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Non-Markovian dephasing of disordered quasi-one-dimensional fermion systems
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As a potential window on transitions out of the ergodic, many-body-delocalized phase, we study the dephasing
of weakly disordered, quasi-one-dimensional fermion systems due to a diffusive, non-Markovian noise bath.
Such a bath is self-generated by the fermions, via inelastic scattering mediated by short-ranged interactions. The
ergodic phase can be defined by the nonzero dephasing rate, which makes transport incoherent and classical on
long length scales. We calculate the dephasing of weak localization perturbatively through second order in the
bath coupling, obtaining a short-time expansion. However, no well-defined dephasing rate can be identified,
and the expansion breaks down at long times. This perturbative expansion is not stabilized by including a
mean-field cooperon “mass” (decay rate), signaling a failure of the self-consistent Born approximation. We also
consider a many-channel quantum wire where short-ranged, spin-exchange interactions coexist with screened
Coulomb interactions. We calculate the dephasing rate, treating the short-ranged interactions perturbatively and
the Coulomb interaction exactly. The latter provides a physical infrared regularization that stabilizes perturbation
theory at long times, giving the first controlled calculation of quasi-1D dephasing due to diffusive noise. At first
order in the diffusive bath coupling, we find an enhancement of the dephasing rate, but at second order, we
find a rephasing contribution. Our results differ qualitatively from those obtained via self-consistent calculations
commonly employed in higher dimensions. Our results are relevant in two different contexts: first, in the search
for precursors to many-body localization in the ergodic phase of an isolated many-fermion system. Second, our
results provide a mechanism for the enhancement of dephasing at low temperatures in spin SU(2)-symmetric
quantum wires, beyond the Altshuler-Aronov-Khmelnitsky result. The enhancement is possible due to the
amplification of the triplet-channel interaction strength and provides an additional physical mechanism that could
contribute to the experimentally observed low-temperature saturation of the dephasing time.
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I. INTRODUCTION

Inelastic collisions between electrons tend to destroy quan-
tum phase coherence in a phenomenon called dephasing.
Dephasing is a key physical process underlying the transition
between the quantum and classical transport regimes in many-
body fermion systems and thus is central to modern efforts in
condensed matter and quantum information to understand and
exploit macroscopic quantum phenomena.

It was understood in the 1980s that quantum interference
effects in electronic systems induced by weak quenched dis-
order are governed by the dephasing timescale τφ [1–3]. This
timescale determines the infrared cutoff for the weak (anti)
localization correction to transport, which diverges in one
or two spatial dimensions in the absence of dephasing. The
dephasing rate can be measured through the temperature de-
pendence of the conductance [3,4].

The dephasing rate for inelastic electron scattering me-
diated by dynamically screened Coulomb interactions was
calculated exactly by Altshuler, Aronov, and Khmelnit-
sky (AAK) [1], who obtained a τφ ∼ T −2/3 power law in
temperature (T ) for quasi-one-dimensional (quasi-1D) many-
channel wires. Although this result has been well-confirmed
experimentally [4], measurements observing an anomalous

low-temperature saturation of τφ sparked a decade of contro-
versy [4–16]. Plausible explanations for the saturation include
additional phase-breaking due to Kondo impurities [13,14].
The role of itinerant electron spin-exchange scattering and
its effect on dephasing [17] in these quasi-1D wires was not
extensively investigated at the time.

The theoretical challenges imposed by many body local-
ization (MBL) [18–21] invite us to revisit some of these ques-
tions. The MBL hypothesis proposes that an interacting, dis-
ordered quantum system can undergo a nonzero-temperature
transition from the semiclassical ergodic (metallic) phase into
an insulating state that fails to self-thermalize. In the MBL
phase, local operators are long-lived and quantum coherence
is not destroyed by dephasing [18,20,21]. Understanding the
nuances of dephasing in the ergodic phase could uncover
precursors to MBL, or even yield an analytical tool for study-
ing the ergodic-to-MBL transition [22,23]. Recent work has
raised concerns about the feasibility of accessing this tran-
sition numerically [24–27], which places a renewed urgency
upon identifying analytical approaches that are not limited to
small system sizes.

In this work, we revisit quantum coherence in quasi-
1D fermion transport, and focus specifically on dephasing
due to short-ranged inelastic scattering. This is relevant
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for neutral ultracold atomic fermion systems that could be
platforms for MBL realization [28]. Furthermore, in spin
SU(2)-symmetric quantum wires, inelastic electron-electron
scattering is mediated by the combination of both short-
ranged spin-triplet exchange- and Coulomb-interactions [17].
MBL has been primarily investigated for fermion systems
with short-ranged interactions [18,19,29]. Inelastic scatter-
ing due to short-ranged interactions gives rise to a strongly
non-Markovian, diffusive noise kernel in the ergodic phase
[22,30]. By contrast, the exact solution for τφ obtained by
AAK relies crucially on the Markovian nature of the noise
bath that arises from Coulomb interactions [1]. As we show in
this work, the Markovian case is drastically simpler than the
generic case. An additional reason to revisit dephasing due
to spin exchange interactions is the well-known but poorly
understood enhancement of the triplet channel interaction
in the theory of the zero-temperature Anderson-Mott metal-
insulator transition (MIT) [31–34]. An enhancement of spin
exchange interactions could lead to an important role of non-
Markovianity near a MIT.

The problem of dephasing weak localization by a diffusive
bath is equivalent to solving a strongly coupled, auxiliary
quantum field theory. The upper critical spatial dimension of
this theory is d = 4, and previous work using a d = 4 − ε

expansion identified a nontrivial critical point that could signal
a failure of dephasing [22]. The critical point obtains from
vertex corrections that are not captured by the standard self-
consistent Born approximation (SCBA) [4,22,35,36]. A key
goal of this work is to test the veracity of the SCBA and other
self-consistent approximations.

Here we present two different calculations for the dephas-
ing of weak localization in a quasi-1D wire due to a diffusive
bath. In both cases, we consider “order one” strength inter-
actions and weak disorder [1–4]. This is in contrast to the
strongly disordered, weakly interacting limit considered by
Basko, Aleiner, and Altshuler (BAA) [18]. The weak-disorder
limit minimizes the “bad metal” regime of the ergodic phase
discussed by BAA, contracting the low-temperature win-
dow in which the putative ergodic-to-MBL transition could
occur [30]. Our assumptions of weak disorder and order-
one strength interactions are also in contrast with those of
Ref. [19], which predicted an intermediate “power-law hop-
ping” (PLH) regime between the MBL insulator and the
weakly localized metal in quasi-1D systems. As noted in
Ref. [19], the width of the PLH regime collapses when the
short-ranged interaction strength becomes of order one. This
opens up the possibility of a direct transition between the
weakly localized metal and the MBL phase. The full descrip-
tion of this putative transition goes well beyond what we
consider in this paper, as it would entail the calculation of
both higher-order quantum conductance corrections and their
dephasing due to the non-Markovian bath. Given the strongly
coupled nature of the dephasing problem due to the diffusive
bath [22] in the weak localization regime studied here, the
crossover to, or even the existence of, the PLH regime for
weaker interactions are not questions we are yet prepared to
tackle.

First, for an isolated fermion system with short-ranged
interactions, we calculate the dephasing through second or-
der in the bath coupling, expanding about the un-dephased

cooperon. We obtain a short-virtual-time expansion, un-
plagued by divergences (a feature unique to 1D). However, no
well-defined dephasing rate can be identified, and the expan-
sion breaks down at long times. This perturbative expansion
is not stabilized by including a mean-field cooperon “mass”
(decay rate), signaling a failure of the SCBA. Although the
expansion breaks down at long times, it contains interesting
features; we find that the second-order term in the expansion
has a positive sign and actually works against dephasing.
We call such a term rephasing. This calculation demonstrates
that the long-time behavior due to purely diffusive dephasing
cannot be accessed perturbatively.

Second, we consider a many-channel quantum wire
where short-ranged, spin-exchange interactions coexist with
screened Coulomb interactions. We calculate the dephasing
rate, treating the non-Markovian diffusive bath perturbatively
and the Markovian Coulomb bath exactly via an extension of
the AAK technique [1]. The latter provides a physical infrared
regularization that, unlike the SCBA, stabilizes perturbation
theory at long times. The expansion parameter is the dimen-
sionless ratio of the two bath coupling strengths. At first order,
the diffusive bath enhances the Markovian AAK dephasing
rate. At second order, however, we again find a rephasing con-
tribution. Taken together with the short-time expansion result,
this suggests that higher-order terms could have important
effects in the purely diffusive limit, capable of slowing or even
arresting dephasing. This expansion provides the first con-
trolled calculation of the dephasing effects due to a diffusive
bath for a quasi-1D system. Our results disagree qualitatively
with self-consistent schemes, commonly employed in higher
dimensional dephasing calculations, which we show give the
incorrect dependence on the bath coupling strength. In par-
ticular, we show that self-consistent calculations incorrectly
predict a suppression of the effects of the diffusive bath in the
strong-coupling limit.

Finally, we also describe how the low-temperature en-
hancement of the spin-triplet interaction strength [31–33] can
translate into an enhancement of the AAK dephasing law
τφ ∼ T −2/3 [1], providing a new mechanism for the apparent
saturation of phase-breaking in quantum wires [4–16].

Our calculation uses nonstandard techniques and ap-
plies generally to any set of coexisting Markovian and
non-Markovian noise baths, and so we give a pedagogical
presentation.

A. Outline

This paper is organized as follows. Section II introduces
the basics of dephasing and reviews the AAK solution for
the Markovian case. In Sec. III, we perturbatively study de-
phasing due to a purely diffusive bath. We present our results
for coexisting diffusive and Coulomb (Markovian) baths in
Sec. IV, and discuss their relevance to understanding the
purely diffusive limit. Section V provides an overview of
the dual-bath dephasing calculation. This calculation exploits
the Airy functions used to solve the quasi-1D Markovian
problem exactly [1]. The series expansion for the dephasing
rate is expressed in terms of amplitudes that involve sums
of integrals over products of Airy functions; these integrals
are ultimately calculated numerically. Finally, we discuss our
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results in Sec. VI, including their possible implications for
MBL physics and for the apparent saturation of dephasing in
quantum wires.

Various technical details are relegated to Appendices.
Appendix A collects Gaussian correlator results for vertex op-
erators that appear throughout this work. Appendix B provides
additional details for the pure diffusive bath calculation in
Sec. III. Appendices C and E present details for the dual-bath
calculation summarized in Secs. IV and V. Appendix D ap-
plies perturbative techniques to the well-understood screened
Coulomb limit for the sake of comparison. Appendix F ex-
plains a “series acceleration” technique used to efficiently sum
the Airy function amplitudes that arise in the dual-bath calcu-
lation. Finally, Appendix G explains an alternative field theory
approach to the Markovian and non-Markovian dephasing
problems, which was exploited in the (4 − ε) expansion cal-
culation for the diffusive bath in Ref. [22]. Here we highlight
mathematical differences between generic dephasing and the
Markovian limit. We also show how the AAK result can be
derived as an infinite-order diagrammatic resummation.

II. DEPHASING OF WEAK LOCALIZATION (REVIEW)

The weak (anti)localization correction to the dc conductiv-
ity is determined by the cooperon, a propagator defined via
the stochastic equation of motion [1,30,35,36]

{
∂η − D

2
∇2 + i

2

[
φcl

(
t + η

2
, x
)

− φcl

(
t − η

2
, x
)]}

× ct
η,η′ (x, x′) = D

2
δ(η − η′) δ (d ) (x − x′). (1)

In Eq. (1), ct
η,η′ (x, x′) denotes the cooperon, t and {η, η′}

respectively denote center-of- and relative-time arguments,
{x, x′} are position coordinates in d spatial dimensions, D is
the classical diffusion constant due to elastic impurity scatter-
ing, and φcl is the “classical” component of the scalar potential
(as opposed to the quantum component, in the Keldysh for-
malism [30,37,38]). φcl is a Gaussian stochastic field defined

by the correlator

〈φcl(ω, k) φcl(−ω,−k)〉 ≡ 	(ω, k)

= coth
( ω

2kBT

)
ρ(ω, k), (2)

where 	(ω, k) is the noise kernel (Keldysh propagator); the
spectral function for the bath is ρ(ω, k). The noise kernel 	

encodes real inelastic fermion-fermion scattering processes
that are responsible for dephasing and is self-generated by
thermal fluctuations of the particle density [1,4,30]. The
cooperon arises from interference between quantum ampli-
tudes for forward- and backward-in-time propagating paths in
a disordered conductor [2–4]. The scalar potential φcl couples
to both the causal (t + η/2) and anticausal (t − η/2) paths,
where t is the global time variable and η is a virtual time
argument.

The weak (anti)localization correction to the conductivity
obtains from [2]

δσ =
{

(−4e2/π h̄)P, WL,

(+2e2/π h̄)P, WAL,
P =

∫ ∞

0
dη c(η), (3)

where c(η) ≡ 〈ct
η,−η(x, x)〉, which is independent of t, x

due to the bath averaging 〈· · · 〉. Above, P is the vir-
tual return probability and W(A)L corresponds to weak
(anti)localization, relevant for the case without (with) spin-
orbit coupling. Here we focus on the spin SU(2)-symmetric
case, corresponding to WL. Importantly, the cooperon in
the un-dephased limit (i.e., φcl = 0) is given by c0(η) =
(D/2)(4πDη)−d/2, so that in one or two dimensions the in-
tegral in Eq. (3) diverges in the infrared, signaling Anderson
localization in noninteracting systems. However, for inter-
acting particles, the presence of φcl generates a finite decay
timescale for the bath-averaged cooperon, ensuring the con-
vergence of Eq. (3). This allows for the definition of the
dephasing time

1

τφ

= − lim
η→∞

1

η
ln[c(η)]. (4)

The bath-averaged cooperon can be expressed via a Feynman
path integral [1],

〈ct
η,η′ (x, x′)〉 = D

2

∫ r(η)=x

r(η′ )=x′
Dr(τ ) exp

[
− 1

2D

∫ η

η′
dτ [ṙ(τ )]2 − 1

4

∫ η

η′
dτ1

∫ η

η′
dτ2

{
	̃
[

τ1−τ2
2 , r(τ1) − r(τ2)

]
−	̃
[

τ1+τ2
2 , r(τ1) − r(τ2)

]}]. (5)

Setting x′ = x, η′ = −η and moving into “relative time” and “center-of-time” coordinates, defined by

ρ(τ ) ≡ r(τ ) − r(−τ ), and R(τ ) ≡ 1

2
[r(τ ) + r(−τ )], (6)

we have

c(η) = D

2

∫
dR0

∫ R(η)=x

R(0)=R0

DR(τ )
∫ ρ(η)=0

ρ(0)=0
Dρ(τ ) exp

[
− 1

D

∫ η

0
dτ
[
Ṙ(τ )

]2 − 1

4D

∫ η

0
dτ [ρ̇(τ )]2 − SI [R(τ ), ρ(τ )]

]
, (7)

where the contribution to the action of the noise kernel is given by

SI [R(τ ), ρ(τ )] =
∫

dω

2π

∫
dd k

(2π )d
	(ω, k)

∫ η

0
dτa

∫ η

0
dτb
[
e−iω(τa−τb)/2 − e−iω(τa+τb)/2]

× eik·[R(τa )−R(τb)] sin
[k · ρ(τa)

2

]
sin
[k · ρ(τb)

2

]
. (8)
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In Eq. (7), R0 is the free boundary condition of the
center-of-mass coordinate R(τ ) at τ = 0. By contrast, the rel-
ative coordinate ρ(τ ) satisfies Dirichlet boundary conditions:
ρ(η) = ρ(0) = 0 [39].

A. Review of Markovian dephasing

There is a massive reduction in the complexity of the prob-
lem in the Markovian case of a frequency-independent bath
kernel [1]. In this case, 	̃(t, x) = δ(t ) 	̃M (x), which removes
the direct time-dependence of the bath in Eq. (5). Explicitly,
if 	(ω, k) = 	M (k), Eq. (8) simplifies to

SI [R(τ ), ρ(τ )] → SM[ρ(τ )]

≡ 2
∫

dd k
(2π )d

	M (k)
∫ η

0
dτ

{
sin

[
k · ρ(τ )

2

]}2

=
∫ η

0
dτ {	̃M[0] − 	̃M[ρ(τ )]}. (9)

In the Markovian limit, the action SM has no dependence on
the field R(τ ), and the R-path integration is equal to one. The
path integral in Eq. (7) reduces to the propagator for a single-
particle quantum mechanics problem,

cM (η) = D

2
〈ρ = 0|e−ĥη|ρ = 0〉, (10)

where we have defined the single-particle central-potential
Hamiltonian

ĥ ≡ −D ∇2
ρ + 	̃M[0] − 	̃M[ρ]. (11)

This simplification can also be seen in a field theory approach
[22]. In that framework, only a set of maximally crossed rain-
bow diagrams (a subset of the SCBA) contribute (Appendix
G3).

B. Dynamically screened Coulomb interactions

Here we review dephasing due to dynamically screened
Coulomb interactions [1], focusing on many-channel, quasi-
1D wires. The noise kernel is

	M (ω, k) = −2 coth
( ω

2kBT

)
Im

[
V0(k)

1 − D(0)
R (ω, k)V0(k)

]



(

4kBT

κ0

)
1

Dk2
, (12)

where

D(0)
R (ω, k) = −κ0Dk2

Dk2 − iω
(13)

is the semiclassical, retarded polarization function describ-
ing density diffusion in the disordered conductor, κ0 is the
bare compressibility, and V0(k) is the bare three-dimensional
Coulomb potential.

The approximation in Eq. (12) is twofold. First, we take
|D(0)

R (ω, k)V0(k)| large compared to one, due to the plasmonic
(logarithmic) enhancement of V0(k) as k → 0 [41]. Second,
we also expand in low ω/kBT ,

coth (ω/2kBT ) 
 2kBT /ω + O(ω/kBT ). (14)

By cutting out high-frequency processes, we introduce a
short-range ultraviolet cutoff for the bath. This is justified be-
cause interaction-mediated processes with |ω| larger than kBT
contribute only to the conductivity via the virtual Altshuler-
Aronov correction [4]. A formal calculation retaining higher
frequencies would not expand the coth and keep the full quan-
tum form of the noise kernel. In order to avoid inconsistency,
in the latter case it is necessary to also retain Pauli-blocking
counterterms that we have dropped here [10,11]. These terms
played a role in the theoretical controversy concerning the
observed low-temperature saturation of the dephasing rate in
1D systems [4,5,8,10]. The expansion in Eq. (12) replacing
the quantum bath with classical Johnson-Nyquist noise is that
of AAK and is physically correct [1,4,10].

Equation (12) implies that screened Coulomb interactions
can be well-approximated by a Markovian kernel, so that the
bath-averaged cooperon obtains from Eqs. (10) and (11). The
effective central potential is

	̃M (0) − 	̃M (ρ) =�M

D
|ρ|, (15)

where we define the coupling constant

�M ≡ 2kBT

κ0
, (16)

which sets an intrinsic length scale

a ≡
(�M

D2

)−1/3

=
(

κ0D2

2kBT

)1/3

. (17)

It follows from Eqs. (11) and (15) that the one-dimensional
cooperon is the imaginary-time propagator for the single-
particle Hamiltonian

ĥ = D

(
− d2

dρ2
+ |ρ|

a3

)
. (18)

Diagonalizing this Hamiltonian gives the bound state energies

ε2n = −α′
n

(
D/a2),

ε2n+1 = −αn
(
D/a2

)
,

(19)

and the orthonormal eigenfunctions [42]

ψ0
2n(ρ; a) = 1√

2a

|α′
n|−1/2

Ai(α′
n)

Ai
( |ρ|

a
+ α′

n

)
, (20a)

ψ0
2n+1(ρ; a) = 1√

2a

sgn(ρ)

Ai′(αn)
Ai
( |ρ|

a
+ αn

)
, (20b)

where n ∈ {0, 1, 2, . . . }, and αn and α′
n respectively denote the

(n + 1)th (strictly negative) zero of the Airy function Ai(z) or
its derivative Ai′(z) ≡ (d/dz) Ai(z).

The eigenfunctions in Eqs. (20a) and (20b) allow the ex-
plicit computation of the expectation value in Eq. (10) for
cM (η) in one dimension:

cM (η) = D

4a

∞∑
j=0

1

|α′
j |

exp
(
−ηD

a2
|α′

j |
)

≡ D

4a
f0

(ηD

a2

)
. (21)
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We note that (ηD/a2) is a dimensionless time variable and that
the sum in Eq. (21) is only over the even-parity energies, since
the odd-parity wave functions vanish at the origin. This yields
the AAK dephasing timescale

τφ 

[

1

D

(2kBT

κ0

)2]−1/3

. (22)

Finally, the return probability is

P =
∫ ∞

0
dη cM (η) = a

4

∞∑
n=0

1

(α′
n)2

= 1

4

(
κ0D2

2kBT

)1/3 2π

35/6�2(2/3)
. (23)

Via Eq. (3), this gives the famous AAK result for the weak
localization correction to the conductivity of a quasi-1D wire,
δσWL ∝ −(kBT )−1/3 [1].

The summation over Airy derivative function zeros in
Eq. (23) is a known identity [42]. In the sequel, we will need to
be able to numerically evaluate similar sums, which are slowly
convergent. To do so efficiently, we will introduce a “series
acceleration” technique (Appendix F).

III. DEPHASING BY A DIFFUSIVE BATH:
PERTURBATION THEORY

In this section, we attempt to understand dephasing in a
setting intimately related to many-body localization (MBL)
[18,19,29]. We study the dephasing of the ergodic phase of an
MBL candidate system by perturbatively evaluating Eq. (5) in
the presence of a diffusive bath.

Our calculation models a 1D ultracold Fermi gas with
short-ranged interactions. We focus on the many-channel ver-
sion with weak disorder, so that weak localization theory
applies at intermediate temperatures [1–4]. Hydrodynamic
modes in the ergodic phase of a dirty fermion system are
generally diffusive [31]. As a result, in the case of short-range
interactions, the noise bath governing the thermalization of the
system is also diffusive [17,30].

The diffusive noise kernel is

	t (ω, k) = �t

(
2Dt k2

D2
t k4 + ω2

)
. (24)

For |ω| � kBT , this is the approximate semiclassical, diffusive
Keldysh propagator for particle density fluctuations in the
fermion gas with quenched disorder, as arises due to short-
ranged inelastic particle-particle collisions [30]. The coupling
constant is

�t = 3
γ 2

t kBT

(1 − γt )χ0
, (25)

where γt is the dimensionless interaction strength
(Finkel’stein coupling parameter [30,31]).

In the sequel, we will consider coexisting diffusive and
Markovian baths, with the former (latter) mediated by
short-ranged spin exchange (dynamically screened Coulomb)
interactions. In that context, γt denotes the spin triplet chan-
nel interaction strength (hence the “t” subscript), while χ0

is the bare spin susceptibility. For contact interactions in an

ultracold Fermi gas, χ0 is the compressibility. The diffusion
constant Dt in Eq. (24) differs from the bare one entering
the cooperon [Eq. (1)], due to an interaction renormalization
[30,31],

β ≡ Dt

D
= 1

1 − γt
. (26)

Here and throughout this paper, we will use the symbol β to
refer to this dimensionless ratio (and not the inverse tempera-
ture). In the context of itinerant spin exchange interactions in a
quantum wire, one typically has an attractive spin-triplet chan-
nel coupling strength γt < 0. The Stoner instability towards
ferromagnetism corresponds to the limit γt → −∞ [31]. Re-
pulsive interactions instead give γt > 0; γt → 1 corresponds
to the incompressible limit [31].

The AAK mapping to a single-particle problem depends
crucially on the Markovian nature of the noise kernel and
cannot be applied here; the noise action in Eq. (8) remains
a nonlocal function of both the center-of-mass R(τ ) and rel-
ative ρ(τ ) coordinates. In this section, we present a purely
perturbative calculation for dephasing due to the diffusive
bath in Eq. (24). Without moving to the center-of-time and
relative coordinates, we evaluate the cooperon in Eq. (5) via
the cumulant expansion,

ct (η) = D

2

∫ r(η)=0

r(−η)=0
Dr(τ ) e− 1

2D

∫ η

−η
dτ ṙ2(τ )−SI [r(τ )]

(27)

= c0(η) exp
[
−〈SI〉0 + 1

2

(〈
S2

I

〉
0 − 〈SI〉2

0

)
+ . . .

]
,

where the bare cooperon is

c0(η) = (D/2)(4πDη)−1/2, (28)

〈· · · 〉0 denotes a functional average with respect to the noise-
less action, and the bath-induced interaction is

SI [r(τ )] = �t

4

∫
dk

2π

∫ η

−η

dτa

∫ η

−η

dτb eik[r(τa )−r(τb)]

× [e−Dt k2|τa−τb|/2 − e−Dt k2|τa+τb|/2
]
. (29)

The cumulant expansion in the bath coupling �t boils down to
the computation of the expectation values 〈Sn

I 〉0. At first order,
we only need to compute 〈SI〉0. We note that the functional
average over r(τ ) affects only the exponential factor in the top
line of Eq. (29). Performing this average to obtain the vertex
operator correlator (Appendix A) as well as the Gaussian
integral over k gives

〈SI〉0 =
(

�t
η3/2

√
D

)
G1(β ), (30)

where G1(β ) is a dimensionless function of the diffusion
constant ratio β [Eq. (26)],

G1(β ) =
√

2

π

∫ 1

−1
dτa

∫ 1

τa

dτb

[
g1(β, τa, τb)−1/2

−g2(β, τa, τb)−1/2

]
, (31)
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and where the g1,2 functions are defined by

g1(β, τa, τb) = (β + 1)(τb − τa) − 1

2
(τb − τa)2,

g2(β, τa, τb) = β|τb + τa| + (τb − τa) − 1

2
(τb − τa)2.

(32)

The amplitude G1(β ) is plotted in Fig. 1. Since G1(β )
is positive, the action of the bath is to suppress (de-
phase) the cooperon with increasing virtual time η. However,
Eqs. (30) and (27) predict a superexponential dampening of
the cooperon, and thus do not define a finite dephasing rate.

To better interpret the first-order result, we continue the
calculation to second order, requiring the evaluation of the
expectation value

〈
S2

I

〉
0 = �2

t

16

∫
dk1

2π

∫
dk2

2π

∫ η

−η

dτ1a

∫ η

−η

dτ1b

∫ η

−η

dτ2a

∫ η

−η

dτ2b
[
e−Dt k2

1 |τ1a−τ1b|/2 − e−Dt k2
1 |τ1a+τ1b|/2

]
× [

e−Dt k2
2 |τ2a−τ2b|/2 − e−Dt k2

2 |τ2a+τ2b|/2]〈eik1[r(τ1a )−r(τ1b)]eik2[r(τ2a )−r(τ2b)]
〉
0. (33)

The four-point vertex function correlator on the last line of
this equation is evaluated in closed form in Appendix A. We
note that Eq. (33) is invariant under the symmetries τ1a ↔
τ1b, τ2a ↔ τ2b, and (ω1, k1, τ1a, τ1b) ↔ (ω2, k2, τ2a, τ2b). This
eightfold symmetry group leaves three distinct topological
classes of the 24 distinct time orderings, and we may thus
reduce to the case where τ1a < τ1b, τ2a < τ2b, and τ1a < τ2a.
We define the three inequivalent time sectors �s to be

�s ≡
{{τ1a < τ1b < τ2a < τ2b} s = 1,

{τ1a < τ2a < τ1b < τ2b} s = 2,

{τ1a < τ2a < τ2b < τ1b} s = 3.

(34)

These correspond to the three diagrams shown in Fig. 2. The
form of the functional average depends upon the topological
class of the time-ordering.

Using the vertex operator correlator from Appendix A, the
momentum integrals in Eq. (33) can be obtained in closed
form. The final result can be expressed as follows:

〈
S2

I

〉
0 = �2

t

η3

D

[
G(1)

2 (β ) + G(2)
2 (β ) + G(3)

2 (β )
]
, (35)

FIG. 1. The coefficient function G1(β ) for the first-order cumu-
lant expansion result in Eqs. (30) and (31), which determines the
lowest-order superexponential dephasing of the cooperon due to the
diffusive bath [Eq. (27)]. Here, β is the ratio of the interacting and
bare diffusion constants defined by Eq. (26).

where G(s)
2 is a dimensionless function corresponding to

the topological sector s. These functions are defined explic-
itly in Appendix B, as parametric integrals over rescaled
{τ1a, τ1b, τ2a, τ2b} variables [Eq. (33)].

The final result for the diffusive bath-averaged cooperon,
computed through second order in the cumulant expansion, is
given by

ct (η)

c0(η)
= exp

⎡
⎣ −(�t

η3/2√
D

)
G1(β )

+ 1
2

(
�t

η3/2√
D

)2
G(T )

2 (β ) + O(�3
t )

⎤
⎦, (36)

where

G(T )
2 (β ) ≡ G(1)

2 (β ) + G(2)
2 (β ) + G(3)

2 (β ) − [G1(β )]2. (37)

FIG. 2. Diagrams giving the three topologically distinct contri-
butions to the cooperon due to the diffusive noise bath at second
order in perturbation theory. These correspond to the time-ordering
sectors {�1,2,3} in Eq. (34). From top to bottom, we have “sector
1” �1, “sector 2” �2, and “sector 3” �3; we also refer to these
amplitudes as “double,” “crossed,” and “nested,” respectively. We
show in Appendix A how the form of the correlator depends on the
topology of the time-ordering.
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FIG. 3. The coefficient function G(T )
2 (β ) for the second-order

cumulant expansion result in Eqs. (36) and (37). Since G(T )
2 (β ) > 0,

this shows that the second-order cumulant gives a superexponential
rephasing contribution to the cooperon in Eq. (36), due to the interac-
tion with the diffusive bath. Here, β is the ratio of the interacting and
bare diffusion constants defined by Eq. (26). See Fig. 4 for the plot of
the individual components of Eq. (37) that yield the total coefficient.

The cumulant expansion in Eq. (36) is well-defined because
the integrals that determine the amplitude functions G1(β )
and G(T )

2 (β ) are free of divergences in one dimension. (In 2D
or higher, the cumulant expansion is plagued by UV diver-
gences; these can be regularized by self-consistency, but see
below.) Nevertheless, no finite dephasing rate as in Eq. (4)
can be identified, because the expansion is a series in powers
of (�t

√
η3/D). Moreover, this series evidently breaks down

for long virtual times η � (D/�2
t )1/3, signaling a failure of

perturbation theory. The cooperon is needed for arbitrarily
large η, in order to compute the weak localization correction
in Eq. (3).

The most interesting aspect of the result in Eq. (36) is the
sign of the second-order correction. As shown in Fig. 3, the net
coefficient G(T )

2 (β ) is positive and nonzero for β > 0. Fig. 4
shows that this is due to a competition between terms coming
from the different topological sectors, which do not cancel
the square of the first-order coefficient. The range plotted
in Figs. 3 and 4 corresponds to interparticle scattering due
to attractive interactions γt < 0 [Eq. (26)]; G(T )

2 (β ) remains
positive and nonzero for β > 1, corresponding to repulsive
interactions. We conclude that at second order, the interaction
of the cooperon with the diffusive bath gives a net rephasing
contribution, and this quickly overwhelms the first-order de-
phasing result when η � (D/�2

t )1/3. The ultimate fate of the
cooperon at long times requires a nonperturbative treatment
of the diffusive bath.

We note that the self-consistent Born approximation
(SCBA) is not sufficient to stabilize these results. In the
SCBA, one sums the set of all noncrossing diagrams (as de-
fined using an alternative field theory language, see Appendix
G). This yields the self-consistent equation [22]

τ−1
SCBA = 2

∫
dω

2π

∫
dd k

(2π )d

	t (ω, k)

Dk2 − iω + τ−1
SCBA

. (38)

A

B

C

D

FIG. 4. Plot of the individual contributions to the total second-
order coefficient function G(T )

2 (β ) defined by Eq. (37), plotted in
Fig. 3. The second-order contribution to the cumulant expansion
in Eq. (36) gives a net rephasing, due to the combination of the
competing terms that do not exactly cancel out. The contributions
are indicated as A: double diagram, G(1)

2 (β ), B: the square of the
first-order term, [G1(β )]2, C: the crossed diagram, G(2)

2 (β ), and D:
the nested diagram, G(3)

2 (β ) (see Fig. 2).

Evaluating this in 1D, using Eq. (24) gives

τ−1
SCBA =

(
�2

t

D + Dt

)1/3

∝ (kBT )2/3, (39)

identical to the temperature dependence obtained by AAK
[1] for the Markovian screened Coulomb bath [Eq. (22)].
However, adding the “mass” τ−1

SCBA to the bare cooperon
c0(η) merely appends the decaying exponential prefactor
exp(−η/τSCBA) to the path integral in Eq. (27). At large vir-
tual times η → ∞, linear dephasing is overpowered by the
second-order terms contributing to Eq. (36) that are neglected
in the SCBA, and still give a nonzero contribution propor-
tional to η3.

These results can be compared with those of AAK for
the screened Coulomb Markovian bath, reviewed in Sec. II B.
In that case, there is an exact solution [Eq. (21)]. However,
one could instead employ a perturbative calculation similar to
the one presented above. Performing the cumulant expansion
for the Markovian bath (Appendix D), one finds the same
power-law behavior in η seen above in Eq. (36) [10]. The η3/2

dependence is generic to perturbing around the bare cooperon
in 1D, and is not tied to the diffusive character of the bath.

For the diffusive bath, we find that every order in the cu-
mulant expansion is governed by a competition between many
dephasing and rephasing terms. Our second-order result in
Eq. (36) demonstrates that rephasing diagrams may dominate
at any given order. By contrast, the cumulant expansion for
the Markovian bath (Appendix D) yields a single term at each
order. This difference in complexity can also be seen in the
field theory description (Appendix G).

The path integral Eq. (5) gives a strongly coupled field
theory [22] governing the dephasing of a system with a dif-
fusive noise bath. The bare cumulant expansion breaks down
after short virtual times, so that a nonperturbative technique
is required to characterize the dephasing of the system. How-
ever, the SCBA is not sufficient to stabilize the theory against
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additional perturbative corrections. In the next two sections,
we employ an additional Markovian noise bath (which we
treat exactly) as an infrared regularization; this stabilizes the
perturbation theory for the diffusive, non-Markovian bath at
long virtual times [see Eq. (40)].

Finally, we note that the calculation presented in this sec-
tion can also be carried out in a field theory formalism, and
that there is a well-defined mapping between the Feynman
diagrams there and the different contributions seen here in
the cumulant expansion. This connection is described in Ap-
pendix G.

IV. DEPHASING DUE TO COMBINED DIFFUSIVE AND
MARKOVIAN BATHS: RESULTS

We demonstrated in Sec. III that a naive perturbative treat-
ment of the diffusive noise bath modulating the cooperon
in Eq. (5) is insufficient to determine the dephasing time
[Eq. (4)]. We argued that the standard partial summation of
perturbation theory [the self-consistent Born approximation
(SCBA)] does not stabilize the calculation against neglected
perturbative corrections. More work is required to understand
dephasing in such a weakly disordered, quasi-1D fermion
system with pure short-ranged interactions.

To understand the effects of the diffusive noise bath, in
this section we study coexisting interactions. In particular,
we consider the diffusive kernel [Eq. (24)] in parallel with
the Markovian kernel in Eq. (15). This scenario corresponds
to a quasi-1D, many-channel quantum wire with spin SU(2)
symmetry, possessing both long-ranged Coulomb and short-
ranged, spin exchange interactions. These interactions are
respectively associated to the charge and spin density hydro-
dynamic modes, and each gives rise to its own noise bath that
interacts with the cooperon [17,30,31].

We treat the Markovian bath exactly, extending the AAK
solution reviewed in Sec. II B, whilst simultaneously em-
ploying the cumulant expansion [Eq. (27)] for the diffusive
bath. We find that the Markovian bath provides a phys-
ical infrared regularization of the terms computed in the
perturbative expansion for the diffusive bath. Unlike the
bare expansion presented in Sec. III or the SCBA, this
regularization stabilizes perturbation theory at long virtual
times. This is due to nontrivial cancellations between higher-
order terms, detailed in Sec. V, with no analog in the bare
expansion [Eq. (36)].

At first order, we find that the diffusive bath enhances the
dephasing rate, but at second order we again find a positive
rephasing contribution. Interestingly, this exactly parallels the
short-time expansion for the purely diffusive bath in Eq. (36).
By contrast to that calculation, the results here obtain in the
limit of large virtual times η → ∞. In the latter limit, the dual
bath-averaged cooperon can be cast in the form

c(η)

cM (η)
= A(β ) exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ηD

a2

⎡
⎢⎢⎢⎣

(
�t
�M

)
C1(β )

−( �t
�M

)2C (T )
2 (β )

+O
(

�t
�M

)3

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (40)

FIG. 5. The coefficient function C1(β ) for the first-order cumu-
lant expansion result in Eq. (40), which describes dephasing due
to inelastic spin-triplet exchange scattering, in the presence of an
additional screened-Coulomb Markovian bath. Here β is the ratio of
the interacting and bare diffusion constants defined by Eq. (26). The
coefficient C1(β ) is expressed in terms of a slowly converging infinite
sum in Eq. (60). In order to reliably approximate the result, here we
have used the series acceleration technique described in Appendix
F. We plot the coefficient for 0 < β � 1, which corresponds to
ferromagnetic exchange interactions [γt < 0 in Eqs. (25) and (26)].
Since C1(β ) > 0, the first-order correction in Eq. (40) enhances the
dephasing rate of the pure Markovian result in cM (η).

where the prefactor A(β ) and rate coefficients C1(β ) and
C (T )

2 (β ) are dimensionless functions of the diffusion constant
ratio β, defined by Eq. (26). In Eq. (40), cM (η) is the exact
result for the Markovian-dephased cooperon in Eq. (21), while
the coupling strengths �M and �t for the Coulomb Markovian
and spin-triplet diffusive baths were defined by Eqs. (16) and
(25), respectively.

The rate coefficient functions C1(β ) and C (T )
2 (β ) are both

positive, so that the former (latter) enhances (suppresses)
the dephasing relative to the Markovian result cM (η). Sim-
ilar to the second-order coefficient in the bare expansion
for the diffusive bath [Eqs. (36) and (37)], the second-order
rate coefficient obtains from a combination of several terms,
corresponding to contributions from the three different time-
ordering topologies explicated in Eqs. (34) and Fig. 2, minus
the square of the first-order result. The net result can be
expressed by the combination

C (T )
2 (β ) ≡ C4(β ) − C1(β ) C2(β ) + C7(β ) + C8(β ), (41)

where the components {C j (β )} are precisely defined in Ap-
pendix C2. Each of the functions {C j (β )} can be expressed
through one or more infinite summations over the Airy bound
states that solve the Markovian problem [Eqs. (19) and (20)];
summands are given by integrals over matrix elements in-
volving these eigenfunctions. Figures 5 and 6 show that the
sign of these functions give net dephasing and rephasing
contributions at first and second order, respectively. We note
that the dimensionless perturbative parameter in the dual-bath
cumulant expansion Eq. (40) is the ratio of the bath coupling
constants (�t/�M ), which is independent of temperature (un-
less further renormalization of the triplet coupling strength is
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A
B

C

FIG. 6. The coefficient function C (T )
2 (β ) for the second-order

cumulant expansion result in Eq. (40). This coefficient is expressed
as the combination of terms {C j (β )} shown in Eq. (41). The in-
dividual terms in the latter equation arise from the three different
time-ordering sectors depicted in Fig. 2, minus the square of the first-
order result. The terms C1(β ) and C2(β ) appear already at first order
(see Fig. 5), while the rest obtain exclusively from the second-order
diagrams. To evaluate the total coefficient in Eq. (41), the terms C1

and C2 are each approximated using the series acceleration technique
described in Appendix F. The remaining terms {C4, C7, C8} are each
given by a triply infinite summation over Airy eigenfunction energy
levels [Eq. (19)]. Here they are estimated by series truncation after
summing the first Nε energy levels. We plot C (T )

2 (β ) for several values
of Nε to show convergence. A: Nε = 1, B: Nε = 2, (Nε = 3 unla-
beled), C: Nε = 4. We see that C (T )

2 (β ) > 0, so that the second-order
contribution to the dephasing rate in Eq. (40) is negative. In other
words, the second-order contribution is rephasing. This is similar to
the second-order correction to the short-time expansion for the pure
diffusive bath calculation [Eq. (36) and Fig. 3].

taken into account—see Sec. VI B), in contrast to the pure
diffusive bath expansion in Eq. (36).

The fact that the second-order correction in Eq. (40) is
rephasing is a main result of this section. This is similar to the
pure diffusive bath result in Eq. (36), except that Eq. (40) is
well-defined in the long-virtual-time limit η → ∞, and gives
a valid dephasing time via Eq. (4). The advent of rephasing
corrections due to the diffusive bath beyond first order was
anticipated by the RG study in Ref. [22], which located a
nontrivial fixed point in a d = 4 − ε expansion. The fixed
point arises due to vertex corrections neglected in the SCBA
[Eq. (38)] that suppress the cooperon-bath coupling strength.
Such corrections are absent in the Markovian case (Appendix
G3).

A. Comparison with self-consistent calculations

In Sec. III, we argued that the perturbative calculation of
dephasing due to the purely diffusive bath is not stabilized by
the SCBA [Eqs. (38) and (39)]. Here we discuss how the long-
virtual-time result for the combined baths obtained in Eq. (40)
compares to self-consistent calculations.

On physical grounds (but see below), low frequencies
|ω| < τ−1

φ are not expected to contribute to dephasing
[17,35,36]. This motivates the self-consistent truncation of

first-order perturbation theory,

1

τφ

= 2
∫

dk

2π

∫ ∞

τ−1
φ

dω

2π

2Dk2

[(Dk2)2 + ω2]
	(ω, k), (42)

where 	(ω, k) is the noise kernel [cf. the SCBA in Eq. (38)].
We emphasize that Eq. (42) is an ad-hoc prescription; for

the case of the Markovian bath, it artificially introduces non-
Markovianity into the effective bath kernel by excising the IR.
By contrast, the dephasing problem itself, stated in Eqs. (1)
and (2), obtains from the fully controlled many-body perturba-
tion theory [4] or Finkel’stein nonlinear sigma model [30]. For
the quasi-1D case, dephasing of the cooperon in Eq. (5) due
to either the Coulomb [Eq. (12)] or diffusive [Eq. (24)] baths
is equivalent to a UV-convergent, but strongly coupled quan-
tum field theory [22]. The exact solution for the Markovian
case exploits the AAK transfer matrix procedure reviewed
in Sec. II A. For the Coulomb interaction this exact result
gives the same temperature dependence as the self-consistent
Eq. (42). As we illustrate below, however, the self-consistent
calculation fails for the dual bath calculation, due to the sen-
sitive dependence on the cutting procedure. Fortunately, our
perturbative expansion using the AAK Markovian bath to reg-
ularize the diffusive one gives the fully controlled, long-time
result (through second order) in Eq. (40).

Applying the self-consistent Eq. (42) to the 1D dual-bath
cooperon studied in this (and the next) section, we find the
result

1

τφ

= 2D

π2/3a2

[
1 +

( �t

�M

)
H (β )

]2/3

= 2D

π2/3a2

[
1 + 2

3

(
�t
�M

)
H (β )

− 1
9

(
�t
�M

)2
[H (β )]2 + O

(
�t
�M

)3
]
, (43)

where

H (β ) ≡
√

β

(1 + √
β )(1 + β )

. (44)

This result shares some features with Eq. (40), in particular the
appearance of a second-order rephasing contribution. How-
ever, the numerical prefactor is incorrect for the pure Coulomb
contribution, and more importantly the coefficient function
at nth-order [H (β )]n is qualitatively incorrect. The function
H (β ) vanishes as β1/2 in the β → 0 limit; this corresponds to
strong interaction coupling γt → −∞ [Eq. (26)]. By contrast,
the coefficient functions C1(β ) and C (T )

2 (β ) shown in Figs. 5
and 6 asymptote to nonzero values as β → 0. This discrep-
ancy is an order-of-limits issue; the η → ∞ and β → 0 limits
do not commute. The self-consistent result in Eq. (43) obtains
at first order in perturbation theory, valid at best for short
virtual times η � 1/τφ .

On the other hand, the result in Eq. (40) with coefficient
functions {C1(β ), C (T )

2 (β )} obtains only in the large η limit.
Since β ∝ Dt , the effect of the diffusive bath must vanish
at β = 0, see Eq. (29). Eq. (40) is valid for Dη/a2 � 1/β.
The controlled result in Eq. (40) is particularly relevant in
the context of the RG enhancement of the spin exchange
interaction γt near a MIT [31–34].

Another key point is that the second-order rephasing term
in the self-consistent result obtained in Eq. (43) depends
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sensitively on the cutting scheme, due to the strong infrared
divergence in Eq. (42). Instead of applying Eq. (42) simulta-
neously to the Markovian and diffusive baths, we can instead
use the AAK result for the dephasing time due to the Coulomb
bath, (τAAK

φ )−1 = |α′
0|D/a2 [Eq. (21)] to cut the frequency

integral for the correction due to the diffusive bath. This gives

(
1

τφ

)
diff

= 4

π

(
�t√
2D

)
H (β )

√
τAAK
φ

= 23/2

π |α′
0|1/2

(D

a2

)( �t

�M

)
H (β ), (45)

with no second-order rephasing correction.
We conclude that the sensitive dependence on the infrared

makes self-consistency even qualitatively incorrect for the
dephasing of quasi-1D systems due to a diffusive bath, with
or without an additional regularizing Markovian bath.

V. DEPHASING DUE TO COMBINED DIFFUSIVE AND
MARKOVIAN BATHS: CALCULATION

A. General method

In this section, we provide an overview of the calcula-
tion leading to the dual-bath result in Eq. (40). This arises
due to inelastic electron-electron scattering mediated by both
screened Coulomb and spin-triplet exchange interactions, en-
coded respectively in the Markovian AAK bath [Eq. (12)] and
the diffusive (non-Markovian) bath [Eq. (24)]. We employ the
same cumulant expansion as in Sec. III, expanding pertur-
batively in the diffusive bath whilst treating the Markovian
bath exactly. The latter requires that we work in terms of
the relative- ρ(τ ) and center-of-time R(τ ) coordinates [see
Eq. (8)]. We define cM (η) to be the exact bath-averaged
cooperon in the pure Markovian limit, given by Eqs. (10) and
(21).

The dual-bath-averaged cooperon is expressed as the path
integral

c(η) = D

2

∫
dR0

∫ R(η)=x

R(0)=R0

DR(τ )
∫ ρ(η)=0

ρ(0)=0
Dρ(τ ) exp

[
− ∫ η

0 dτ
{

1
D [Ṙ(τ )]2 + 1

4D [ρ̇(τ )]2 + �M
D

∣∣ρ(τ )
∣∣}

−SI [R(τ ), ρ(τ )]

]
, (46)

where SI is as in Eq. (8), with 	(ω, k) → 	t (ω, k) given by Eq. (24).
We let 〈· · · 〉R

0 and 〈· · · 〉ρ0 denote the averages with respect to the noiseless R(τ ) and Markovian-bath-averaged ρ(τ ) actions,
respectively. As in Sec. III, the cumulant expansion boils down to the calculation of expectation values of powers of the perturbing
action. In general, to do an nth-order calculation, we must evaluate

〈Sn
I 〉0 =�n

t

∫
dk1

2π
· · ·
∫

dkn

2π

∫ η

0
dτ1a

∫ η

0
dτ1b · · ·

∫ η

0
dτna

∫ η

0
dτnb

× [
e−Dt k2|τ1a−τ1b|/2 − e−Dt k2(τ1a+τ1b)/2

]× · · · × [e−Dt k2|τna−τnb|/2 − e−Dt k2(τna+τnb)/2
]

× 〈exp[ik1(R(τ1a) − R(τ1b))] × · · · × exp[ikn(R(τna) − R(τnb))]〉R
0

×
〈
sin
[k1ρ(τ1a)

2

]
sin
[k1ρ(τ1b)

2

]
× · · · × sin

[knρ(τna)

2

]
sin
[knρ(τnb)

2

]〉ρ
0
, (47)

where the elementary frequency integrations have already been carried out via∫
dω

2π

(
2Dt k2

D2
t k4 + ω2

)[
e−iω(τa−τb)/2 − e−iω(τa+τb)/2] = exp

[
−Dt k

2
( |τb − τa|

2

)]
− exp

[
−Dt k

2
(τb + τa

2

)]
≡ T̃1(Dt , k, τa, τb) − T̃2(Dt , k, τa, τb). (48)

We have two functional averages to perform:

F n
R (k′s, τ ′s) ≡ 〈exp[ik1 (R(τ1a) − R(τ1b))] × · · · × exp[ikn (R(τna) − R(τnb))]〉R

0 , (49a)

F n
ρ (k′s, τ ′s) ≡

〈
sin

[
k1ρ(τ1a)

2

]
sin

[
k1ρ(τ1b)

2

]
× · · · × sin

[
knρ(τna)

2

]
sin

[
knρ(τnb)

2

]〉ρ
0

. (49b)

As in Sec. III, the path integral expectation values will
have nontrivial dependencies on the ordering of the time
variables. In general, there are (2n)! such orderings, corre-
sponding to the permutation group S2n acting on the time
variables. However, the integral is preserved under a subgroup
of order (n! · 2n), generated by the n exchange operations
τ ja ↔ τ jb and the n! operations that permute (k j, τ ja, τ jb) →
(kσ ( j), τσ ( j)a, τσ ( j)b), for σ ∈ Sn. With these symmetries in

mind, we can restrict the τ -integration region so that τ1a <

τ2a < · · · < τna, and τ ja < τ jb for each j ∈ {1, . . . , n}. We
thus only need to consider (2n)!/(n! · 2n) topologically dis-
tinct time ordering sectors, which are in direct, one-to-one
correspondence with the topologically distinct diagrams con-
tributing to the cooperon at nth-order in the field theory
description (see Appendix G). We define these regions in τ

space as {�n
s } [with 1 � s � (2n)!/(n! · 2n)], generalizing the
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second-order decomposition in Eq. (34) [see also Fig. 2]. This
folding of the integration region produces a leading factor of
(n! · 2n).

The Gaussian functional average over R(τ ) in Eq. (49a)
follows from Wick’s theorem, since the vertex operator prod-
ucts appearing in it are charge-neutral [see Appendix A].
While the ρ(τ ) expectation value in Eq. (49b) cannot be
evaluated similarly due to the confining potential from the
Markovian bath in Eq. (46), we can instead express it as
an expansion in terms of the eigenfunctions {ψ0

j (ρ; a)} in
Eqs. (20a) and (20b). This gives 2n + 1 distinct summations
over the eigenenergies [Eq. (19)], and introduces the matrix
elements

Si j (k; a) ≡ 〈εi| sin
[kρ̂

2

]
|ε j〉

=
∫ ∞

−∞
dρ ψ0

i (ρ; a) sin

(
kρ

2

)
ψ0

j (ρ; a). (50)

Equation (50) vanishes unless one of the eigenfunctions is
even and the other is odd, a parity selection rule. When
evaluating Eq. (49b), we need to keep in mind the Dirichlet
boundary conditions ρ(0) = ρ(η) = 0. Since the odd-parity
eigenfunctions in Eq. (20b) vanish at the origin, when
Eq. (49b) is evaluated by inserting 2n + 1 resolutions of the
identity, the first and last energies in the Trotterization must
have even parity. Moreover, the parity of ε j must correspond
to the parity of j, for all j ∈ {0, 1, 2, . . . , 2n}. We give the

explicit general form of the ρ correlator in Eq. (49b) in Ap-
pendix C1.

We can simplify our calculation by scaling our integration
variables to make them dimensionless,

(τ, ρ, k) →
(
η τ, a ρ,

k

a

)
, (51)

where η is the external virtual time argument of the cooperon
in Eq. (46), and a denotes the characteristic dephasing
length scale for the Markovian screened-Coulomb problem
[Eq. (17)]. This leaves

〈
Sn

1

〉
0 = �n

t

(�M

D2

)n/3

η2n × [dimensionless integrals]

≡
( �t

�M

)n

fn(z, β ), (52)

where fn is a function only of the dimensionless external
virtual time variable

z ≡ (ηD/a2), (53)

and of the diffusion constant ratio β [Eq. (26)]. The scaling
procedure shows that the control parameter in the cumulant
expansion is the ratio of the bath coupling strengths

�t

�M
= 3κ0γ

2
t

2χ0(1 − γt )
. (54)

The scaling also sends the matrix elements to dimensionless
functions

Si j (k; a) → Si j (k/a; a) ≡ S̃i j (k) = 1√|α′
i|

1

Ai(α′
i ) Ai′(α j )

∫ ∞

0
dρ Ai

(
ρ + α′

i

)
Ai
(
ρ + α j

)
sin
(kρ

2

)
, (55)

where i, j correspond to even and odd-parity energies, re-
spectively. For a given pair of levels, S̃i j (k) can be efficiently
computed numerically as a function of the dimensionless
momentum parameter k. This is facilitated by the superexpo-
nential fall off of the Airy functions with positive argument,
Ai(x � 1) ∼ x−1/4 exp [−(2/3) x3/2].

Our strategy is then as follows. After computing the
correlators in Eq. (49), Eq. (47) requires the evaluation

of n momentum integrations and 2n integrations over
the τ variables, the latter of which are partitioned into
(2n)!/(n! · 2n) topological sectors {�n

s }. Note that each fre-
quency integration produces 2 terms [dubbed “T̃1” and
“T̃2” in Eq. (48)], so that the full expression has 2n

terms. The τ integrations are elementary and we carry
them out in closed form, defining the “T kernels” to
be

T s
p1 p2···pn

(z, β, {ki}, {σi}) ≡ z2n

f0(z)

∫
�n

s

d2nτT̃p1 (zβ, k1, τ1a, τ1b) × · · · × T̃pn (zβ, kn, τna, τnb)

× F n
R

({ki}, {τ̃i}
)

exp

{
−z

[
σ2n +

2n∑
i=1

τ̃i(σi−1 − σi )

]}
, (56)

where pm ∈ {1, 2} for 1 � m � n, f0(z) is the pure
Markovian-dephased cooperon amplitude defined
via Eq. (21), and τ̃ j gives the time-ordering of the
2n {τmα} variables (α ∈ {a, b}). The parameters {σi} are
dimensionless eigenenergies for the pure Markovian
problem [Eq. (19)]; these are Airy prime zeros σi ∈ {α′

j}
(for i ∈ {0, 2, . . . , 2n}) or Airy zeros σi ∈ {α j} (for
i ∈ {1, 3, . . . , 2n − 1}).

At this point, there are n momentum integrations left
over the T kernels and the matrix elements in Eq. (55).
We tabulate the matrix elements as functions of k ahead
of time and compute the final momentum integrations nu-
merically. This gives a numerical function of z [Eq. (53)]
for each sector and choice of energies {σi}. The final re-
sult from which the η dependence of the expectation value
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TABLE I. We tabulate the asymptotic, large z → ∞ form of nonvanishing contributions to the first-order dual-bath cumulant amplitude in
Eq. (57), retaining all contributions decaying slower than 1/z. Here z is the dimensionless virtual time argument of the cooperon [Eq. (53)].
T1 and T2 correspond to the two terms in Eq. (57), defined by Eq. (58). The indices {i0, i1, i2} refer to the three distinct sums over the energy
eigenvalues [Airy or Airy-prime zeros, Eq. (19)] in Eq. (57). The {Ci, D1} functions are defined in Appendix C2, and are independent of z,
with the exception of D1, which decays asymptotically as z−1/2 for large z. The table indicates that the first-order dephasing rate comes solely
from the i0 = i2 = 0 energy terms in T1.

First-order contributions

Term i0 = i2 = 0 i0 > i2 = 0 i2 > i0 = 0 Else

T1 zC1(β, i1) − C2(β, i1) C3(β, i0, i1) C3(β, i2, i1) 0

T2 C5(β, 0, i1) − D1(z; β, i1) C5(β, i0, i1) 0 0

〈Sn
I 〉0 can be extracted requires summing over (2n + 1) en-

ergy arguments over the appropriate Airy or Airy prime
zeros.

B. First order

We now specialize to the first-order calculation 〈SI〉0 and
carry out the time integrations to get

f1(z, β ) =
∞∑

i0,i1,i2=0

2√
|α′

i0
α′

i2
|

∫
dk

2π
S̃i1i2 (k) S̃i0i1 (k)

[
T1(z, β, k2, α′

i2 , αi1 , α
′
i0 ) − T2(z, β, k2, α′

i2 , αi1 , α
′
i0 )
]
, (57)

where f1 is defined via Eq. (52), and where the “T kernels” introduced in Eq. (56) take the first-order forms:

T1(z, β, k2, σ2, σ1, σ0) = 1

f0(z)

( 1

σ2 − σ1 + θk2

)[(ezσ1 e−zθk2 − ezσ0

σ0 − σ1 + θk2

)
+
(ezσ2 − ezσ0

σ2 − σ0

)]
, (58a)

T2(z, β, k2, σ2, σ1, σ0) = 1

f0(z)

( 1

σ2 − σ1 + θk2

)[(ezσ1 e−θzk2 − ezσ0 e−βzk2

σ0 − σ1 + (θ − β )k2

)
+
(

ezσ2 − ezσ0 e−βzk2

σ2 − σ0 + βk2

)]
, (58b)

where θ ≡ 1/4 + β/2 and f0(z) is given by Eq. (21). We
may now finish the evaluation of Eq. (57) by numerically
integrating in k, using our analytical expressions for T1,2 and
tabulated values of the matrix elements S̃i j (k) as functions of
k. Each triplet of Airy and Airy-prime zero labels {i0, i1, i2}
contributes a summand to f1(z, β ) in Eq. (57).

The described numerical procedure produces the correct z
dependence for any set of these three energy labels, but it turns
out that only a small subset of possible energy combinations
are nondecaying in the large-z (virtual time) limit. In particu-
lar, the only contributions that grow with z are linear terms that
arise when both the initial and final energies are at the ground
state, i0 = i2 = 0. The linear terms arise from the limit

(T1)i0=i2=0 → z|α′
0|

α′
0 − αi1 + θk2

+ (const.), (59)

which gives the total asymptotic contribution to the expecta-
tion value in Eq. (57) as

f1(z, β ) → z C1(β ) ≡ z
∞∑

i1=0

C1(β, i1)

≡ z
∞∑

i1=0

∫
dk

2π

2[S̃i10(k)]2

(α′
0 − αi1 + θk2)

. (60)

We note that the sum in Eq. (60) is slowly converging but can
be numerically estimated by series acceleration (Appendix F).

The full asymptotic analysis is summarized in Table I.
Contributions decaying slower than 1/z will be important for
the second-order calculation, so we carefully retain them all in
Table I. Explicit expressions for the coefficients listed in this
table appear in Appendix C2. Defining

C j (β ) ≡
∑

i′s

Cj (β, i′s), (61)

D1(z; β ) ≡
∑

i′s

D1(z; β, i′s), (62)

and summing over all energies, we have the final asymptotic
formula for the first-order expectation value

〈SI〉0 

( �t

�M

)[z C1(β ) − C2(β ) + 2C3(β )
−C5(β ) + D1(z; β )

]
. (63)

We find that C1(β, i1) and C2(β, i1) are strictly positive,
while C3(β, i0, i1) and C5(β, i2, i1) can alternate in sign
(Appendix C2). We plot the asymptotic “T1” and “T2”
contributions to f1(z, β ) [the first and second lines inside
the square brackets of Eq. (63), see Table I] in Figs. 7
and 8, and compare these to the direct numerical inte-
gration of Eq. (57) using the full expressions for T1,2

in Eq. (58).

C. Second-order overview

We evaluate the second-order contribution to the cumulant
expansion for the dual-bath model along the lines explained
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TABLE II. We tabulate the asymptotic, large z → ∞ form of nonvanishing contributions to the second-order dual-bath cumulant amplitude
in Eq. (64). Here z is the dimensionless virtual time argument of the cooperon [Eq. (53)]. The terms labeled {T s

jk} correspond to the amplitudes
arising from the twelve terms in Eq. (64). The indices {i0, i1, i2, i3, i4} refer to the five distinct sums over the energy eigenvalues [Airy or
Airy-prime zeros, Eq. (19)] in Eq. (64). The functions {Ci} are defined in Appendix C2 and are independent of z. Two additional amplitudes D1

and D2 depend on z through asymptotic powers laws with exponents given by −1/2 and 1/2, respectively; however, the contributions of these
two amplitudes cancel out. From the table, we see that the i0 = i2 = i4 = 0 terms from T 1

11 give quadratic z2 contributions that exactly cancel
the square of the first-order terms in the cumulant expansion, Table I and Eq. (63). Several other nontrivial cancellations take place between
the various contributions. Finally, we see that additional linear terms arise from the T s

11 terms in the s = {2, 3} topological sectors [see Fig. 2
for the diagrammatic definition of the latter].

Second-order contributions

Term i0 = i2 = i4 = 0 i0 > i2 = i4 = 0 i2 > i0 = i4 = 0 i4 > i0 = i2 = 0 else

T 1
11

z2C1(β, i1)C1(β, i3)

−2z

[
C1(β, i1)C2(β, i3)

+C1(β, i3)C2(β, i1)

]
2zC1(β, i3)C3(β, i0, i1) 2zC4(β, i1, i2, i3) 2zC1(β, i1)C3(β, i4, i3) O(1)

T 1
21

2zC1(β, i3)C5(β, 0, i1)
−C1(β, i3)D2(z; β, i1)

2zC1(β, i3)C5(β, i0, i1) O(1) O(1) O(1)

T 1
12

−2zC1(β, i1)D1(z; β, i3)
+C1(β, i1)D2(z; β, i3)

O(1) O(1) O(1) O(1)

T 1
22 O(1) O(1) O(1) O(1) O(1)

T 2
11 2zC7(β, i1, 0, i3) O(1) 2zC7(β, i1, i2, i3) O(1) O(1)

T 2
21 O(1) O(1) O(1) O(1) O(1)

T 2
12 O(1) O(1) O(1) O(1) O(1)

T 2
22 O(1) O(1) O(1) O(1) O(1)

T 3
11 2zC8(β, i1, 0, i3) O(1) 2zC8(β, i1, i2, i3) O(1) O(1)

T 3
21 O(1) O(1) O(1) O(1) O(1)

T 3
12 O(1) O(1) O(1) O(1) O(1)

T 3
22 O(1) O(1) O(1) O(1) O(1)

above, although there are complications not seen at first order.
As before, we obtain the R correlator in Eq. (49a) in closed
form. Here, however, the R correlator breaks into three terms
for the three distinct topological sectors in Eq. (34), pictured
in Fig. 2; explicit expressions appear in Appendix A. We
again use the Airy-eigenfunction expansion to Trotterize the

ρ correlator Eq. (49b), which here gives a fivefold summation
over the energy states. The τ integrations in Eq. (47) are again
elementary, but here each topological sector �s has 4 “T
kernel” [Eq. (56)] terms, {T s

11, T s
12, T s

21, T s
22}. In terms of the

T kernels, the second-order amplitude function [see Eq. (52)]
is

f2(z, β ) =
∞∑

i0,...,i4=0

8√
|α′

i0
α′

i4
|

∫
dk1

2π

∫
dk2

2π

⎧⎪⎨
⎪⎩
[
T 1

11 − T 1
21 − T 1

12 + T 1
22

]
S̃i4i3 (k2)S̃i3i2 (k2)S̃i2i1 (k1)S̃i1i0 (k1)

+[T 2
11 − T 2

21 − T 2
12 + T 2

22

]
S̃i4i3 (k2)S̃i3i2 (k1)S̃i2i1 (k2)S̃i1i0 (k1)

+[T 3
11 − T 3

21 − T 3
12 + T 3

22

]
S̃i4i3 (k1)S̃i3i2 (k2)S̃i2i1 (k2)S̃i1i0 (k1)

⎫⎪⎬
⎪⎭, (64)

where T s
jk = T s

jk (z, β; k1, k2; α′
i4 , αi3 , α

′
i2 , αi1 , α

′
i0 ).

Using analytical forms for the 12 second-order T kernels
and tabulated values for the matrix elements S̃i j (k) [Eq. (55)],
we can numerically perform the momentum integrations. This
produces the functional dependence on the dimensionless vir-
tual time z [Eq. (53)] for a given topological sector and set of
energy levels {α′

i4 , αi3 , α
′
i2 , αi1 , α

′
i0}. As in the first-order case,

we can extract simple expressions for the asymptotic behav-
ior in the large z → ∞ limit. The important contributions at
second order are summarized in Table II.

The coefficient functions {Ci, Di} listed in Table II are
defined explicitly in Appendix C2. The D1 and D2 ampli-
tudes in Table II are nontrivial functions of z that grow via
power laws with exponents approximately equal to −1/2 and

1/2, respectively. However, these terms do not contribute
to the final rate due to cancellations. The total surviving
asymptotic contributions to the second-order result are then
[via Eq. (52)]

〈
S2

I

〉s=1

0 →
( �t

�M

)2{ z2C2
1 + 2zC1

[
2C3 − 2C2

]
+2zC4 − 2zC1

[
C5 − D1(z)

]}, (65a)

〈
S2

I

〉s=2

0 →
( �t

�M

)2

2zC7, (65b)

〈
S2

I

〉s=3

0 →
( �t

�M

)2

2zC8, (65c)
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A

B
C
D
E

FIG. 7. Comparison of full numerical calculations with the
asymptotic, large-virtual-time z → ∞ approximation to the first-
order dual-bath cumulant amplitude in Eq. (57). Here we define
f1(z)(T1 )

i0=i2=0 to be the contribution to f1 [Eqs. (52) and (57)] from
T1 [Eq. (58a)], at energy i0 = i2 = 0, with i1 left unspecified. This
plot demonstrates that the asymptotic form for this T1 contribution
with Airy prime summand labels pinned at i0 = i2 = 0, as specified
in Table I, is correct. Above, i j gives the energy level of the jth
energy and z = ηD/a2. In this plot, we vary the Airy summand
label i1 from 0 to 4, and we set β = 1 [Eq. (26)]. A: i1 = 0, B:
i1 = 1, C: i1 = 2, D: i1 = 3, and E: i1 = 4. The solid curves are
the asymptotic approximation in Table I, zC1(1, i1) − C2(1, i1). The
symbols obtain from the full numerical integration of Eq. (57), using
the exact expression for T1(z, 1, k2, α′

0, αi1 , α
′
0) from Eq. (58a).

A
B

C

D
E
F

FIG. 8. Comparison of full numerical calculations with the
asymptotic, large-virtual-time z → ∞ approximation to the first-
order dual-bath cumulant amplitude in Eq. (57). Here we define
f1(z)(T2 )

i0=i2=0 to be the contribution to f1 [Eqs. (52) and (57)] from
T2 [Eq. (58b)], at energy i0 = i2 = 0, with i1 left unspecified. This
plot demonstrates that the asymptotic form for this T2 contribution
with Airy prime summand labels pinned at i0 = i2 = 0, as specified
in Table I, is correct. Above, i j gives the energy level of the jth
energy and z = ηD/a2. In this plot, we vary the Airy summand label
i1 from 0 to 4, and we set β = 1 [Eq. (26)]. A,B: i1 = 0, C: i1 = 1, D:
i1 = 2, E: i1 = 3, and F: i1 = 4. The solid curves are the asymptotic
approximation given by C5(β, 0, i1), [see Table I and the second line
of Eq. (63)]. The symbols obtain from the full numerical integration
of Eq. (57), using the exact expression for T2(z, 1, k2, α′

0, αi1 , α
′
0)

from Eq. (58b). We note that the convergence speed is determined
by the decay of D1(z; β, i1) ∼ z−1/2.

A
B
C
D

FIG. 9. Comparison of full numerical calculations with the
asymptotic, large-virtual-time z → ∞ approximation to the second-
order dual-bath cumulant amplitude in Eq. (64). This plot compares
the contributions obtained by numerically integrating the terms in-
volving T s

11 with s ∈ {2, 3} in Eq. (64) to the asymptotic formulas
quoted in Table II, involving the amplitude functions C7(β, i1, i2, i3)

and C8(β, i1, i2, i3). Here we define f2(z)
(T s

11 )
i0=i4=0 to be the contribution

to f2 [Eqs. (52) and (64)] from T s
11 [Eq. (56)], at energy i0 = i4 = 0,

with i1, i2, i3 left unspecified. This plot demonstrates that the asymp-
totic form for the T s

11 contribution with Airy prime summand labels
pinned at i0 = i4 = 0 and s = 2, 3, as specified in Table II, is correct.
Above, i j gives the energy level of the jth energy and z = ηD/a2.
In this plot, we set i1 = i3 = 0, vary the Airy summand label i2

from 0 to 1, plot both sectors s = 2 and s = 3, and we set β = 1
[Eq. (26)]. A: i2 = 0, s = 3, B: i2 = 0, s = 2, C: i2 = 1, s = 3, and
D: i2 = 1, s = 2. The solid curves are the asymptotic approximation
in Table II, 2zC7,8(1, 0, i2, 0). The symbols obtain from the full
numerical integration of Eq. (64), using the exact expression for
T 2,3

11 (z, 1, k2
1 , k2

2 , α
′
0, α0, α

′
i2
, α0, α

′
0 ) [Eq. (56)].

where the superscript s denotes the topological sector (Fig. 2).
When we subtract the square of the first-order contribution,
we find several nontrivial cancellations. Using Eq. (63), the
final second-order contribution to the cumulant expansion [as
in Eq. (27)] is

〈
S2

I

〉
0 − 〈SI〉2

0 = 2z
( �t

�M

)2[C4 − C1C2

+C7 + C8

]
+ O(1). (66)

This is the basis of the results in Eqs. (40) and (41), quoted
in Sec. IV. In Eq. (66), the quadratic z2 terms have can-
celed exactly. This cancellation is the key difference between
this dual diffusive- and Markovian-bath result, and the pure-
diffusive bath expansion studied in Sec. III [Eq. (36)]. By
killing off the higher-order η dependence, this cancellation
stabilizes the cumulant expansion at long virtual times and
determines a well-defined dephasing rate via Eq. (4). In
Eq. (66), the amplitudes C3, C5, and D1 cancel out as well. This
is notable, because the energy-level-resolved amplitudes in
Table II, C3(β, i0, i1), C5(β, i0, i1), and D1(z; β, i3) contribute
with level {i j}-dependent signs, so that the overall sign of the
total contribution would require numerically precise summa-
tion over many Airy energy levels.

The asymptotic results for T 2,3
11 summarized in Table II are

compared to the direct numerical integration of Eq. (64) in
Fig. 9.
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The major dephasing contribution at second order comes
from the −C1C2 term in Eq. (66). We can evaluate this
with series acceleration. Summing C4, C7, and C8 to the first
four excited states gives the plot in Fig. 6, which defini-
tively shows that the net contribution is positive, and thus
that the final second-order result is rephasing, as discussed
in Sec. IV.

VI. DISCUSSION AND CONCLUSION

A. Dephasing and rephasing

We have investigated the dephasing of quasi-1D systems
with diffusive noise baths as a possible analytical window into
the physics of the many-body localization (MBL) transition.
The diffusive noise bath is self-generated by short-ranged in-
teractions at intermediate temperatures in an isolated fermion
system with quenched disorder.

In Sec. III, we studied a system with a purely diffusive
noise bath. This describes a quasi-1D system of ultracold
fermions with contact interactions, which could be a potential
realization for MBL. We calculated the cooperon through
second-order perturbation theory around the noninteracting
result. This procedure gives a well-defined, divergence-free
short-time expansion, but the latter breaks down at long
times and fails to yield a meaningful result for the dephasing
time.

To better understand our results, we also considered in
Secs. IV–V a physical regularization of the previous problem,
in which the diffusive bath coexists with the Markovian noise
bath that arises due to screened Coulomb interactions. This
corresponds to an SU(2) spin-symmetric many-channel quan-
tum wire with Coulomb and short-range spin-triplet-exchange
interactions. Treating the Coulomb bath exactly (via an ex-
tension of the AAK technique [1]) and the diffusive bath
perturbatively, we found that the presence of the Coulomb
interaction stabilizes the perturbation theory, giving well-
defined corrections to the dephasing rate due to the Coulomb
interaction. Reminiscent of our results in Sec. III, we find that
the second-order term in this expansion is rephasing. Rephas-
ing corrections are consistent with RG results showing that
vertex corrections can suppress the cooperon-noise coupling
strength [22].

We demonstrated that commonly used (in higher dimen-
sional dephasing calculations) self-consistent approaches that
bootstrap lowest-order perturbation theory fail to capture the
correct physics of dephasing due to the diffusive bath, in
both the absence and presence of an additional Markovian
bath.

A key goal for future work is to obtain a nonperturba-
tive understanding for dephasing due to the diffusive bath
in isolation. As articulated in Ref. [22], this can be cast as
a type of self-interacting polymer problem, with a gyration
radius that sets the dephasing length in the long-virtual-time
limit.

B. Enhancement of dephasing in spin SU(2)-symmetric
quantum wires via itinerate spin-exchange interactions

In the theory of the interacting, disordered (“Anderson-
Mott” [31]) zero-temperature metal-insulator transition

(MIT), it has long been appreciated that short-ranged, spin-
triplet-exchange interactions are enhanced [31–33] due to
the presence of quenched disorder. Such enhancements are
generically expected due to the confluence of wave func-
tion criticality near a MIT (multifractality [43–45]) and the
smooth scaling of matrix elements with energy (Chalker scal-
ing [46]). The enhancement of the spin interaction strength
in spin SU(2)-symmetric (orthogonal class AI) systems
[31–33] means that dephasing due to this channel should
also be enhanced, which could play a role in the physics of
weakly disordered, many-channel 1D quantum wires. This
enhancement might provide an additional mechanism for the
apparent “saturation” of the dephasing rate (deviation from
the τφ ∼ T −2/3 AAK prediction for Markovian-Coulomb
dephasing [1]) observed in experiments on such systems
[4–16].

The enhancement of the ferromagnetic exchange interac-
tion γt < 0 due to the first quantum correction in class AI
takes the form

δ|γt | = g(γt )
(T0

T

)1/2

, (67)

where g(γt ) � 0 is a well-behaved function of γt that van-
ishes in the γt → 0, 1 limits [30,31]. The temperature scale
T0 ∝ 1/(σ0ν0), where σ0 is the classical conductivity and ν0 is
the density of states. In the context of dephasing, this leads
to a T −1/2 enhancement of the noise coupling strength �t

[Eq. (25)] at intermediate temperatures. The first-order cor-
rection to the dephasing due to the diffusive bath in Eq. (40)
thus contains an additional boost due to this enhancement,
leading to a slowing of the dephasing rate relative to the AAK
result τφ ∼ T −2/3 [1]. Expanding �t through the first quan-
tum correction [Eq. (67)] in our expression for the cooperon
[Eq. (40)], we find the result

1

τφ


 D
( 2kB

κ0D2

)2/3

[F0(γt ) T 2/3 + F1(γt ) T 1/2
0 T 1/6]

∝
( T

T ∗
)2/3

+ α∗
( T

T ∗
)1/6

, (68)

where we have defined T ∗ and α∗ as necessary. In Eq. (68),
{F0,1(γt )} denote dimensionless functions of the dimension-
less triplet coupling constant γt ; pure Coulomb scattering
corresponds to the limit F0(γt → 0) > 0 [F1(γt → 0) = 0].
On the second line of this equation, the magnitude of
the dimensionless parameter α∗ ∝ T 1/2

0 is suppressed by
the large bare conductance, as discussed below Eq. (67).
We see that the diffusive bath contributes a subleading
correction to the dephasing rate that decays as T 1/6. Fig-
ure 10 compares this prediction to the classic AAK result.
At even lower temperatures, Eqs. (40) and (67) predict a
suppression of dephasing relative to AAK, due to the second-
order rephasing correction. The full interplay of enhanced
or suppressed dephasing (real processes) with all virtual
quantum corrections could in principle be tackled using
the dynamical version of the Finkel’stein nonlinear sigma
model [30].
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FIG. 10. Schematic log-log plot of the temperature dependence
of the cooperon dephasing rate for a quasi-1D quantum wire
with coexisting short-ranged spin-triplet-exchange and long-ranged
Coulomb interactions. The temperature scale is set by T ∗, as de-
fined in Eq. (68). (a) Dephasing rate due to coexisting interactions
including the first quantum corrections to γt , as given by Eq. (68).
Here we have set α∗ = 0.02. (b) Subleading correction to the de-
phasing rate due to temperature-dependent quantum corrections to
γt . C: Classical AAK scaling result for the dephasing rate, neglecting
temperature-dependent quantum corrections to γt . By plotting the
experimentally measured dephasing rate (a) on a log-log scale, it
should be possible to extract the prefactor of the AAK scaling (T ∗).
The leading-order contribution (c) could then be subtracted off and
the subleading temperature dependence (b) could be plotted directly.
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APPENDIX A: VERTEX OPERATOR CORRELATORS

In this Appendix, we record results for the various charge-
neutral vertex operator correlators that arise throughout the
paper. These are Gaussian and obtain from Wick’s theorem.
For the first-order pure diffusive bath calculation [Eqs. (29)
and (30)], we have

〈eikr(τb) e−ikr(τa )〉r
0 = e−Dhr (η,k,τa,τb),

hr (η, k, τa, τb) = k2

2
|τb − τa|

[
1 − 1

2η
|τb − τa|

]
. (A1)

The second-order generalization is more complicated and de-
pends on the time ordering. We can use symmetry to reduce
to the case where τ1a < τ1b, τ2a < τ2b, and τ1a < τ2a [Eq. (34)
and Fig. 2]. We have

〈eik1r(τ1b) e−ik1r(τ1a ) eik2r(τ2b) e−ik2r(τ2a )〉r
0

= e−Dhr (η,k1,τ1a,τ1b) e−Dhr (η,k2,τ2a,τ2b) eDφr (η,k1,k2,τ1a,τ1b,τ2a,τ2b),

(A2)

where

φr (η, k1, k2, τ1a, τ1b, τ2a, τ2b) = k1k2

2η
(τ2b − τ2a)(τ1b − τ1a) − k1k2

{0, τ1a < τ1b < τ2a < τ2b,

τ1b − τ2a, τ1a < τ2a < τ1b < τ2b,

τ2b − τ2a, τ1a < τ2a < τ2b < τ1b.

(A3)

The expectation values over the center-of-time path integral R(τ ) used in the coexisting bath calculation presented in Secs.
IV and V are simpler due to the averaging over the endpoint R0 [Eq. (46)]. We find that

〈eikR(τb) e−ikR(τa )〉R
0 = e−DhR (k,τa,τb), hR(k, τa, τb) = k2

4
|τb − τa|. (A4)

At second order, we have

〈eik1R(τ1b) e−ik1R(τ1a ) eik2R(τ2b) e−ik2R(τ2a )〉R
0 = e−DhR (k1,τ1a,τ1b)e−DhR (k2,τ2a,τ2b)eDφR (k1,k2,τ1a,τ1b,τ2a,τ2b), (A5)

with

φR(k1, k2, τ1a, τ1b, τ2a, τ2b) = k1k2

2

{0, τ1a < τ1b < τ2a < τ2b,

(τ1b − τ2a), τ1a < τ2a < τ1b < τ2b,

(τ2b − τ2a), τ1a < τ2a < τ2b < τ1b.

(A6)

APPENDIX B: FURTHER DETAILS ON THE PURELY DIFFUSIVE BATH CALCULATION

We explicitly define the functions Gs
2(β ) used in Eq. (35). The time sectors {�1,2,3} are defined via Eq. (34), illustrated by the

diagrams in Fig. 2. We find that

Gs
2(β ) = 8

π

∫
�s

d4τ

[
1√

�s
11(β, τ )

− 1√
�s

21(β, τ )
− 1√

�s
12(β, τ )

+ 1√
�s

22(β, τ )

]
, (B1)

where

�1
i j (β, τ1a, τ1b, τ2a, τ2b) = {4gi(β, τ1a, τ1b) g j (β, τ2a, τ2b) − [(τ2b − τ2a)(τ1b − τ1a)]2}, (B2)

�2
i j (β, τ1a, τ1b, τ2a, τ2b) = {4gi(β, τ1a, τ1b) g j (β, τ2a, τ2b) − [(τ2b − τ2a)(τ1b − τ1a) − 2(τ1b − τ2a)]2}, (B3)

�3
i j (β, τ1a, τ1b, τ2a, τ2b) = {4gi(β, τ1a, τ1b) g j (β, τ2a, τ2b) − [(τ2b − τ2a)(τ1b − τ1a) − 2(τ2b − τ2a)]2}, (B4)

and the functions {gi} are defined by Eq. (32).
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APPENDIX C: FURTHER DETAILS ON THE COEXISTING
BATH CALCULATION

1. General calculation

We compute the functional integral over ρ(τ ) [Eq. (49b)]
via the Coulomb-Markovian eigenfunctions defined in
Eqs. (20a) and (20b). Let τ̃ j (where j runs over {1, . . . , 2n}) be
the time-ordering of all the time variables {τia, τib} appearing
in Eq. (49b). (E.g., restricting so that τia < τib and τia < τ ja

for i < j, one has that τ̃1 = τ1a (see Fig. 2). The rest of the
τ̃ j will depend on the time-sector topology, as discussed in
Secs. III and Appendix A). In general, we then have [after the
scaling applied in Eq. (51)]

F n
ρ (k′s, τ ′s) ≡

〈
sin
[k1ρ(τ1a)

2

]
sin
[k1ρ(τ1b)

2

]

× . . . × sin
[knρ(τna)

2

]
sin
[knρ(τnb)

2

]〉ρ
0

(C1)

= 1

f0(z)

∞∑
i0,...,i2n=0

S̃i2ni2n−1 [kr(2n)] × . . . × S̃i1i0 [kr(1)]√
α′

i0
α′

i2n

× exp

{
−η

[
ε2n +

2n∑
j=1

τ̃ j (ε j−1 − ε j )

]}
, (C2)

where the ε j are given by Eq. (19) and f0(z) is given by
Eq. (21). Above, the subscript kr( j) indicates that one has to
be careful about allocating the momenta to the expectation
values. The ordering of the momenta is dependent on the
topology of the time sector being considered. We formalize
this by defining a function r : {1, . . . , 2n} → {1, . . . , n}, as
follows: if τ̃ j = τia or τib, then r( j) = i. The order of the
momenta depends on the time-ordering of the τ variables.

2. First and second order

We give the coefficients defined in the first-order asymp-
totic analysis in Table I.

C1(β, i1) = 2
∫

dk

2π

[S̃i10(k)]2(
α′

0 − αi1 + θk2
) , (C3)

C2(β, i1) = 2
∫

dk

2π

[S̃i10(k)]2(
α′

0 − αi1 + θk2
)2 , (C4)

C3(β, i2, i1) = 2

∣∣∣∣ α′
0

α′
i2

∣∣∣∣
1/2 1

α′
0 − α′

i2

∫
dk

2π

S̃i10(k) S̃i2i1 (k)(
α′

0 − αi1 + θk2
) , (C5)

C5(β, i0, i1) = 2

∣∣∣∣ α′
0

α′
i0

∣∣∣∣
1/2 ∫ dk

2π

S̃i10(k) S̃i0i1 (k)

(α′
0 − α′

i0
+ βk2)

(
α′

0 − αi1 + θk2
) . (C6)

Similarly, the coefficients introduced in the second-order asymptotic analysis Table II are

C4(β, i1, i2, i3) = 4

α′
0 − α′

i2

[∫
dk

2π

S̃i10(k) S̃i1i2 (k)(
α′

0 − αi1 + θk2
)][∫ dk

2π

S̃i30(k) S̃i3i2 (k)(
α′

0 − αi3 + θk2
)], (C7)

C7(β, i1, i2, i3) = 8
∫

dk1

2π

∫
dk2

2π

S̃i10(k1) S̃i2i1 (k2) S̃i2i3 (k1) S̃i30(k2)(
α′

0 − αi1 + θk2
1

)(
α′

0 − αi3 + θk2
2

)(
2α′

0 − 2α′
i2

+ 2θk2
1 + 2θk2

2 + k1k2
) , (C8)

C8(β, i1, i2, i3) = 8
∫

dk1

2π

∫
dk2

2π

S̃i10(k1) S̃i2i1 (k2) S̃i2i3 (k2) S̃i30(k1)(
α′

0 − αi1 + θk2
1

)(
α′

0 − αi3 + θk2
1

)(
2α′

0 − 2α′
i2

+ 2θk2
1 + 2θk2

2 + k1k2
) . (C9)

Tables I and II also contain “anomalous” contributions D1 and D2, which arise in the T2, T 1
12, and T 1

21 terms when all “even”
energies (i0, i2, i4) are pinned at the ground state. These are defined by

D1(z; β, i1) = 2z1/2

β

1

α′
0 − αi1

∫
dk

2π

1

k2
e−βk2

[
S̃i10

(
k√
z

)]2

, (C10)

D2(z; β, i1) = 4z3/2

β2

1

α′
0 − αi1

∫
dk

2π

1

k4
(1 − e−βk2

)

[
S̃i10

(
k√
z

)]2

. (C11)

In each case, we can expand S̃i j (k) in powers of k/
√

z for large
z, since k/

√
z will be small for the dominant portion of the in-

tegrand. Because the leading-order contribution to S̃i j (k/
√

z)
is linear in k/

√
z, the leading-order asymptotic contributions

to D1 and D2 are z−1/2 and z1/2, as seen numerically. We note
again that both D1 and D2 cancel from the final dephasing
expressions.

3. Numerical comparison with asymptotics

In this Appendix subsection we provide a collection of
plots (Figs. 11–18) demonstrating the accuracy of the asymp-
totic expressions given in Tables I and II, similar to Figs. 7–9.
In Figs. 11–18, we numerically calculate the full contribu-
tions from the terms listed in the rows of Tables I and II,
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A

B

C
D

FIG. 11. Comparison of full numerical calculations with the
asymptotic, large-virtual-time z → ∞ approximation to the first-
order dual-bath cumulant amplitude in Eq. (57). Here we define
f1(z)(T1 )

i0=0,i2=1 to be the contribution to f1 [Eqs. (52) and (57)] from
T1 [Eq. (58a)], at energy i0 = 0, i2 = 1, with i1 left unspecified. This
plot demonstrates that the asymptotic form for this T1 contribution
with Airy prime summand labels pinned at i0 = 0, i2 = 1, as speci-
fied in Table I, is correct. Above, i j gives the energy level of the jth
energy and z = ηD/a2. In this plot, we vary the Airy summand label
i1 from 0 to 4, and we set β = 1 [Eq. (26)]. A: i1 = 0, B: i1 = 1,
C: i1 = 2, and D: i1 = 3, 4. The solid curves are the asymptotic
approximation in Table I and Eq. (63). The asymptotic formula in
this case is given by C3, Eq. (C5). The symbols obtain from the
full numerical integration of Eq. (57), using the exact expression for
T1(z, 1, k2, α′

1, αi1 , α
′
0) from Eq. (58a).

A

B

C

D

E

FIG. 12. We define f1(z)(T2 )
i0=0,i2=1 to be the contribution to f1

[Eqs. (52) and (57)] from T2 [Eq. (58b)], at energy i0 = 0, i2 = 1,
with i1 left unspecified. This plot gives the asymptotic form for this T2

contribution with Airy prime summand labels pinned at i0 = 0, i2 =
1, as specified in Table I. Above, i j gives the energy level of the jth
energy and z = ηD/a2. In this plot, we vary the Airy summand label
i1 from 0 to 4, and we set β = 1 [Eq. (26)]. A: i1 = 0, B: i1 = 1, C:
i1 = 2, D: i1 = 3, and E: i1 = 4. The decay of these functions shows
that these contributions asymptotically vanish, as indicated in Table I.
The symbols obtain from the full numerical integration of Eq. (57),
using the exact expression for T2(z, 1, k2, α′

1, αi1 , α
′
0) from Eq. (58b).

A

B
C
D
E

FIG. 13. We define f1(z)(T2 )
i0=1,i2=0 to be the contribution to f1

[Eqs. (52) and (57)] from T2 [Eq. (58b)], at energy i0 = 1, i2 = 0,
with i1 left unspecified. This plot demonstrates that the asymptotic
form for this T2 contribution with Airy prime summand labels pinned
at i0 = 1, i2 = 0, as specified in Table I, is correct. Above, i j gives the
energy level of the jth energy and z = ηD/a2. In this plot, we vary
the Airy summand label i1 from 0 to 4, and we set β = 1 [Eq. (26)].
A: i1 = 0, B: i1 = 1, C: i1 = 2, D: i1 = 3, and E: i1 = 4. The solid
curves are the asymptotic approximation in Table I and Eq. (63). The
asymptotic formula in this case is given by C5, Eq. (C6). The symbols
obtain from the full numerical integration of Eq. (57), using the exact
expression for T2(z, 1, k2, α′

0, αi1 , α
′
1) from Eq. (58b).

A

B

C
D
E

FIG. 14. We define f1(z)i0=i2=1 to be the contribution to f1

[Eqs. (52) and (57)] [from both T1 and T2, Eqs. (58a) and (58b)],
at energy i0 = i2 = 1, with i1 left unspecified. This plot gives the
asymptotic form for these contributions with Airy prime summand
labels pinned at i0 = i2 = 1, as specified in Table I. Above, i j gives
the energy level of the jth energy and z = ηD/a2. In this plot, we
vary the Airy summand label i1 from 0 to 4, and we set β = 1
[Eq. (26)]. A: i1 = 0, B: i1 = 1, C: i1 = 2, D: i1 = 3, and E: i1 =
4. Here we see that these contributions asymptotically vanish, as
indicated in Table I (“Else”). The symbols obtain from the full
numerical integration of Eq. (57), using the exact expressions for
T1(z, 1, k2, α′

1, αi1 , α
′
1) and T2(z, 1, k2, α′

1, αi1 , α
′
1) from Eqs. (58a)

and (58b).
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A

B

FIG. 15. We define f2(z)
(T 1

11 )
i0=i2=i4=0 to be the contribution to f2

[Eqs. (52) and (64)] from T 1
11 at energy i0 = i2 = i4 = 0, with i1 and

i3 left unspecified. This plot demonstrates that the asymptotic form
for this T 1

11 contribution with Airy prime summand labels pinned at
i0 = i2 = i4 = 0, as specified in Table II, is correct. In this plot, we
vary the Airy summand labels i1, i3 from 0 to 1. A: (i1, i3) = (0, 0)
and B: (i1, i3) = (1, 0), (0, 1). The asymptotic approximations from
Table II start at z = 2, while the full numerical results start at z = 0.
The full numerical results obtain from the integration of Eq. (64),
using the exact expression for T 1

11(z, 1, k2
1 , k2

2 , α
′
0, αi3 , α

′
0, αi1 , α

′
0).

A
B

C

D
E

FIG. 16. We define f2(z)
(T 1

11 )
(i0,i2,i4 )�=(0,0,0) to be the contributions

to f2 [Eqs. (52) and (64)] from T 1
11 at energies away from

i0 = i2 = i4 = 0. (No i j explicitly specified.) This plot demonstrates,
for several sets of energies, that the asymptotic form for T 1

11

given in Table II is correct. In this plot, we vary the Airy
summand labels i j 0 to 1. A: (i0, i1, i2, i3, i4) = (1, 0, 0, 0, 0), B:
(i0, i1, i2, i3, i4) = (1, 1, 0, 0, 0), C: (i0, i1, i2, i3, i4) = (1, 0, 0, 1, 0),
D: (i0, i1, i2, i3, i4) = (0, 0, 1, 0, 0), and E: (i0, i1, i2, i3, i4) =
(0, 0, 0, 0, 1). The asymptotic approximations from Table II start
at z = 2, while the full numerical results start at z = 0. The full
numerical results obtain from the integration of Eq. (64), using the
exact expression for T 1

11(z, 1, k2
1 , k2

2 , α
′
i4
, αi3 , α

′
i2
, αi1 , α

′
i0

).

A
B
C
D

E

FIG. 17. We define f2(z)
(T 1

21 )
i0=i2=i4=0 to be the contribution to f2

[Eqs. (52) and (64)] from T 1
21 at energy i0 = i2 = i4 = 0, with i1 and

i3 left unspecified. This plot demonstrates that the asymptotic form
for this T 1

21 contribution with Airy prime summand labels pinned
at i0 = i2 = i4 = 0, as specified in Table II, is correct. In this plot,
we vary the Airy summand labels i1, i3 from 0 to 1. A: (i1, i3) =
(0, 0) (asymptotic), B: (i1, i3) = (0, 0) (exact), C: (i1, i3) = (1, 0)
(asymptotic), D: (i1, i3) = (1, 0) (exact), and E: (i1, i3) = (0, 1)
(both asymptotic and exact). The asymptotic approximations from
Table II start at z = 2, while the full numerical results start at z = 0.
The full numerical results obtain from the integration of Eq. (64), us-
ing the exact expression for T 1

21(z, 1, k2
1 , k2

2 , α
′
0, αi3 , α

′
0, αi1 , α

′
0 ). The

exact and asymptotic results here differ slightly due to the anomalous
D1 term, which is dropped from the asymptotic expression used here.

(i.e., Tj, T s
jk), for some specific choices of the energy lev-

els, as functions of z = ηD/a2. This is done via the method
explained in Sec. V. These numerical results are then com-
pared to the asymptotic forms listed in Tables I and II. As in

Figs. 7–9, we define f1(z)(Tj )
i′s ( f2(z)

(T s
jk )

i′s ) to be the contribution
to f1 ( f2) from term Tj (T s

jk ) at the energy levels specified by
the subscript “i′s.” The plots all show quick convergence to
the expected behavior.

APPENDIX D: PERTURBATION THEORY FOR COULOMB
DEPHASING

The exact solution for the cooperon in the screened
Coulomb (Markovian) case is given in Eq. (21). Here we in-
stead treat this case perturbatively, via the cumulant expansion
method employed throughout this paper.

The cumulant expansion requires the evaluation of the per-
turbing action defined by Eqs. (9) and (15). We have

〈
Sn

M

〉
0 = �n

M

Dn

∫ η

0
dτn· · ·

∫ η

0
dτ1〈|ρ(τn)| . . . |ρ(τ1)|〉0 (D1)

= In

(
2�M√
πD

η3/2

)n

, (D2)
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A

B
C
D
E

FIG. 18. We define f2(z)
(T 1

21 )
(i0,i2,i4 )�=(0,0,0) to be the contributions

to f2 [Eqs. (52) and (64)] from T 1
21 at energies away from

i0 = i2 = i4 = 0. (No i j explicitly specified.) This plot demonstrates,
for several sets of energies, that the asymptotic form for T 1

21

given in Table II is correct. In this plot, we vary the Airy
summand labels i j 0 to 1. A: (i0, i1, i2, i3, i4) = (1, 0, 0, 0, 0), B:
(i0, i1, i2, i3, i4) = (1, 1, 0, 0, 0), C: (i0, i1, i2, i3, i4) = (0, 0, 1, 0, 0),
D: (i0, i1, i2, i3, i4) = (1, 0, 0, 1, 0), and E: (i0, i1, i2, i3, i4) =
(0, 0, 0, 0, 1). The asymptotic approximations from Table II start
at z = 2, while the full numerical results start at z = 0. The full
numerical results obtain from the integration of Eq. (64), using the
exact expression for T 1

21(z, 1, k2
1 , k2

2 , α
′
i4
, αi3 , α

′
i2
, αi1 , α

′
i0

).

where In is a numerical prefactor. It is given by

In = (n!)
∫ 1

0
dτn

∫ τn

0
dτn−1 . . .

∫ τ2

0
dτ1

∫ ∞

−∞
dρn . . .

∫ ∞

−∞
dρ1

× |ρn| . . . |ρ1|√
(1 − τn)(τn − τn−1) . . . (τ2 − τ1)τ1

× exp

[ −ρ2
n

(1 − τn)

]
exp

[−(ρn − ρn−1)2

(τn − τn−1)

]

× . . .

× exp

[−(ρ2 − ρ1)2

(τ2 − τ1)

]
exp

[−ρ2
1

τ1

]
. (D3)

We compute In and the resulting moments numerically; the
results are collected in Table III. In the cumulant expansion
[Eq. (27)], the coefficient of the nth-order term is given by
the nth cumulant ≡ κn, formed from the first n moments of
the perturbing action. Using the moments in Table III, we
explicitly calculate the first four cumulants and list them in
Table IV. We actually tabulate κ̄n ≡ κn/n!, which is the full
numerical coefficient for the nth order term in the expansion,

TABLE III. Table collecting numerical results for the In moment
coefficients, defined via Eqs. (D1) and (D3).

Numerical results for In coefficients

I1 I2 I3 I4

0.3927 = π/8 0.183 0.1017 0.0724

TABLE IV. Numerical results for the cumulant coefficients κ̄n ≡
κn/n!, which determine the dephasing and rephasing terms in the
cumulant expansion for the Markovian bath, Eq. (D4).

Numerical results for κ̄

κ̄1 κ̄2 κ̄3 κ̄4

0.3927 = π/8 0.0145 0.00116 0.000346

so that

cM (η) = c0(η) exp

[ −κ̄1
( 2�M√

πD
η3/2

)
+κ̄2

( 2�M√
πD

η3/2
)2 + . . .

]
. (D4)

Table IV shows that the perturbative cumulant expansion
for the Markovian gives alternating dephasing and rephasing
terms.

APPENDIX E: DIAGRAM FOLDING

To treat the Markovian noise kernel exactly, we need to
fold the time integrations from the region (−η, η) to (0, η)
[Eqs. (6) and (7)]. In general, this procedure folds the different
diagram topologies associated with time-ordering into one
another. This should be considered if one wants to study the
effects of a specific class of diagrams, or to make contact with
the field theoretic formulation of the dephasing problem [22]
(Appendix G). At first order, there is no issue, since there is
only a single diagram topology. At second order, however, we
find a nontrivial mixing of the distinct topologies (“double,”
“crossed,” and “nested”), defined by Eq. (34) and shown in
Fig. 2.

To “unfold” an nth-order diagram, any subset of the 2n
time variables can be flipped to the negative side of the
time interval. For each topological sector, we have 2n distinct
preimages under the η-folding map to consider. Table V maps
out this inverse-folding for the second-order calculation.

From Table V, we see that the (folded) double diagram
(sector 1) is really a 50-50 combination of the (unfolded)
double and nested diagrams. The (folded) nested and crossed
diagrams (sectors 2 and 3) are both 25-25-50 combinations of
the (unfolded) double, nested, and crossed diagrams, respec-
tively. However, the terms contributing nontrivial asymptotics
are marked in Table V in bold, and we see that most (but
not all) of the contributions come from diagrams that are
originally double. Interestingly, the “nontrivial” contributions
in the coexisting bath calculation (Secs. IV and V) that give
rise to C7 and C8 [Table V, Eqs. (40) and (41)] are actually
split equally between trivial (double) and nontrivial (crossed,
nested) diagrams in the unfolded framework.

APPENDIX F: SERIES ACCELERATION

We summarize a series acceleration technique used to esti-
mate the dephasing coefficients, which are defined by slowly
converging sums. For an absolutely convergent sum

∑∞
n=0 an

and constants p > 1, C > 0, we have in general that
∞∑

n=0

an = Cζ (p) +
∞∑

n=0

(an − Cn−p), (F1)
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TABLE V. Table tracing the inverse folding of diagrams. The
bold entries are the terms contributing meaningfully to dephasing or
rephasing in the asymptotic limit, see Table II. We are interested in
taking a “folded” diagram of a given shape and T -kernel type, and
diagnosing its diagram shape in the “unfolded” path integral. The
right half of the top row lists the three possible topologies for the
folded diagrams. The far left column lists which time variables are
to be flipped to the negative side of the time interval (−η, η) and
the second column lists the type of contribution (“T kernel”) of the
folded diagram.

Diagram unfolding

Folded diagrams Double Nested Crossed

Flipped τ ’s T -type Unfolding results

{} T11 Double Nested Crossed
{1} T21 Double Nested Crossed
{2} T21 Double Crossed Double
{3} T12 Nested Crossed Nested
{4} T12 Nested Double Crossed
{1,2} T11 Double Double Double
{1,3} T22 Nested Crossed Nested
{1,4} T22 Nested Crossed Crossed
{2,3} T22 Nested Crossed Crossed
{2,4} T22 Nested Crossed Nested
{3,4} T11 Double Double Double
{1,2,3} T12 Nested Crossed Crossed
{1,2,4} T12 Nested Crossed Nested
{1,3,4} T21 Double Double Double
{2,3,4} T21 Double Nested Crossed
{1,2,3,4} T11 Double Nested Crossed

where ζ is the Riemann Zeta function. We call the sum
over Cn−p a “p series.” In the case that an → Cn−p rapidly,
Eq. (F1) can be used to efficiently estimate the sum:

∞∑
n=0

an 
 Cζ (p) +
N∑

n=0

(an − Cn−p), (F2)

for some sufficiently large N . This procedure works by pack-
aging the slow convergence of an into the zeta-function.

To illustrate the method, we estimate the sum from
Eq. (23), ∑

n

1

(α′
n)2

= 2π

35/6�(2/3)2
, (F3)

which was used to derive the exact conductivity correction for
the screened Coulomb noise bath. Since the zeros of Ai′(x)
are asymptotically given by αn 
 −(3π/2)2/3n2/3, the series
in Eq. (F3) tends to a p series with

1

(α′
n)2



( 2

3π

)4/3

n−4/3. (F4)

In Fig. 19, we plot the convergence of the left-hand-side of
Eq. (F3) to the right-hand-side of Eq. (F3) alongside the con-
vergence of

∑∞
n=0 Cn−p to Cζ (p), with C = (3π/2)−4/3 and

n = 4/3. We see that both series are slowly converging, but
that the convergence rate is extremely similar. In Fig. 20, we
compare the convergence speeds of the original and boosted

A
B

C
D

FIG. 19. Depiction of the series acceleration technique demon-
strated on the Airy summation Eq. (F3). A: The true answer given
by The RHS of Eq. (F3). B: Approximations by series truncation
of the LHS of Eq. (F3) after n terms. We note that the series is
slowly converging, and nontrivial error exists after 1000 terms have
been summed. C: Known analytical limit of the p-series summation,
Cζ (p). D: Partial sums of the best p-series approximation in the
decomposition Eq. (F4). This plot shows that the slowly converging
nature of the original sum can be approximated well by a p-series
with similar convergence properties.

summations, given by truncating the left- and right-hand sides
of Eq. (F1), respectively. We see that the accelerated sum
converges several orders of magnitude faster than the original
sum.

We can use the series acceleration technique to approxi-
mate the sums C1 and C2 [Eqs. (63), (61), (C3), and (C4)]
to all energies, giving us the full first-order correction to the
dephasing rate. This gives Figs. 5 and 6. Figure 21 shows
that the C1 summation is well-approximated by a p series,
and Fig. 22 compares the convergences of the original and
accelerated series.

A

B

FIG. 20. This plot compares convergence speeds for the di-
rect summation of Eq. (F3) and the accelerated sum. A: Direct
summation—LHS of Eq. (F1) applied to Eq. (F3). B: Accelerated
sum—RHS of Eq. (F1) applied to Eq. (F3). We see that the accel-
erated sum converges several orders of magnitude faster than the
original sum.
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A
B

FIG. 21. The acceleration technique discussed in this section
requires the summands of the series in question to be well-
approximated by a p series. This can be checked empirically by
fitting a line to the summands in a log-log scale. This plot uses this
method to demonstrate that the C1(β ) series, defined in Eq. (C3) is
well-approximated by a p series. A: C1(β = 1, i1 = n) and B: Cn−p,
where C and p are extracted from a linear fit.

APPENDIX G: FERMIONIC FIELD THEORY

1. Field theory for cooperon

We reviewed in Sec. II A how the single-particle path in-
tegral and relative-time coordinates provide a powerful tool
for the nonperturbative treatment of Markovian noise kernels
[1]. The fluctuation-averaged cooperon studied in this paper
can also be calculated in terms of a replicated fermionic field
theory framework [22,47]. The generating function of the
theory is

Z =
∫

D�̄D�Dφcl e−S� [�̄,�]−Sφ [φcl]−Sc[�̄,�,φcl], (G1)

A
B

C
D

FIG. 22. Depiction of the series acceleration of C1(β ), defined
via Eq. (C3), at β = 1. A: Partial sums of the accelerated series.
We see that these converge rapidly. B: Partial sums of the origi-
nal series, which is slowly converging. C: Known analytical limit
of the p-series summation, Cζ (p). D: Partial sums of the best p-
series approximation in the decomposition Eq. (F1). We see that
C1(1) ≈ 0.22.

FIG. 23. The Feynman rules for the field theory of the
fluctuation-averaged cooperon, defined in Eq. (G1). Diagrams
(a) and (b) represent the bare propagators for the �a and φcl fields,
respectively. Diagrams (c) and (d) depict the two types of interac-
tion vertices coupling the fields. The vertices in (c) and (d) are the
“causal” and “anticausal” vertices, respectively.

with the action components

S� [�̄,�] =
∫

k,ω

�̄a(ω, k)
[D

2
k2 − iω

]
�a(ω, k), (G2)

Sφ[φcl] = 1

2
�

∫
k,ω

φcl(ω, k) φcl(−ω,−k)

	(ω, k)
, (G3)

Sc[�̄,�, φcl] = i

2

√
�

∫
k,ω

∫
q,�

φcl(�, q)

×
[

�̄a(ω + �
2 , k + q)

−�̄a(ω − �
2 , k + q)

]
�a(ω, k).

(G4)

Above, 	(ω, k) is the noise kernel for the theory, D is the
classical diffusion constant due to elastic scattering [Eq. (1)],
and � is the coupling to the bath [as in Eqs. (16) and (25)
in the main text]. We choose to embed the cooperon using
the replicated fermion field �a, where a ∈ {1, 2, . . . , n} and
we take n → 0 at the end [22]; the doubly repeated replica
index is Einstein summed in Eqs. (G2)–(G4). (Equivalently,
we could employ the Keldysh formalism to normalize the gen-
erating function Z = 1; this is natural in the full dynamical
sigma model [30,37,38]. We use replicas here only to lighten
the notation.)

The full fluctuation-averaged cooperon is obtained in the
replica limit as the correlation function

〈
ct

ω′,ω(k)
〉
φcl

= D

2
c̃(ω′, ω, k) (G5)

≡ D

2
〈�a(ω′, k) �̄a(ω, k)〉Z , (G6)

where 〈· · · 〉Z denotes a functional average over the full
partition function Z , and the “reduced cooperon,” c̃R(ω, k),
follows from averaging over relative frequency �,

c̃R(ω, k) = 1

2

∫
�

c̃
(ω − �

2
,
ω + �

2
, k
)
, (G7)

c(η) = D

2

∫
ω,k

e−iηω c̃R(ω, k). (G8)
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FIG. 24. The topology of a generic Feynman diagram contribut-
ing to the cooperon, before averaging over the bath. The replica
limit removes all diagrams with closed Fermion loops, so all relevant
diagrams contain a single Fermion line dressed with some number of
noise phonons.

The Feynman rules for the theory are given in Fig. 23. The
corresponding bare propagators for the theory are given by

〈�a(ω, k)�̄b(ω, k)〉0 = δab
[D

2
k2 − iω

]−1

≡ δabc̃0(ω, k), (G9a)

〈φcl(ω, k)φcl(−ω,−k)〉0 = 	(ω, k)/�. (G9b)

All diagrams with closed fermion loops vanish in the
replica limit, and so the only contributing diagrams to the
full cooperon contain a single fermion line dressed with noise
propagators. This restriction on the diagram topology leaves
(2n)!/(n!2n) topologically distinct diagrams at nth order, with
a generic diagram depicted in Fig. 24.

Figure 23 demonstrates the interaction vertices coupling
between the cooperon �a and noise φcl fields. The two distinct
vertices arise from the first [diagram (c)] and second [diagram
(d)] terms in the noise bath action in Eq. (G4). We will refer
to these as causal and anticausal vertices, respectively, and
they contribute factors of ±i

√
�/2 to the diagram’s overall

prefactor.
We introduce some useful terminology and convention.

A noise phonon connecting two vertices of the same type
(causal-causal or anticausal-anticausal) will be called “type
I,” while a noise propagator connecting two vertices of the
opposite type will be called “type II.” By choosing the mo-
menta and frequencies for internal noise phonons as shown in
Fig. 25, we can forget about the causal and anticausal vertices
and work directly with type I and II noise phonons. We note
that while type I phonons contribute frequency-diagonal terms

FIG. 25. Labeling convention that allows us to forget about the
causal and anti-causal vertices shown in Figs. 23(c) and 23(d) and in-
stead consider only “type I” (colored blue) and “type II” (colored red)
noise phonons (as defined in the main text). We choose the frequency
of the noise phonon to be ω j (−ω j) if the leftmost vertex is causal
(anticausal). Type I phonons (a,b) give frequency-diagonal contri-
butions, while type II phonons (c,d) give frequency-off-diagonal
contributions.

to the cooperon, the type II phonons introduce frequency
nondiagonal terms. The only frequency-diagonal diagrams are
purely type I. While type I diagrams control the RG flow
in higher dimensions [22], both type I and II diagrams play
important roles in the perturbative dephasing calculation. We
note that type I and II phonons contribute factors of −�/2
and �/2 respectively to the overall diagram prefactor. Each
nth-order diagram will have 2n colorings of its noise phonons
as type I or II, so that each diagram topology generally has
competition between exponentially many opposite-sign con-
tributions.

2. Diffusive bath and connection with cumulant expansion

Re-expanding the cumulant expansion, Eq. (27), directly in
� gives us

c(η) = c0(η)
[
1 − 〈S1〉 + 1

2

〈
S2

1

〉+ . . .
]
. (G10)

We can also directly expand the cooperon in powers of � in
the replicated fermionic field theory:

c(η) = c0(η) + c1(η) + c2(η) + . . . (G11)

Formally equating terms of the two power series, we find that〈
Sn

1

〉
0 = (−1)nn!

cn(η)

c0(η)
. (G12)

We can thus compute terms in the cumulant expansion—
originally framed as expectations in a path integral—directly
in the field theory.

In particular, calculating the first-order type I diagrams
depicted in Fig. 25 for the diffusive noise kernel (≡ Ddiff.

1,type I),
we find

Ddiff.
1,type I = −

(
D

2

1√
4πDη

)(
�t

η3/2

√
D

)
G̃1

1(β ), (G13)

G̃1
1(β ) ≡

√
2

π

∫ 1

−1
dτa

∫ 1

τa

dτb g1(β, τa, τb)−1/2, (G14)

in line with the results of Eqs. (30) and (31). Evaluating the
first-order type II diagrams in Fig. 25 then gives the other
contribution to Eq. (31). We note that in the field theory
framework, the parametric integration defining G1(β ) arises
from a Feynman parameter.

3. Markovian Coulomb bath and connection to AAK

a. General remarks and divergence regularization

In the case of a Markovian noise kernel, we have seen that
a coordinate change in the path integral formalism [Eq. (6)]
allows for a massive reduction in complexity, recasting the
fluctuation-averaged cooperon as the Green’s function of a
single-particle quantum mechanics problem, Eq. (11). In the
Markovian limit of the field theory description, we find that
all but a special class of diagrams vanish exactly, and that
summing the remaining diagrams to all orders recovers the
AAK reduction formula for the propagator. Thus, Eqs. (10)
and (11) can be alternatively derived as an infinite-order field-
theoretic summation.

In the Markovian limit, we find IR divergences in the
momentum integration due to the divergence of the noise
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kernel at zero momentum. This is regularized by a perfect
cancellation of all IR divergences between all the diagrams
at a given order. This is easily seen at first order and can be
shown at arbitrary order. This cancellation is fundamentally
related to the cancellation of IR divergences in the Fourier
transform that gave us Eq. (15):

	̃M (0) − 	̃M (ρ) = 2�M

D

∫
k

1

k2
(1 − eik·ρ ). (G15)

Note that individually, 	̃M (0) and 	̃M (ρ) are IR divergent in
one or two spatial dimensions, but their difference is finite in
1D (and UV divergent in higher dimensions). We will see that
the UV contributions of the type I phonons are responsible for
the “	̃M (0)” term, while the type II phonons are responsible
for the “	̃M (ρ)” term in Eq. (11).

In Eqs. (G18)–(G21) (below), we will sum all the diagrams
in the perturbative expansion via a two-step framework. We
first sum the type I phonons into a dressed propagator and then
translate the type II phonon contributions into a self-consistent
integral equation. This calculation will require us to treat the
type I and type II phonon lines on separate footing, obscuring
the fact that the IR divergences between the various diagrams
cancel out order-by-order in perturbation theory. We must
therefore cancel out the IR divergent portions of the diagrams
in the beginning, before the type I resummation. In the type I
resummation and later in the self-consistent equation, we then
drop the IR-divergent portion of the momenta integrations. We
will use the integral superscript “(−IR)” to indicate that it is
necessary to remove by hand the infrared divergences in the
momenta integrations. We also define

	̃
(−IR)
M (ρ) ≡

∫ (−IR)

k
	M (k) eik·ρ. (G16)

We point out that in 1D, 	̃
(−IR)
M (0) = 0, while in higher di-

mensions, 	̃
(−IR)
M (0) is dependent on a UV cutoff.

b. Diagram nonvanishing requirements

Performing the frequency integrations analytically, we find
that most of the Feynman diagrams one can draw vanish in
the Markovian case. We can codify this into two rules that
a diagram contributing to the Green’s function must satisfy.
The rules are as follows. (1) There can be no vertices under
a type I phonon. If a type I phonon leaves the fermion line, it
must return at the very next vertex. (2) If a diagram contains
any type II phonons, they must all be nested in a noncrossing
rainbow configuration.

To prove the vanishing rules, one can perform the fre-
quency contour integrations in the complex plane and show
that if either rule is violated, the diagram can be labeled so
that there is at least one frequency integration for which all
the poles lie in one half of the plane. Closing the frequency
integration contour in the opposite half of the plane shows
that the integral vanishes. Diagrams illustrating the vanishing
rules are given in Figs. 26 and 27.

The nonvanishing rules for this theory require alteration of
the usual paradigms of field theory. For example, the self-
energy cannot be thought of in usual terms. A diagram with
nested type II rainbows, as in Fig. 26(a) above, does not
vanish and is 1-particle irreducible. However, it cannot be

FIG. 26. Examples of nonvanishing diagrams that follow the
rules outlined in Sec. G3b. In all the above diagrams, type I noise
phonons are colored blue and type II noise phonons are colored red.
As required to be nonvanishing, the type I noise phonons pass over
no vertices, and the type II noise phonons are in a nested rainbow
configuration.

resummed into a self-energy, because the diagram consisting
of two sequential copies of it, as in Fig. 27(b), vanishes due
to violation of rule 2. Thus no diagrams containing type II
phonons can be resummed into a self-energy, for they only
appear exactly once in the expansion of the Green’s function.
On the other hand, we can sum the type I diagrams to all
orders into a “pseudo-self-energy”—we take this up in the
next subsection.

c. Type I phonon resummation

The type I diagrams can be resummed to all orders into a
“pseudo-self-energy.” This is simple and can be done exactly
since the type I phonons appear in isolation and cannot cross;
the only diagram that enters into the pseudo-self-energy is the
first-order type I diagram (≡ DCoul.

1,type I) [Figs. 25(a) and 25(b)].

FIG. 27. Two examples of vanishing diagrams, which fail to fol-
low the rules outlined in Sec. G3b. In all the above diagrams, type I
noise phonons are colored blue and type II noise phonons are colored
red. Diagram (a) fails to follow the first rule, since each type I phonon
passes over a vertex on the fermion line. Diagram (b) fails to follow
the second rule, since its two type II phonons are not in the required
nested rainbow configuration. We note that the fact that diagram (a)
in Fig. 26 cannot be resummed as a self-energy for the cooperon can
be understood by noting that Diagram (b) in this figure vanishes.
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FIG. 28. The diagrammatic infinite-order summation of the type
I noise phonons via a Dyson’s equation with a “pseudo-self-energy”.
In (a), we define a “type I dressed propagator” (blue fermion line)
to be a the sum of all cooperon diagrams dressed only by type I
phonons. In (b), we rewrite the summation self-consistently as a
Dyson equation. In this case, the role of the self-energy is played by
the diagram with a single type I phonon, which we evaluate directly
in Eq. (G18).

We can then define a type I dressed propagator as shown
diagrammatically in Fig. 28.

We can perform this summation via the self-consistent
equation given by the diagrams in Fig. 28, letting c̃I denote
the “type I dressed propagator.” We find

c̃I

(ω − �

2
,
ω + �

2
, k
)

= 4πδ(�)

Dk2 − iω + 	̃M (0)
, (G17)

because

DCoul.
1,type I = −1

2

∫ (−IR)

ν,q

2	M (q)

D(k − q)2 − iω − iν

= −1

2

∫ (−IR)

q
	M (q)

= −1

2
	̃

(−IR)
M (0). (G18)

d. Full propagator and connection to AAK solution

With the type I propagators summed to infinite order via
the pseudo-self-energy, we can put the perturbative series for
the full Green’s function into a simpler form. The remaining
diagrams to consider are the noncrossing rainbow diagrams
with type I dressed fermion propagators and type II noise
propagators, as shown in Fig. 29.

In this framework there is a single diagram left at each or-
der (in the type II phonon) in the series defining the cooperon.
The average and internal frequency integrations can be per-
formed analytically, giving the nth-order contribution to the
reduced cooperon as

c̃(n)
R (ω, k) = 1

2

∫ (−IR)

l1
	M (l1) . . .

∫ (−IR)

ln
	M (ln)

× 2

Dk2 + 	̃
(−IR)
M (0) − iω

× · · ·

× 2

D(k − . . . − ln)2 + 	̃
(−IR)
M (0) − iω

. (G19)

FIG. 29. The diagrammatic infinite-order summation of the type
II noise phonons via a self-consistent equation. In (a), we express the
fully dressed propagator (purple fermion line) as the “type I dressed
propagator” (blue fermion line) dressed by the summation of all
maximally nested rainbow configurations of type II noise phonons.
In (b), we re-write the expansion in (a) as a self-consistent equation.
The structure of the self-consistent equation is reminiscent of that
of the self-consistent born approximation [Eq. (38)], but here the
LHS of the equation is the fully dressed propagator, rather than the
self-energy. This self-consistent equation sums a proper subset of
the usual SCBA diagrams. The diagrammatics are translated into a
Fredholm integral equation [Eqs. (G20), (G21), and (G23)] that turns
out to be equivalent to the AAK result from the main text, Eq. (11).

We can treat the type II phonon diagrams to all orders
by deriving a self-consistent integral equation for the full
propagator, as shown diagrammatically in Fig. 29. The dia-
grammatic result corresponds to the self-consistent equation
for the full cooperon.

c̃
(ω − �

2
,
ω + �

2
, k
)

= 4πδ(�)

Dk2 + 	̃
(−IR)
M (0) − iω

+

⎧⎪⎨
⎪⎩

2
[Dk2+	̃

(−IR)
M (0)−iω+i�]

× 2
[Dk2+	̃

(−IR)
M (0)−iω−i�]

× ∫ (−IR)
l 	M (l)

∫
ν

c̃
(

ω−ν
2 , ω+ν

2 , k − l
)
⎫⎪⎬
⎪⎭.

(G20)

Integrating over � we find the reduced equation

c̃R(ω, k) = 1

Dk2 + 	̃
(−IR)
M (0) − iω

+ 1

Dk2 + 	̃
(−IR)
M (0) − iω

×
∫ (−IR)

l
	M (l) c̃R(ω, k − l). (G21)

Defining

cR(η, ρ) ≡ D

2

∫
ω,k

e−iωηeik·ρc̃R(ω, k), (G22)

the position space formulation of Eq. (G21) is[
∂η − D∇2

ρ + 	̃M (0) − 	̃M (ρ)
]
cR(η, ρ) = D

2
δ(η)δ(ρ).

(G23)
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This states that cR is the imaginary-time propagator for the
single-particle quantum mechanics Hamiltonian ĥ, recovering
the AAK reduction in Eq. (11). We see out that the “	̃M (0),”
term arises from the type-I pseudo-self-energy while the
“	̃M (ρ)” term arises from the self-consistent treatment of the
type II phonon.

4. Coexisting interaction baths

Finally, we briefly note that the theory for the coexisting
diffusive and screened Coulomb baths can also be treated in
the field theory language. In this case, one defines two distinct
species of noise phonon, one for each noise bath. (Each noise
bath will have both type I and type II phonons.) As before, the

replica limit enforces the topological constraints explained by
Fig. 24; the cooperon is given by all diagrams with a single
fermion line dressed by any combination of the four distinct
noise phonons. It turns out that the special vanishing rules
discussed in Sec. G3b still apply in this more general sce-
nario, though only to the phonons generated by the Markovian
Coulomb bath. The perturbative calculations carried out in the
main text thus correspond to an exact (though asymptotic)
partially infinite-order summation over the diagrams with ar-
bitrarily many Coulomb phonons (restricted by the vanishing
rules), but up to two diffusive phonons. We note that the
AAK transformation of variables Eq. (6) in the single-particle
path integral formalism allows us to get this result directly
in terms of the Airy eigenfunction summations exploited
in Sec. V.
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