in Ref. [81], and the
second-order correlation coefficient must be

β = 3
[
μSRhSG4

x (α, ν)
]
/π2, (11)

where ν = ω/kF and μSRhSG4
x is the second-order exchange

coefficient of the SRhSG4 functional [81]

μSRhSG4
x (α, ν) = αμωSR−HF

x (ν) − αμωSG4,SR
x (ν) + μSG4

x ,

(12)
where μωSR−HF

x (ν) is given by Eq. (13) of Ref. [81],
μωSG4,SR

x (ν) is the second-order coefficient of
FωSG4,SR

x (s, ω, kF ) having the expression of Eq. (10) of
Ref. [81], and μSG4

x = μMGE2
x .

Finally, for the simplicity of computational implementa-
tion, we accurately fit the difficult expression of β with the

simple function

βfit(ν) = β0 + a1ν + a2ν
2 + β∞a3ν

3

1 + a4ν + a5ν2 + a3ν3
, (13)

with β∞ = 3μMGE2
x /π2, and β0 = 3

π2 (α 7
81 − αμMGE2

x +
μMGE2

x ), and the fitted parameters are shown in Table I.
We remark that the differences of the SG4 and SRhSG4

correlation comes from the fact that the correlation energy
density of the SG4 is spin-correction factor dependent [28]
and β is the functional of rs and t [28]. However, the β of
the SRhSG4 correlation is the functional of rs only and its
correlation is independent of the spin-correction factor. The
use of the SG4 correlation with the SRhSG4 does not give
satisfactory results for the solid-state and molecular test cases
and this can be understood from the fact that the satisfaction of
the local density linear response is important for the entire hy-
brid functional, where the inclusion of the HF exact exchange
makes the exchange nonlocal. Therefore, more nonlocality
information through the t in the SRhSG4 functional most
probably makes the functional worse for solid-state systems.
Also, the error cancellation of the exchange and correlation
for the present choice of the β = βfit(ν) is more intense.

3. Analysis of correlation potential

Recently we have shown [98] that the popular hybrid and
range-separated hybrid XC functionals reproduce quite rea-
sonable the physical features of exact correlation potential. In
this paragraph, we will utilize the same methodology to inves-
tigate the correlation potential behavior provided by HSE06,
HSEsol, and SRhSG4 XC functionals.

Due to explicit orbital dependence of their XC energy
expressions via ESR−HF

x term, the corresponding correlation
potential [vc(r) = δEc[ρ]/δρ(r)] can be computed using OEP
formalism as in Ref. [98], where the correlation energy func-
tional by definition reads

Ec = Exc − EEXX
x , (14)

where EEXX
x being the EXX energy expressions. The func-

tional derivatives of Eq. (14) have been computed in a
post-SCF fashion for fixed reference densities obtained at
exchange-only OEP (OEPx) [85,99] level. We note that
this approach was already successfully utilized in many
studies [100–105] to investigate the most relevant features
of the XC, correlation and kinetic potentials. As in our
previous studies [95,103,106–110] in order to solve OEP
equation we have employed the finite-basis set procedure
from Refs. [99,111]. For more technical details regarding
the OEP procedure and calculations we refer the reader to
Refs. [95,112].

In Fig. 1 we report the correlation potentials [correspond-
ing to Eq. (14)] for two representative cases, namely Ar atom
(left) and CO molecule (right). One can immediately note
that for both systems, all functionals provide very physical

155107-3



SUBRATA JANA et al. PHYSICAL REVIEW B 102, 155107 (2020)

-0.2

-0.1

0

 0.1

 0.2

 0.3

 0.4

-6 -4 -2 0 2 4 6

CO

v c
 [

H
a]

z distance [a.u.]

HSE06
HSESol

SRhSG4
KS [CCSD(T)]

-0.4

-0.2

0

 0.2

 0.4

 0.6

 0.8

1

 0.01  0.1 1  10

Ar

v c
 [

H
a]

distance [a.u.] 

HSE06
HSESol

SRhSG4
KS [CCSD(T)]

FIG. 1. The correlation potential of Ar atom (left) and CO molecule (right, along the z axis) for several XC functionals. The potential for
Ar atom was generated using modified, uncontracted ROOS-ATZP [94] basis set as in Ref. [95], whereas the CO molecule were treated in
uncontracted cc-pVTZ basis set of Dunning [96] at equilibrium geometry (R = 1.128 Å). The reference KS[CCSD(T)] have been obtained
using method from Ref. [97] using the same basis sets.

correlation potential recovering similar quantum oscillations
as the reference [coupled-cluster singles-doubles with pertur-
bative triples [113]—CCSD(T)] curve. In the core region, all
functional diverge. This feature is inherited from the GGA
part of the potential depending explicitly on the Laplacian of
the density (∇2n) which diverges in this region [114,115]. In
the tail of the density, in turn, we observe that investigated
potentials vanish much slower than CCSD(T) one. This is
directly related to the difference in the asymptotic behav-
ior between OEPx (−1/r) and hybrid potential which decay
much faster, thus in the tail, the difference vxc(r) − vOEPx

x (r)
gives the rise to significant errors in vc which might project on
the quality of ionization and excited state energies. However,
we recall, that region is not relevant for most of ground state
properties. While HSE06 and SRhSG4 give for both systems
quite similar performance the HSEsol [80] functional exhibits
slightly worse behavior being more overestimated in the core
region.

4. Application to model system

As an example of a model system, we have considered
the harmonium atom [116] for various values of confinement
strength k. We recall, that at small values of k, the system is
strongly correlated, whereas for large values of k it is tightly
bounded. These two regimes are very important for many con-
densed matter applications. Thus harmonium atom provides
an excellent tool for testing approximate density functional
methods [117,118]. Alike in Ref. [105] the calculations have
been performed using an even-tempered Gaussian basis set
from Ref. [119] for k ∈ [0.03, 1000]. As a reference, we used
full configuration interaction (FCI) results calculated in the
same basis set which have been proved to be close to exact
values [105].

In Fig. 2, we show the relative error (RE) on total energies
calculated with respect to the FCI data for several XC hybrid
functionals in the function of k. The latter energies have
been obtained in post-SCF fashion on top of OEPx densities.

For comparison, we also report the MP2 [120] and ab initio
OEP2-sc [110,121] results. We see that when k → ∞ all
methods start to behave similarly giving quite accurate results.
In the medium- and strong-correlated limits they all start
differ significantly. The MP2 and OEP2-sc for k < 1 produce
quite large errors. The XC DFAs, however, perform quite well
for k � 1. This is due to the shrinking HOMO-LUMO gap
(present in the denominator of energy expression MP2 and
OEP2-sc correlation) with a decrease of confinement strength.
The best results are obtained for the SRhSG4 functional which
outperforms all the other approximations giving an overall
mean absolute relative error (MARE) of 0.19%. This is prob-
ably due to the balanced error cancellation effect between
the exchange and correlation part of the XC functional. The
HSE06 and SG4 functionals, in turn, give here 0.22% and
0.29%, respectively. The biggest error between DFAs is given
by HSESol functional which yields overall MARE of 1.03%.

0.1 1 10

k1/2

-1

0

1

2

R
E 

[%
]

MP2
OEP2-sc
HSE06
HSESol
SRhSG4
SG4

FIG. 2. Relative error on total energies of harmonium atoms for
various values of confinement strength k.
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TABLE II. Mean errors (MEs) and mean absolute errors (MAEs) for equilibrium lattice constants, bulk moduli, and cohesive energies of a
set of 20 bulk materials. The best (worst) results of each line are in boldface (underlined). The reference values of the present calculations are
taken from Ref. [127].

Test set Errors SG4 SRhSG4 HSEsol HSE06

Lattice constants (Å)
LC20 ME (Å) 0.004 −0.012 −0.014 0.029

MAE (Å) 0.029 0.018 0.018 0.032

Bulk moduli (GPa)
BM20 ME (GPa) 0.39 2.81 3.42 −3.64

MAE (GPa) 6.88 5.66 5.98 6.26

Cohesive energies (eV/atom)
COH20 ME (eV/atom) 0.161 0.017 −0.082 −0.259

MAE (eV/atom) 0.254 0.177 0.177 0.269

III. APPLICATION TO SOLID-STATE PROPERTIES

A. Computational details

To assess the solid-state performance of the SRhSG4
we implement the functional form in the plane wave
pseudopotential code Vienna Ab initio Simulation Package
(VASP) [122–125]. The VASP recommended pseudopotential
with 12 × 12 × 12 �-centered k points are used for all bulk
calculations. For the cohesive energies, the atoms are placed
in an orthorhombic box of size 16 × 17 × 18 Å3. For polar
molecules, the dipole correction is also applied to avoid inter-
actions between dipoles.

The lattice constants are calculated by relaxing the unit cell
volume using the Gaussian smearing. For ionic relaxation, we
used the conjugate gradient algorithm.

The bulk moduli are obtained from fitting the energy per
unit cell versus volume curve with the third-order Birch-
Murnaghan isothermal equation of state. The volume of the
unit cell is varied in the range V0 ± 5%, where V0 is the
equilibrium volume.

The cohesive energies of solids are equivalent to the atom-
ization energies of molecules and it is defined as the energy
required per atom to atomize the crystal as

Ecoh = Eatom − Ebulk

N
, (15)

where Eatom is the atomic energy and Ebulk is the bulk energy
of the unit cell having N atoms.

For completeness, the functional is also benchmarked for
several atomic and molecular tests with the NWChem pro-
gram package [126] using the Gaussian basis set.

B. Lattice constants, bulk moduli, and cohesive energies

Accurate prediction of lattice constants of solids is quite
important. Other equilibrium properties depend on the accu-
racy of the lattice constants. For example, the ferroelectric
properties are strongly influenced by an accurate prediction
of the lattice constants. To assess the functional performance
for the solids, we consider the set of 20 strongly bound solids
compiled in Ref. [127], often used to assess the performance
of newly developed XC density functionals [9]. This test set
comprises equilibrium lattice constants (LC20), bulk moduli

(BM20), and cohesive energies (COH20) of 20 solids. This
test set consists of six simple metals (Li, Na, Ca, Sr, Ba,
and Al), four transition metals (Cu, Rh, Pd, and Ag), five
semiconductors (C, Si, Ge, SiC, and GaAs), and five ionic
solids (LiF, LiCl, NaF, NaCl, and MgO).

In Table II, we report the mean error (ME) and mean
absolute error (MAE) for LC20, BM20, and COH20, as
obtained from different screened hybrid functionals. For com-
parison, the SG4 error is also shown. To calculate the error
of LC20 test, we consider the zero-point an-harmonic ex-
pansion (ZPAE) corrected experimental lattice constants from
Ref. [127]. Our results show that SRhSG4 is remarkably ac-
curate for the lattice constants of solids, further improving the
SG4 results by reducing its MAE with ∼10 mÅ. We mention
that SG4 is one of the state-of-art semilocal GGA functionals
for lattice constants of strongly bound bulk solids [7,28]. The
HSEsol functional is also as accurate as SRhSG4, while the
HSE06 functional is deviating more. Nevertheless, all the con-
sidered SR hybrid functionals (HSE, HSEsol, and SRhSG4)
are improving considerably over their GGA functional (PBE,
PBEsol, and SG4). We recall that for the LC20 test, PBE gives
MAE= 0.060 Å, and PBEsol gives MAE = 0.035 Å.

To depict the detailed performance of the SRhSG4, we plot
in Fig. 3 the relative error (RE in %) of each solid for LC20
(left panel), BM20 (middle panel), and COH20 (right panel),
as obtained from the considered functionals. As shown in the
left panel of Fig. 3, SRhSG4 improves over SG4 for simple
metals (Ca, Sr, Ba), semiconductors (Ge, SiC, GaAs), and
ionic crystals (LiF, NaF, NaCl, MgO). This is probably due
to the partial reduction of the SG4 exchange by the short-
range HF and the satisfaction of the LDA linear response. We
also remark that SRhSG4 and HSEsol give almost the same
results, with exception of transition metals, where SRhSG4
is slightly better for Cu, Rh, and Pd (indicating the accuracy
for larger values of Z), but worse for Ag. Finally, we ob-
serve that HSE06 overestimates the lattice constants which is
well known as it follows from the overestimation of the PBE
functional.

The bulk modulus is defined as the volume variation with
the external pressure [128]. This is an important quantity
related to the structural phase stability of different phases
of solids and to the hardness [129]. In Table II, the error
statistics of considered functionals are summarized. SRhSG4
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FIG. 3. RE (in %) of the lattice constants (left panel), bulk moduli (middle panel), and cohesive energies (right panel) as obtained from
different functionals for the set of 20 bulk solids.

is the most accurate functional within the considered screened
hybrids with MAE = 5.66 GPa, better than HSEsol (MAE =
5.98 GPa), HSE06 (MAE = 6.26 GPa), and SG4 (MAE =
6.88 GPa). Physically, the short-range HF which is mixed with
the SG4 functional improves the energetic as well as lattice
constants of solids implying the improvement of SRhSG4 for
the bulk moduli. The errors of the SG4 and HSE06 stream
from the energetic and lattice constants of bulk solids, re-
spectively. For a better comparison, in the middle panel of
Fig. 3, we show the RE of the considered functionals. We
observe that SRhSG4 performs slightly better than HSEsol
for simple metals and ionic crystals, while for the other solids
both perform almost similarly.

The cohesive energy is also an important energetic property
for solids, measuring the corresponding binding energies be-
tween the finite and infinite bulk solid unit cells, respectively.
A functional which is good for solid-state lattice constants can
perform modestly for cohesive energies. For example, PBEsol
is much better than PBE for determining the lattices but not
as good as PBE for cohesive energies. Recently, it was also
shown that the SCAN meta-GGA functional is not so good as
PBE for the cohesive energies of the alkali metals [130,131],
despite its better performance for the solid-state lattice con-
stants. In fact, a functional accurate for cohesive energies of
bulk solids must give a good balance between the descrip-
tions of slowly varying valence densities of bulk solids, and
moderately and rapidly varying valence densities of atoms.
In this respect, we observe that both SRhSG4 and HSEsol
perform in a better way for the cohesive energies, beating the
SG4 and HSE06. Both functionals perform better than their
semilocal form (i.e., SG4 and PBEsol) [28], in contrast to the
HSE06, which worsens the performance of the PBE. In the
right panel of Fig. 3 we plot the RE of the cohesive energies
of all solids. In this case, also, slight different behavior of
SRhSG4 and HSEsol is observed for simple and transition
metals, indicating the importance of the local density linear
response in case SRhSG4.

To analyze the errors obtained from all considered func-
tionals, we calculate the Wilcoxon signed-rank test for the
pair of methods. This test can indicate the statistical difference
between the pair of functionals.

In Table S1 [132], we report the Wilcoxon signed-rank test
values (W ) along with the associated p values. As the size
of the data used in this case is 20, the Wilcoxon W statistic
tends to form a normal distribution. The null hypothesis is
used for each error pairs [133]. Here, the pairs of methods
with W < Wcrit and p > 0.05 lack statistically significant dif-
ference in their outcomes. Analyzing the p values, we do not
observe significant statistical differences in the absolute error
distributions of SRhSG4 and HSEsol for lattice constants,
bulk moduli, and cohesive energies.

Overall, the satisfaction of the local density linear re-
sponse is an important constraint for the hybrid functional
construction, especially for the structural properties of the
solids. Further, the satisfaction of the semiclassical atom the-
ory makes the constructed SRhSG4 quite a good performer.
Overall, the constructed functional is competitive with the
HSE06 and HSEsol functionals.

C. Magnetic properties of Fe, Co, and Ni

Density functional theory is a powerful tool in the field of
the magnetization. Semilocal functional, especially the pro-
totype PBE functional, often performs remarkably for the
different magnetic properties. Other techniques like PBE +
U, hybrid density functionals, and many-body perturbation
theory (RPA, MBPT, and GW) are also applied to metallic 3d
elements. When a new density functional is proposed it is al-
ways a common practice to determine ground-state properties
of the Fe. The stable phases of Fe that are found experimen-
tally are bcc, fcc, and hcp. However, the magnetic bcc phase
is the most stable phase compared to the nonmagnetic hcp and
fcc counterparts. Regarding the common GGA functionals
performance, the PBE provides the correct description of the
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FIG. 4. Energy versus volume curves of different phases of Fe as obtained from several methods.

Fe phases [130,134], while PBEsol predicts the nonmagnetic
fcc to be the most stable phase [135]. Note that meta-GGA,
RPA and hybrid density functionals also correctly predict the
magnetic bcc as the most stable phase [130,134,136–139].
The energy differences of bcc, hcp, and fcc phases of Fe
as obtained from RPA are ERPA

bcc-hcp = −0.13 eV/atom and
ERPA

bcc-fcc = −0.18 eV/atom respectively [138]. While for PBE
those are EPBE

bcc-hcp = −0.083 eV/atom and EPBE
bcc-fcc = −0.153

eV/atom, respectively [138].
Here, we apply the screened hybrid density functionals

to perform the total energy calculations for the ground-state
properties of bcc, hcp, and fcc phases of Fe. The variation of
the energy versus volume curve of all the phases are shown in
Fig. 4. We found that the SG4 semilocal functional predicts
the nonmagnetic hcp as the most stable state similar to the
PBEsol [135]. However, the screened hybrid functional of the
SG4, i.e., SRhSG4 correctly gives the magnetic bcc Fe to be
the ground state followed by the nonmagnetic hcp and fcc
structure. The HSEsol also shows the same trend, correcting
the behavior of the PBEsol. However, both the PBE and HSE
correctly describe the ordering of phases.

We also determine the energy differences of the magnetic
bcc and nonmagnetic hcp and fcc phases for the hybrids.

We find ESRhSG4
bcc-fcc = −1.79 eV/atom and ESRhSG4

bcc-hcp = −1.70
eV/atom for SRhSG4, performing similar to the HSEsol,
for which we obtain the energy differences as EHSEsol

bcc-fcc =
−1.78 eV/atom and EHSEsol

bcc-hcp = −1.68 eV/atom. For HSE06
these energy differences are EHSE06

bcc-fcc = −1.95 eV/atom and
EHSE06

bcc-hcp = −1.86 eV/atom, respectively. Note that these val-
ues are much larger than the PBE and RPA ones [138]. This
is probably due to the inclusion of the HF exchange, which
makes the magnetic Fe bcc phase more stable than others.

In supporting information [132], we have shown the en-
ergy versus volume plots of the different phases of Co and
Ni [142,143]. For Co phases, all functionals give the hcp Co
as the most stable one rather than its fcc and bcc phases. For
Ni phases also all functionals predict the fcc as the most stable
one. Contrary to the screened hybrids, in this case, the SG4
predicts hcp more stable than bcc.

Finally, we turn to the magnetic moments and relaxed
volumes of the magnetic Fe, Co, and Ni structures as obtained
from different screened hybrids and SG4 semilocal function-
als, and those are reported in Table III. It is well known that
the hybrid functionals generally lead to higher magnetic mo-
ments in metals [81,139,144], while the volume is comparable
to the experimental values. The magnetic moments obtained
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TABLE III. Equilibrium volumes (in Å3) and magnetic moments (Ms/atom in μB) of Fe (bcc), Co (fcc), and Ni (fcc), computed using
different SR hybrid functionals. All calculations are performed using the 11 × 11 × 11 � centered k points with default PAW pseudopotentials
and energy cutoffs.

Solids Magnetic Ordering SG4 SRhSG4 HSEsol HSE06 Expt.a

Fe (bcc) FM V0 10.74 11.80 11.75 12.03 11.64
Ms 2.08 2.97 2.97 2.99 1.98, 2.08, 2.13

Co (hcp) FM V0 10.35 10.33 10.26 10.99 10.96
Ms 1.66 1.91 1.91 2.06 1.52, 1.55, 1.58

Ni (fcc) FM V0 10.40 10.42 10.34 10.66 10.81
Ms 0.66 0.87 0.87 0.91 0.52, 0.55, 0.57

aSee Ref. [134] and all references therein and Table I of Ref. [134].

from the SG4 functional are better than the ones predicted
by SG4 hybrids. This indicates that the inclusion of the HF
exchange leads to a possible overestimation of the spin up
density of states, and/or an underestimation of the spin-down
states [139].

D. Structural phase transitions of Si and Zr

Next, we investigate the structural phase transition param-
eters of the crystalline solids Si and Zr under pressure. Our
investigated properties involve the energy difference, volume
difference, and transition pressure of the two polymorphs
of a solid. Note that the accurate prediction of transition
pressure needs good performance for the geometries and
energies of the two solid polymorphs simultaneously, and
most of the density functionals fail to do that. Recent studies
showed that the meta-GGA functionals obeying the strongly
tightened bound such as MGGA-MS, MVS, and SCAN are
very successful in predicting the phase transition parame-
ters [140,145,146]. Regrading the Si, the two most stable
phases are diamond-Si (D-Si) [high-pressure phase (HP)] and
β-tin Si (β-tin Si) [low-pressure phase (LP)]. For Zr, the two
most stable phases are ω-Zr [high-pressure phase (HP)] and
β-Zr [low-pressure phase (LP)].

In Table IV, we summarize the optimized structural prop-
erties and phase transition parameters of the D-Si and β-tin

Si phases as obtained from different screened hybrid density
functionals. The equilibrium lattice parameters and volume
of the D-Si typically show the same trend as we obtained
in our previous analysis. The HSE06 slightly overestimates
the equilibrium geometries, whereas the SRhSG4 and HSEsol
are in the good agreement with the experimental and quantum
Monte Carlo (QMC) results [141]. For the LP β-tin Si phase,
all the screened functionals are in good agreement with the
QMC data [141], but SRhSG4 and HSEsol are slightly better
than HSE06.

Regarding the semilocal SG4 functional, it does not per-
form as accurately as the three collective screened hybrids.
It underestimates the energy differences severely, like other
GGA functionals [140]. However, all three hybrids agree quite
well for the transition pressures (Pt ) of the two Si phases,
being closer to the QMC data [141].

Now we turn into structural and phase transition parame-
ters of ω-Zr and β-Zr. The results are summarized in Table V.
As can be seen from Table V, both SRhSG4 and HSEsol quite
accurately predict the lattice constant of the LP phase of Zr,
i.e., ω-Zr. The c0/a0 as obtained from both the functionals
are close to the experimental one. However, HSE06 underesti-
mates slightly the a0 and overestimates c0/a0. In comparison,
the SG4 underestimates the a0 but predicts c0/a0 ratio quite
well. However, for β-Zr the trends are somehow different. In
this case, HSE06 performs better than SRhSG4 and HSEsol

TABLE IV. Structural and phase transition parameters of the D-Si and β-tin Si, as obtained from different functionals.

System Properties SG4 SRhSG4 HSEsol HSE06a QMCb Ref.a

a0 5.378 5.409 5.414 5.433 5.415, 5.4288
V0 (Å3/atom) 19.450 19.785 19.862 20.05 19.98 19.914, 20.0

D-Si (LP) B 95.48 100.7 100.4 101.5, 99.1 98 100.8, 99.2, 97.88
B′ 4.16 4.09 4.08 4.06, 4.00 4.6 4.11, 4.24
a0 4.7230 4.7966 4.7903 4.7602

c0/a0 0.553 0.540 0.539 0.5491, 0.565 0.550
V0 (Å3/atom) 14.585 14.9025 14.825 14.81, 15.10 15.2

β-tin Si (HP) B 124.01 122.9 125.6 119.0, 117.0 107
B′ 4.50 4.45 4.42 4.32, 4.35 4.6

Phase transition parameters
�E0 (eV/atom) 0.091 0.378 0.336 0.398, 0.390, 0.447 0.424
�V0 (Å3/atom) 4.87 4.88 5.037 5.35 4.368

Pt (GPa) 3.05 13.54 11.55 13.3, 12.4 14.0 ± 1.0 10−14, 11−15

aRef. [140] and all references therein and Table I of Ref. [140].
bRef. [141].
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TABLE V. Structural and phase transition parameters of the ω-Zr and β-Zr, as obtained from different functionals.

System Properties SG4 SRhSG4 HSEsol HSE06a Ref.a

a0 4.970 5.032 5.031 5.024 5.039, 5.050
c0/a0 0.6251 0.6245 0.6245 0.6270 0.6251,0.6237

ω-Zr (hcp) (LP) V0 (Å3/atom) 22.15 22.11 21.99 22.96 23.09
B 99.3 103.8 103.8 91.05 104, 90, 109
B′ 3.54 3.52 3.68 3.34 2.05, 4.0

a0 3.513 3.553 3.517 3.5774 3.574, 3.570
V0 (Å3/atom) 21.70 21.87 21.76 22.89 22.82

β-Zr (bcc) (HP) B 91.77 79.90 82.86 78.59
B′ 2.99 8.30 8.17 3.52

Phase transition parameters
�E0 (eV/atom) 0.088 0.216 0.214 0.200
�V0 (Å3/atom) 0.458 0.235 0.235 0.065 0.270

Pt (GPa) 23.61 − − − 30 ± 2

aRef. [140] and all references therein and Table III of Ref. [140].

for a0 and V0. This is probably related to the performance
of the semilocal functionals used to construct the screened
hybrids. Thus, PBE performs better than PBEsol [140] and
SG4 GGA.

Considering the phase transition parameters of Zr phases,
the volume difference, �V0 calculated by SG4 is almost twice
bigger than the experimental one. While HSE06 value is
almost one order of magnitude smaller. This is because the
volumes of ω-Zr and β-Zr as predicted from HSE06 are very
close to each other and hence the underestimation. In this
case, both SRhSG4 and HSEsol perform similarly, giving the
�V0 in good agreement with the experimental one. Note that
for transition pressure, all the screened hybrid functionals are
unsuccessful.

Overall, the structural phase transition parameters are
predicted in an improved way with SRhSG4 and HSEsol
functionals. Except for the phase transition pressure of Zr,
SRhSG4, and HSEsol perform better than HSE06. The draw-
back of all the screened functionals for metal Zr transition
pressure can be explained from its wrong screening for met-
als [147–149] and can be improved by using the middle
range-separated hybrid and/or dielectric dependent hybrid
based on SRhSG4 and HSEsol functionals.

E. Ferroelectric properties of BaTiO3 and PbTiO3

ABO3 type ferroelectric materials are quite important in
various technological and industrial applications. The crystal
type of ABO3 ferroelectric is known as perovskite, where the
polar distortion is originated from the off-centering displace-
ment of B ion. In this category, the prototype ferroelectric
materials are BaTiO3 and PbTiO3, which are considered as
particular examples in this study to assess the performance
of the constructed screened hybrid density functional. Both
BaTiO3 and PbTiO3 have been extensively studied previously
and experimental reference values are available to directly
compare the functional performance. Among the most recent
investigations, we find that Zhang et al. [150] studied proto-
type ferroelectric materials using the LDA, GGA, meta-GGA,
and screened hybrid density functionals. Several other studies
based on the global and screened hybrid density functionals

are also found [155,161–164]. Note also that studies involving
the model Hamiltonian technique are also available [164,165].

Regarding the interactive nature of the ATiO3 (where A =
Ba and Pb), A-O bond is essentially ionic, while in Ti-O bond
both ionic and covalent interaction is important. Due to this
diverse bonding nature, ferroelectric materials are typically
challenging for semilocal density functional XC approxima-
tions. In Table VI, we calculate the various structural and
ferroelectric properties of the ATiO3 (A = Ba and Pb). In gen-
eral, for BaTiO3 the hybrid density functionals perform better
than their corresponding semilocal form, which is reflected in
the performance of the SRhSG4, where the tetragonality of the
SG4 is reduced by SRhSG4 functional, indicating the ionic
and covalent bonds are more elegantly treated by SRhSG4
than SG4. Similar logic is also applied for HSEsol. Both the
SRhSG4 and HSEsol perform in the same degree of accuracy
for BaTiO3, slightly better than HSE06 for tetragonality and
spontaneous polarization, but not as good as HSE06 for the
energy difference of the paraelectric (PF) and ferroelectric
(FE) phases (�E ). In fact, all tested XC functionals are typi-
cally giving the �E within ∼11 meV/atom [150].

Next, we calculate the structural and ferroelectric proper-
ties of another prototype ferroelectric of ATiO3, i.e., PbTiO3.
The lattice constants as predicted from the SRhSG4 and
HSEsol are slightly smaller than the HSE06. Typically,
SRhSG4 improves over SG4 for all the structural and ferro-
electric properties. Slightly smaller off-center displacement
of the Ti from its position indicating the smaller polarization
for SRhSG4 than SG4 and HSE06. The polarization of the
PbTiO3 as predicted from SRhSG4 is about 111.8 μC/cm2

which is within the range of the experimental values. Also,
the SRhSG4 performs significantly better than SG4 for the
structural phase transition energies (�E ) from the cubic para-
electric (PF) to noncubic ferroelectric (FE) phases.

Overall, the SRhSG4 functional performs as good as
HSE06 and HSEsol for the structural and ferroelectric prop-
erties of the prototype ABO3 type ferroelectric. Different
bonding nature is well captured by the SRhSG4, indicating
its improvement over SG4 for the tetragonality problem. This
is due to the HF mixing, which also reduces the delocalization
error of the semilocal functional and improving the band gap.
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TABLE VI. Comparison of calculated and experimental values of the structural, ferroelectric, and electronic properties of the BaTiO3 and
PbTiO3 orthorhombic crystals as obtained from different XC functionals. �E corresponds to the energy difference of the paraelectric (PF) and
ferroelectric (FE) phases. The HSE06 values are taken from Ref. [150].

Lattice (a0) Volume (V0) Displecement (�Ti) Polarization (Px) EPF -EPE (�E ) Band gap (Eg)
Methods Å Tetragonality (c/a) Å3 (in units of the lattice constant c) (μC/cm2) (meV/atom) eV

BaTiO3

SG4 3.944 1.054 64.7 0.013 41.9 2.12 1.71
SRhSG4 3.942 1.031 63.2 0.017 35.3 5.5 3.26
HSEsol 3.940 1.027 62.8 0.018 33.7 5.6 3.25
HSE06 3.959 1.039 64.5 0.019 40.7 10.8 3.27
Exp 3.986a 1.010a 64.0a 0.015a 26b 34c 3.27d, 3.38d

PbTiO3

SG4 3.804 1.227 67.5 0.056 126.4 7.1 1.75
SRhSG4 3.792 1.180 64.4 0.043 111.8 19.8 2.97
HSEsol 3.793 1.183 64.5 0.049 114.2 20.6 2.93
HSE06 3.832 1.158 65.2 0.047 114.4 38.8 3.00
Exp 3.880e 1.071e 62.6e 0.040f 57g, 75h, 90−100i 67j 3.6k

aRoom temperature measurements [151].
bLow temperature measurements [152].
cData at 393K [153].
dRef. [154].
ezero temperature value [155].
fRoom temperature measurements [156].
gRef. [157].
hRef. [158].
iRef. [159].
jData at 760K [153].
kRef. [160].

Finally, it is important to note that some lattice constants
and polarization are measured at very high temperatures, such
that a direct comparison with 0 K calculations is not always
meaningful. For example, the BaTiO3 lattice constants and
off-center displacement are measured at room temperature.
The polarization is measured at low temperature and the para-
electric to ferroelectric phase transition is calculated at 393K.
Similarly, for PbTiO3, the displacement and the ferroelectric
phase transition energy are calculated at room temperature
and 760 K, respectively.

F. Band gaps and optical properties

1. Band gaps

It is well known that the semilocal functionals suffer from
the delocalization error, whereas the HF suffers from localiza-
tion error [34,167–172]. The screened hybrids which include
part of semilocal and SR HF are capable of predict the narrow
and medium-range band gaps quite accurately. In Table VII,
we report the selected band gap of ten semiconductors taken
from the SBG31 [166] test set. These ten semiconductors
consist of only narrow and medium-range band gap solids
(for example C). The SRhSG4 and HSEsol slightly lower
the band gap of solids, hence perform slightly better than
HSE06 for narrow band gap materials. As all the functionals
include 25% HF exchange, the small decrease of the band gap
energies, shown by SRhSG4 and HSEsol, comes from their
semilocal version. The exchange energy density of SG4 and
PBEsol are flatter than the PBE one in the region 0 < s < 2,
slightly lowering the orbital energies which in turn slightly

lower the generalized KS gap of the SRhSG4 and HSEsol
functionals with respect to the HSE06 band gap results. We
also report the MARE of the full SBG31 [166] test set in
the last column of Table VII. Overall, all functionals perform
similarly. However, HSE06 is slightly better than SRhSG4 and
HSEsol for medium and wide band gap solids. Note that the

TABLE VII. The band gaps (in eV) of 10 selected semicon-
ductors from the SBG31 [166] test set using different levels of
approximations. For comparison, the MAREs (in %) of the band gap
energies of the full SBG31 [166] test set are also provided on the last
row. Being a semilocal functional, we do not consider here the SG4
functional.

Solids SRhSG4 HSEsol HSE06 Expt.

InSb 0.40 0.43 0.53 0.24
InAs 0.37 0.42 0.53 0.42
InN (Wurzite) 0.78 0.79 0.71 0.72
Ge 0.72 0.75 0.82 0.74
GaSb 0.78 0.83 0.91 0.82
Si 1.11 1.09 1.17 1.17
InP 1.37 1.4 1.52 1.42
GaAs 1.28 1.33 1.44 1.52
AlSb 1.72 1.72 1.8 1.69
GaN (Wurzite) 3.10 3.11 3.03 3.28
GaN 3.24 3.15 3.21 3.50
C 5.29 5.21 5.29 5.50

MARE of full SBG31 14.31 14.44 14.73
test set
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FIG. 5. ε1(ω) and ε2(ω) versus ω, for Si (upper panels) and C (lower panels), as obtained from SRhSG4 density functional. For comparison
the RPA results are also shown.

screened functionals proposed based on the meta-GGA form
are slightly better than HSE06 because the nonlocality infor-
mation is already more enhanced in the semilocal form of the
meta-GGA than GGA as shown in Refs. [47,173,174]. Over-
all, analyzing the Wilcoxon signed-rank test (Table S2 [132])
we observe no significant differences in the band gap perfor-
mance of SRhSG4 and HSEsol functionals.

2. Optical absorption spectra from SRhSG4 functional

The screened hybrids include nonlocal orbital-dependent
exchange term which is the key to the improvement of
its performance for the dielectric properties of the bulk
solids [39,175–178]. Typically, the optical absorption spectra
as obtained from the time-dependent DFT within the RPA
and adiabatic LDA (ALDA) do not include the electron-hole
excitation effects. However, specially designed semilocal XC
kernels are quite successful [40,179–182] for the absorption
spectra of semiconductors and insulators, providing a realis-
tic description of excitons and excitonic effects. The special
advantage of the screened hybrid is that it improves the band
gap of solids, captures the screening of the system, and the
required excitonic effects, i.e., ∼ 1

q2 in the long-wavelength
limit (q → 0) is well respected by HF kernel. Therefore,

the optical absorption spectra as obtained from the screened
hybrids are improved and significantly better than LDA and
RPA [39,175].

To assess the performance of the SRhSG4 functional we
calculate the real [ε1(ω)] and imaginary [ε2(ω)] parts of the
macroscopic dielectric function εM in the optical limit of
small wave vectors

ε1(ω) = �{limq→0 εM (q, ω)},
ε2(ω) = �{limq→0 εM (q, ω)}. (16)

The optical absorption spectrum is given by ε2(ω), while
other optical properties imply both ε1(ω) and ε2(ω). For
example the long-wavelength limit of the electron-energy-
loss function is ε2(ω)/[ε1(ω)2 + ε2(ω)2]. We consider Si and
C bulk semiconductors, which are important test examples
for optical properties. All calculations are performed in the
VASP code using the method suggested in Ref. [39]. We use
32 × 32 × 32 k points with eight empty orbitals. Being very
expensive, the SRhSG4 calculations are performed in many
shifted 8 × 8 × 8 grids [39]. The resultant ε1(ω) and ε2(ω)
are shown in Fig 5. For comparison, the RPA results are also
reported, being taken from Ref. [40].
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The optical absorption spectrum of Si, computed with
SRhSG4, is quite realistic, showing two peaks at the right
positions. Nevertheless, the first peak at ∼3.5 eV, which is
associated with an oscillator strength, is underestimated. The
same feature is observed for the first peak of ε1(ω), which is
also slightly red shifted. However, the second, negative peak
of ε1(ω) is accurately described. Overall, the performance
of SRhSG4 for the optical properties of Si semiconductor is
remarkable, being comparable with the results of specialized
XC kernels [40]. In Ref. [39] it was suggested that different
range of the screening parameter may improve the spectra
which can be tested for this case also.

Next considering the optical spectra of the medium ranged
semiconductor C, both the SRhSG4 and RPA spectra are
rather inaccurate. The SRhSG4 and RPA peaks are both
blueshifted with about 1 eV. However, the SRhSG4 gives an
important improvement over RPA in the whole energy range,
from 6 to 18 eV. The SRhSG4 improvement over RPA is even
more evident for ε1(ω), where the SRhSG4 curve is closer to
the experimental one, being able to describe the negative peak
at around 12 eV, even if it is blueshifted with about 0.5 eV.
We recall that the optical properties can be further improved
by making ω or α system-dependent via the inclusion of
density and gradient of density [183,184], and/or dielectric
dependence [185–190].

G. Performance for small molecules

Last, we assess the functionals for some well-known
molecular test cases. Ideally, a functional accurate for solid-
state test cases should also provide reasonable good energy
differences for molecular systems. In general, for molecules,
the long-range corrected or global hybrids perform well [55].
However, at the GGA level, simultaneous good performance
for both chemical and solid-state worlds are quite difficult.
Though global hybrid PBE0 [191] works reasonably well
for chemical applications, it is not so popular for solid-state
physics.

In Table VIII, we summarize MAE of several test sets as
obtained from different screened hybrids considered in this
paper. We consider the Minnesota 2.0 test set [166] to assess
the functionals performance. For atomization energies (AE6
and G2/148) HSEsol is the worse performing functional. It
is reasonable because in the semilocal level PBEsol is al-
ready bad for molecular atomization energies. This is due to
the restoring of the density-gradient expansion (GE2) for ex-
change. However, SG4 satisfies the semiclassical atom theory
and MGE4, which makes it reasonably well performer both
for the general-purpose molecular test cases as well as solids,
being better than PBEsol [28]. Note that SG4 is as accurate
as PBE at the semilocal level because of the satisfaction
of MGE4. Therefore, the improved atomization energies for
SRhSG4 are not surprising and quite reasonable because of
the inclusion of the HF exchange. For atomization energies,
SRhSG4 is as accurate as HSE06. Moreover, the good perfor-
mance of the SRhSG4 is also maintained for other test cases,
except barrier heights (HTBH38 and NHTBH38) and charge
transfer complexes (CT7).

TABLE VIII. MAEs (in kcal/mol) of the molecular bench-
mark tests obtained using various XC functionals. Best/worst
MAE result of each test is shown in bold/underline style. The 6-
311++G(3df,3pd) basis set was used. Total mean absolute error
(TMAE) is given in the last row.

Test set SG4 SRhSG4 HSEsol HSE06

AE6a 14.87 7.60 17.95 7.21
G2/148b 16.60 7.25 19.37 7.04
EA13c 4.47 2.77 2.81 2.78
IP13d 3.03 3.47 2.39 3.21
PA8e 1.54 1.35 1.27 1.78
HTBH38f 9.53 4.88 6.79 3.48
NHTBH38g 8.27 5.74 8.20 5.04
HB6h 0.52 0.46 0.95 0.46
DI6i 0.53 0.47 0.51 0.43
CT7j 3.08 1.17 1.74 0.73
TMAE 6.24 3.52 6.20 3.22

aSix atomization energies.
batomization energies of 148 molecules.
celectron affinity of 13 molecules.
dionization potential of 13 molecules.
e8 proton affinities.
fhydrogen transfer barrier heights of 38 molecules,
gnonhydrogen transfer barrier heights of 38 molecules.
h6 hydrogen bonds.
i6 dipole interactions.
j7 charge transfer complexes.

IV. CONCLUSIONS

To conclude, we have developed a screened range-
separated hybrid functional (SRhSG4) by the satisfaction of
the semiclassical atom theory through the modified gradi-
ent expansion of fourth-order (MGE4) and the local density
linear response of the whole functional. We have assessed
the SRhSG4 functional performance for equilibrium solid-
state properties, structural phase transition of Si and Zr,
ferroelectric properties of BaTiO3 and PbTiO3, band gaps
of semiconductors, and optical absorption spectra of Si and
C. Moreover, we have tested functional performance for the
atomization energies, barrier heights, noncovalent interactions
of molecules, and harmonium atom model system. Addi-
tionally, we have investigated the quality of the correlation
potential obtained via the OEP method. It has been evinced
that the constructed functional is more accurate than HSE06
for solid-state structural properties and much improved func-
tional than HSEsol for the general purpose molecules. The
improvement of the SRhSG4 over HSE06 and HSEsol is
due to the satisfaction of the MGE4 and the LDA linear
response criterion. The correlation potentials assessment, in
turn, shows that all the HSE model-based functional can
provide the correlation potentials reproducing most of the
quantum oscillations of the high-level reference CCSD(T)
couterpart.

The SRhSG4 performs in a more balanced way than
HSEsol for both finite and extended systems. Thus, it may
be a potential candidate to assess the various solid-state
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applications. Moreover, the SRhSG4 can be used in the
development of dielectric dependent range-separated hybrid
density functionals [183,185,186].

We have studied only systems and properties where the
dispersion interaction is not important. However, for layered
materials and other van der Waals solids, as well as for interac-
tions between molecules and surfaces, the SR hybrid function-
als (HSE06, HSEsol, and SRhSG4) must include the nonlocal
van der Waals correlation correction. In this sense, we re-
call that the GGA parents of these hybrid functionals have
been already corrected for dispersion and weak interactions,

such as PBE+rVV10L [192], PBEsol+rVV10s [193,194],
and SG4+rVV10m [194,195].
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