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It is known that in some higher-order topological insulators (HOTIs), topological phases are distinguished
not by gap closings of bulk states but by those of edge states, which are called boundary-obstructed topological
phases (BOTPs). In this paper, we construct an effective theory of the BOTP transition of two-dimensional (2D)
Su-Schrieffer-Heeger (SSH) model in a uniform magnetic field. At π flux per plaquette, this model corresponds
to the typical model of HOTIs proposed by Benalcazar, Bernevig, and Hughes (BBH). The BBH model can be
approximated by Dirac fermions with two kinds of mass terms, which will be referred to as BBH Dirac insulator.
To clarify the BOTP transition of the 2D SSH model around π flux, we study such BBH Dirac insulator in the
presence of a magnetic field. On the other hand, generically in continuum Dirac models, boundary conditions
associated with the Hermiticity of Hamiltonians are known to play a crucial role in determining the edge states.
We first demonstrate that for the conventional Dirac fermion with a single mass term, such boundary conditions
indeed determine the edge states even in the presence of a magnetic field. Next, imposing boundary conditions
consistent to the lattice terminations and symmetries of the BBH Hamiltonian as well as to the Hermiticity of
the BBH Dirac insulator, we obtain the edge states of the BBH Dirac insulator in a magnetic field and reproduce
its BOTP transition. In particular, we show that the unpaired Landau levels, which cause the spectral asymmetry,
yield the edge states responsible for the BOTP transition.
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I. INTRODUCTION

Higher-order topological insulators (HOTIs) [1–6] have
been attracting much current interest [7–15]. While conven-
tional (first-order) topological insulators (TI) accompany bulk
gap closings in their topological transitions, some HOTIs
can change topological properties without bulk gap clos-
ings: Instead, gap closings of edge states induce topological
changes generically, implying that those HOTI phases are
distinguished by gap closings of edge states. Such properties,
called boundary-obstructed topological phases (BOTP), have
been studied in Ref. [16]. On the other hand, the breathing
kagome lattice model [9] is one example of HOTIs with bulk
gap closings.

One of the typical examples showing the BOTP is the two-
dimensional (2D) second-order topological quadrupole model
proposed by Benalcazar, Bernevig, and Hughes (BBH) [1,2].
This model is a kind of 2D generalization of the one-
dimensional (1D) Su-Schrieffer-Heeger (SSH) model [17].
The BBH model has been further generalized by introducing
locally oscillating flux of zero mean [18] or uniform flux [19],
both of which interpolate the 2D SSH model with zero flux
and with π flux per plaquette. It has been pointed out in
Ref. [19] that as a function of the magnetic flux (Hofstadter
butterfly), there appear many gapped regions at half-filling
showing corner states. In particular, around π flux, relatively
a large gap is open, whose ground states are expected to be
continuously connected with the ground state of the BBH
model without any gap closings. Thus, if anisotropic hoppings
breaking C4 symmetry are introduced, those ground states
would reveal the BOTP.

In this paper, we investigate the BOTP [16] of the
anisotropic BBH model [1,2] in a magnetic field. To this end,
we use Dirac insulator description in the continuum limit as-
sociated with high-symmetry points of the BBH model [1,20].
It has been pointed out that such continuum models are com-
posed of doubled Dirac fermions incorporated by 4 × 4 γ

matrices with two kinds of mass terms, which will be referred
to as BBH Dirac insulator. Previously, the same model has
been studied in the context of superconducting Dirac fermions
in a vortex background [21]. Thus, our motivation in this paper
is to study the BOTP transition of the BBH Dirac insulatorin
a magnetic field.

When we discuss edge states of continuum fermions, it is
known that the boundary condition ensuring the Hermiticity
of their Hamiltonians plays a crucial role [5,6,22]. Therefore,
apart from the present BBH model or BBH Dirac insulator
model, we first investigate edge states of the conventional 2D
Dirac fermion with a single mass term in a magnetic field,
imposing a generic boundary condition allowed by Hermitic-
ity of the Hamiltonian. We show that among Landau levels,
the unpaired Landau level yields an edge state approximately
equivalent to the one in the absence of a magnetic field.
For the bulk system, this unpaired Landau level is known to
yield the unit Hall conductivity [23]. It is also related with
the parity anomaly of the massive Dirac fermion in three
dimensions [24–28]. We show that even for a system with a
boundary, the behavior of the edge state associated with the
unpaired Landau level is of great importance: It is the only
one edge state that can cross the zero energy.

Based on these results, we next proceed to study the BOTP
transition of the BBH Dirac insulator. Since the BBH Dirac
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insulator is derived from the BBH model on the lattice, we
emphasize the importance of its boundary conditions required
(1) by the boundary termination of the BBH model on the
lattice, (2) by symmetries of the BBH model, and (3) by the
Hermiticity of the BBH Dirac insulator Hamiltonian. Based
on exact and/or numerical solutions for edge states, we show
that the BOTP transition occurs in the BBH Dirac insulator
in a magnetic field. Namely, due to the doubling of massive
Dirac fermions in the BBH Dirac insulator model, chiral edge
states of massive Dirac fermions couple together, forming
gapped edge states. These become 1D topological insulators,
whose mass gap closing induces the topological transition,
as already known for the BBH model in the absence of a
magnetic field. We show that in the presence of a magnetic
field, the edge state of the unpaired Landau level plays the
same role and causes the BOTP transition. Although the other
Landau levels also yield edge states due to their nontrivial
Chern numbers, the unpaired Landau level is solely relevant
to the BOTP transition.

This paper is organized as follows: Section II is devoted
to the overview of the lattice BBH model and its continuum
limit. First, we give a brief review of the BBH model in
Sec. II A to fix our notational conventions, and second, tak-
ing the continuum limit of the lattice model, we derive the
BBH Dirac insulator model in a magnetic field in Sec. II B,
including discussions of the boundary conditions in Sec. II E.
As argued in [5,6,22], Hamiltonians of continuum fermions
are not necessarily Hermitian if boundaries are introduced.
Then, when we determine the edge states, boundary condi-
tions which make the Hamiltonians Hermitian play a crucial
role. Generically, such boundary conditions allow parameter
dependence, as will be discussed in Sec. III. However, given
a lattice model, lattice terminations would choose unique
boundary conditions, which naturally keeps the Hamiltonian
Hermitian. We argue several aspects of the boundary con-
ditions of the lattice BBH model and BBH Dirac insulator
model.

Before discussing the BOTP of the BBH Dirac insulator,
we discuss the conventional 2D massive Dirac fermion in
Sec. III. Without considering any concrete lattice models, we
have to take account of generic boundary conditions. In the
former part, Sec. III A, we give a brief review of edge states
for the massive Dirac fermion in the absence of a magnetic
field, and in the latter part, Sec. III B, we derive the edge
states in the presence of a magnetic field. We show that among
Landau levels of the massive Dirac fermion, the unpaired
level, which causes the spectral asymmetry, is responsible
for the edge states involved in topological properties of the
model.

In Sec. IV, we switch to the BBH Dirac insulator model.
We first argue, in Sec. IV A 1, the BOTP of the BBH Dirac in-
sulator in the absence of a magnetic field, although discussed
already in Ref. [1], with particular emphasis on the boundary
conditions. Next, in Sec. IV B, we discuss the BOTP transition
of the BBH Dirac insulator in a magnetic field. It is shown that
the edge states associated with the unpaired Landau levels of
the massive Dirac fermion are responsible for the BOTP of the
BBH Dirac insulator. Finally, in Sec. V, we give summary and
discussion.

FIG. 1. The BBH model (π flux). Blue lines are links to which
the phase eiπ = −1 denoting the π flux are attached. The dotted lines
are lattice terminations when we consider the boundaries.

II. BBH MODEL

In this section, we review basic properties of the BBH
model in a uniform magnetic field. The BBH model, which is
originally a 2D SSH model with π flux, has been generalized
in Ref. [19], including arbitrary uniform flux. The model then
interpolates a simple 2D SSH model with zero flux and the
BBH model with π flux. It has been shown that around π

flux, there appear relatively large gap, whose ground states
could be continuously deformed into the ground state of the
BBH model without gap closings. To confirm this, we focus
our attention on the HOTI phase in such a large gap region
around π flux.

A. Overview of the lattice model

The BBH Hamiltonian on the lattice in Fig. 1 is defined by

H =
∑

j

[γ1(c†
1, jc3, j + c†

2, jc4, j ) + λ1(c†
1, jc3, j+1 + c†

2, j+1c4, j )

+ γ2(c†
1, jc4, j − c†

2, jc3, j ) + λ2(c†
1, jc4, j+1 − c†

2, j+1c3, j )]

+ H.c

=
∑
i, j

c†
i H�

i jc j, (1)

where γ j denotes the hopping within a unit cell, whereas λ j

denotes the hopping between the unit cells in the j = 1, 2
direction, and simple c j = (c1, j, . . . , c4, j )T is the abbreviation
of the multicomponent fermion annihilation operator. The
Fourier transformation leads to

H�(k) =
4∑

j=1

� jg j (k), (2)

where g j (k) is given by g j (k) = λ j sin k j ( j = 1, 2) and
g j+2(k) = γ j + λ j cos k j ( j = 1, 2). The � matrices are de-
fined by �1 = −τ 2σ 3, �2 = −τ 2σ 1, �3 = τ 1σ 0, and �4 =
−τ 2σ 2 as well as �5 = −τ 3σ 0, where σμ and τμ are
conventional Pauli matrices with σ 0 = τ 0 = 1l. They obey
{� j, �l} = 2δ jl ( j, l = 1, . . . , 4) and �5 = (−i)2�1�2�3�4,
so that tr �5�

1�2�3�4 = (2i)2.
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FIG. 2. Bulk gapless points of the model with flux φ = p
6 π with p = 0, 1, . . . , 6 shown on the γ1-γ2 (λ = 1) plane within the region

0 � γ1, γ2 � 1.5. The black squares indicate the gapless points, where the white regions show the gapful region. The rightmost panel is the
BBH model with π flux. The second panel from the right is the model with flux φ = 5

6 π , which can alternatively be regarded as the BBH
model under a flux φ′ = 5

6 π − π = − 1
6 π .

For the BBH model, reflection symmetries play a crucial
role:

M1H�(k1, k2)M−1
1 = H�(−k1, k2),

(3)
M2H�(k1, k2)M−1

2 = H�(k1,−k2),

where M1 = i�1�5, M2 = i�2�5. These reflection symme-
tries ensure the quantization of the polarizations with respect
to the 1- and 2-directions, (p1, p2), which serve as topolog-
ical invariants characterizing the HOTI phase of the BBH
model [1,2].

Let us next consider the effect of a uniform magnetic
field. In Ref. [19], the 2D SSH model in a generic magnetic
field has been studied. This study was restricted to the model
with C4 synmmetry, i.e., γ1 = γ2 ≡ γ and λ1 = λ2. It has
been shown that there appear several gapped regions in the
Hofstadter butterfly whose half-filled ground states belong
to the second-order topological insulating phase character-
ized by the nontrivial quantized entanglement polarizations.
Let H�(k1, k2, B) be the BBH Hamiltonian with a uniform
magnetic field B. Then, the reflection symmetries as well as
time-reversal symmetry are denoted by

M1H�(k1, k2, B)M−1
1 = H�(−k1, k2,−B),

M2H�(k1, k2, B)M−1
2 = H�(k1,−k2,−B), (4)

TH�(k1, k2, B)T −1 = H�(−k1,−k2,−B).

Then, it turned out that the transformation laws under
M1T and M2T ensure that the entanglement polarizations,
which are alternative topological invariants describing the
HOTI [14], (pσ

1 , pτ
2 ), are quantized even in the presence of

a magnetic field [19], where σ, τ characterize the partitions of
the unit cell.

Now, let us relax the C4 symmetry and compute the bulk
energy gaps. In Fig. 2, we show gapless regions by black
squares on the γ1-γ2 plane (0 � γ j � 1.5), where we have
set λ = 1. Let φ be a magnetic flux per plaquette. Then,
the rightmost panel (φ = π ) corresponds to the BBH model.
Indeed, one can find that the bulk gap closing occurs solely at
γ1 = γ2 = 1. This is the BOTP transition: The ground state
in the HOTI phase (γ1, γ2 < 1) can be deformed into the
trivial insulating phase (γ1 > 1 and/or γ2 > 1) without bulk
gap closings. Such a feature is not restricted to φ = π : The
second panel from the right, which is the case with φ = 5

6π , is
likewise, suggesting that these ground states are topologically
the same as the ground state of the BBH model.

In Fig. 3, we show spectra of the lattice model in flux
φ = 5π/6 with open boundary conditions in the 1-direction.
Figures 3(a) and 3(b) locate in the φ = 5π/6 panel in
Fig. 2 at γ1 < 1 and γ1 > 1, respectively, with the same
γ2 = 0.95 which is just below the transition line of γ2 = 1.
The half-filled ground states of these two cases can be dis-
tinguished by entanglement (bulk) polarizations proposed in
Refs. [14,19], (pσ

1 , pτ
2 ) = ( 1

2 , 1
2 ) for (a), whereas (0, 1

2 ) for
(b), where (pσ

1 , pτ
2 ) in the magnetic unit cell are similar to

(p(13)
1 , p(14)

2 ) in Sec. II D in the absence of a magnetic field. It
should be noted that the quantization of the entanglement po-
larizations is guaranteed by the symmetry properties (4) [19].
The red curves in Fig. 3(a) stand for the edge states, ensured
by pσ

1 = 1
2 , localized at the left end relevant to the BOTP

transition. These edge states are also characterized by non-
trivial entanglement (edge state) polarization 1

2 . If γ2 passes
γ2 = 1, the gap between these states is closed and opens again
with the bulk gap kept open, and the entanglement edge-state
polarization changes into the trivial one. This is the BOTP
transition in the lattice model under a magnetic field. On the
other hand, in Fig. 3(b), we cannot observe any edge states
within the bulk gap around zero energy due to pσ

1 = 0. Thus,
the BOTP of the present system can be characterized by the
entanglement polarizations.

The purpose of this paper is to formulate an effective theory
of the BOTP transition under a generic magnetic field around
the BBH model. To this end, we utilize Dirac insulator models
in the continuum limit of the BBH model and introduce a
magnetic field to them.

In passing, we mention that at φ = 2
3π , as shown in the

third panel from the right, gapped ground states in γ1, γ2 < 1

FIG. 3. Spectra of the lattice model with φ = 5π/6. (a) γ1 =
0.7, γ2 = 0.95. The red curves are edge states localized at the left
end. (b) γ1 = 1.3, γ2 = 0.95.
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TABLE I. Mass parameters m1, m2 at four points α. We have set
λ = 1.

α (0,0) (π, 0) (0, π ) (π, π )

m1 1 + γ1 1 − γ1 1 + γ1 1 − γ1

m2 1 + γ2 1 + γ2 1 − γ2 1 − γ2

region always accompany bulk gap closing across γ1 = 1 or
γ2 = 1 lines. From the point of view of symmetries, entangle-
ment polarizations, and computed corner states, ground states
with γ1, γ2 < 1 in this panel belong to the HOTI phase, but
the topological change is distinguished by bulk-gap closings
like first-order TI. Although this phase is out of the scope of
this paper, it may be an interesting issue to clarify the nature
of this phase.

B. Continuum limit

The lattice model (2) includes four Dirac fermions with
two kinds of mass terms at high-symmetry points k∗

α =
(0, 0), (0, π ), (π, 0), (π, π ). In what follows, we set λμ =
λ for simplicity. Around these points, the Hamiltonian is
approximated by

Hα (k)/λ ≡ Hα (k) = γ μ
α kμ + γ μ+2

α mμ,α, (5)

where μ = 1, 2. This Hamiltonian has been referred to as the
BBH Dirac insulator model. The subscript α of γ matrices
means that not only the masses, but also γ matrices depend
on the symmetry points: m1 = 1 ± γ1

λ
and γ 1,3 = ±�1,3 for

k∗
1 = 0, π , and m2 = 1 ± γ2

λ
and γ 2,4 = ±�2,4 for k∗

2 = 0, π .
As we can change the signs of any two of the � matrices
by unitary transformations, we can redefine each fermion Hα

with common γ μ (=�μ) matrices. The mass parameters are
summarized in Table I. We have to mention that the boundary
matrices S j ( j = 1, 2) introduced below are also independent
of k∗

α . Thus, we will suppress α, but we should keep it in mind
that the mass terms are dependent on k∗

α .
For the massive Dirac fermion (5), let us introduce a uni-

form magnetic field B (around π flux) in the 3-direction (total
magnetic flux per plaquette is π + Ba2). Then, the Hamilto-
nian becomes

H = −iγ μDμ + γ μ+2mμ, (6)

where Dμ = ∂μ − ieAμ. This defines the BBH Dirac insulator
model in a magnetic field. We expect it to be an effective
model describing the properties as HOTI of the lattice model
with a magnetic flux around π flux. In this paper, we choose
the vector potentials in the Landau gauge such that

A1 = 0, A2 = Bx1 (7)

to obtain explicit wave functions in the next section.

C. Symmetries of the model

Corresponding to Eq. (4), the BBH Dirac insulator (6)
obeys the following transformation laws:

M1H(x1, x2, B)M−1
1 = H(−x1, x2,−B),

M2H(x1, x2, B)M−1
2 = H(x1,−x2,−B), (8)

TH(x1, x2, B)T −1 = H(x1, x2,−B),

where M1, M2 are reflection matrices defined for the BBH
model in Eq. (3), and T = K denotes the time reversal. Define
M̃ j = MjT ( j = 1, 2). Then, we have

M̃1H(x1, x2, B)M̃−1
1 = H(−x1, x2, B),

(9)
M̃2H(x1, x2, B)M̃−1

2 = H(x1,−x2, B).

The model in a magnetic field has also (antiunitary) reflection
symmetries.

D. Entanglement polarizations

According to Ref. [14], we briefly discuss the topological
invariants using the BBH Dirac fermion (6) in the absence of
a magnetic field. Let ψ (k) ≡ (ψ1(k), ψ2(k)) be the ground-
state multiplet composed of two degenerate states, and let
ρ(k) = ψ (k)ψ†(k) be the density matrix. Introducing two
kinds of partitions (13)(24) and (14)(23) within the unit cell
in Fig. 1, we define the entanglement Hamiltonian H(13) by
tracing out (24) degrees of freedom in the density matrix,
tr (24)ρ(k) ∝ e−H(13)

, and likewise for H(14).
Let us define two kinds of Berry connections A(13)(k) =

ψ (13)†(k)∂k1ψ
(13)(k) and A(14)(k) = ψ (14)†(k)∂k2ψ

(14)(k),
where ψ (ab) stands for the wave function of the entanglement
Hamiltonian H(ab). Integration of A(13) and A(14) over
k1 and k2, respectively, yield entanglement polarizations
(p(13)

1 , p(14)
2 ). For the continuum Hamiltonian (6), they are

given by ( 1
4 sgn m1,

1
4 sgn m2), which yields the invariant

q = 2p(13)
1 p(14)

2 = 1
8 sgn m1m2 for a single Dirac insulator.

Since the lattice model is composed of four fermions
summarized in Table I, the topological invariant for the BBH
model is

q =
∑

α

qα. (10)

This formula gives q = 1
2 for |γ1| < 1 and |γ2| < 1, and q =

0 for otherwise. Thus, the Dirac fermion description of the
BBH model reproduces the topological invariant for the lattice
model, taking doublers into account.

E. Boundary conditions

In this section, we specify the boundary conditions of
the BBH Dirac insulator when the model is defined on
a half-plane. Before discussing the boundary condition of
the model, let us exemplify a boundary condition for a
1D tight-binding model with nearest-neighbor hopping. Let
H = ∑∞

j=1(c†
j+1t jc j + c†

j t
∗
j c j+1 + c†

jv jc j ) be a Hamiltonian
defined on the semi-infinite line j � 1, and let |ψ〉 =∑∞

j=1 c†
jψ j |0〉 be its eigenfunction. The eigenvalue equa-

tion H |ψ〉 = ε|ψ〉 is explicitly given by t j−1ψ j−1 + v jψ j +
t∗

j ψ j+1 = εψ j ( j = 1, 2, . . . ). When we consider the case
j = 1 of the above equation, it is natural to require ψ0 = 0
as a boundary condition. For the lattice BBH model in Fig. 1,
we introduce a boundary between j1 = 0 and 1, and consider
the system defined on the half-plane j1 � 1. Let ψ�

jn be the nth
eigenstates of the Hamiltonian H�

i j such that H�
i jψ

�
jn = εnψ

�
in.

Then, the boundary termination between j1 = 0, 1 is actu-
alized by setting ψ�

1,( j1=0, j2 )n = ψ�
4,( j1=0, j2 )n = 0. Thus, the

boundary condition of the lattice model is specified by

(S1 − 1)ψ�
jn

∣∣
j1=0 = 0, S1 = −τ 3σ 3 = i�1�3. (11)
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Correspondingly, the same boundary condition should be im-
posed on the eigenstates of the continuum models such that

(S1 − 1)ψn(x)
∣∣
x1=0 = 0, S1 = iγ 1γ 3. (12)

Note here that S1 does not depend on k∗
α , as already mentioned.

Likewise, if one considers the system defined on j2 � 1, one
can impose the boundary condition on j2 = 0, ψ�

1,( j1, j2=0)n =
ψ�

3,( j1, j2=0)n = 0. This is equivalent to impose the condition by
using S2 = −τ 0σ 3 = i�2�4 on the lattice wave function ψ�

jn,
and correspondingly, on the continuum wave function

(S2 − 1)ψn(x)
∣∣
x2=0 = 0, S2 = iγ 2γ 4. (13)

F. Symmetries of the boundary matrices

So far, we have considered the system defined on x1 � 0
imposing the boundary condition (12). If the system is defined
on the opposite side x1 � 0, the boundary condition is

(S1 + 1)ψn(x)
∣∣
x1=0 = 0. (14)

If the bulk system has reflection symmetry along the x1 direc-
tion, two systems with a boundary at x1 = 0, one defined on
x1 � 0 and the other defined on x1 � 0, should be switched
by reflection. Here, note the following transformation laws
of S1:

M1S1M−1
1 = −S1, M2S1M−1

2 = S1. (15)

The former ensures that the boundary conditions (12) and (14)
are indeed switched by reflection M1. The latter relation
means that the boundary condition in the x1 direction is
not affected by reflection M2 in the x2 direction. Likewise,
we have

M1S2M−1
1 = S2, M2S2M−1

2 = −S2, (16)

associated with reflection symmetry along the x2 direction.
Thus, the boundary conditions match the reflection symme-
tries. Finally,

[S1, S2] = 0 (17)

implies that we can impose simultaneous boundaries both in
the x1 and x2 directions. This enables us to observe the corner
states.

G. Hermiticity of the Hamiltonian

The BBH Dirac insulator Hamiltonian (6) should be Her-
mitian even with a boundary [5,6,22] 〈φ|Hψ〉 = 〈Hφ|ψ〉. Let
us consider the system defined on the half-plane x1 � 0. If we
require

(S̃1 − 1)ψn(x)
∣∣
x1=0 = 0, (18)

the Hamiltonian becomes Hermitian, where S̃1 is any ma-
trix satisfying {S̃1, γ1} = 0 and S̃2

1 = 1. See discussions in
Refs. [5,6,22] and also in Sec. III A 2 in this paper. Since S1

defined in Eq. (12) belongs to S̃1, the boundary condition (12)
due to the boundary termination of the lattice model ensures
the Hermiticity of the continuum BBH Dirac insulator Hamil-
tonian. The Hermiticity in the x2 direction is likewise.

III. CONVENTIONAL 2D DIRAC INSULATOR

This section is rather independent from other sections con-
cerning the BOTP. The motivation of this section is to derive
edge states of the conventional massive Dirac fermion in a
magnetic field. Here, by conventional massive Dirac fermion,
we mean a two-component fermion with a single mass term.
When we do not consider any corresponding lattice mod-
els, the guiding principle of the boundary conditions for the
(massive) Dirac fermion may be the Hermiticity of the Hamil-
tonian, as studied in [5,6,22] in the absence of a magnetic
field. In this section, we explore the theory of edge states for
the massive Dirac fermion in the presence of a magnetic field.
Basically, the Hermiticity conditions allow a parameter depen-
dence, so that we examine how edge states depend on such a
parameter generically in this section since it may clarify the
relationship between edge states in the absence/presence of
a magnetic field. However, it should be stressed that tight-
binding models on lattices choose an appropriate value of the
parameter, as discussed in Sec. II E. Therefore, we will use
only a specific boundary condition [θ = 0 in Eq. (22)] when
we discuss the BOTP of the BBH Dirac insulator in Sec. IV.

Let us start with a conventional minimal 2D Dirac fermion
with one mass term whose Hamiltonian is given by

H0 = −iσμDμ + mσ 3, (19)

where Dμ = ∂μ − ieAμ. As shown in Sec. IV, edge states of
the BBH Dirac insulator can be derived by using those of
Eq. (19).

A. In the absence of a magnetic field

1. Bulk states

The bulk Hamiltonian becomes

H0 =
( m k1 − ik2

k1 + ik2 −m

)
. (20)

Therefore, the spectrum is given by ε0(k) = ±√
k2 + m2 with

k2 = k2
1 + k2

2 .

2. Edge states

Assume that the system is defined on the half-plane
x1 � 0. The Hamiltonian should be Hermitian, 〈φ|H0ψ〉 =
〈H0φ|ψ〉 [5,6,22]. Form the integration by parts∫ ∞

0
dx1φ

†(x)(−iσ 1∂1)ψ (x) = −iφ†(x)σ 1ψ (x)
∣∣
x1=0

+
∫ ∞

0
dx1(−iσ 1∂1φ)†(x)ψ (x), (21)

we see that the Hermiticity of the Hamiltonian is ensured if
the following condition is imposed:[

S0
1 (θ ) − 1

]
ψ (x)

∣∣
x1=0 = 0, S0

1 (θ ) = cos θσ 2 + sin θσ 3,

(22)

where θ is a fixed parameter, and S0
1 (θ ) is a generic matrix

that is anticommutative with σ 1and satisfies (S0
1 (θ ))2 = 1. Al-

though θ is a free parameter for the continuum model, lattice
models and their boundaries would choose a specific value of
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FIG. 4. Edge state (red lines) obtained in Eqs. (27) and (28) with m = 1 for upper four panels, whereas m = −1 for lower four panels.
Shaded regions denote the bulk spectra.

θ , as discussed in Sec. II E. In the absence of a magnetic field,
the Hamiltonian Eq. (19) becomes

H0 =
( m −i∂1 − ik2

−i∂1 + ik2 −m

)
. (23)

Let us solve H0ψ0(x1, k2) = ε0ψ0(x1, k2) for edge states.
Assume that

ψ0(x1, k2) = 1√
N

ψ0eiKx1 , K = k1 + iκ (κ > 0), (24)

where N is the normalization factor toward the x1 direction. In
what follows, such a normalization factor for wave functions
will be suppressed, for simplicity. Then, ψ0 should be an
eigenstate of S0

1 (θ ): S0
1 (θ )ψ0 = ψ0 and, hence,

ψ0 =
(

1

χ

)
, χ = sin θ − 1

i cos θ
. (25)

The eigenvalue equation becomes(
m K − ik2

K + ik2 −m

)(
1

χ

)
= ε0

(
1

χ

)
. (26)

This equation leads to the following solutions for the edge
state:

ε0 = k2 cos θ + m sin θ,

k1 = 0, κ = −k2 sin θ + m cos θ (>0). (27)

The condition κ > 0 (e−κ < 1) restricts the range of k2

such that

k2 < m cot θ (sin θ > 0), k2 > m cot θ (sin θ < 0). (28)

In particular, when θ = 0, π , we have

θ = 0 :

{
ε0 = k2, ψ0(x1, k2) ∝ e−mx1 (1, i)T (m > 0),
no edge states (m < 0),

θ = π :

{
no edge states (m > 0),
ε0 = −k2, ψ0(x1, k2) ∝ emx1 (1,−i)T (m < 0).

(29)

Note that the edge states [Eq. (24)] satisfy the boundary
condition (22) not only at x1 = 0 but also all along x1 � 0.
On the other hand, as to the bulk states, not traveling waves
ψ0±e±ik1x but their linear combination, i.e., the standing wave,
can satisfy the boundary condition (22) only at the boundary
x1 = 0. In Fig. 4, we show some examples of the edge states
obtained above.

3. Effective Hamiltonian for the edge state

In the case with θ = 0, the effective Hamiltonian of the
edge state becomes very simple. The edge state obtained so
far satisfies Eq. (22) all along x1 � 0. Therefore, the edge
state belongs to the subspace projected by P = (1 + S0

x )/2 =
(1 + σ 2)/2. Note that Pσ 1P = Pσ 3P = 0. Thus, the effec-
tive Hamiltonian of the edge state toward the x2 direction is
given by

H0,1edge = PH0P = P(−i∂2)P. (30)

Since in this subspace, σ 2 can be set σ 2 = 1, we obtain

H0,1edge =
{ −i∂2 (m > 0),

no edge states (m < 0). (31)

This is of course consistent with the previous result in
Eq. (29).

B. In the presence of a magnetic field

In this section, we derive edge states of the model (19) in
the presence of a uniform magnetic field. We will show that
the boundary condition (22) also plays a crucial role.

The Hamiltonian (19) becomes

H0 =
( m −iD1 − D2

−iD1 + D2 −m

)
. (32)

It follows from [D1, D2] = −ieB that the following commuta-
tion relation holds:

[−iD1 + D2,−iD1 − D2] = 2i[D1, D2] = 2eB. (33)
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To obtain explicit wave functions, we choose the gauge po-
tential given in Eq. (7). Then, since the Hamiltonian does
not depend on x2, −i∂2 can be Fourier transformed such that
−i∂2 → k2. Therefore, we can define the creation and annihi-
lation operators

a = −iD1 + sD2√
2|eB| = −i

(
d

dz
+ z − sz0

2

)
,

(34)

a† = −iD1 − sD2√
2|eB| = −i

(
d

dz
− z − sz0

2

)
,

where s = sgn eB, z = √
2|eB|x1, and z0 =

√
2

|eB|k2. Using

these operators, the Hamiltonian can be written as

H0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

m
√

2eBa†

√
2eBa −m

)
(s = 1),(

m
√

2|eB|a√
2|eB|a† −m

)
(s = −1).

(35)

Now, we assume eB > 0 (s = 1), and solve the eigenvalue
equation (

m
√

2eBa†√
2eBa −m

)(
ϕ

χ

)
= ε0

(
ϕ

χ

)
. (36)

The upper component ϕ(z) obeys (2eBa†a + m2)ϕ(z) =
ε2

0ϕ(z), which can be written as(
d2

dz2
+ ν + 1

2
− 1

4
(z − z0)2

)
ϕ(z) = 0, ν = ε2

0 − m2

2eB
,

(37)

using Eq. (34). It is known that the solution of Eq. (37) is given
by ϕ(z) = Dν (z − z0), where Dν (z) is the parabolic cylinder
function [29]. Although this function is divergent at z → −∞
for generic ν, as in Eq. (A5), it is convergent at z → ∞
and normalizable on the semi-infinite line 0 < z < ∞, as in
Eq. (A4). For several useful formulas of the parabolic cylinder
functions, see Appendix A.

Note that the lower component satisfies χ (z) =√
2eBaϕ(z)/(ε0 + m). Thus, the eigenfunction is

given by

ψ0,ν (x1, k2) ≡
(

1
√

2eBa
ε0+m

)
Dν (z − z0)

=
(

Dν (z − z0)

−i ε0−m√
2eB

Dν−1(z − z0)

)
, (38)

where we have used Eq. (A2) and the normalization factor has
been suppressed. It follows from Eq. (37) that generically two
paired eigenstates with opposite energies appear for a fixed ν.
Likewise, in the case of s = −1, we obtain

ψ0,ν (x1, k2) =
(−i ε0+m√

2|eB|Dν−1(z + z0)
Dν (z + z0)

)
. (39)

In what follows, we restrict our discussions to the case
of s = 1.

1. Bulk states

The bulk wave function should be normalized on the
infinite line −∞ < z < ∞. Therefore, ν is restricted to non-
negative integers, ν = 0, 1, 2, . . . ≡ n, and eigenvalues and
eigenfunctions are obtained, in the case of s = 1, such that

ε0,0 = m, ψ0,0(x1, k2) =
(D0(z − z0)

0

)
,

ε±
0,n(>0) = ±

√
2eBn + m2,

ψ±
0,n(x1, k2) =

(
Dn(z − z0)

−i
ε±

0,n−m√
2eB

Dn−1(z − z0)

)
. (40)

These are famous Landau levels of a massive Dirac
fermion [23]. When m = 0, chiral symmetry ensures that the
positive and negative levels are always paired except for zero
energy. In the present model, there appears one zero-energy
state. When the mass becomes finite, the nonzero energy Lan-
dau levels are shifted in such a way that they are still paired
in positive and negative energies. The zero-energy Landau
level moves to energy m, and has no partner. This level causes
the spectral asymmetry, which has intimate relationship with
the parity anomaly [24–28] and is responsible for the bulk
topological invariant [23].

2. Edge states

When the system is defined on x1 � 0, the wave func-
tions (38) or (39) are always normalizable. Instead of the
nomalizability, the boundary condition (22) imposed on these
wave functions determines the eigenvalues and eigenstates. To
be concrete, the boundary condition on the wave function (38)
is given by

sin θDν (−z0) − cos θ
ε0 − m√

2eB
Dν−1(−z0) = Dν (−z0), (41)

where ε0 and z0 are defined, respectively, in Eq. (37) and
below Eq. (34). This is a nonlinear equation which determines
ε0 as a function of k2. It is not difficult to solve this equation
using, e.g., Mathematica, which includes parabolic cylinder
functions as built-in functions.

We show in Fig. 5, numerical solutions of Eq. (41) in the
case of eB > 0. The eight panels in Fig. 5 correspond to those
in Fig. 4 in the absence of a magnetic field. For large k2,
the spectra of Eq. (41) converge to those of the bulk Landau
levels (40). This is natural since the center of the harmonic
potential in Eq. (37), x1 = k2/(eB), is located far from the
boundary at x1 = 0 in the case of s = 1. However, when k2 be-
comes smaller, and at a certain value, k2 ∼ 0, boundary effects
become larger and the states gradually change their characters.
In this region, the spectra move away from those of the bulk
Landau levels: Basically, the positive and negative Landau
levels go toward more positive and negative energies, respec-
tively, when k2 decreases from positive to negative values.
This is of course due to the boundary effects: Since Eq. (37)
is the Schrödinger equation for the 1D harmonic oscillator,
one can expect that the boundary effects make ε2

0 larger if
ε2

0 > m2. However, the exception is the unpaired Landau level
with energy m. As can be seen from the leftmost upper panel
in Fig. 5(a) (m > 0 and θ = 0), the ε0 = m > 0 Landau level
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FIG. 5. Edge (and bulk) states with eB = 1.5 and m = 1 for upper four panels for different θ , whereas m = −1 for lower four panels. The
dashed lines indicate the Landau levels of the bulk states given by Eq. (40).

causes the spectral flow across zero energy. This level passes
through the energies prohibited for the bulk system. This is
the edge state corresponding to the case in Sec. III A 2 in the
absence of a magnetic field. Indeed, the behavior of this edge
state depends on θ , and it resembles that in Fig. 4 as a function
of θ . In particular, k2 � 0, they asymptotically become the
same linear dispersions.

As shown in Sec. III A 2, the wave function ψ0(x1, k2)
in Eq. (24) in the absence of a magnetic field satisfies the
boundary condition (22) not only at x1 = 0, but everywhere
on x1 � 0. This enables us to obtain the effective Hamiltonian
for the edge state in Sec. III A 3. Unfortunately, the wave
functions in Eqs. (38) or (39) satisfy the boundary condition
only at the boundary x1 = 0 in the presence of a magnetic
field.

Therefore, to check the properties of the edge state in the
presence of a magnetic field, we compare the wave function
of the unpaired Landau level ψ0,n=0(x1, k2) with the exact
wave function of the edge state ψ0(x1, k2) given by Eq. (29)
in the absence of a magnetic field. In Fig. 6, we show the

FIG. 6. Local density profile of the states of the unpaired Landau
level, |ψ0,n=0(x1, k2)|2, for the θ = 0 and B = 1.5 system. (a) For
m = 1 [Fig. 5(a)] and (b) for m = −1 [Fig. 5(e)]. Solid colored
curves denote the density profiles at different k2 values, whereas
the dashed curve in (a) denotes the density profile of edge state in
the absence of magnetic fields |ψ0(x1)|2 given in Eq. (24) which is
independent of k2 when θ = 0.

local density profile for several k2. Figure 6(a) is the case of
the unpaired Landau level in Fig. 5(a). In this panel, we find
that when k2 varies from positive to negative values, the wave
function ψ0,0(x1, k2) changes its character from the bulk state
in Eq. (40) to the edge state in Eq. (24).

On the other hand, in the case of m = −1 in Fig. 6(b),
the local density has different profile from the edge state in
Fig. 6(a) even for negative k2. The density profile is for bulk
states rather than edge states. Indeed, in this case, there are
no edge states in the absence of magnetic field, as shown
in Eq. (29) as well as in Fig. 4(e). Therefore, we conclude
that in the case of θ = 0, the system with m > 0 shows the
edge state, as in Fig. 5(a), which can be approximated, for
k2 � 0, by the edge state in the absence of a magnetic field in
Fig. 4(a), whereas the system with m < 0 shows no edge state,
as in Fig. 5(e), which corresponds to Fig. 4(e). Therefore,
the effective Hamiltonian of the edge state in k2 � 0 in the
presence of a magnetic field is basically given by Eq. (31) in
the absence of a magnetic field.

IV. BBH DIRAC INSULATOR MODEL

Based on the edge states derived so far, we discuss those of
the BBH Dirac insulator in Eq. (6). To this end, the following
γ matrices are convenient:

γ j = τ 1σ j ( j = 1, 2, 3), γ 4 = τ 2σ 0, γ5 = τ 3σ 0. (42)

Then, the Hamiltonian becomes

H =
( H0 − im2

H0 + im2

)
, (43)

where H0 is given by Eq. (19) with m = m1. This is the merit
of using the γ matrices in Eq. (42): The Hamiltonian of the
BBH Dirac insulator is simply expressed by the Hamiltonian
studied in Sec. III and, hence, the edge states derived there
are directly used in the following discussions. In particular, in
the discussion of the edge states in Sec. III B in the presence
of a magnetic field, the Hamiltonian in the form of Eq. (32)
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is very convenient to rewrite the Hamiltonian with respect to
the creation and annihilation operators. On the other hand,the
boundary matrix S1 in Eq. (12) is S1 = iγ 1γ 3 = τ 0σ 2 in the
present basis, although it is diagonal in the basis in Sec. II E.
Thus, the wave functions of the edge states become a bit more
complicated. In the present new basis Eq. (42), S1 can be
written as

S1 =
(

S0
1 (0)

S0
1 (0)

)
, (44)

where S0
1 (0) is defined in Eq. (22) with θ = 0. In what follows,

we solve edge states for a half-plane x1 � 0 satisfying

Hψ (x) = εψ (x), (S1 − 1)ψ (x)
∣∣
x1=0 = 0. (45)

A. In the absence of a magnetic field

1. Bulk states

The Hamiltonian in the momentum representation is

H(k) = γ μkμ + γ μ+2mμ. (46)

Therefore, the bulk spectrum is

ε(k) = ±
√

k2 + m2, (47)

where k2 = k2
1 + k2

2 and m2 = m2
1 + m2

2. Each state above is
doubly degenerate. The bulk gap closing occurs at m1 = m2 =
0 only.

2. Edge states

Let us consider the system defined on x1 � 0. Let
ψ0(x1, k2) be the edge-state wave function (24) of H0 in
Eq. (23), i.e., H0ψ0(x1, k2) = ε0ψ0(x1, k2) satisfying the
boundary condition (22) with θ = 0. Then, for m1 > 0

ψ (x1, k2) =
(
εψ0(x1, k2)
(ε0 + im2)ψ0(x1, k2)

)
(48)

is the wave function satisfying Eq. (45). Here, ψ0(x1, k2) =
e−m1x1 (1, i)T and ε0 = k2 are the wave function and dispersion
given in Eq. (29), and ε = ±

√
ε2

0 + m2
2 = ±

√
k2

2 + m2
2 is the

dispersion of the edge states of H in Eq. (43). The gap closing
of these edge states occurs at m2 = 0 regardless of m1(>0).
On the other hand, when m1 < 0, there are no edge states. See
Eq. (29). Taking account of the discussions in Sec. III A 3,
an effective Hamiltonian of the 1D edge state localized along
x1 ∼ 0 is given by

m1 > 0, H1edge =
( −i∂2 − im2

−i∂2 + im2

)
,

m1 < 0, no edge states. (49)

The above Hamiltonian H1edge is nothing but the 1D massive
Dirac fermion. This fermion yields the polarization 1

4 sgn m2

toward the x2 direction. Therefore, at m2 = 0, i.e., at γ2 = ±1,
topological changes occur. It should be noted that σ 2 of S1 =
τ 0σ 2 acts as 1 in this subspace.

In addition to the boundary along x1 = 0, let us introduce
another boundary along x2 = 0 and consider the above edge
state (49) in the region x2 � 0. As discussed in Sec. II, the
boundary condition toward x2 for the BBH Dirac insulator is
given by S2 = iγ 2γ 4 = −τ 3σ 2 in the present basis (42). In

FIG. 7. Edge (and bulk) states of the BBH Dirac insulator with
(a) m1 = 1 and (b) m1 = −1. Other parameters used are m2 = 0.1
and B = 1.5. The dashed lines are the bulk spectrum of the BBH
Dirac insulator in a magnetic field, ±m1 and ±√

(ε±
0,n)2 + m2

2 .

the subspace of Eq. (49), we can set σ 2 = 1, so that S2 acts as
S2 = −τ 3 in the space of Eq. (49). Thus, the zero-dimensional
edge state of H1edge,

H1edgeψ
′(x2) = ε′ψ ′(x2),

(S2 − 1)ψ ′(x2)
∣∣
x2=0 = 0, S2 = −τ 3, (50)

is obtained as follows:

m2 > 0, ε′ = 0, ψ ′(x2) =
√

2m2

( 0
e−m2x2

)
,

m2 < 0, no edge states. (51)

The above transition at m2 = 0 with keeping m1 > 0 is the
boundary obstruction of the edge states mentioned below
Eq. (48). Thus, we have shown that the corner state exists
in the case of m1, m2 > 0, whose wave function is given by
ψ (x1, x2) ∝ e−(m1x1+m2x2 )(0, 0, 1, i)T .

B. In the presence of a magnetic field

Finally, we consider the BBH Dirac insulator in a magnetic
field in Eq. (43). In this section, we restrict our discussions to
the case of eB > 0. Even in the presence of a magnetic field,
completely the same discussions as Sec. IV A 2 are applied to
this case.

We first mention that considering Eq. (43), the bulk spec-
trum is given by ±√

2eBn + m2 (n = 0, 1, . . . ), where m2 =
m2

1 + m2
2. Therefore, the bulk gap at zero energy is given by

2m.
Next, let us consider the system defined in the region x1 �

0. Let ψ0,ν (x1, k2) be the wave function (38) of H0, on which
the boundary condition (22) [i.e., (41)] with θ = 0 is imposed.
Then,

ψν±(x1, k2) =
(
εψ0,ν (x1, k2)
(ε0,ν + im2)ψ0,ν (x1, k2)

)
(52)

is the wave function of (43) with energy ε = ±
√

ε2
0,ν + m2

2
satisfying Eq. (45).

In Fig. 7, we show an example of the spectrum of the
BBH Dirac insulator in a magnetic field. These figures in-
deed reproduce the spectra of the BBH model in Fig. 3. The
case with small m2 is shown in Fig. 7(a), in which the gap
closing of the edge spectrum, i.e., the boundary obstruction
at m2 = 0 is manifest. As discussed in Sec. III B 2, the edge
state of H0 can be basically given by Eq. (31), implying that

155102-9



KOICHI ASAGA AND TAKAHIRO FUKUI PHYSICAL REVIEW B 102, 155102 (2020)

an effective Hamiltonian for the edge state at k2 � 0 of the
present BBH Dirac insulator is also given by Eq. (49). Thus,
even in a magnetic field, the gap closing of the edge state
induces the topological change associated with a corner state.
This boundary obstruction occurs with keeping the bulk gap
2m open. On the other hand, in the case of m1 < 0, no gap
closing is observed, as is expected in Fig. 7(b). Therefore,
we conclude that the BBH Dirac insulator in a magnetic field
reproduces the BOTP transition of the BBH model, although
the direct calculations of the topological invariants by the use
of the Dirac insulator model in the presence of a magnetic
field are impossible.

V. SUMMARY AND DISCUSSION

To construct an effective theory of the BOTP transition
of the BBH model in a magnetic field, we investigated an
effective Dirac fermion model with two kinds of mass terms
in the continuum limit around π flux. We emphasized the
importance of the boundary condition for the Dirac fermion
to obtain the edge states: We argued the boundary condition
from the point of view of the lattice termination, symme-
try, and the Hermiticity condition. We first solved the edge
states for the conventional 2D massive Dirac fermion in the
absence/presence of a magnetic field imposing a generic
boundary condition. Using these, we next derive the edge
states of the BBH Dirac insulator model. The gapped edge
states of the BBH Dirac insulator show the gap closing at
the transition point from the HOTI phase to the trivial phase
which is nothing but the BOTP transition. This occurs even
in the presence of a magnetic field, in which the edge states
associated with the unpaired Landau level causes the BOTP
transition.

The result in this paper may be limited within small mag-
netic fields around π flux since we use the linear dispersion
approximation of the BBH model. Indeed, as discussed in
Sec. II A, Fig. 2 shows at least in 5π/6 � φ(�7π/6), the
BOTP exists, but in φ � 2π/3, the higher-order topological
phasetransition accompanies bulk gap closings. It then follows
that the description by the BBH Dirac insulator cannot be
extended into such a region. It may be an interesting future
problem to clarify the nature of this phase.
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APPENDIX: PARABOLIC CYLINDER FUNCTIONS Dν(Z)

The solutions Dν (z) of the equation(
d2

dz2
+ ν + 1

2
− 1

4
z2

)
Dν (z) = 0 (A1)

are called parabolic cylinder functions [29]. These functions
obey (

d

dz
+ z

2

)
Dν (z) = νDν−1(z),

(A2)(
d

dz
− z

2

)
Dν (z) = −Dν+1(z).

Other linearly independent solutions of Eq. (A1) are Dν (−z)
if ν is not an integer, or D−ν−1(iz) for any ν. When ν is a
non-negative integer, ν = n ≡ 0, 1, . . . , Dn(z) corresponds to
the familiar wave function of the 1D harmonic oscillator,

Dn(z) = 2− 1
2 ne− 1

4 z2
Hn

(
2− 1

2 z
)
, (A3)

where Hn(z) is the Hermite polynomial of degree n. The
asymptotic behavior of Dν (z) for large values of |z| and a fixed
value of ν ( =n) is

Dν (z) = zνe− 1
4 z2

[1 + O(|z|−2)], (| arg z| < 3π/4) (A4)

whereas

Dν (z) = zνe− 1
4 z2

[1 + O(|z|−2)]

− (2π )
1
2

�(−ν)
eiνπ z−ν−1e

1
4 z2

[1 + O(|z|−2)],

(π/4 < arg z < 5π/4). (A5)

Therefore, Eq. (A5) tells that Dν (z) diverges as z−ν−1e
1
4 z2

for
real negative z, z → −∞, if ν ( = n).
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