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Infrared fixed points of higher-spin fermions in topological semimetals
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We determine the fate of interacting fermions described by the Hamiltonian H = p · J in three-dimensional
topological semimetals with linear band crossing, where p is momentum and J are the spin- j matrices for half-
integer pseudospin j � 3/2. While weak short-range interactions are irrelevant at the crossing point due to
the vanishing density of states, weak long-range Coulomb interactions lead to a renormalization of the band
structure. Using a self-consistent perturbative renormalization group approach, we show that band crossings of
the type p · J are unstable for j � 7/2. Instead, through an intriguing interplay between cubic crystal symmetry,
band topology, and interaction effects, the system is attracted to a variety of infrared fixed points. We also unravel
several other properties of higher-spin fermions for general j, such as the relation between fermion self-energy
and free energy, or the vanishing of the renormalized charge. An O(3) symmetric fixed point composed of equal
chirality Weyl fermions is stable for j � 7/2 and very likely so for all j. We then explore the rich fixed point
structure for j = 5/2 in detail. We find additional attractive fixed points with enhanced O(3) symmetry that host
both emergent Weyl or massless Dirac fermions, and identify a puzzling, infrared stable, anisotropic fixed point
without enhanced symmetry in close analogy to the known case of j = 3/2.
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I. INTRODUCTION

Topological semimetals are electronic materials that fea-
ture topologically protected band crossing points in their band
structure [1–5]. Upon tuning the chemical potential to any
of these exceptional points, the low-energy physics is often
captured by highly symmetric single-particle Hamiltonians
known from particle physics [6,7]. In particular, with the re-
cent ground-breaking discovery of several compounds hosting
fermions with large topological charge and nonzero chirality
such as CoSi, AlPt, and PdBiSe, [8–16], studying the proper-
ties of higher-spin fermions in solids emerges as a new frontier
of condensed matter physics [17–26]. In these materials, the
topological features of the bulk electronic band structure are
experimentally accessible and distinguishable through surface
effects such as large Fermi arcs or can be probed via angle-
resolved photoemission spectroscopy (ARPES).

What do we consider a higher-spin fermion in this context?
In a first attempt of a definition, we say a three-dimensional
topological semimetal hosts a fermion with half-integer spin
j � 1/2, if the k · p Hamiltonian close to a (2 j + 1)-fold band
crossing point is given by

HSO(3)(p) = 2piJi, (1)

with p the momentum measured from the crossing point
and spin- j matrices Ji satisfying [Jk, Jl ] = iεklmJm, the fac-
tor of 2 introduced for later convenience. We implicitly sum
over repeated indices i = 1, 2, 3 = x, y, z. The correspond-
ing eigenenergies are labeled by m = − j, . . . , j and read
Em(p) = 2m|p|, see Fig. 1. We restrict ourselves to linear band
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crossings here as they are closer to the relativistic dispersion
found in particle physics. However, the exciting properties of
spin-3/2 fermions at a quadratic band touching point [27–29]
also attracted significant attention in recent years and have
been investigated in Refs. [30–59].

The Hamiltonian in Eq. (1) is invariant under continuous
rotations of momentum and spin taken from the group SO(3).
In real materials, the crystal structure breaks this continuous
symmetry, and we assume in the following that the remaining
discrete symmetry is captured by the cubic rotational group
O ⊂ SO(3). As a result, cubic-only symmetric terms are al-
lowed on the right-hand side of Eq. (1), their relative size
being determined by the band structure of the material at hand.
We therefore widen our definition of a higher-spin fermion
to include any (2 j + 1)-fold linear band crossing point de-
scribed by a Hamiltonian of the form H (p) = piVi where Vi

transforms as a vector under the cubic rotational group, i.e.,
according to the T1 representation.

The band structure close to the band crossing point re-
ceives self-energy corrections due to the long-range part of
the Coulomb interaction between electrons. The surprising
finding of Isobe and Fu [19] is that the rotation-invariant
Hamiltonian in Eq. (1) is unstable towards the inclusion of
Coulomb interactions for j = 3/2. Instead, depending on the
parameters of the band structure, the system is attracted to one
of two infrared renormalization group (RG) fixed points. One
of them features enhanced O(3) symmetry and is described by
the “relativistic” Hamiltonian

HO(3)(p) = piVi, (2)

where the matrices Vi satisfy the Clifford algebra,

{Vk,Vl} = 2δkl , (3)
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FIG. 1. Sixfold linear band crossing hosting spin-5/2 fermions in
topological semimetals. We plot the energy bands for selected points
of the parameters (α, β, γ ) entering the most general Hamiltonian in
Eq. (13). Top left: SO(3)-symmetric fixed point with single-particle
Hamiltonian HSO(3) ∝ piJi. This point is unstable towards inclusion
of long-range interactions. Top right: For j = 5/2, three stable fixed
points show an emergent relativistic O(3) symmetry, comprising col-
lections of Weyl and massless Dirac particles; see Table III. The six
bands at these points are triply degenerate. Bottom left: The system
features a stable infrared fixed point without enhanced symmetry
at (α, β, γ ) = (1.172, −0.530, 0). The existence of such “cubic”
fixed points appears to be characteristic for higher-spin fermions.
Bottom right: For certain fine-tuned values of (α, β, γ ), individual
bands touch and lead to a change in the band topology. We show
the dispersion for (α, β, γ ) = (1, 1, 0), close to such a topological
transition.

and the ( j + 1/2)-fold degenerate eigenvalues read E±(p) =
±|p|. The second fixed point is only cubic symmetric and
located at a seemingly arbitrary point in parameter space. The
presence of such a stable infrared fixed point without any
visibly enhanced symmetry is quite unusual, because many
electronic systems feature emergent rotation or even Lorentz
invariance at quantum critical points.

To understand the nature of the different fixed points, let us
consider the cases j = 1/2 and j = 3/2 as illustrative exam-
ples. For j = 1/2, the spin matrices are given in terms of the
Pauli matrices, 2Ji = Vi = σi, and so satisfy a Clifford algebra
themselves. The Hamiltonian in Eq. (1) coincides with the
Weyl Hamiltonian in this case. For j = 3/2, on the other hand,
the situation is less obvious. In this case, the most general
cubic-symmetric higher-spin Hamiltonian reads

H3/2(p) = pi
(
u1Ji + u2J3

i

)
, (4)

with u1,2 two material parameters. Now introduce the matrices

Vi = −7

3
Ji + 4

3
J3

i , (5)

Ui = 13

6
Ji − 2

3
J3

i (6)

to obtain the Isobe-Fu Hamiltonian [19]

H3/2(p) = pi(Vi + αUi ). (7)

We normalize momentum such that the prefactor of piVi is
unity, so that α is the only free parameter. The matrices
Vi realize the Clifford algebra from Eq. (3), thus we obtain
the relativistic Hamiltonian for α = 0. Importantly, a basis
change brings the latter into the form HO(3)(p) ∼ pi(12 ⊗ σ ∗

i ),
which shows that the relativistic system consists of two Weyl
fermions of equal chirality. In contrast, a Dirac Hamilto-
nian comprises two Weyl fermions of opposite chirality in
the massless limit. For α = 2, on the other hand, we obtain
HSO(3)(p) from Eq. (1). Finally, the stable cubic-only symmet-
ric fixed point is located at α = 2.296. The three fixed points
for j = 3/2 are summarized in Table III below.

In this work, we show that the behavior found for j = 3/2
continues for larger j: The SO(3)-symmetric fixed point is
unstable for j = 5/2 and 7/2, while the O(3)-symmetric one
is stable, and we argue that this likely extends to j > 7/2.
Furthermore, for j = 5/2 we identify a stable cubic-only
symmetric infrared fixed point at a seemingly arbitrary point
in parameter space. To arrive at these conclusions, we first
generalize the matrices Vi and Ui to j > 3/2, and discuss
symmetries and topology of higher-spin Hamiltonians. We
then derive general properties of the fermion and photon
self-energy due to long-range interactions for arbitrary j, in-
vestigate the stability of the SO(3) and O(3) symmetric fixed
points for j � 7/2, and eventually analyze the case of j = 5/2
in considerate detail.

II. HIGHER-SPIN FERMIONS

A. Lagrangian

We consider a system of electrons with half-integer pseu-
dospin j at a linear band crossing point described the effective
low-energy Lagrangian

L = ψ†[∂τ + H (−i∇) + ia]ψ + 1

2ē2
(∇a)2, (8)

with ψ = (ψ j, . . . , ψ− j )T a Grassmann field for the electrons
and τ imaginary time. Long-range interactions are modeled
by exchange of a real scalar photon a. The electric charge ē
appears in the kinetic part of the photon, but may also be put
in front of the term ψ†iaψ through a field redefinition a → ēa.
We assume the chemical potential to be at the crossing point.
The model is defined with respect to an ultraviolet momentum
cutoff � so that the linear approximation to the Hamiltonian
is valid for all momenta p � �. We define e2 = ē2/(2π2) for
later convenience.

The higher-spin nature of the linear band crossing
point enters the Lagrangian through the (2 j + 1) × (2 j + 1)
Hamiltonian matrix H (p). The most general cubic-symmetric
Hamiltonian is a linear combination of N admissible terms
piK

(1)
i , . . . , piK

(N )
i with certain matrices K (n)

i . Identifying the
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TABLE I. The number of terms N that transform as vectors un-
der the cubic rotational group in the most general Hamiltonian H (p)
is fixed by group theory. In this work we restrict to time-reversal
(T ) symmetric Hamiltonians, which feature a smaller number of
admissible terms. The time-reversal operator T is defined in Eq. (22).

j 3/2 5/2 7/2 9/2 11/2

N with T -symmetry 2 4 6 9 12
N without T -symmetry 2 5 8 13 18

value of N in dependence of j is a crucial step in our analysis.
For each j, the number N counts the number of irreducible
vectors under the cubic group and is thus fixed by group
theory. We discuss the procedure for finding N and the con-
struction of the matrices K (n)

i for arbitrary j in Appendix A.
For instance, for j = 3/2, the two irreducible vectors under
the cubic group are

K (1)
i = 2√

5
Ji, (9)

K (2)
i = 2

√
5

3

(
J3

i − 41

20
Ji

)
. (10)

For j = 5/2, assuming time-reversal symmetry, the four irre-
ducible cubic vectors read

K (1)
i = 2

√
3

35
Ji,

K (2)
i = 1

3

√
5

6

(
J3

i − 101

20
Ji

)
,

K (3)
i = 1

10

√
21

2

(
J5

i − 145

18
J3

i + 11 567

1008
Ji

)
,

K (4)
i = 3

√
3

10

(
{Ji, Î} + 7

18
J5

i − 95

36
J3

i + 253

96
Ji

)
, (11)

where we define

Î = Î5/2 = 1

9

[∑
k<l

(
J2

k J2
l + J2

l J2
k

) − 283

8
1

]
. (12)

The six matrices that can be constructed for j = 7/2 are dis-
played in Eqs. (A32)–(A38). We display a few more relevant
values of N in Table I.

Although the Hamiltonian H (p) can be written in terms of
the matrices K (n)

i , practical calculations often simplify when
using a different set of N orthonormal matrices that better
implement the symmetries of the system. For j = 3/2, these
are the matrices Vi and Ui in Eqs. (5) and (6), with one real
parameter α. For j = 5/2, we write the spin-5/2 Hamiltonian
in terms of three real parameters (α, β, γ ) as

H5/2(p) = pi(Vi + αAi + βBi + γCi ) (13)

with orthonormal basis matrices

Vi =
√

3

35
K (1)

i + 4

3

√
2

15
K (2)

i + 8

3

√
2

21
K (3)

i ,

Ai = 4

3

√
2

35
K (1)

i + 14

9
√

5
K (2)

i − 25

18
√

7
K (3)

i −
√

5

6
K (4)

i ,

Bi =
√

32

105
K (1)

i − 2√
15

K (2)
i + 1√

84
K (3)

i −
√

5

12
K (4)

i ,

Ci = 4

3

√
2

7
K (1)

i − 1

9
K (2)

i − 2

9

√
5

7
K (3)

i + 2

3
K (4)

i . (14)

Their advantageous symmetry properties are explained in the
next section. The O(3) symmetric fixed point is reached for
(α, β, γ ) = (0, 0, 0).

More generally, we show below that matrices Vi satisfy-
ing Clifford algebra can always be constructed as a linear
combination of the K (n)

i . Consequently, after an appropriate
rescaling of momentum, the Hamiltonian for j � 3/2 can be
written as

H (p) = pi

(
Vi +

N−1∑
n=1

αnU
(n)
i

)
, (15)

with orthonormal matrices chosen such that

tr(VkVl ) = (2 j + 1)δkl , tr
(
VkU

(n)
l

) = 0, (16)

tr
(
U (n)

k U (n′ )
k

) = (2 j + 1)δklδnn′ . (17)

The number of independent velocity coefficients �α =
(α1, . . . , αN−1) is N − 1. The O(3) symmetric fixed point
corresponds to �α = 0.

Let us now construct the matrices Vi for arbitrary j. They
can be expressed in a representation-independent fashion in
terms of linear combinations of odd powers of Ji. The pro-
cedure is explained in Appendix A. This also implies that
they are odd under T . Using the standard representation for
the spin matrices Ji, Eqs. (A1)–(A4), we obtain the block-
diagonal form

V1 = AN ⊗ σ1 =
⎛
⎝ 0 0 σ1

0 . .
. 0

σ1 0 0

⎞
⎠, (18)

V2 = AN ⊗ σ̄2 =
⎛
⎝ 0 0 σ̄2

0 . .
. 0

σ̄2 0 0

⎞
⎠, (19)

V3 = 1N ⊗ σ3 =
⎛
⎝σ3 0 0

0 . . . 0
0 0 σ3

⎞
⎠, (20)

with σ̄2 = (−1) j−1/2σ2 being either σ2 or σ ∗
2 , N = j + 1

2 the
number of Weyl points for �α = 0, 1N the N-dimensional
unit matrix, and AN = σ1 ⊗ · · · ⊗ σ1 the N × N matrix whose
nonzero entries are units along the antidiagonal. Using this
representation of the matrices Vi, one immediately verifies the
validity of {Vk,Vl} = 2δkl . An interesting consequence of the
above form is that

Vi commutes with Ji,

Vi anticommutes with Jk �=i. (21)

This, in turn, implies that Vi commutes with K (n)
i and anticom-

mutes with K (n)
k �=i for every n in the T -symmetric case, since the

K (n)
i are composed of sums of odd powers of spin matrices.

Note that Vi itself is a linear combination of the K (n)
i .

At last, let us comment on the role of interactions in
Eq. (8). In three spatial dimensions, for linear band crossing,
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the electric charge e is a marginal coupling in the RG sense.
Put differently, our system is right at the critical dimension
for the coupling e, so we can apply perturbation theory in
three dimensions without the need for introducing additional
dimensions. This is very advantageous since the algebra of the
spin matrices crucially depends on the underlying dimension
of space. The small parameter in our RG scheme is the charge
e. As e will be shown to diminish under RG, a self-consistent
scheme merely requires that e is small at some initial RG
scale.

B. Symmetries

In this section, we discuss the discrete symmetries of
the system. We first define the time-reversal operator, which
implies a particle-hole symmetric spectrum. We identify ad-
ditional discrete symmetries that relate different parameter
regimes of the couplings �α in Eq. (15). We illustrative these
additional symmetries for j = 3/2 and j = 5/2.

The antiunitary time-reversal operator is given by

T = V2K, (22)

where K denotes complex conjugation. We have T 2 = −1
and

{T , H (p)} = 0 (23)

for every fixed p. Equation (23) defines time-reversal sym-
metry of the free electron system. It implies that for each
eigenvalue E (p) of H (p), there exists an eigenvalue −E (p)
for the time-reversed eigenstate. To ensure time-reversal sym-
metry, we allow only those cubic vectors K (n)

i that satisfy
{T , K (n)

i } = 0. It is easy to see that these are precisely those
cubic vectors that are made from products of an odd number
of spin matrices by employing the property (21) and the fact
that J1,3 are real, while J2 is imaginary, implying {T , Ji} =
0. Since the photonic part of the Lagrangian is also time-
reversal invariant, the system described by Eq. (8) features
time-reversal symmetry.

To understand the additional discrete symmetries in the
case of j = 3/2, consider the unitary operator [24]

Ŵ = 2√
3

(JxJyJz + JzJyJx ), (24)

which squares to unity. One easily verifies that Vi and Ui in
Eqs. (5) and (6) satisfy

[Vi, Ŵ] = {Ui, Ŵ} = 0. (25)

Hence, Ŵ (Vi + αUi )Ŵ = (Vi − αUi ) and the spin-3/2 sys-
tem features a global Z2 symmetry with respect to α → −α.
Indeed, a sign change in α can be undone by a field trans-
formation ψ → Ŵψ , and so all physical observables are
symmetric with respect to α for j = 3/2.

How does this symmetry generalize to j = 5/2? For this
spin, define the unitary operators

Î = 1

9

[∑
k<l

(
J2

k J2
l + J2

l J2
k

) − 283

8
1

]
, (26)

Ŵ = 1

3
√

3
(JxJyJz + JzJyJx ) + 1

2
(1 + Î ). (27)

Both of them square to unity, they mutually commute, and Î
commutes with T . The operator Ŵ does not have a distinct
behavior under T , but the traceless analog

W = 1√
18

(JxJyJz + JzJyJx ) (28)

anticommutes with T . Note that Î is invariant under cubic
transformations. Among the many possible linear combina-
tions of K (1)

i , . . . , K (4)
i for spin 5/2, we use these symmetry

operators to construct the mutually orthogonal matrices
Vi, Ai, Bi,Ci in Eq. (13) in the following way. First, Vi is
defined to satisfy the Clifford algebra in Eq. (3), thus has the
form given in Eqs. (18)–(20). One verifies that Vi commutes
with both Î and Ŵ . The matrix Ci is uniquely constructed
such that

[Î, Ai] = [Î, Bi] = {Î,Ci} = 0. (29)

This implies that the system has a global Z2-symmetry with
respect to γ → −γ . Next, the matrices Ai and Bi are chosen
such that

{Ŵ, Ai} = [Ŵ, Bi] = 0, (30)

implying that for γ = 0 the systems is invariant under α →
−α. These symmetries are particularly useful in the RG anal-
ysis of the vast parameter space spanned by the couplings
(α, β, γ ); see Sec. IV C.

As the value of j is increased, the higher-spin analogues
of the symmetry operators Î and Ŵ can be constructed from
the irreducible tensors that transform under the A1 and A2

representation; see Table IV below. We leave this task for
potential future work. In this context, note that for j = 3/2 we
have

∑
k<l (J2

k J2
l + J2

l J2
k ) = 51

8 1, thus the operator Î is trivial
in this case. This is a consequence of the Cayley–Hamilton
theorem applied to the spin-3/2 matrices; see the discussion
in Appendix A.

C. Band structure and topology

Higher-spin fermions described by the Hamiltonian H (p)
in (15) feature a rich band structure and complex band topol-
ogy. In this section, we first discuss the topology of the band
crossing point at the O(3) and SO(3) symmetric fixed points
for arbitrary j. We then discuss some more detailed aspects
of j = 3/2 and j = 5/2. The energies as a function of the
parameters �α fully determine the infrared fixed points through
Eqs. (46)–(50), as is explained in the next section. For a brief
review of the formulas relevant for topology see Appendix C.

Let us first discuss the topology of the continuous fixed
points for general j. At the O(3) symmetric fixed point with
�α = 0, the Hamiltonian is given by (2), with the matrices
Vi from Eqs. (18)–(20). After a suitable basis change, the
Hamiltonian can be brought into a block-diagonal form and
corresponds to N = j + 1/2 copies of Weyl Hamiltonians.
Due to the appearance of σ̄2 in V2, the chirality/monopole
charge of each Weyl particle is (−1) j−1/2, and the resulting
total monopole charge is Q = (−1) j−1/2N . This basis change
is explained below at the example of j = 5/2 and easily
generalized to arbitrary spin. At the SO(3) symmetric fixed
point, the Hamiltonian is given by Eq. (1). The energy bands
are labeled by quantum numbers m = − j, . . . , j and energies

155104-4



INFRARED FIXED POINTS OF HIGHER-SPIN FERMIONS … PHYSICAL REVIEW B 102, 155104 (2020)

Em(p) = 2mp. The Chern number of the mth band is 2m, and
so the total monopole charge, defined as the sum of the Chern
numbers of the positive energy bands, is given by N2.

To discuss the band structure for spin j, we use the fol-
lowing convention. Due to time-reversal symmetry expressed

by Eq. (23), the energy spectrum is particle-hole symmetric.
We can then focus on the j + 1/2 positive energy bands,
which we label E1(p), . . . , Ej+1/2(p), with the �α-dependence
implicit. With this notation, the energy bands for j = 3/2 read

E1,2(p) = E (3/2)
± (p, α) =

√√√√(1 + α2)p2 ±
{

α2

[
4p4 + 3(α2 − 4)

∑
k<l

p2
k p2

l

]}1/2

. (31)

We restrict to α � 0 because of the Z2 symmetry discussed
before. For α = 0 and α = 2, we recover the dispersion at the
O(3) and SO(3) symmetric fixed points, respectively, given
by E1,2 = p and E1,2 = 3p, p. For each band, we compute
the Chern number C as described in Appendix C. We define
the total monopole charge Q as the sum of the Chern numbers
of the positive bands. One finds [24] that the total monopole
charge is −2 for α < 1, whereas it is 4 for α > 1. At the par-
ticular point α = 1, the band structure undergoes a topological
transition.

The topological transition at α = 1 for j = 3/2 is charac-
teristic for the behavior found extensively for larger j and
therefore deserves some additional comments. For a change
of the topology of the band structure, reflected by a change
in the Chern numbers of the individual bands, the energy
bands Eλ(p) of H (p) must intersect at some point in momen-
tum space. Typically these intersection points describe Weyl
fermions. The Hamiltonians we consider here, however, are
linear in momentum and thus scale invariant. This implies that
there cannot be a single value of p0 where bands intersect, but

rather bands cross along lines in momentum space originating
from the origin. By including terms into the Hamiltonian that
are quadratic in momentum, the line nodes shrink to point
nodes, but the change in topology persists. Since the quadratic
terms are irrelevant for the low-energy physics, they are of no
further relevance for this work.

Due to cubic symmetry, the lines of topological transition
are either along the (1,0,0), (1,1,0), or (1,1,1) directions (and
equivalent ones). In our example in Eq. (31), for j = 3/2 and
α = 1, the energy band E2(p) vanishes along the (1,0,0) direc-
tion, where it crosses with the negative energy band −E2(p).
If either two positive or two negative energy bands touch,
they may exchange Chern numbers, but they cannot change
the total monopole charge. Hence Q can change only when a
positive and a negative band intersect. For j = 5/2, the total
monopole charge in the (α, β ) plane for γ = 0 is shown in
Fig. 2.

The spin 5/2 system with Hamiltonian (13) is invariant un-
der γ → −γ . For γ = 0, we write α = √

2/3ᾱ, β = λ/
√

2
and find

E1(p) = ±(1 − λ)p, (32)

E2,3(p) =
[[(

1 + λ

2

)2

+ ᾱ2

]
p2 ±

(
ᾱ2

{
(2 + λ)2 p4 + 3[ᾱ2 − (2 + λ)2]

∑
k<l

p2
k p2

l

}) 1
2
] 1

2

. (33)

The band structure for γ �= 0 cannot be expressed in closed
form. However, the SO(3) symmetric fixed point with ener-
gies E1,2,3 = 5p, 3p, p is located at

α = 1

3
κc, β = 1√

3
κc, γ =

√
5

3
κc, (34)

with κc = 4
√

2/3 defined in Eq. (66). In the special case of
β = γ = 0 we have

E1(p) = p, (35)

E2,3(p) = E (3/2)
± (p, ᾱ), (36)

with the last line having the same form as in Eq. (31). On the
other hand, for α = γ = 0 we find

E1(p) = |1 − λ|p, (37)

E2(p) = E3(p) =
∣∣∣1 + λ

2

∣∣∣p. (38)

The second and third bands are degenerate in this limit.
The j = 5/2 system features two fixed points with

O(3) symmetry that are distinct from the one at
�α = 0. To see the difference, let us first discuss the
conventional one with �α = 0. We shuffle the fermion
components from (ψ5/2, ψ3/2, ψ1/2, ψ−1/2, ψ−3/2, ψ−5/2)
to (ψ5/2, ψ−5/2, ψ3/2, ψ−3/2, ψ1/2, ψ−1/2) by means of the
basis change matrix S1 in Eq. (A39). In the new basis, the
matrices Ṽi = S1ViS−1

1 read

Ṽ1 =
(

σ1 0 0
0 σ1 0
0 0 σ1

)
, Ṽ2,3 =

(
σ2,3 0 0

0 −σ2,3 0
0 0 σ2,3

)
. (39)

This block diagonal form makes the factorization into three
Weyl Hamiltonians particularly transparent. Importantly, for
a 2 × 2 Weyl Hamiltonian of the form H2×2 = ∑

i vi piσi, the
chirality or monopole charge is given by sgn(v1v2v3). There-
fore, all three Weyl particles described by Eq. (39) carry equal
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FIG. 2. Band topology of spin-5/2 fermions described by the
Hamiltonian (13) in the (α, β ) plane for γ = 0. The distinct topo-
logical sectors are labeled by the total monopole charge Q, defined
as the sum of the Chern numbers of the positive energy bands. Note
that all values are odd integers. Also note that for γ = 0 the system
is invariant under α → −α. We show the stable O(3) symmetric
fixed point at (α, β ) = (0, 0) (blue dot), which comprises three Weyl
particles of chirality +1 and total monopole charge 3. The stable
O(3) symmetric fixed point at (α, β ) = (0, 2

√
2) (red dot) features

a Weyl fermion and a massless Dirac particle and so has monopole
charge 1.

chirality 1, and the total monopole charge at this fixed point is
3.

It is easy to find the remaining O(3) symmetric fixed
points by means of an ansatz Ri = 1

c (Vi + αAi + βBi + γCi )
and determination of the parameters c and (α, β, γ ) such
that {Rk, Rl} = 2δkl . We identify two solutions with �α �= 0,
which are strikingly different in nature. First, for (α, β, γ ) =
(0, 2

√
2, 0), the Hamiltonian can be written as

H (1)
� (p) = 3piR

(1)
i (40)

with

R(1)
i = 1

3 (Vi + 2
√

2Bi ). (41)

Applying the basis change matrix S2 from Eq. (A40), the
transformed matrices R̃(1)

i = S2R(1)
i S−1

2 are

R̃(1)
1 =

(
σ1 0 0
0 −σ1 0
0 0 σ1

)
,

R̃(1)
2,3 =

(
σ2,3 0 0

0 σ2,3 0
0 0 σ2,3

)
. (42)

Note the difference in the number of minus signs in com-
parison to Ṽi. The Hamiltonian H (1)

� (p) describes two Weyl
fermions of chirality +1 and one Weyl fermion of chirality

FIG. 3. One-loop diagrams contributing to the RG flow of the
fermion self-energy (left) and photon self-energy (right). Here a con-
tinuous line depicts a fermion propagator and a dashed line depicts a
photon propagator. The perturbative treatment is justified by a small
value of the running charge e. We show that the β function of e2 is
negative, and, hence, its value decreases under RG. Consequently, as
long as e is small at some initial RG scale, it will always be small.

−1. The two Weyl fermions of opposite chirality are equiv-
alent to a four-component massless Dirac fermion. The third
fixed point Hamiltonian with O(3) symmetry reads

H (2)
� (p) = 3piR

(2)
i (43)

with

R(2)
i = 1

3

(
Vi − 2

√
2

3
Ai + 4√

3
Ci

)
. (44)

The basis change with matrix S3 from Eq. (A42) yields the
transformed matrices R̃(2)

i = S3R(2)
i S−1

3 given by

R̃(2)
1,3 =

(
σ1,3 0 0

0 σ1,3 0
0 0 σ1,3

)
,

R̃(2)
2 =

(−σ2 0 0
0 −σ2 0
0 0 −σ2

)
. (45)

We conclude that H (2)
� (p) describes three Weyl fermions of

equal chirality −1 and total monopole charge −3.

III. RENORMALIZATION GROUP

A. Fermion self-energy and free energy

The RG flow of the system parameters e and �α is in-
duced by integrating out fluctuations in the momentum shell
�/b � p � � with � the ultraviolet cutoff and b > 1 [60],
thereby effectively decreasing the ultraviolet cutoff and cre-
ating a running of the couplings e(b) and �α(b). The flow of
e follows from the renormalization of the photon propagator,
the fermion anomalous dimension η, and the flow of �α follow
from the fermion self-energy. Both one-loop diagrams are
depicted in Fig. 3. In this section, we focus on the fermion
self-energy, assuming a small value of e2. We confirm this
assumptions in the next section.

For the present system, there exists an interesting con-
nection between the fermion self-energy and the free energy
at the one-loop level. The relation is the following: Write
the eigenvalues of the single-particle Hamiltonian H (p) as
Eλ(p) = pÊλ(φ, θ ), with φ, θ the usual angular variables in
spherical coordinates. The eigenvalues depend on the param-
eters �α. Now define the dimensionless function

f (�α) =
2 j+1∑
λ=1

∫
�

|Êλ|, (46)

155104-6



INFRARED FIXED POINTS OF HIGHER-SPIN FERMIONS … PHYSICAL REVIEW B 102, 155104 (2020)

with angular average∫
�

(· · · ) = 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ (· · · ). (47)

It is easy to see that f is simply (minus) the normal state free
energy density at zero temperature given by

F = − �4

32π2
f . (48)

On the other hand, the RG flow equations for the velocity
parameters �α are given by

α̇n = −ηαn + e2

3(2 j + 1)

∂ f

∂αn
:= hn(�α)e2, (49)

and the fermion anomalous reads

η = e2

3(2 j + 1)

[
f (�α) − �α · ∂ f

∂ �α
]
. (50)

Here a dot denotes a derivative with respect to log b. For
example, for j = 3/2 we have

α̇ = h(α)e2 = e2

12
[− f (α)α + (1 + α2) f ′(α)]. (51)

We derive these relations in Appendix B 1.
Above equations have an interesting implication for the

anomalous dimension at any infrared fixed point of �α. To see
this, let �α� be a solution which satisfies α̇n = 0 for all n and de-
note the corresponding anomalous dimension by η� = η(�α�).
We have hn(�α�) = 0 and

0 = �α� · �h(�α�) = −η��α2
� + e2

3(2 j + 1)
�α� · ∂ f

∂ �α (�α�). (52)

This implies the anomalous dimension at the fixed point to be

η� = e2

3(2 j + 1)

f (�α�)

1 + �α2
�

. (53)

Below we use this relation to compute η� for the relativistic
and rotational invariant fixed points for arbitrary values of
j. Unitarity requires η > 0 and so we exclude regions of
negative anomalous dimension as unphysical.

The stability of a given fixed point �α� is determined by the
eigenvalues of the stability matrix

Mnn′ = ∂α̇n

∂αn′

∣∣∣
�α=�α�

= e2 ∂hn

∂αn′
(�α�). (54)

Stable fixed points feature only negative eigenvalues. Every
positive eigenvalue corresponds to a repulsive direction in the
parameter space spanned by {αn}. We denote the eigenvalues
of M by {θn}. Note that Eqs. (49) and (50) imply that

Mnn′ = −ηδnn′ + e2

3(2 j + 1)

(
αn �α · ∂2 f

∂ �α∂αn′
+ ∂2 f

∂αn∂αn′

)
.

(55)

We derive this formula and a second method to compute M in
Appendix B 4.

B. Charge renormalization

Our perturbative RG analysis is built on the assumption
that the charge e > 0 remains small during the RG flow. In this
section, we show that this is guaranteed for every j and every
choice of parameters �α as long as e is small at some initial
ultraviolet scale. For instance, the effective microscopic elec-
tric charge may be suppressed by a large dielectric constant.
Furthermore, we explain an intriguing connection between the
flow of the charge e and the topology of the band structure.

Since the charge e appears in the Lagrangian (8) as a
prefactor of the photon kinetic term, charge renormalization
is equivalent to the renormalization of the photon propagator,
and therefore captured by the right diagram in Fig. 3. The flow
equation for the charge can be written as

de2

d log b
= −ηe2 − P(�α)e4, (56)

where both η and P depend on the values of the couplings �α.
We now show that P > 0. Together with a positive anomalous
dimension this implies that e → 0 as b → ∞. This justifies
the perturbative treatment in the above sense. However, it
does not imply that the overall RG flow is trivial. Indeed, for
every finite b, we have a nonvanishing charge e > 0 that in-
duces a renormalization of the band structure through fermion
self-energy corrections, and so attracts the values of �α to an
infrared fixed point or may result in a runaway flow. On the
other hand, since e� = 0 strictly at the fixed point, all critical
exponents are trivial at the quantum critical points described
here.

Denote again the eigenvalues and eigenvectors of H (p) in
Eq. (15) by Eλ = pÊλ and |λ〉, respectively, so that H (p)|λ〉 =
Eλ|λ〉. We prove in Appendix B 3 that

P(�α) = 2
∑
Eλ>0

∑
Eλ′<0

∫
�

|〈λ|h3|λ′〉|2
(Êλ − Êλ′ )3

(57)

with h3 = ∂H (p)/∂ p3 = V3 + ∑
n αnU

(n)
3 . The sum extends

over the positive and negative eigenvalues, respectively. This
expression for P is manifestly positive and is valid (per-
turbatively) for every time-reversal symmetric Hamiltonian
linear in momentum. It fails, however, if the energy dispersion
contains terms that are of higher power in momentum. Most
famously, of course, the quadratic band touching Luttinger
Hamiltonian inserted into the Lagrangian (8) features a stable
Abrikosov fixed point close to four dimensions with e� > 0
[27,28].

Some particular values of P(�α) can be computed analyti-
cally. For the relativistic O(3) symmetric fixed point at �α = 0
we have

P(�0) = 2 j + 1

12
. (58)

For the rotational SO(3) symmetric fixed point we have P� =
2
3 for j = 3/2, and P� = 3

2 for j = 5/2.
Equation (57) reveals an intriguing interplay between band

topology and charge renormalization. For generic values of
�α, the energy bands Eλ(p) are distinct for all values of p and
the denominator of the integral is nonzero, implying P < ∞.
However, recall from the discussion in Sec. II C that the pa-
rameter space �α is divided into topological sectors classified
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FIG. 4. Charge renormalization due to long-range interactions.
The function P(�α) is defined in Eq. (22). A positive P implies
that the renormalized charge e flows to zero in the infrared. The
function features poles at those points in parameter space where
the total monopole charge changes. For j = 3/2 (upper panel), P is
symmetric in α and diverges at α = ±1. For j = 5/2 (lower panel),
we plot P along the line (α, β, γ ) = 1

3 (1,
√

3,
√

5)κ , which connects
the O(3) symmetric fixed point at κ = 0 with the SO(3) symmetric
fixed point at κc = 4

√
2/3. The restricted Hamiltonian along this line

reads H5/2(p) = pi(Vi + κUi ) with Ui from Eq. (67). The monopole
charge changes for κ = ±√

2/3 and κ = 27/6/
√

3.

by the total monopole charge Q. The latter changes when a
positive and negative energy band intersect, which results in
a divergence in the denominator of Eq. (57). Consequently,
P → +∞ and e → 0 at these points of topological band tran-
sition, and thus the flow of �α is effectively stopped. Indeed,
the perturbative inclusion of long-range interactions cannot
modify the band topology. The functions �h = �̇α/e2 remain
regular at the topological transitions. Two examples of P for
j = 3/2 and j = 5/2 are shown in Fig. 4.

IV. INFRARED FIXED POINTS

A. O(3) symmetric fixed point for �α = 0

We first study the O(3)-symmetric relativistic fixed point
with �α� = 0 and Hamiltonian HO(3)(p) = piVi. This fixed
point exists for every j due to the enlarged continuous sym-
metry. Indeed, if we fine-tune the system such that �α = 0, then
none of the O(3)-symmetric fluctuations can generate any
�α �= 0. Emergent Lorentz invariance, reflected by the matrices
Vi satisfying the Clifford algebra relation (3), is a common

FIG. 5. Infrared fixed points from long-range interactions. Up-
per panel: For j = 3/2, we plot the beta function of α defined by
α̇ = hα (α)e2. Besides the zero at α = 0, it features barely visible
zeros at |α| = 2, 2.296. The fixed points for α = 0 and |α| = 2.296
are stable, the SO(3) symmetric fixed point for |α| = 2 is unstable.
Lower panel: For j = 5/2, we plot the β function κ̇ = hκ (κ )e2

along the line (α, β, γ ) = ( 1
3 , 1√

3
,

√
5

3 )κ as in Fig. 4. We find both

continuous symmetry fixed points at κ = 0 and κc = 4
√

2/3 to be
stable along this direction. However, since the parameter space of
velocity coefficients (α, β, γ ) is three-dimensional for spin 5/2, the
two orthogonal directions also need to be taken into account. We
then find that the SO(3) symmetric fixed point is actually unstable,
whereas the relativistic one remains stable.

phenomenon for low-energy electronic systems. Examples of
β functions with zeros at �α = 0 are shown in Fig. 5. We find
that the relativistic fixed point is stable for all j � 7/2 and
give reasons to believe that the stability extends to all j.

The anomalous dimension at the relativistic fixed point can
be computed by utilizing Eqs. (46) and (53). The eigenvalues
of HO(3)(p) = piVi are ±p, so that |Êλ| = 1 and

f (�0) =
2 j+1∑
λ=1

∫
�

1 = 2 j + 1. (59)

Hence the anomalous dimension is given by

η� = e2

3(2 j + 1)
f (�0) = e2

3
. (60)

This result is independent of j, which can be explained by the
fact that the system in this limit comprises N = j + 1/2 in-
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dependent Weyl fermions, each having anomalous dimension
e2/3.

In order to determine the stability of the fixed point, we
compute the eigenvalues {θn} of the stability matrix. One can
show that in this particular case, using the parametrization in
Eq. (15), the elements of the stability matrix are

Mnn′ = −e2

5
δnn′ − 2e2

15(2 j + 1)
tr
[
U (n)

3 V3U
(n′ )
1 V1

]
. (61)

After the set of matrices U (n)
i has been determined for a given

value of j by a Gram-Schmidt procedure, it is straightforward
to compute the stability of the O(3) symmetric fixed point us-
ing this formula. The outcome is quite surprising: The stability
eigenvalues {θ ( j)

n } for spin j � 7/2 are given by{
θ ( j=3/2)

n

} =
{
− 2

15

}
e2, (62)

{
θ ( j=5/2)

n

} =
{
− 2

15
, − 2

15
, −1

3

}
e2, (63)

{
θ ( j=7/2)

n

} =
{
− 2

15
, − 2

15
, − 2

15
, −1

3
, −1

3

}
e2. (64)

We first observe that all eigenvalues are negative and thus
the fixed point is stable. Furthermore, the eigenvalues have
the striking pattern that at each order in j, the eigenvalues
are either −2e2/15 or −e2/3. This leads us to conjecture
that this behavior persists even for j > 7/2, and so the O(3)
symmetric fixed point is always stable. We leave the proof of
this conjecture for future work.

Let us comment on a remarkable feature of the spin-5/2
case, which may also extend to higher spin in a suitable form.
Diagonalizing the stability matrix yields a preferred choice of
basis constructed from linear combinations of the U (n)

i . For
j = 5/2, the basis that diagonalizes M is precisely the ma-
trices Ai, Bi,Ci in Eq. (13), constructed from their particular
symmetry properties with respect to the symmetry operators
Î and Ŵ . Further, any O(2) rotation in the subspace spanned
by Ai and Ci also diagonalizes M in this case.

B. SO(3) symmetric fixed point

Next we study the rotational fixed point with SO(3) sym-
metry and fixed-point Hamiltonian HSO(3)(p) = 2piJi. For the
same reason as explained in the previous section for the O(3)
symmetric case, this fixed point always exists due to the en-
larged continuous symmetry. However, its stability properties
are drastically different, as we demonstrate here.

We begin the analysis by locating the rotational fixed point
in the space of couplings spanned by �α. Given the matrices Vi,
we can always construct the matrix Ui which is orthonormal
according to tr(UkUl ) = (2 j + 1)δkl , tr(VkUl ) = 0 and satis-
fies

HSO(3)(p) = 2piJi = pi(Vi + κcUi ) (65)

for some critical coupling constant κc. This equation is a
direct generalization of the one-parameter case of spin 3/2
in Eq. (7). It turns out that the value of κc is fixed through spin
algebra to be

κc =
√

4

3
j( j + 1) − 1 (66)

TABLE II. The rotational SO(3) symmetric fixed point with
Hamiltonian 2piJi can be parametrized as pi(Vi + κcUi ). The critical
coupling κc and the matrix Ui are defined in Eqs. (66) and (67),
respectively. The anomalous dimension η� at the fixed point is given
by Eq. (69).

SO(3) symmetric fixed point

j 3/2 5/2 7/2 9/2 11/2 13/2 15/2

κc 2 4
√

2
3 2

√
5 4

√
2 2

√
35
3 8 2

√
21

η�/e2 2/15 3/35 4/63 5/99 6/143 7/195 8/255

(see Appendix A), and consequently we simply define Ui as

Ui = 1

κc
(2Ji − Vi ). (67)

Some particular values of κc for small j are presented in Ta-
ble II. By matching the Hamiltonian in Eq. (15) with Eq. (65),
we can express κc in terms of the couplings �α. In particular,
�α2

� = κ2
c at the rotational fixed point.

Equation (53), again, provides an elegant way to compute
the anomalous dimension at the rotational fixed point for arbi-
trary j. Since the eigenvalues of ĤSO(3) are given by Êm = 2m
with m = − j, . . . , j, we have

f (�α�) = 2
j∑

m=− j

∫
�

|m| = (2 j + 1)2

2
. (68)

This implies that the anomalous dimension at the rotational
fixed point is given by

η� = 2 j + 1

8 j( j + 1)
e2. (69)

We list the values for small j in Table II. For large values of j
we have η� = e2/(4 j) + O( j−2).

The rotational fixed point is unstable for j � 7/2. For j =
3/2, the single eigenvalue of the stability matrix is

θ
( j=3/2)
1 = 4

945
e2. (70)

The instability in this particular case was shown in Ref. [19].
For j = 5/2 and j = 7/2 we find{

θ ( j=5/2)
n

} = {−0.062, 0.061, 0.022}e2, (71){
θ ( j=7/2)

n

} = {−0.056, −0.040, 0.013, 0.026, 0.054}e2.

(72)

In all cases considered, the rotational fixed point has at
least one positive stability eigenvalue and thus is unsta-
ble. In fact, the number of positive eigenvalues exceeds
the number of negative ones for every j considered. We
thus conjecture that this trend extends to higher spin
and that the rotational fixed point is likely always highly
unstable.

C. Fixed point structure for spin 5/2

In this section, we study the fixed point structure for j =
5/2 with the Hamiltonian given by Eq. (13). Long-range in-
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TABLE III. Infrared fixed points for higher-spin fermions with j = 3/2 and j = 5/2. We restrict to stable fixed points, where all
eigenvalues {θn} of the stability matrix M in Eq. (54) are negative, but choose to include the unstable rotational fixed point with SO(3)
symmetry in the list. While this covers all infrared fixed points for j = 3/2, we omit several repulsive ones for j = 5/2. For the fixed points
with relativistic O(3) symmetry we use the following notation: WeylQ denotes a collection of Weyl fermions with total monopole charge Q.
Massless Dirac particles are labeled accordingly. Recall that a single Weyl fermion has monopole charge (or chirality) ±1, whereas a massless
Dirac fermion comprises two Weyl fermions with opposite chirality and thus has zero monopole charge.

Infrared fixed points for j = 3/2

α � 0 η�/e2 Q θ1/e2 Stability

O(3): Weyl−2 0 1/3 −2 −2/15 Stable
SO(3) 2 2/15 4 4/945 Unstable
Cubic 2.296 0.119 4 −0.003 Stable

Infrared fixed points for j = 5/2

α β γ � 0 η�/e2 Q θ1/e2 θ2/e2 θ3/e2 Stability

O(3): Weyl3 0 0 0 1/3 3 −1/3 −2/15 −2/15 Stable
O(3): Dirac + Weyl1 0 2

√
2 0 1/9 1 −1/9 −1/15 −2/45 Stable

O(3): Weyl−3 −2
√

2/3 0 4/
√

3 1/9 −3 −1/9 −2/45 −2/45 Stable
SO(3) 4

3

√
2/3 4

3

√
2 4

3

√
10/3 3/35 9 −0.062 0.061 0.022 Unstable

Cubic 1.172 −0.530 0 0.190 −3 −0.19 −0.10 −0.005 Stable

teractions lead to a running of the three velocity parameters
(α, β, γ ) according to

α̇ = h1(α, β, γ ), (73)

β̇ = h2(α, β, γ ), (74)

γ̇ = h3(α, β, γ ). (75)

The full expressions for the β function (h1, h2, h3) are
presented in Eqs. (B37)–(B39). The anomalous dimension
η(α, β, γ ) is given by Eq. (B33). The rather vast three-
dimensional parameter space, together with the sufficiently
complicated expressions for the RG flow equations, implies
that the problem of finding the infrared fixed points is es-
sentially of numerical nature. However, several analytical or
semianalytical statements are possible. In fact, it turns out that
only one fixed point (the cubic symmetric one) needs to be
determined numerically, while the other ones are accessible
analytically. We arrived at this conclusion by numerically
scanning the volume (α, β, γ ) ∈ [−3, 3]3 for mutual zeros
of the β functions (h1, h2, h3) with three negative eigenval-
ues of the stability matrix. The corresponding infrared stable
fixed points for j = 5/2, together with the case of j = 3/2
for comparison, are summarized in Table III. Our analysis
cannot exclude cubic fixed points with �α2 > 9, but such large
values would be untypical. In the following, we discuss some
particular aspects of the RG flow and its fixed points.

Let us start with some general remarks. We derived in
Sec. II B that the system is invariant under γ → −γ , and
so we can assume γ � 0. This also implies that the (α, β )-
plane for γ = 0 is guaranteed to satisfy h3 = 0 and, as a
result, is likely to host fixed points where the lines of zeros
of h1(α, β, 0) and h2(α, β, 0) intersect. This does, however,
not imply that the plane spanned by γ = 0 is stable in the
third direction. Indeed, the derivative ∂h3

∂γ
(α, β, γ → 0+) is

generally nonzero and can lead to a growth of γ if the RG

flow is initialized at any value γ �= 0. Furthermore, although
the system for γ = 0 is invariant under α → −α, this implies
only that the locations of fixed points are symmetric in α in
the (α, β ) plane, but, again, this does not imply symmetry of
the stability matrix at these fixed points. This explains why the
cubic fixed point at (α, β, γ ) = (1.172,−0.530, 0) is stable,
while the one at (−1.172,−0.530, 0) is not.

We verify that the three O(3) symmetric fixed points as-
sociated to the fixed point Hamiltonians in Eqs. (2), (40),
and (43) are stable. The system at these points, respectively,
is equivalent to three Weyl fermions of positive chirality, a
Weyl fermion of positive chirality and a Dirac fermion, and
three Weyl fermions of negative chirality; see the discussion
in Sec. II C. The anomalous dimension at these fixed points
follows from Clifford algebra, and the stability matrix can be
computed analytically using Eqs. (B61).

The only additional stable fixed point besides the ones with
enhanced O(3) symmetry is a cubic symmetry fixed point
at (α, β, γ ) = (1.172,−0.530, 0). Similar to the cubic fixed
point at α = 2.296 for j = 3/2, its location in the (α, β )
plane appears to be bare of any distinctive features. Another
common feature of both cubic fixed points is the presence
of one unusually small negative eigenvalue of the stability
matrix, rendering them almost marginal. In Fig. 6 we plot
the RG flow in the (α, β ) plane for γ = 0, i.e., we plot the
derivatives of (h1, h2). This plane contains three stable fixed
points and several repulsive ones.

V. OUTLOOK

In this work, we studied the band renormalization of
higher-spin fermions in topological semimetals due to long-
range interactions. Many of the constructions and properties
we derived are valid for any half-integer j � 3/2, but for the
sake of concreteness we often turned to j = 3/2 and j = 5/2
as illustrative examples.
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FIG. 6. RG flow for j = 5/2 in the (α, β ) plane for γ = 0.
Arrows point towards the infrared. We identify three infrared stable
fixed points, indicated by the blue, red, and orange dots as in Fig. 2.
The properties of the individual fixed points are summarized in Ta-
ble III. The empty circles indicate unstable fixed points with at least
one positive eigenvalue of the stability matrix. The straight lines bor-
der the distinct topological sectors as in Fig. 2. While the functions
(h1, h2) = (α̇, β̇ )/e2 remain finite along these lines, the RG flow is
effectively stopped due to e → 0 in our model of strictly linear band
crossing. Among the two cubic-symmetric fixed points at (α, β ) =
(1.172, −0.530) (orange dot) and (α, β ) = (−1.172, −0.530) (or-
ange circle), only the first one is stable. This is not in conflict with the
symmetry with respect to α → −α for γ = 0, because the stability
in the γ direction depends on the properties for γ �= 0.

One may wonder what can be learned from such an analy-
sis that is relevant for experiments. Topological semimetals
hosting “Rarita-Schwinger-Weyl” (RSW) fermions with ef-
fective pseudospin j = 3/2, such as PdBiSe [15], have been
synthesized recently and constitute an active frontier of
quantum matter research. Importantly, the identification of
candidate materials is guided by group theoretic studies of
the consistency of j = 3/2 fermions with any of the possible
space groups [8]. Going further up in spin, the same analysis
suggests [8] that sixfold band touchings are generically non-
topological and so do not host the type of topological j = 5/2
fermions discussed in this work. The question of interaction
effects in this topologically trivial sector could be addressed
with the same techniques as presented here. To realize the
intriguing higher-spin physics discussed in this work, one may
need to turn to other quantum simulation platforms, such as ul-
tracold Fermi gases [61–63], although simulating long-range
forces poses a serious challenge for the latter. We conclude
that, currently, the case of j = 3/2 is experimentally by far
the most interesting and pressing one.

The band renormalization effects discussed in this work
become experimentally relevant when the material parameters
are such that the effective model of a linear band crossing

point is faithful over a sufficiently large energy range. In view
of the renormalization group flow, the ultraviolet cutoff of
the model is given by the energy window where the disper-
sion is approximately linear, whereas the infrared cutoff is
given by the temperature of the sample. If these two cutoffs
are separated by at least one or two orders of magnitude,
we expect band renormalization effects to be visible. From
the experimental ARPES data on the RSW crossing point in
PdBiSe reported in Ref. [15], we estimate a width of 0.25 eV
(3000 K), while the measurements were taken at 20 K. The
energy scales are thus sufficiently wide apart.

The cubic infrared fixed points may be observed through
anisotropy of both ARPES data or transport. For instance, in
order to distinguish the two Q = 4 fixed points for j = 3/2
with ARPES, i.e., the unstable isotropic one with α = 2 from
the stable anisotropic one with α = 2.296, a sufficiently good
angular resolution is required. For α = 2.296, the energy dif-
ference of E2 in Eq. (31) for momenta p and p′ in the xy
plane is maximal for a relative angle of 45◦, with a (rather
small) relative energy difference of 17% measured from the
crossing point. Given the above band width from Ref. [15],
this translates to an energy difference in the meV range, while
the experiment achieved an energy resolution of 100 meV and
angular resolution of 0.07◦. The tiny and thus currently un-
observable effect can be explained by the value of α = 2.296
being close to the isotropic limit α = 2. For higher spin, the
cubic and isotropic fixed points can be distinguished more
easily, also because of the different total monopole charges
Q; see Table III.

Compared to the properties of Weyl fermions with spin
1/2, the case of spin 3/2 appears rather exotic and mysterious.
However, when going to even larger values of j > 3/2, as
we did in this work, some features of interacting higher-spin
fermions become clear that might otherwise have been hidden.
Such are, for instance, the generic existence of matrices Vi and
Ui that generalize the Isobe-Fu Hamiltonian to j � 3/2, the
instability of the SO(3) symmetric fixed point, the relation be-
tween the fermion self-energy and free energy in Eqs. (49) and
(50), the relation between charge renormalization and changes
in the total monopole charge in Eq. (57), or the curious pattern
of the stability exponents at the O(3) symmetric fixed point for
�α = 0 in Eqs. (62)–(64). Furthermore, compared to the un-
wieldy case of j = 5/2 with three free parameters (α, β, γ ),
fermions with j = 3/2 suddenly appear rather harmless. We
therefore believe that the present analysis gives an original
perspective on the physics of spin 3/2 fermions via the exten-
sion to higher spin.

In view of understanding general properties of higher spin
fermions, it is encouraging that, despite the growth in com-
plexity of the single-particle Hamiltonian for larger spin, the
number of stable infrared fixed points (at least for j = 5/2)
increases only moderately. In fact, we identified only one
cubic symmetric fixed point for j = 5/2, which is in anal-
ogy to j = 3/2. The remaining additional stable fixed points
show an enhanced O(3) symmetry, and their properties mostly
follow from Clifford algebra.

The reader may have noticed that the total monopole
charges Q for a given j are either all even or all odd. The
reason for that is the following. The monopole charge of
the Hamiltonians HO(3)(p) = piVi and HSO(3)(p) = 2piJi are
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(−1) j−1/2N and N2, respectively, with N = j + 1/2. If N is
even/odd, then N2 is even/odd, consistent with our observa-
tion. Furthermore, the value of Q can change only when a
positive and a negative energy band intersect, whereby the
Chern number of the bands changes by an integer. Due to
particle-hole symmetry, however, the intersecting bands have
opposite Chern numbers, and so the change in the monopole
charge is a multiple of +2 or −2, which eventually confirms
our observation.

The behavior of the topological invariants implies that
fixed points which host massless Dirac particles are likely to
appear for higher spins j � 5/2. The case of spin 5/2 with
Hamiltonian H (1)

� in Eq. (40) has been discussed in detail in
this work. Interestingly, however, no fixed point with Dirac
particle appears for j = 3/2, although Q = 0 could, in princi-
ple, be reached from Q = −2, 4. To understand this, note that
for j = 3/2 we can construct a Dirac Hamiltonian HD(p) =
pi�i with the matrices �1 = 1√

3
{Jy, Jz}, �2 = 1√

3
{Jx, Jz}, �3 =

1√
3
{Jx, Jy}. These matrices, indeed, satisfy the Clifford alge-

bra property {�k, �l} = 2δkl . However, they transform under
the T2 representation of the cubic group (see Appendix A)
and thus cannot be generated from the RG flow considered
here. The absence of a massless Dirac fermion for j = 3/2
can therefore be explained by an obstruction from symmetry.
It would be interesting to see how this behavior extends to
higher spin and whether it can be used to constrain the number
of possible fixed points with enhanced O(3) symmetry.
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APPENDIX A: SPIN ALGEBRA

1. Matrices Ji, Vi, and Ui

Let j be a half-integer. We define the spin matrices Ji

satisfying [Jk, Jl ] = iεklmJm through their usual representation
given by

(J+)mm′ =
√

j( j + 1) − mm′δm,m′+1, (A1)

(J−)mm′ =
√

j( j + 1) − mm′δm+1,m′ , (A2)

(Jz )mm′ = mδm,m′ (A3)

and

Jx = 1

2
(J+ + J−), Jy = 1

2i
(J+ − J−). (A4)

These are (2 j + 1) × (2 j + 1) matrices. We use the conven-
tion m = j, . . . ,− j so that the first entry of the diagonal
matrix Jz = diag( j, . . . ,− j) is positive.

We now construct two matrices Vi and Ui with the follow-
ing properties:

(i) They transform as T1 under the cubic rotational group
O.

(ii) The matrices Vi satisfy {Vk,Vl} = 2δkl .
(iii) They are orthogonal and normalized according to

tr(VkVl ) = tr(UkUl ) = (2 j + 1)δkl , tr(VkUl ) = 0.
(iv) There exists a number κc > 0 such that Vi + κcUi =

2Ji.
For j = 1/2 we have Vi = 2Ji = σi and Ui = 0, with σi the

Pauli matrices. We exclude this trivial case in the following
and assume j � 3/2. At the end of this section we prove the
property (21).

First we explicitly construct Vi in the representation of
Eqs. (18)–(20). While it is clear that Vi can be written as a
superposition of the K (n)

i from the next section, it turns out
that it is sufficient to write it as a linear combination of odd
powers of Ji. Thus we make the ansatz

Vi =
2 j∑

odd μ=1

vμJμ
i = (

v1Ji + v3J3
i + · · · + v2 jJ

2 j
i

)
, (A5)

with coefficients v1, . . . , v2 j to be determined. Considering
the diagonal matrix

V3
!= 1N ⊗ σ3 = diag(1,−1, . . . , 1,−1), (A6)

we arrive at the condition

(V3)mm =
2 j∑

odd μ=1

vμmμ != (−1)m+ j+1 (A7)

for the diagonal components of V3. To determine all coeffi-
cients vμ, it is sufficient to only consider m = 1

2 , . . . , j. We
can phrase this as a problem of matrix inversion. Define the
square matrix A with entries

Amμ = (−1)m+ j+1mμ (A8)

for m = 1
2 , . . . , j and μ = 1, . . . , 2 j odd. We then have to

invert
∑

μ Amμvμ = 1, which is solved by⎛
⎜⎜⎝

v1

v3
...

v2 j

⎞
⎟⎟⎠ = A−1

⎛
⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎠, (A9)

i.e., vκ = ∑
m(A−1)κm. Examples for small j are the follow-

ing:

j = 3

2
: Vi = − 7

3
Ji + 4

3
J3

i ,

j = 5

2
: Vi = 149

60
Ji − 2J3

i + 4

15
J5

i ,

j = 7

2
: Vi = − 2161

840
Ji + 217

90
J3

i − 22

45
J5

i + 8

315
J7

i ,

j = 9

2
: Vi = 53 089

20 160
Ji − 30 571

11 340
J3

i + 179

270
J5

i

− 52

945
J7

i + 4

2835
J9

i . (A10)
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Next, we determine the matrices Ui and the parameter κc

for arbitrary j. For this purpose, we express Vi in terms of the
basis K (n)

i according to

Vi =
N∑

n=1

anK (n)
i (A11)

with real coefficients an. (The coefficients do not depend on i
due to cubic symmetry. The value of N � 2 is not important
in the following.) Normalization of Vi implies

N∑
n=1

a2
n = 1. (A12)

In order to satisfy (iv), Ui needs to be of the form

Ui = 1

κc

(
bK (1)

i −
N∑

n=2

anK (n)
i

)
, (A13)

with κc to be determined and, due to Eq. (A26),

(a1 + b)

√
3

j( j + 1)
!= 2. (A14)

Normalization of Ui yields

1
!= tr

(
U 2

i

)
2 j + 1

= 1

κ2
c

(
b2 +

N∑
n=2

a2
n

)
= b2 + (

1 − a2
1

)
κ2

c

, (A15)

and the orthogonality to Vi is ensured by

0
!= ba1 −

N∑
n=2

a2
n = ba1 − (

1 − a2
1

)
. (A16)

These three equations determine the parameters κc, a1, b to be

κc =
√

4

3
j( j + 1) − 1, (A17)

a1 = 1√
1 + κ2

c

, (A18)

b = κ2
c√

1 + κ2
c

. (A19)

The corresponding matrices Ui = 1
κc

(2Ji − Vi ) for Vi in
Eqs. (A10) read

j = 3

2
: Ui = 1

2

(13

3
Ji − 4

3
J3

i

)
,

j = 5

2
: Ui = 1

4
√

2/3

(
−29

60
Ji + 2J3

i − 4

15
J5

i

)
,

j = 7

2
: Ui = 1

2
√

5

(3841

840
Ji − 217

90
J3

i + 22

45
J5

i − 8

315
J7

i

)
,

j = 9

2
: Ui = 1

4
√

2

(
− 12 769

20 160
Ji + 30 571

11 340
J3

i − 179

270
J5

i

+ 52

945
J7

i − 4

2835
J9

i

)
. (A20)

We now show relations (21), i.e., that Vi commutes with Ji

and anticommutes with Jk �=i. The first statement, [Vi, Ji] = 0,
immediately follows from the fact that Vi is a linear combi-
nation of odd powers of Ji. To show the second statement,

it is sufficient to work in the particular representation from
Eqs. (18)–(20) and (A1)–(A3). We show that V3 anticommutes
with J1 and J2, or, equivalently, that V3 anticommutes with J+
and J−. For this compute the matrix elements

(V3J+)mm′ = (−1)m+ j+1(J+)mm′

= (−1)m+ j+1
√

j( j + 1) − mm′δm,m′+1,

(J+V3)mm′ = (−1)m′+1(J+)mm′

= (−1)m′+ j+1
√

j( j + 1) − mm′δm,m′+1

= −(−1)m+ j+1
√

j( j + 1) − mm′δm,m′+1, (A21)

and, consequently,

({V3, J+})mm′ = 0. (A22)

Analogously one shows {V3, J−} = 0.

2. Matrices K (n)
i : General remarks

In the following we construct the orthonormal matrices
{K (1)

i , K (2)
i , . . . } such that every (2 j + 1) × (2 j + 1) Her-

mitean matrix Vi that transforms as a vector under the cubic
group can be written as a linear combination of the K (n)

i with
real coefficients. We restrict the analysis to those Vi that are
odd under time-reversal and thus satisfy {T ,Vi} = 0. The
general Hamiltonian can be written as

H (p) =
N∑

a=1

ua piK
(n)
i (A23)

with some velocity coefficients (u1, . . . , uN ). We can always
rescale momentum such that one of these coefficients equals
unity.

For general j, the number N is determined in the
following way. Any single-particle Hamiltonian for (2 j + 1)-
component fermions can be written as a linear combination
(with real coefficients) of (2 j + 1)2 Hermitean basis matrices.
These basis elements may be constructed as the symmetric
and traceless tensors that results from products JkJl · · · Jm of
the spin matrices; see Ref. [40]. Among these irreducible
tensors, some will transform according to the desired T1 rep-
resentation of the cubic group. We refer to the number of
such terms as “N without T -symmetry,” where T stands for
time-reversal; see the definition below. Under T , the spin ma-
trices transform according to Ji → −Ji. Therefore, only those
K (n)

i that originate from a product of an odd number of spin
matrices lead to a time-reversal invariant Hamiltonian. In this
work, we restrict our attention to the time-reversal symmetric
case, and refer to it as “N with T -symmetry,” since these
are the terms that can be generated from the T -symmetric
Hamiltonian piJi via self-energy corrections. The matrices
K (n)

i are orthonormal according to

tr
(
K (n)

k K (n′ )
l

) = (2 j + 1)δklδnn′ . (A24)

Some of the matrices K (n)
i can be constructed as odd pow-

ers of Ji. Note that the Cayley-Hamilton theorem implies
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P (Ji ) = 0 for every i = 1, 2, 3 with

P (X ) =
j∏

m=− j

(X − m). (A25)

Consequently, J2 j+1
i is a linear combination of lesser powers

of Ji. Using a Gram-Schmidt procedure to ensure Eq. (A24),
one can generate the corresponding matrices K (n)

i . The first
such matrix is given by Ji itself with an appropriate normal-
ization,

K (1)
i =

√
3

j( j + 1)
Ji, (A26)

where we used

tr
(
J2

z

) =
j∑

m=− j

m2 = j( j + 1)(2 j + 1)

3
. (A27)

For j � 3/2, the second matrix can be determined from an
ansatz K (2)

i = āJ3
i + b̄Ji in Eq. (A24). To determine both pa-

rameters ā, b̄, it is sufficient to consider the case k = l = 3
only, where the matrices involved are diagonal. In this proce-
dure, we can use that for even n we have

tr
(
Jn

z

) =
j∑

m=− j

mn = 2

n + 1
Bn+1( j + 1) (A28)

with Bernoulli polynomials Bn(x), while the trace vanishes for
odd n. We then find

K (2)
i = 5

√
7√

j( j + 1)(4 j4 + 8 j3 − 7 j2 − 11 j + 6)

×
(

J3
i − 3 j2 + 3 j − 1

5
Ji

)
. (A29)

Similarly, all higher orders are constructed. Clearly, the ex-
pressions are a little unwieldy for general j, but it is easy to
determine them for any fixed value of j.

However, this construction utilizing linear combinations
of odd powers of Ji does not comprise all basis matrices
for vectors under the cubic group when j > 3/2. This is
most easily seen by explicitly constructing the orthogonal
basis (over R) for any Hermitean (2 j + 1) × (2 j + 1). Such
a basis {�A} with A = 1, . . . , (2 j + 1)2 can be constructed
by starting from products JkJl Jm · · · with at most 2 j factors
(again due to Cayley-Hamilton), making them symmetric and
traceless with respect to all indices, and a successive Gram-
Schmidt orthogonalization to ensure

tr(�A�B) = (2 j + 1)δAB. (A30)

The procedure is described in detail for j = 3/2 in Ref. [40].
A product of jtot spin matrices constitutes a tensor of rank jtot

under SO(3), and so each of the basis elements is a symmetric
traceless tensor of rank jtot. By restricting the rotation group
SO(3) to transformations Ji → RikJk with R ∈ O, these ten-
sors transform according to irreducible representations of the
cubic rotational group O.

Let us recall the irreducible representations of the cubic
rotational group O. The group comprises 24 elements and per-
mits five distinct irreducible representations with dimensions

TABLE IV. Irreducible representations of the cubic rotational
group O for total spin jtot ; see Table 5.6 in Ref. [64]. Vectors under
the cubic group transform as T1, and so the number of T1 entries for
jtot � 2 j counts the number N of admissible terms in Eq. (15). In
this work we restrict to time-reversal symmetric Hamiltonians and,
therefore, include only T1 representations occurring for odd spin.

jtot Irreducible representations of O

0 A1

1 T1

2 E ⊕ T2

3 A2 ⊕ T1 ⊕ T2

4 A1 ⊕ E ⊕ T1 ⊕ T2

5 E ⊕ 2T1 ⊕ T2

6 A1 ⊕ A2 ⊕ E ⊕ T1 ⊕ 2T2

7 A2 ⊕ E ⊕ 2T1 ⊕ 2T2

8 A1 ⊕ 2E ⊕ 2T1 ⊕ 2T2

9 A1 ⊕ A2 ⊕ E ⊕ 3T1 ⊕ 2T2

10 A1 ⊕ A2 ⊕ 2E ⊕ 2T1 ⊕ 3T2

11 A2 ⊕ 2E ⊕ 3T1 ⊕ 3T2

(d1, d2, d3, d4, d5) = (1, 1, 2, 3, 3) satisfying

d2
1 + d2

2 + d2
3 + d2

4 + d2
5 = 24, (A31)

which, in this order, are labeled A1, A2, E , T1, and T2. The
one-dimensional A1 is the trivial representation, whereas the
three-dimensional T1 is the “vector” representation we are
after. The second-quantized Hamiltonian ψ† pihiψ has ψ

transforming under rotations through the spin- j representa-
tion, and so hi transforms under j ⊗ j = 0 ⊕ 1 ⊕ · · · ⊕ 2 j.
For each jtot on the right-hand side of this equation, the
corresponding (2 jtot + 1) elements divide into multiplets that
individually transform under O according to the A1, A2, E , T1,

or T2 representations. Importantly, the number of such multi-
plets is fixed for every jtot from group theory. The number
of T1 representations contained for jtot � 2 j then constitutes
the number of matrices K (n)

i that span the space of vectors
under the cubic group. We summarize the irreducible repre-
sentations for jtot � 11 in Table IV. Since we are interested
in time-reversal symmetric Hamiltonians, only matrices that
result from a product of an odd number of spin matrices are
relevant, and so we discard vector representations for even jtot

from our analysis.

3. Matrices K (n)
i : Spin 5/2

In this section, we present the complete orthonormal ba-
sis {�A} of 6 × 6 Hermitean matrices starting from products
of spin-5/2 matrices. Among these basis elements are five
triplets that transform under the T1 representation of the cubic
rotational group. Only four of them, called K (1)

i , . . . , K (4)
i ,

respect time-reversal symmetry according to {T , K (n)
i } = 0.

These four matrices enter the Hamiltonian H (p) for j = 5/2.
Note that the matrices displayed here are linear combinations
of the well-known Stevens operators [65]. However, the con-
ventional expressions for the Stevens operators give no hint
on their transformation properties under the group O, and so
we feel it is necessary to include a full list here. The complete
set of matrices is presented in Table V.
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TABLE V. Orthonormal basis (over R) of Hermitian 6 × 6 matrices constructed from products of spin-5/2 matrices. The four matrices K (n)
i

that enter the Hamiltonian H (p) for j = 5/2 transform under the T1 representation of the cubic rotational group and are odd under time-reversal
symmetry, i.e., belong to an odd jtot . We denote the entries �10 and �17 by W and I, which are related, but not identical, to the symmetry
operators Ŵ and Î defined in the paper. We denote the five entries for jtot = 2 by γ1, . . . , γ5, since their analogues (with different coefficients)
for j = 3/2 satisfy a Clifford algebra. This, however, is not true for j = 5/2, implying that, for instance, I �= 0.

jtot Rep Elements

0 A1 �1 = 1

1 T1

�2 = 2
√

3
35 J1

�3 = 2
√

3
35 J2

�4 = 2
√

3
35 J3

K (1)
i

E
�5 = 1

2

√
3

14 (J2
1 − J2

2 )

�6 = 1
2
√

14
(3J2

3 − 35
4 1)

γ1

γ2
2

T2

�7 = 1
2

√
3

14 {J2, J3}
�8 = 1

2

√
3

14 {J3, J1}
�9 = 1

2

√
3

14 {J1, J2}

γ3

γ4

γ5

A2 �10 = 1√
18

(J1J2J3 + J3J2J1) W

T1

�11 = 1
3

√
5
6 (J3

1 − 101
20 J1)

�12 = 1
3

√
5
6 (J3

2 − 101
20 J2)

�13 = 1
3

√
5
6 (J3

3 − 101
20 J3)

K (2)
i

3

T2

�14 = 1
6
√

2
{J1, J2

2 − J2
3 }

�15 = 1
6
√

2
{J2, J2

3 − J2
1 }

�16 = 1
6
√

2
{J3, J2

1 − J2
2 }

A1

�17 = 1
6
√

2
(J2

1 J2
2 + J2

1 J2
3 + J2

2 J2
3

+J2
2 J2

1 + J2
3 J2

1 + J2
3 J2

2 − 259
8 1)

= −7
√

2
9 (γ 2

1 + γ 2
2 − 21)

I

E
�18 = −7

9

√
14
5 (γ 2

1 − γ 2
2 + 10

7

√
2
7 γ2)

�19 = 7
9

√
14
5 ({γ1, γ2} + 10

7

√
2
7 γ1)

4

T1

�20 = −7
3
√

30
{γ3, (γ1 + √

3γ2)}
�21 = −7

3
√

30
{γ4, (γ1 − √

3γ2)}
�22 = 7

3

√
2
15 {γ5, γ1}

T2

�23 = 1
4

√
21
5 ({J1,W} − 3

√
3
7 γ3)

�24 = 1
4

√
21
5 ({J2,W} − 3

√
3
7 γ4)

�25 = 1
4

√
21
5 ({J3,W} − 3

√
3
7 γ5)

E
�26 =

√
14
5 {γ1,W}

�27 =
√

14
5 {γ2,W}

5 T1

�28 = 1
10

√
21
2 (J5

1 − 145
18 J3

1 + 11 567
1008 J1)

�29 = 1
10

√
21
2 (J5

2 − 145
18 J3

2 + 11 567
1008 J2)

�30 = 1
10

√
21
2 (J5

3 − 145
18 J3

3 + 11567
1008 J3)

K (3)
i
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TABLE V. (Continued)

jtot Rep Elements

T1

�31 = 2
√

3
10 (

√
2{J1,I} + 7

12 J5
1 − 95

24 J3
1 + 189

64 J1)

�32 = 2
√

3
10 (

√
2{J2,I} + 7

12 J5
2 − 95

24 J3
2 + 189

64 J2)

�33 = 2
√

3
10 (

√
2{J3,I} + 7

12 J5
3 − 95

24 J3
3 + 189

64 J3)

K (4)
i

5

T2

�34 = −3
5

√
7
2 ({K (2)

1 , (γ1 + √
3γ2)} − 2

3

√
2
35 �14)

�35 = −3
5

√
7
2 ({K (2)

2 , (γ1 − √
3γ2)} − 2

3

√
2
35 �15)

�36 = 3
√

14
5 ({K (2)

3 , γ1} + 1
3

√
2
35 �16)

4. Matrices K (n)
i : Spin 7/2

In this section, we display the matrices K (n)
i that enter the

Hamiltonian H (p) for j = 7/2. From Tables I and IV we
deduce that, assuming time-reversal symmetry, we need to
construct six orthonormal vectors. This is achieved easily by
a Gram-Schmidt orthogonalization starting from the expres-
sions Ji, J3

i , J5
i , J7

i , and {I, Ji}, {I, J3
i } with the invariant tensor

I = I7/2 = 1

6
√

33

[∑
k<l

(
J2

k J2
l + J2

l J2
k

) − 819

8
1

]
. (A32)

We find

K (1)
i = 2√

21
Ji, (A33)

K (2)
i = 2

3
√

33

(
J3

i − 37

4
Ji

)
, (A34)

K (3)
i =

√
7

10
√

39

(
J5

i − 95

6
J3

i + 15 709

336
Ji

)
, (A35)

K (4)
i = 2

√
11

65

(
{Ji, I} + 7

12
√

33
J5

i

− 179

24
√

33
J3

i + 21
√

33

64
Ji

)
, (A36)

and

K (5)
i =

√
143

210
√

3

(
J7

i − 1043

52
J5

i

+ 242 837

2288
J3

i − 1 172 307

9152
Ji

)
, (A37)

K (6)
i = 33

5

√
13

7

({
K (2)

i , I
} + 16

3
√

21
K (1)

i

− 4

11
√

33
K (2)

i − 100

11
√

273
K (3)

i

− 20

11

√
5

39
K (4)

i + 245

33
√

429
K (5)

i

)
. (A38)

5. Basis change matrices

In this section, we list the basis change matrices employed
in the discussion of O(3) symmetric fixed points for j = 5/2

in Sec. II C. We have

S1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠. (A39)

The matrix S2 is given by

S2 = Ŝ2S1, (A40)

Ŝ2 = 1√
6

⎛
⎜⎜⎜⎜⎜⎜⎝

√
5 0 0 1 0 0

0
√

5 1 0 0 0
0 −1

√
5 0 0 0

−1 0 0
√

5 0 0
0 0 0 0

√
6 0

0 0 0 0 0
√

6

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A41)

The matrix S3 reads

S3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0

0 −b 0 0 0 2+√
10

6
1

2−√
10

0 0 0 3√
22+4

√
10

0

0 0 0 1 0 0

0 2+√
10

6 0 0 0 3√
22+4

√
10

b 0 0 0 2+√
10

6 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

b = 4
√

2 + √
5√

14 − 4
√

10(7 + 2
√

10)
. (A42)

APPENDIX B: RENORMALIZATION GROUP

In this Appendix, we present some more detailed equations
that are useful for the computation of the fermion and photon
self-energies in Fig. 3. In several cases we present multiple
formulas for the same quantities, because they are more suit-
able in certain regimes, either analytically or numerically.

1. Fermion self-energy: General remarks

In this section, we present the setup for computing the
fermion self-energy and derive Eqs. (46)–(50) involving the
function f . For this purpose, we start from the one-loop cor-
rection to the fermion self-energy. To linear order in external
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momentum and up to an overall momentum-independent con-
stant, it is given by

�ψ (p) = 2ē2
∫

q0

∫ ′

q

p · q
q4

Gψ (Q). (B1)

We denote Q = (q0, q) with Euclidean frequency q0 and∫
q0

(· · · ) =
∫ ∞

−∞

dq0

2π
(· · · ), (B2)∫ ′

q
(· · · ) = 1

2π2

∫ �

�/b
dq q2

∫
�

(· · · ). (B3)

The perturbative fermion propagator reads

Gψ (Q) = [iq01 + H (q)]−1. (B4)

The q0 integration in Eq. (B1) is understood as the principal
value. The q integration is trivial and we have

�ψ (p) = 2e2
∫

q0

∫
�

p · q
q

Gψ (Q)

∣∣∣∣
q=1

. (B5)

We parametrize the self-energy correction according to

�ψ (p) = pi

(
ηVi +

∑
n

δαnU
(n)
i

)
. (B6)

Utilizing the orthogonality from Eqs. (16) and (17), and
choosing the external momentum p = pe3 = (0, 0, p)T along
the z direction, we arrive at

η = 1

(2 j + 1)p
tr[V3�ψ (pe3)], (B7)

δαn = 1

(2 j + 1)p
tr
[
U (n)

3 �ψ (pe3)
]
. (B8)

After performing the trace in Eqs. (B7) and (B8), the fre-
quency integration can be performed analytically. We are left
with the angular integral

∫
�

(. . . ), which, however, due to the
cubic-only symmetry of the integrand can typically only be
evaluated numerically. The anomalous dimension for j = 3/2
and j = 5/2 is shown in Fig. 7.

There is a more elegant way to compute η and δαn,
which relies on the fact that the frequency dependence of the
integrand in �ψ in Eq. (B5) is solely due to the fermion prop-
agator Gψ (Q). This results from to the perturbative photon
propagator Ga(p) being frequency independent. Indeed, we
have

Ga(p) = ē2

p2
, (B9)

and any frequency dependence would be of the form ∝
(c2 p2

0 + p2)
−1

, but the coupling c is perturbatively irrelevant
so that we can set c = 0 when considering the infrared. Note,
however, that the following argument does not rely on the
specific form of the Hamiltonian H (p) and so applies to all
systems with a Lagrangian of the type (46), where the elec-
tromagnetic field Aμ(x, t ) is approximated by the electrostatic
component a(x) = A0(0, x). (This approximation, however, is
common and typically fully sufficient in condensed matter
systems.)

Denote the eigenvalues and eigenvectors of Ĥ (φ, θ ) =
H (p)/p by Êλ(φ, θ ) and |λ(φ, θ )〉. From contour integration

FIG. 7. Anomalous dimension for j = 3/2 and j = 5/2. We use
the same scheme as in Figs. 4 and 5, where we restrict the three-
dimensional parameter space for spin 5/2 to the line (α, β, γ ) =
1
3 (1,

√
3,

√
5)κ connecting the O(3) and SO(3) symmetric fixed

points. The anomalous dimension for �α = 0 is η = e2/3 for every
j.

we find the identity∫ ∞

−∞

dq0

2π

1

iq01 + Ĥ
= 1

2

∑
λ

sgn(Êλ)|λ〉〈λ|, (B10)

where the left-hand side is defined through the principal value.
Starting from Eqs. (B7) and (B8) with external momentum
p = pe3, we then have

η = e2

2 j + 1

∑
λ

∫
�

q̂3 sgn(Êλ)〈λ|V3|λ〉, (B11)

δαn = e2

2 j + 1

∑
λ

∫
�

q̂3 sgn(Êλ)〈λ|U (n))
3 |λ〉, (B12)

with q̂i = qi/q. On the other hand, due to cubic symmetry, we
may equally well project onto the 1- or 2-components, and
sum each contribution with equal weight 1/3 to obtain

η = e2

3(2 j + 1)

∑
λ

∫
�

sgn(Êλ)〈λ|q̂iVi|λ〉, (B13)

and similarly

δαn = e2

3(2 j + 1)

∑
λ

∫
�

sgn(Êλ)〈λ|q̂iU
(n)
i |λ〉. (B14)
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Both equations together yield

η + �α · δ�α = e2

3(2 j + 1)

∑
λ

∫
�

sgn(Êλ)〈λ|Ĥ (q)|λ〉

= e2

3(2 j + 1)

∑
λ

∫
�

sgn(Êλ)Êλ

= e2

3(2 j + 1)
f (�α). (B15)

This relation provides the first part towards proving Eqs. (49)
and (50). In order to proceed, we need a second, linearly
independent relation.

To obtain the second identity, we rewrite Eq. (B14) as

δαn = e2

3(2 j + 1)

∑
λ

∫
�

sgn(Êλ)〈λ| ∂Ĥ

∂αn
|λ〉. (B16)

Now employ the Feynman-Hellmann theorem

〈λ| ∂Ĥ

∂αn
|λ〉 = ∂

∂αn
Êλ (B17)

and (as we verified explicitly for many values of j) the fact
that sgn(Êλ) is independent of αn. We can then write

δαn = e2

3(2 j + 1)

∂

∂αn

∑
λ

∫
�

sgn(Êλ)Êλ (B18)

= e2

3(2 j + 1)

∂ f

∂αn
. (B19)

Together with Eq. (B15), this yields Eqs. (49) and (50).

2. Fermion self-energy: Spin 5/2

In this section, we explicitly compute the fermion self-
energy for j = 5/2 without relying on the function f from the
previous section. The Hamiltonian is given by Eq. (13) with

�α2 = α2 + β2 + γ 2. (B20)

For M = V, A, B, C define

αM =

⎧⎪⎨
⎪⎩

1 (M = V )
α (M = A)
β (M = B)
γ (M = C)

. (B21)

Write the inverse propagator as

A = qÂ = iq01 + H (q) (B22)

and q̂i = qi/q, q̂0 = q0/q. We determine Gψ = A−1 through
the Cayley-Hamilton theorem, which implies that the inverse
of any 6 × 6 matrix A is given by

A−1 = 1

det(A)

(
1

120
([trA]5 − 10[trA]3tr(A2) + 15trA[tr(A2)]2 + 20[trA]2tr(A3) − 20tr(A2)tr(A3)

− 30trA tr(A4) + 24tr(A5))16 − 1

24
([trA]4 − 6[trA]2tr(A2) + 3[tr(A2)]2 + 8trA tr(A3)

− 6tr(A4))A + 1

6
{[trA]3 − 3trA tr(A2) + 2tr(A3)}A2 − 1

2
{[trA]2 − tr(A2)}A3 + [trA]A4 − A5

)
. (B23)

For this, determine the coefficients e1, . . . , e5 in the expansion

det(A) = −q6
0 − 3(1 + α2 + β2 + γ 2)q4

0q2 + e1q2
0q4 + e2q6 + e3q2

0

∑
k<l

q2
k q2

l + e4q2
∑
k<l

q2
k q2

l + e5q2
x q2

y q2
z , (B24)

and compute the functions g(M )
1 , . . . , g(M )

6 such that

tr(A) = 6iq0, (B25)

tr(A2) = 6
[−q2

0 + (1 + α2 + β2 + γ 2)q2
]
, (B26)

tr(A3) = −6iq0
[
q2

0 − 3(1 + α2 + β2 + γ 2)q2
]
, (B27)

tr(A4) = 6q4
0 − 36(1 + α2 + β2 + γ 2)q2

0q2 + f1(α, β, γ )q4 + f2(α, β, γ )
∑

k

q4
k , (B28)
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and

tr(MiH ) = 6αMqi, (B29)

tr(MiH
3) = 6αM

[
g(M )

1 qiq
2 + g(M )

2 q3
i

]
, (B30)

tr(MiH
5) = 6αM

[
g(M )

3 qiq
4 + g(M )

4 qi

∑
k

q4
k + g(M )

5 q3
i q2 + g(M )

6 q5
i

]
. (B31)

Note that tr(A5) is antisymmetric in q0 and so vanishes from the frequency integration. We define

f1(α, β, γ ) = 6
(
g(V )

1 + α2g(A)
1 + β2g(B)

1 + γ 2g(C)
1

)
,

f2(α, β, γ ) = 6
(
g(V )

2 + α2g(A)
2 + β2g(B)

2 + γ 2g(C)
2

)
. (B32)

With these coefficient functions we find

η = 2

3
e2
∫

q̂0

∫
�

1

det(Â)

(
−q̂4

0 + [ − 3(1 + �α2) + g(V )
1

]
q̂2

0 + 1

4
f1 − 9

2
(1 + �α2)2 + 3g(V )

1 (1 + �α2)

− g(V )
3 +

{
1

4
f2 + g(V )

2

[
q̂2

0 + 3(1 + �α2)
] − g(V )

4 − g(V )
5

}∑
k

q̂4
k − g(V )

6

∑
k

q̂6
k

)
(B33)

and

δα = 2

3
e2α

∫
q̂0

∫
�

1

det(Â)

(
−q̂4

0 + [ − 3(1 + �α2) + g(A)
1

]
q̂2

0 + 1

4
f1 − 9

2
(1 + �α2)2 + 3g(A)

1 (1 + �α2)

− g(A)
3 +

{
1

4
f2 + g(A)

2

[
q̂2

0 + 3(1 + �α2)
] − g(A)

4 − g(A)
5

}∑
k

q̂4
k − g(A)

6

∑
k

q̂6
k

)
, (B34)

δβ = 2

3
e2β

∫
q̂0

∫
�

1

det(Â)

(
−q̂4

0 + [ − 3(1 + �α2) + g(B)
1

]
q̂2

0 + 1

4
f1 − 9

2
(1 + �α2)2 + 3g(B)

1 (1 + �α2)

− g(B)
3 +

{
1

4
f2 + g(B)

2

[
q̂2

0 + 3(1 + �α2)
] − g(B)

4 − g(B)
5

}∑
k

q̂4
k − g(B)

6

∑
k

q̂6
k

)
, (B35)

δγ = 2

3
e2γ

∫
q̂0

∫
�

1

det(Â)

(
−q̂4

0 + [ − 3(1 + �α2) + g(C)
1

]
q̂2

0 + 1

4
f1 − 9

2
(1 + �α2)2 + 3g(C)

1 (1 + �α2)

− g(C)
3 +

{
1

4
f2 + g(C)

2

[
q̂2

0 + 3(1 + �α2)
] − g(C)

4 − g(C)
5

}∑
k

q̂4
k − g(B)

6

∑
k

q̂6
k

)
. (B36)

The functions h1,2,3(α, β, γ ) read

h1(α, β, γ ) = 2

3
α

∫
q̂0

∫
�

1

det(Â)

((
g(A)

1 − g(V )
1

)[
q̂2

0 + 3(1 + �α2)
] − (

g(A)
3 − g(V )

3

)

+ {(
g(A)

2 − g(V )
2

)[
q̂2

0 + 3(1 + �α2)
] − g(A)

4 − g(A)
5 + g(V )

4 + g(V )
5

}∑
k

q̂4
k − (

g(A)
6 − g(V )

6

)∑
k

q̂6
k

)
, (B37)

h2(α, β, γ ) = 2

3
β

∫
q̂0

∫
�

1

det(Â)

((
g(B)

1 − g(V )
1

)[
q̂2

0 + 3(1 + �α2)
] − (

g(B)
3 − g(V )

3

)

+ {(
g(B)

2 − g(V )
2

)[
q̂2

0 + 3(1 + �α2)
] − g(B)

4 − g(B)
5 + g(V )

4 + g(V )
5

}∑
k

q̂4
k − (

g(B)
6 − g(V )

6

)∑
k

q̂6
k

)
. (B38)

h3(α, β, γ ) = 2

3
γ

∫
q̂0

∫
�

1

det(Â)

((
g(C)

1 − g(V )
1

)[
q̂2

0 + 3(1 + �α2)
] − (

g(C)
3 − g(V )

3

)

+ {(
g(C)

2 − g(V )
2

)[
q̂2

0 + 3(1 + �α2)
] − g(C)

4 − g(C)
5 + g(V )

4 + g(V )
5

}∑
k

q̂4
k − (

g(C)
6 − g(V )

6

)∑
k

q̂6
k

)
. (B39)
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3. Photon self-energy

In this section, we compute the photon self-energy and
prove Eq. (57). We write the one-loop correction to the photon
self-energy as

�a(p) = δ
1

e2
p2 =: P p2, (B40)

which implies the one-loop correction

δe2 = −e4δ
1

e2
= −e4P. (B41)

(For convenience, we set q = 1 for the loop momentum and
we suppress the factor 2π2 from the momentum integration,
thus ē = e in this section.) The corresponding flow equation
for the charge reads

de2

d log b
= −ηe2 − P(�α)e4. (B42)

We show that the function P(�α) is positive.
The one-loop correction to the photon self-energy is given

by

�a(p) = −tr
∫

q0

∫ ′

q
Gψ (Q + P)Gψ (Q). (B43)

We compute P by means of

P(�α) p2 = 1

2

∂2�a(tp)

∂t2

∣∣∣∣
t=0

. (B44)

Now recall Gψ (Q) = (iq01 + H (q))−1 and use the matrix
formula

d

dt
M−1 = −M−1

(
d

dt
M

)
M−1 (B45)

to arrive at

P(�α) p2 = −
∫

q0

∫ ′

q
tr[H (p)Gψ (Q)H (p)Gψ (Q)3]. (B46)

We write H (p) = pihi with

hi = Vi +
j−1/2∑
n=1

αnU
(n)
i (B47)

and find

P(�α) p2 = −pk pl

∫
q0

∫
�

tr[hkGψ (Q)hlGψ (Q)3]. (B48)

The integral on the right-hand side must be proportional to δkl ,
which is the only tensor with respect to cubic transformations
with two indices.

To show positivity we start from the spectral decomposi-
tion of the fermion propagator

Gψ (Q) =
∑

λ

1

iq0 + λ
|λ〉〈λ| (B49)

and conclude that Eq. (B48), where we use cubic symmetry
and set k = l = 3, reads

P(�α) = −
∫

q0

∫
�

tr
(
h3Gψh3G3

ψ

)
(B50)

= −
∫

q0

∫
�

∑
λ

∑
λ′ �=λ

〈λ|h3|λ′〉〈λ′|h3|λ〉
(iq0 + Eλ)(iq0 + Eλ′ )3

. (B51)

We can assume λ �= λ′ since only energies with opposite sign
contribute to the frequency integration. Performing the latter
we find

P(�α) = −
∫

�

∑
λ

∑
λ′ �=λ

[θ (−Eλ) − θ (−Eλ′ )]
|〈λ|h3|λ′〉|2
(Eλ − Eλ′ )3

= 2
∑
Eλ>0

∑
Eλ′ <0

∫
�

|〈λ|h3|λ′〉|2
(Eλ − Eλ′ )3

. (B52)

The expression on the right is manifestly positive, which
proves our claim.

For �α = 0, using Clifford algebra, one verifies that∫
q0

∫
�

tr[VkGψ (Q)VlGψ (Q)3] = −2 j + 1

12
δkl (B53)

so that

P(�0) = 2 j + 1

12
. (B54)

The flow equation for the charge close to the relativistic fixed
point becomes

de2

d log b

∣∣∣∣
�α=0

= −η�e2 − 2 j + 1

12
e4 = −2 j + 5

12
e4, (B55)

where we used η� = e2/3 at the fixed point.

4. Stability matrix

In this section, we present two methods for computing
the stability matrix. The first method employs the function f
defined in Eq. (46). From Eqs. (49) and (50) we have

∂η

∂αn′
= − e2

3(2 j + 1)
�α · ∂2 f

∂ �α∂αn′
, (B56)

∂δαn

∂αn′
= e2

3(2 j + 1)

∂2 f

∂αn∂αn′
, (B57)

and so, using α̇n = −ηαn + δαn, we arrive at

Mnn′ = −ηδnn′ + e2

3(2 j + 1)

[
αn �α · ∂2 f

∂ �α∂αn′
+ ∂2 f

∂αn∂αn′

]
,

(B58)

as given in Eq. (55). In particular, at the relativistic O(3)
symmetric fixed point with �α = 0 we have

Mnn′ |�α=0 = −e2

3
δnn′ + e2

3(2 j + 1)

∂2 f

∂αn∂αn′
. (B59)

The second method to compute the stability matrix directly
employs Eq. (B4)–(B8). For this use

∂

∂αn
Gψ = −GψqiU

(n)
i Gψ (B60)

to arrive at

∂η

∂αn′
= − 2e2

(2 j + 1)

∫
q0

∫
�

q̂3q̂i tr
[
V3GψU (n′ )

i Gψ

]
q=1,

∂δαn

∂αn′
= − 2e2

(2 j + 1)

∫
q0

∫
�

q̂3q̂i tr
[
U (n)

3 GψU (n′ )
i Gψ

]
q=1.

(B61)

155104-20



INFRARED FIXED POINTS OF HIGHER-SPIN FERMIONS … PHYSICAL REVIEW B 102, 155104 (2020)

In the case of the O(3) and SO(3) symmetric fixed points,
the propagator Gψ has a fairly simple structure, and the trace
and integrals can be evaluated analytically. In particular, for
the relativistic case with �α� = 0 we employ the perturbative
propagator

Gψ (Q) = −iq01 + qiVi

q2
0 + q2

(B62)

to find

∂δαn

∂αn′
= e2

2(2 j + 1)

∫
�

q̂3q̂i tr
[
U (n)

3 U (n′ )
i

]

− e2

2(2 j + 1)

∫
�

q̂3q̂iq̂k q̂l tr
[
U (n)

3 VkU
(n′ )
i Vl

]

= e2

6
δnm − e2

30(2 j + 1)
(δ3iδkl + δ3kδil + δ3lδik )

× tr
[
U (n)

3 VkU
(n′ )
i Vl

]
. (B63)

In the last line we used

∫
�

q̂iq̂ j = 1

3
δi j, (B64)∫

�

q̂iq̂ j q̂k q̂l = 1

15
(δi jδkl + δikδ jl + δilδ jk ). (B65)

We can now further employ the fact that Vi commutes with
U (n)

i but anticommutes with U (n)
k �=i, V 2

i = 1, and the symmetry
of the given trace with respect to 1 ↔ 2. This yields

(δ3iδkl + δ3kδil + δ3lδik )tr
[
U (n)

3 VkU
(n′ )
i Vl

]
= (2 j + 1)δnm + 4tr

[
U (n)

3 V3U
(n′ )
1 V1

]
. (B66)

Together with hn = −ηαn + δαn this yields Eq. (61). (The
term containing ∂η/∂αn′ vanishes at the relativistic fixed
point, because it is multiplied by α�,n = 0.)

APPENDIX C: BAND TOPOLOGY

We determine the band topology in the normal phase
through the Chern numbers of the bands that cross at the
origin. For this purpose we denote the eigenvalues and eigen-
vectors of H (q) by Eλ and |λ〉, respectively, with the q
dependence being implicit. The Berry flux of the band λ is

F (λ)
i j =

∑
λ′ �=λ

〈λ|∂iH |λ′〉〈λ′|∂ jH |λ〉 − {i ↔ j}
(Eλ − Eλ′ )2

(C1)

= 2i Im
∑
λ′ �=λ

〈λ|∂iH |λ′〉〈λ′|∂ jH |λ〉
(Eλ − Eλ′ )2

(C2)

with

∂i = ∂

∂qi
. (C3)

The Chern number Cλ of the band λ follows from the pseudo-
magnetic field

B(λ)
i = 1

2εi jkF (λ)
jk (C4)

by means of the surface integral surrounding the origin ac-
cording to

Cλ = 1

2π

∮
|q|=q0

d �S · �B(λ)(q) (C5)

= 2
∫

�

(
q̂1B(λ)

1 + q̂2B(λ)
2 + q̂3B(λ)

3

)
(C6)

= −2i
∫

�

(
q̂1F (λ)

23 + q̂2F (λ)
31 + q̂3F (λ)

12

)
. (C7)

Due to cubic symmetry, the three contributions to the integral
Cλ are identical, and so we have

Cλ = −6i
∫

�

q̂3F (λ)
12 . (C8)

The total monopole charge Q is the sum of the Chern numbers
of the positive energy bands. For the practical implementation,
it is useful to utilize the time-reversal symmetry of the Hamil-
tonian through {T , H (q)} = 0. Indeed, this equation implies
that only the positive energy bands Eλ(q) > 0 and their eigen-
vectors |λ〉 need to be computed, because the negative energy
bands −Eλ(q) have eigenvectors T |λ〉.
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