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Finite-frequency spin susceptibility and spin pumping in superconductors with spin-orbit relaxation
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Static spin susceptibility of superconductors with spin-orbit relaxation was calculated in the seminal work
of Abrikosov and Gor’kov [Sov. Phys. JETP 15, 752 (1962)]. Surprisingly, the generalization of this result to
finite frequencies has not been done despite being quite important for the modern topic of superconducting
spintronics. The present paper fills this gap by deriving the analytical expression for spin susceptibility. The
time-dependent spin response is shown to be captured by the quasiclassical Eilenberger equation with collision
integrals corresponding to the ordinary and spin-orbit scattering. Using the developed formalism, we study the
linear spin pumping effect between the ferromagnet and the adjacent superconducting film. The consequences
for understanding recent experiments demonstrating the modification of Gilbert damping by the superconducting
correlations are discussed.
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I. INTRODUCTION

Spin transport and spin dynamics in superconductors have
attracted significant attention recently [1–7]. Quite interesting
experimental results have been obtained for the spin pumping
effects, which, in general, play the central role in spin-
tronics [8–10]. Ferromagnet/superconductor multilayers were
found recently to demonstrate changes of the ferromagnetic
resonance (FMR) frequency and linewidth [11–19] due to
the superconducting correlations. Theoretical understanding
of these effects is not complete yet. For example, a puz-
zling experimental result was obtained for the ferromagnetic
insulator/superconductor multilayers where the pronounced
peaks in the temperature dependence of Gilbert damping (GD)
have been observed [16].

The enhancement of Gilbert damping due to the metal spin
sink can be calculated using the linear response approxima-
tion [20], which involves the momentum k and frequency �

dependent spin susceptibility χh(k,�) of the metal spin sink.
Hence, to understand the modification of Gilbert damping due
to the spin pumping in superconducting films it is necessary
to calculate χh(k,�) in the presence of spin relaxation mech-
anisms like the spin-orbit scattering.

Besides spin pumping phenomena the function χh(k,�) is
an important characteristic for other spin-dependent responses
of superconductors. The local, that is, momentum-integrated,
spin susceptibility determines the nuclear magnetic resonance
[21] and the electronic paramagnetic resonance [22,23] re-
laxation rates. The coherence factor which arises due to the
superconducting correlations provides the so-called Hebel-
Slichter peak in the temperature dependence of the relaxation
rates just below the critical temperature [21]. Besides that, the
momentum-resolved spin susceptibility χh(k, ω) was probed
recently by inelastic neutron scattering [24]. The resonances

in electron spin susceptibility measured by the neutron-
scattering response in the superconducting state have provided
essential information to identify the gap function structure in
iron pnictide compounds [25–28].

Despite the long history and currently renewed interest due
to the applications in superconducting spintronics, the expres-
sion for spin susceptibility in superconductors is known only
in the absence of spin relaxation mechanisms. The present
work provides this expression for the usual spin-singlet s-
wave superconductor. Equally important, a general approach
for calculating spin susceptibility based on the solution of
quasiclassical Eilenberger equations is developed.

Recent papers which have addressed this topic in con-
nection with spin pumping [29,30] reported finite zero-
temperature dissipation at low frequencies: Imχh(q,�)/� �=
0 at � → 0. This result contradicts physical intuition because
there can be no dissipation at � < 2� and in the absence of
thermal quasiparticles which are frozen out in superconduc-
tors at T � �, where � is the superconducting energy gap.
As we show below this inconsistency comes from neglecting
the important contributions while performing an analytical
continuation procedure.

The first purpose of the present paper is to report the ana-
lytical expression for the finite-frequency spin susceptibility
of superconductors with the spin-orbit relaxation mecha-
nism. This result is a generalization of the classical work of
Abrikosov and Gor’kov [31], who considered the static spin
susceptibility to explain the finite Knight shift in supercon-
ductors at T � �. We analyze several characteristic regimes,
including large and strong spin relaxation, as well as the
behavior for various values of the Dynes parameter [32].

The second purpose is to study the spin pumping in
superconductor/ferromagnet systems by formulating the in-
terfacial exchange model [20] in terms of the boundary
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conditions for quasiclassical Green’s functions. The expres-
sions for Gilbert damping are derived for the finite thickness
of the spin sink layer. Also, we consider the system with
an additional perfect spin absorber which can be realized
experimentally by adding a layer of material with a very
strong spin relaxation. The derived general expressions can be
parametrized in terms of the dimensionless parameter char-
acterizing the strength of the interfacial coupling between
the ferromagnet and adjacent superconductor. Systems with
elevated values of this parameter are predicted to feature a
pronounced shift of the ferromagnetic resonance line induced
by superconducting correlations.

II. GENERAL FORMALISM

A. Diagrammatic formalism

We describe the interaction of electrons with Zeeman field
h = h(r, t ) using the following Hamiltonian:

V̂P = σ̂h, (1)

where σ̂ = (σ̂x, σ̂y, σ̂z ) is the vector of spin Pauli matrices. In
addition, we assume the presence of disorder described by the
Gaussian impurity potential. It has both the usual uo and the
spin-orbit uso scattering amplitudes:

V̂ (p, p′) = uo

∑
ro

eiro(p−p′ ) + uso

p2
F

σ̂ · (p × p′)
∑
rso

eirso(p−p′ ),

(2)

where ro and rso denote the random impurity coordinates
corresponding to the ordinary and spin-orbit scattering, re-
spectively. We assume these coordinates are independent and
thus neglect the magnetoelectric effects arising from the com-
bined ordinary and spin-orbit scattering [33].

The spin polarization as a function of the imaginary time
t ∈ [0, β], where β = 1/T is given by

S(t, r) = 1
4 Tr[σ̂Ĝ](r, r, t1,2 = t ), (3)

where Ĝ(r1, r2, t1,2) is the imaginary-time Green’s function
(GF). The stationary propagators depend only on the relative
time and coordinate. In the frequency and momentum repre-
sentation they are given by [31,34]

Ĝ0(ω, p) = �̃τ̂2 − iω̃τ̂0 + ξpτ̂3

�̃2 + ω̃2 + ξ 2
p

, (4)

ω̃ = ω
s̃(ω)

s(ω)
, �̃ = �

s̃(ω)

s(ω)
, (5)

where ξp = p2/2m − μ is the deviation of the kinetic en-
ergy from the chemical potential μ and τ̂1,2,3 are the Pauli
matrices in Nambu space. We denote s = √

ω2 + �2 and
s̃ = s + 1/2τimp, where the scattering time is given by the
superposition τ−1

imp = τ−1
o + τ−1

so . We denote the usual τ−1
o =

2πnνu0 and spin-orbit τ−1
so = 2πnνuso/3 scattering rates. The

propagator (4) is averaged over the randomly disordered point
scatterer configurations.

We are interested in the spin polarization induced by the
external Zeeman field h(t, r) = h�ei�t+iqr. The induced spin
polarization as given by the diagram shown in Fig. 1(a) can be

FIG. 1. (a) Bubble diagram for the linear response of spin po-
larization generated by the time-dependent Zeeman field h�ei�t+iqr

shown by the wavy line. Circles show spin vertices σ̂. The shaded
region shows the impurity ladder. (b) Diagrammatic equation for
the impurity ladder. The blue and red dashed lines correspond to
the ordinary and spin-orbit scattering potentials averaged over the
random impurity configuration.

written as follows:

S� = χh(�, q)h�. (6)

The linear spin susceptibility is defined by substituting into
Eq. (3) Ĝh, which is the first-order correction to the GF in-
duced by the Zeeman field. The diagrammatic equation for
this correction, which includes the summation of impurity lad-
der corrections, is shown Fig. 1(b). The shaded region denotes
the impurity ladder corresponding to the ordinary and spin-
orbit impurity scatterings averaged over the random disorder
configuration. The red and blue dashed lines correspond to
the spin-orbit and ordinary impurity scattering potentials av-
eraged over the randomly distributed impurities, respectively.

The analytical expression for the diagrammatic equation in
Fig. 1(b) reads

Ĝh(12) = −Ĝ0(1)σ̂h�Ĝ0(2) + Ĝ0(1)
σ̂〈ĝh〉σ̂τ̂3

6iτso
Ĝ0(2)

+ Ĝ0(1)
〈ĝh〉τ̂3

2iτo
Ĝ0(2), (7)

where we have introduced the notation

ĝh = i

π

∫
dξpτ̂3Ĝh. (8)

We use the condensed notation Ĝ0(2) = Ĝ0(ω, p) and
Ĝ0(1) = Ĝ0(ω − �, p + q). The correction depends on the
two frequencies and momenta Ĝh(12) = Ĝh(ω1, p, ω2, p +
q). The angular brackets denote the average over the momen-
tum directions on the Fermi sphere so that in total 〈ĝh〉 =
(i/πν)

∫
d3 pĜh, where ν is the density of states at the Fermi

level. Diagrammatically, the equation for the impurity ladder
(7) is shown in Fig. 1(b). The second and third terms in
Eq. (7), corresponding to the spin-orbit and ordinary scatter-
ings, are shown by the blue and red dashed lines, respectively.
As we will see below, the momentum-integrated correction Ĝh

coincides with the solution of the quasiclassical Eilenberger
equation [35] with collision integrals corresponding to the
ordinary and spin-orbit scatterings [36].
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B. Quasiclassical formalism

Under quite general conditions the nonequilibrium state of
a metal involves perturbations of spectrum and distribution
function in the vicinity of the Fermi level. For that the ex-
ternal fields should have frequencies much smaller than the
Fermi energy and spatial scales much larger than the Fermi
wavelength. Both these requirements are satisfied for the spin
pumping systems. Hence, we can use the theory formulated in
terms of the quasiclassical propagator [35]

ĝ(r, np, t, t ′) = i

π

∫
dξpτ̂3Ĝ. (9)

The calculation can be performed using either the imaginary-
time formalism or the real-time formalism. In the imaginary-
time domain the quasiclassical propagator is determined by
the Eilenberger equation with collision integrals describing
the impurity scattering [35]:

(vF ∇)ĝ − i{τ̂3∂t , ĝ}t = i[τ̂3Ĥ , ĝ]t + [(̂o + ̂so)◦, ĝ]t , (10)

̂so = (σ̂〈ĝ〉σ̂)/6τso, (11)

̂o = 〈ĝ〉/2τo. (12)

Here ̂o and ̂so are the self-energies corresponding to
the ordinary and spin-orbit scatterings, respectively [37],
and Ĥ = �τ̂2 + σ̂h. We denote the commutators [X, g]t =
X (t1)g(t1, t2) − g(t1, t2)X (t2) and the convolution 〈ĝ〉 ◦ ĝ =∫ β

0 dt〈ĝ〉(t1, t )ĝ(t, t2). The angle averaging over the Fermi sur-
face is given by 〈g〉. The spin polarization is given by

S(t, r) = −i
πν

4
Tr[τ̂3σ̂〈ĝ(t, t, r)〉]. (13)

The quasiclassical equations are supplemented by the normal-
ization condition ĝ ◦ ĝ = 1.

C. Analytical continuation

In order to find the real-frequency response we need to
implement the analytic continuation of Eq. (13). The first-
order correction to the quasiclassical GF can be written
as ĝh(t1, t2) = T

∑
ω e−iω1t1+iω2t2 g(ω1, ω2), where ω2 = ω and

ω1 = ω − � are the fermionic Matsubara frequencies shifted
by the Bosonic frequency � of the external Zeeman field. The
analytic continuation of the sum is determined according to
the general rule [38]

T
∑

ω

gh(ω1, ω2)

→
∫

dε

4π i
n0(ε1)

[
gh

( − iεR
1 ,−iεA

2

) − gh
( − iεA

1 ,−iεA
2

)]

+
∫

dε

4π i
n0(ε2)

[
gh

( − iεR
1 ,−iεR

2

) − gh
( − iεR

1 ,−iεA
2

)]
,

(14)

where n0(ε) = tanh(ε/2T ) is the equilibrium distribution
function. On the right-hand side (rhs) of (14) we substitute
ε1 = ε − �, ε2 = ε and εR = ε + i�, εA = ε − i�. Here the
term with � > 0 is added to shift the integration contour into
the corresponding half plane. At the same time, � can be
used as the Dynes parameter [32] to describe the effect of
different depairing mechanisms on spectral functions in the

superconductor. We implement the analytical continuation in
such a way that s(−iεR,A) = −i

√
(εR,A)2 − �2, assuming that

the branch cuts run from (�,∞) and (−∞,−�).
The equilibrium GF in the imaginary-frequency domain is

given by ĝ0(ω) = (τ̂3ω + τ̂1�)/s(ω). The real-frequency con-
tinuation reads ĝR,A

0 (ε) = (τ̂3ε
R,A + iτ̂1�)/

√
(εR,A)2 − �2.

Thus, the linear response spin polarization is given by

χh + 1 =
∫

dε

4π i
χ

( − iεR
1 ,−iεA

2

)
[n0(ε1) − n0(ε2)]

+
∫

dε

4π i

[
n0(ε2)χ

( − iεR
1 ,−iεR

2

) − n0(ε1)

× χ
( − iεA

1 ,−iεA
2

)]
, (15)

where we denote χ (ω1, ω2) = (δ/δh)Tr[σĝh(ω1, ω2)]. On the
left-hand side (lhs) of Eq. (15) we subtract the off-shell con-
tribution to the spin polarization due to the band edge shift by
the Zeeman field.

It is interesting to note that in the superconducting state
both the first and second terms on the rhs of (15) contribute to
the dissipative part of spin susceptibility. With that we obtain
the physically correct behavior in the low-temperature limit
Imχh(�)/� → 0 at T → 0 and low frequency � � �. This
is in contrast to previous calculations [29,30] which took into
account only the first term in Eq. (15) and obtained physically
incorrect finite dissipation in the absence of quasiparticles at
T = 0.

III. SPIN SUSCEPTIBILITY

A. Diagram summation

First, we demonstrate the connection between response
functions determined by the diagram in Fig. 1(a) and by
the solution of the time-dependent Eilenberger equation (10).
Instead of using the usual approach of calculating the vertex
function [31] we use the alternative route and solve directly
the equation for the first-order correction Eq. (7). We use
the general approach suggested recently [39] for deriving the
equation for the momentum-integrated propagators ĝh starting
from the general equation for the exact GF (7).

The key idea of this derivation is based on the following
trick. Let us multiply the function Ĝh(12) by Ĝ−1

0 (1) from the
left and by Ĝ−1

0 (2) from the right, subtract the results, and
integrate by ξp.

We use the fact that Eq. (4) yields the relations
Ĝ−1

0 ( j) = �̃ j τ̂2 + iω̃ j τ̂0 + ξp(p j )τ̂3 and �̃ j τ̂2 + iω̃ j τ̂0 =
i(s j + 1/2τimp)ĝ0(ω j )τ̂3. Then we eliminate off-shell
contributions in the momentum integrals to express the
result through quasiclassical propagators,∫

dξp

π

[
Ĝ−1

0 (1)Ĝh − τ̂3ĜhĜ−1
0 (2)τ̂3

]

= s̃1ĝ0(1)ĝh − s̃2ĝhĝ0(2) − i(vF q)ĝh. (16)

Next, let us derive the lhs of the equation for ĝh. Using the
diagram in Fig. 1(b) or Eq. (7), we get

Ĝ−1
0 (1)Ĝh − τ̂3ĜhĜ−1

0 (2)τ̂3

= τ̂3Ĝ0(1)(ĥ� + i〈ĝh〉τ̂3/2τo + iσ〈ĝh〉στ̂3/6τso)τ̂3

− (ĥ� + i〈ĝh〉τ̂3/2τo + iσ〈ĝh〉στ̂3/6τso)Ĝ0(2), (17)
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where we denote ĥ� = σ̂h�. Then combining Eqs. (16) and
(17), we obtain the following equation with collision integrals
Îo and Îso:

s1ĝ0(1)ĝh − s2ĝhĝ0(2) − i(vF q)ĝh

= −i[ĝ0(1)ĥ�τ̂3 − ĥ�τ̂3ĝ0(2)] + Îso + Îo, (18)

Îo = [ĝ0(1)〈ĝh〉 + 〈ĝh〉ĝ0(2)

−〈ĝh〉ĝ0(2) − ĝ0(1)ĝh]/2τo, (19)

Îso = [ĝ0(1)σ〈ĝh〉σ + 3〈ĝh〉ĝ0(2)

−σ〈ĝh〉σĝ0(2) − 3ĝ0(1)〈ĝh〉]/6τso. (20)

Equation (18) coincides with the Eilenberger equation (10)
expanded for the first-order correction ĝh. This proves that
the time-dependent spin response in metals is captured by the
Eilenberger equation with corresponding collision integrals.

B. Susceptibility of the spatially homogeneous system

First, we consider the spatially homogeneous system when
the Zeeman field depends only on time and not on the spatial
coordinate so that q = 0. The spatial dispersion of suscepti-
bility is discussed in the diffusive limit in Sec. III C.

In the homogeneous case the ordinary scattering drops out
from Eq. (18) since Îo = 0. Then Eq. (18) can be solved
analytically, yielding the frequency-resolved susceptibility
χ (12) = (δ/δh)Tr[σĝh(12)]:

χ (12) =
(

�2 − ω1ω2

s1s2
+ 1

)
1

s1 + s2 + 4/3τso
, (21)

where ω are fermionic Matsubara frequencies, ω1 = ω − �,

ω2 = ω, s1,2 =
√

ω2
1,2 + �2. Substituting this expression into

the analytical continuation rule (15), we obtain the frequency-
dependent spin susceptibility χh = χh(�). It is interesting to
note that this response function (21) is identical to the one
which determines the finite-frequency conductivity of a su-
perconductor. The first factor on the rhs of (21) is the usual
coherence factor which arises due to the superconducting cor-
relations in time-reversal symmetry-breaking responses [40].
It provides the peaked behavior of relaxation rates Imχh(T )
just below the critical temperature [21–23]. However, the
second factor on the rhs of (21) can drastically change this
behavior and even eliminate the coherence peak of Imχh(T ),
as discussed below.

We can obtain analytical results in several important limit-
ing cases. (i) For the normal metal � = 0 Eqs. (21) and (15)
yield (see the detailed calculation in Appendix B)

χh(�) = 2(2/3τso + �)

2(2/3τso + �) − i�
. (22)

In this case the only contribution is provided by the first term
in Eq. (15). As we can see, in the absence of spin relaxation
�τso → ∞ and � → 0 the susceptibility vanishes. Physically,
this result is quite transparent because without relaxation the
spin projection on the oscillating Zeeman field remains a
good quantum number. Let us check that this result remains
valid in the superconducting state. (ii) For that we consider
the limit of the superconductor without spin relaxation. In
this case using following relations s2

1 − s2
2 = ω2

1 − ω2
2 and

2(ω1ω2 − �2 − s1s2) = (ω1 + ω2)2 − (s1 + s2)2, Eq. (21)
can be simplified as follows (see details in Appendix A):

χ (12) = 2

�

(
ω1

s1
− ω2

s2

)
. (23)

Thus, making the analytical continuation and neglecting terms
of the order of �/�, we obtain

χh(�) = −1 −
∫ ∞

−∞

dε

2�
[N (ε1)n0(ε1) − N (ε2)n0(ε2)], (24)

where N (ε) is the normalized density of states (DOS), ε1 =
ε − �, and ε2 = ε. We can see that this expression yields
χh(�) = 0 irrespective of the particular energy dependence
of the DOS. This result can be qualitatively explained by the
fact that in the absence of spin relaxation spin projection on
the oscillating Zeeman field axis is a conserved quantity.

From this limiting case we can clearly see that to obtain the
correct result it is necessary to take into account all parts in
Eq. (15). Indeed, the contribution of the first term in Eq. (15)
is proportional to

∫
dε[ĝR

0 (1) − ĝA
0 (2)]∂εn0 ≈ 2�/� at low

temperatures. This contribution is canceled by the second term
in Eq. (14), yielding χh(�) = 0 for τ−1

so = 0.
As we have obtained in the normal metal limit, the contri-

bution of the first term in spin susceptibility (15) is of the order
of �τs for weak spin relaxation �τs  1. Thus, when τso� 
1, the contribution of the second term can be neglected. For
stronger spin-orbit relaxation such an approximation as used
in previous works [29,30] is inaccurate. Below we confirm
this conclusion by evaluating Eq. (15) numerically.

Let us now considered the opposite limit of (iii) a su-
perconductor with strong spin relaxation τso� � 1 and low
frequencies � � �. In this case from the general equation
(21) we obtain

χ (12) = 3τso

4

(
�2 − ω1ω2

s1s2
+ 1

)
. (25)

Substituting this expression into the analytical continuation
rule (15), after some algebra, we get

4

3τso

Imχh

�
=

∫ ∞

−∞
dε(�2/ε2 + 1)N2∂εn0 (26)

From this expression we can see analytically that the dissipa-
tive part of the susceptibility vanishes in the zero-temperature
limit.

General case. Now let us consider the behavior of spin
susceptibility in the wide range of parameters by evaluating
numerically the integral in Eq. (15). First, we compare the
results given by the full Eq. (15) with the contribution of
only the first term. The sequence of plots in Fig. 2 shows
the temperature dependence of the dissipative part Imχh at
� = 0.01Tc, Dynes parameter � = 0.001Tc, and several val-
ues of the spin-orbit scattering rate. The dependencies given
by the full Eq. (15) are shown by the blue solid curves, while
the dependencies given only by the first term in Eq. (15) are
shown by the red dashed curves. We can see that for weak
spin-orbit scattering τsoTc  1 these curves coincide, accord-
ing to the conclusion we have made based on the analysis of
the limiting cases above. However, there is a large discrepancy
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FIG. 2. Comparison of the contributions to the dissipative spin response Imχh given by both terms in Eq. (15) (blue solid lines) and only
the first term in Eq. (15) (red dashed lines). The parameters are � = 0.001Tc, � = 0.01Tc, and spin-orbit scattering time τsoTc is (a) 100, (b) 10,
(c) 1, and (d) 0.1.

for stronger spin-orbit relaxation τsoTc < 1. Note that the be-
havior of the dashed curves is similar to that obtained for the
dissipation signal in previous works [29]. That is, at τsoTc < 1
they significantly deviate from zero at T → 0. As we have
noted, the finite value of Imχh in the low-temperature limit
is physically incorrect. On the other hand, the solid curves
always demonstrate the correct behavior going to zero in the
limit T → 0. Thus, the numerical analysis also confirms that
both terms in Eq. (15) contribute to the dissipative part of the
spin response in the superconducting state.

Next, let us consider how the temperature dependencies
of Imχh at � = 0.01Tc change with the Dynes parame-
ter. The sequence of plots for the three values of �/Tc =
0.001, 0.01, 1 is shown in Fig. 3 for different values of
the spin-orbit relaxation rate. One feature demonstrated by
these curves is that the peak in the temperature dependencies
becomes less pronounced and disappears for weak spin relax-
ation. At the same time the relative height of the peak almost
does not change between strong [τsoTc = 1; Fig. 3(c)] and very
strong [τsoTc = 0.1; Fig. 3(d)] spin relaxation.

Besides that, we can see that the height of the peak is
strongly suppressed by increasing the Dynes parameter. For
the realistic value in the superconductor NbN � = 0.1Tc the

relative height of the peak is about 0.2–0.5 of the normal
metal value at T > Tc. This increase is, by an order of mag-
nitude, weaker than the relative peak heights of 2–3 observed
in the spin pumping experiment in GdN/NbN bilayers [16].
Therefore, we can assume that there should be a different
explanation for this experiment other than the peaked behavior
of spin susceptibility [29].

Now let us consider the behavior of the spin susceptibil-
ity at larger frequencies comparable with superconducting
energy scales � ∼ Tc. In this case it is interesting to con-
sider both the dissipative and nondissipative parts of spin
susceptibility. As we show below, they are responsible for
the damping and fieldlike spin torque contributions to the
spin dynamics. In Fig. 5 we plot the relevant quantities
Imχh(�)/�, which contributes to the excess Gilbert damp-
ing, and Reχh(�) − Reχh(0), which contributes to the shift
of the ferromagnetic resonance central frequency. First, we
notice that the nonmonotonic temperature dependence of
the dissipative part (left panels in Fig. 5) disappears at fre-
quencies much larger than the Dynes parameter �  �.
For such frequencies Imχh monotonically decreases with
temperature and finally disappears at T → 0, provided that
� < 2�. For � > 2� there is a nonzero signal even at

FIG. 3. Temperature dependencies of the dissipative part of the spin susceptibility Imχh at small frequency � = 0.01Tc. In each panel
curves from top to bottom correspond to the Dynes parameter values �/Tc = 0.001, 0.01, 0.1. The spin-orbit scattering time τsoTc is (a) 100,
(b) 10, (c) 1, and (d) 0.1.

144521-5



M. A. SILAEV PHYSICAL REVIEW B 102, 144521 (2020)

T = 0 due to the excitation of quasiparticles across the
gap.

C. Spatial dispersion of the susceptibility

In general, due to the presence of the anisotropic term
in Eq. (18) the analytical solution is not possible for q �= 0.
However, we can still get the analytical solution in the experi-
mentally relevant diffusive limit when the ordinary scattering
rate is very large, (Tcτo)−1  1. In this case Eq. (10) can
be simplified by averaging over momentum directions. The
isotropic part of the GF satisfies the Keldysh-Usadel equation

−i{τ̂3∂t , ǧ}t + D∇(ǧ ◦ ∇ǧ) = i[τ̂3Ĥ , ǧ]t + [̌so◦, ǧ]t , (27)

where D = τov
2
F /3 is the diffusion coefficient.

The spin response to the spatially inhomogeneous Zeeman
field h�ei�t+iqz can be calculated analytically in the diffusive
limit using the Usadel equation (27). Using the imaginary-
time representation and searching for the solution in the form
ĝh(12)e−iqzei(ω1t1−ω2t2 ), we obtain the linearized Usadel equa-
tion

(s1 + Dq2)ĝ0(1)ĝh − s2ĝhĝ0(2)

= i(h�σ̂)[ĝ0(1)τ̂3 − τ̂3ĝ0(2)]. (28)

The solution of this equation yields susceptibility in the form
of (21) with the substitution of the effective spin relaxation
time 4/3τso → 4/3τso + Dq2,

χ (12) = �2 + s1s2 − ω1ω2

s1s2(s1 + s2 + Dq2 + 4/3τso)
. (29)

This expression together with Eq. (15) can be used to study
various phenomena related to the spin dynamics in supercon-
ductors with spin-orbit relaxation. For example, it is possible
to study the effect of spin relaxation on the nuclear magnetic
resonance [21,41] and electron paramagnetic resonance [23]
in superconductors. It is interesting that the peak in spin
relaxation observed in these experiments is robust against
even the very strong spin-orbit scattering, which follows from
Figs. 3(d) and 4. In the limit of weak spin relaxation there is
no peak; that is, the temperature dependence is monotonous,
as shown in Figs. 2(a) and 3(a).

D. Keldysh formalism and kinetic equations

In the general case the procedure of analytical continuation
is not possible, and one has to consider the real-time equations
from the very start. This brings extra complication related to
the matrix structure of the contour-ordered propagator

ǧ =
(

ĝR ĝK

0 ĝA

)

having the spectral retarded (advanced) ĝR(A) and the Keldysh
component ĝK .

The matrix GF satisfies the Keldysh-Usadel equation,
which is formally identical to Eqs. (10) or (27) with the
substitution ∂t → −i∂t . Using the normalization condition
ĝR ◦ ĝK + ĝK ◦ ĝA = 0, we can introduce the parametrization
of the Keldysh component in terms of the distribution function

FIG. 4. Temperature dependencies of the dissipative part of the
spin susceptibility at � = 0.01Tc and different values of the Dynes
parameter: (a) � = 0.1Tc and (b) � = 0.01Tc. Curves from top to
bottom in each panel correspond to the spin-orbit scattering times
τsoTc = 0.1, 1, 5, 10.

ĝK = ĝR ◦ f̂ − f̂ ◦ ĝA. Local spin density is given by

S(t ) = −πν

4
Tr[σ̂τ̂3ĝK (t, t )]. (30)

The driven state of the superconductor is described by the
deviation of the Keldysh function from equilibrium, which
consists of the parts with perturbations of spectral functions
δĝR,A and the nonequilibrium part of distribution function δ f̂ .

FIG. 5. Imaginary (left column) and real (right column) parts
of the spin susceptibility as functions of T and �, normalized
to the zero-temperature gap �(T = 0). The Dynes parameters are
(a) � = 0.1Tc and (b) � = 0.001Tc. The spin-orbit scattering time is
τsoTc = 1.
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In the linear response regime we can write

δĝK (12) = [
ĝR

0 (1) − ĝA
0 (2)

]
δ f̂ + δgR(12)n0(2)

− δgA(12)n0(1). (31)

Comparing expressions (31) and (30) with (15), we can see
that the first term here yields the first term on the rhs of
Eq. (15) and f̂ ∝ n(ε1) − n(ε2).

In the low-frequency limit we can calculate the corrections
to the distribution function using the kinetic equation [2] with
the driving term obtained from the gradient expansion of the
mixed product in the analytical continuation of Eq. (27),

[Ĥ, f̂ ]t = iσ̂∂t h∂εn0. (32)

Parametrizing the spin-dependent distribution function as
f̂ = σ̂ f , we get the kinetic equation, which for the spatially
homogeneous system is given by

∂t f + (
2� + τ−1

s

)
f = ∂εn0∂t h, (33)

τ−1
s = (1/3τso)N−1Tr(1 − ĝRĝA), (34)

where N = ReTr[τ̂3ĝR]/2 is the normalized density of states.
At the subgap energies |ε| < � the spin relaxation rate (34)

is not defined if the density of states is strictly zero, N = 0.
However, for the finite Dynes parameter N ∝ �, so that τ−1

s ∝
�. The solution of Eq. (33) yields the contribution to the spin
density,

χkin + 1 = �

2

∫ ∞

−∞
dε

N∂εn0

� − i
(
2� + τ−1

s

) , (35)

which coincides with the first term in Eq. (15) in the low-
frequency limit.

IV. SPIN PUMPING IN SUPERCONDUCTING FILMS

With the general expression for spin susceptibility in hand
we can study the effects of spin pumping from the ferromag-
net into the adjacent metallic film. The schematic setups are
shown in Fig. 6. The metallic spin sink (M) has an interface
with (a) vacuum and (b) the perfect spin absorber. The corre-
sponding boundary conditions are (a) vanishing spin current
and (b) vanishing nonequilibrium spin polarization at z = dM .

To quantify the spin pumping effect we consider the in-
terfacial exchange interaction between the localized spins in
the ferromagnetic film (F) and conduction elections in M.
Within this model the local spin polarization close to the inter-
face S(t ) acts as an effective field for the localized magnetic
moments. This process can be taken into account by introduc-
ing the additional term i(t ) into the Landau-Lifshitz-Gilbert
(LLG) equation

(1 + αm×)∂t m + γ m × Heff = i/SF0dF , (36)

i(t ) = Jsd S(t ) × m(t ). (37)

Here SF0 is the equilibrium spin density in F, dF is the F
film thickness, Heff is the effective field, and α is the intrinsic
Gilbert damping coefficient. The term i(t ) can be interpreted
as the spin current between F and M.

To calculate S(t ) we use the spin susceptibility (6) with the
effective Zeeman field determined by the spin-dependent scat-

FIG. 6. Schematic setup with the interface between the metallic
spin sink (M) and the ferromagnetic film (F) with widths dM and
dF , respectively. The constant external magnetic field is H0x. The
magnetization precession m�ei�t is driven by the external magnetic
field H�ei�t y. It generates spin current i� pumped from F to M. (a) M
has an interface with vacuum; (b) M has an interface with the perfect
spin absorber.

tering at the F interface. The linear response regime explored
below is, in general, valid if heff � tanh(dM/lso)(D/lsodM ),
where the effective exchange field heff = Jsd/dM and lso =√

Dτso is the spin relaxation length. In the linear regime the
local spin polarization near the F interface can be written as
follows:

S� = νheffχmm�, (38)

χm(�) =
∞∑

n=0

χh(qn,�), (39)

where we introduce the local spin susceptibility χm which
determines the response to the δ-functional Zeeman field. The
summation in Eq. (39) runs over the discrete set of momenta
given by qn = nπ/dM for the vacuum interface [Fig. 6(a)]
which is determined by the zero boundary condition for the
spin current at the interface with vacuum z = dM . For the
strong spin sink interface [Fig. 6(b)] we have qn = (n +
1/2)π/dM , which is determined by the zero boundary of the
nonequilibrium spin polarization which is suppressed by the
strong spin sink at z = dM . The derivation of this result is
given in Appendix D.

To calculate the particular values of the GD we can use the
spin susceptibility in the presence of spin-orbital scattering
(29). In principle, the presence of a spin-active F interface
should also lead to spin-flip scattering similar to the ef-
fect of magnetic impurities. Although it is possible to take
this effect into account, we neglect it in the present study
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because it does not lead to qualitative changes in the Gilbert
damping behavior. Likewise, we neglect the effect of residual
electron-electron interactions on the spin susceptibility. The
effect of interactions in metals is usually determined by the
Fermi-liquid corrections, which are assumed to be small. This
approximation breaks, e.g., for systems which are close to
magnetic instabilities or have Fermi surfaces with nesting
behavior such as iron pnictide compounds [25,26].

Taking into account Eq. (29), we can see that the only
difference introduced by the spin absorber [Fig. 6(b)] is
the modification of the spin relaxation rate to τ−1

so → τ−1
so +

D(π/2dM )2. Therefore, hereafter, we will not distinguish
between these two cases, implying that the effective spin
relaxation is used.

The Fourier components of the spin current (37) are given
by

i(�) = νh2
eff dM[χm(�) − χm(0)]m × m�. (40)

For the configuration in Fig. 6 the effective field is given by
Heff = H�ei�t y + B0x, where B0 = H0 + 4πM. In this case
the eigenfrequencies of the LLG equation (36) satisfy the
equation

� =
√

(γ B0 + δω)(γ H0 + δω), (41)

δω = i�α + [χm(�) − χm(0)]TcC, (42)

C = heff

Tc

νheff

SF0

dM

dF
, (43)

The extra dissipation, that is, the imaginary part of � in
Eq. (41), can be considered to result from the effective Gilbert
damping constant increase,

δα = CTcImχm/� (44)

In the case where the film thickness is small, dM <

min(lso, ξ ), where ξ = √
D/Tc is the zero-temperature coher-

ence length, only the contribution with n = 0 in the sum (39)
is important. In this case the spin pumping effect is totally
determined by the homogeneous spin-orbit relaxation, so that
χm(�) ≈ χh(�, q = 0).

For a larger film thickness we need to take into account
several terms in Eq. (39). Only for the very large thickness,
dM  min(lso, ξ ), is the expression used in previous works
[20,29] recovered in the form

δα = νJ2
sd

dF SF0

∫ ∞

−∞

dq

π

Imχh(q,�)

�
. (45)

Temperature dependencies of the normalized excess
Gilbert damping are shown in Fig. 5. We can see that these
dependencies are qualitatively similar to that obtained in the
absence of spin relaxation for the superconducting film of a
very large thickness [42]. They are also qualitatively similar
to the temperature dependencies of the NMR [21,41] and
EPR [22,43] linewidths in superconductors. Note that for a
relatively large Dynes parameter � = 0.1Tc the peak in the
temperature dependencies of the Gilbert damping is almost
absent (red curves in Fig. 7), and superconductivity leads to
the monotonous suppression of the spin pumping dissipative
signal. This result reproduces theoretically the behavior ob-
served in FMR experiments with Py/Nb bilayers [11]. Using

FIG. 7. Temperature dependencies of the additional Gilbert
damping coefficient δα [Eq. (44)] at low frequency � = 0.01Tc.
In each panel curves corresponding to the Dynes parameter values
�/Tc = 0.001, 0.1 are shown. The spin-orbit scattering time τsoTc =
4, corresponding to the normal state spin relaxation length lso = ξ/2.
The metallic film thickness is (a) dM = 3ξ and (b) dM = 0.5ξ .

a large Dynes parameter � ∼ Tc, we can describe qualita-
tively the effect of superconducting gap suppression near the
surface of the metallic ferromagnet such as Fe or Ni. At
the same time the Dynes parameter � = 0.1Tc corresponds
to superconductors with a large electron-phonon relaxation
rate such as NbN. Therefore, provided the mechanism of spin
pumping between the FI and NbN superconductor is correctly
described by Eqs. (45) or (44), the Gilbert damping behavior
should correspond to the red curves in Fig. 7 with rather weak
peaks. The amplitude of these peaks is much smaller than
has been observed in the experiment [16]. This discrepancy
shows the presence of some other yet unknown mechanism of
spin pumping which can yield more pronounced peaks. The
identification of such a mechanism is, however, beyond the
scope of the present paper.

Quite interestingly, spin relaxation and superconducting
correlations lead to the pronounced frequency dependence of
the real part of the susceptibility Reχh, as shown in the right
panels of Fig. 5. This leads to the additional contribution
to the spin pumping having the form of the fieldlike spin
torque, which is an additional frequency-dependent effective
field acting on the magnetization of the ferromagnet m. This
leads to the shift of the FMR central frequency, which can be
obtained from Eq. (41) as follows:

δ� = CTc
Re[χm(�) − χm(0)]

2�
γ (B0 + H0). (46)

This shift is negligible at small frequencies �Tc � 1 and
�τso � 1 and small interfacial coupling between F and
M films measured by the dimensionless parameter (43).
However, it becomes significant for higher frequencies and
larger C.

To quantify the superconductivity-induced FMR frequency
shift we consider the system with not very strong spin re-
laxation τsoTc = 1. The normalized FMR response function,
according to Eqs. (36) and (41), is proportional to [�2 −
(γ B0 + δω)(γ H0 + δω)]−1. In Fig. 8 we normalize this re-
sponse function to its largest value at each temperature so that
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FIG. 8. Normalized amplitude of the FMR response signal as a
function of the constant external magnetic field H0 and temperature
T . The magnetic field is measured in the units Hp = �(T = 0)/γ .
The spin relaxation time is τsoTc = 1, and the frequency is � = Tc.
We consider (a) weak C = 0.01 and (b) relatively large C = 0.1
values of the interfacial coupling parameter (43).

it is possible to see the transformation of the FMR line in the
superconducting state.

We can see two pronounced effects which appear with
an increase in the coupling parameter. First, comparing
Figs. 8(a) and 8(b) at T > Tc, we can see a significant
growth of the normal state resonance linewidth. Given the
fact that in the experiment [16] with FMR in ferromagnetic
insulator/superconductor multilayers the resonance is well
defined at � ≈ 0.01Tc, we can conclude that the coupling
parameter is C ∼ 0.01, corresponding to Fig. 8(a). In this case
there is no noticeable shift of the FMR resonance line as a
function of temperature.

From its definition (43), the coupling parameter C ∝
(dF dM )−1 can be increased by decreasing the thickness of ei-
ther the metal film dM or the ferromagnetic film dF . By doing
so and reaching a value of C = 0.1, one would be able to see
that the superconducting correlations produce significant shift
of the temperature dependence of the resonant field H0.

V. CONCLUSION

We have derived and analyzed the general expression for
the time-dependent linear spin response in the superconductor
with spin-orbit relaxation. The homogeneous spin suscepti-
bility is found for any amount of the ordinary disorder. In
the spatially inhomogeneous case the diffusive limit is consid-
ered. We show that the effective spin relaxation rate is given
by the sum of the spin-orbit scattering rate and the diffusive
term.

At low frequencies, � � Tc, increasing the effective spin
relaxation leads to the formation of the peak in the tem-
perature dependence of the dissipative part of the spin
susceptibility. This peak is strongly suppressed by increasing
the Dynes parameter, which models the smearing of the gap
edge singularities in the superconductors due to the inhomo-
geneities or the inelastic phonon scattering.

Using this result and the model of interfacial exchange
interaction, we examined the spin pumping from the fer-
romagnet with magnetization precession into the adjacent
superconducting film. In the low-frequency regime, corre-
sponding to recent experiments [11–19], we have analyzed

the temperature dependence of the additional Gilbert damping
parameter induced by the spin pumping. For realistic values
of the Dynes parameter in materials such as NbN this temper-
ature dependence is almost monotonic. This result indicates
that there should exist some other mechanism for producing
large peaks observed recently in S/FI structures [16]. The
regime of large Dynes parameters can be also considered to
model the spectral smearing which occurs due to the spatial
inhomogeneity of the order parameter in systems with metal-
lic ferromagnets. The monotonic suppression of the Gilbert
damping parameter in this case corresponds to the experi-
mentally observed behavior of FMR in Py/Nb systems [11].
Similar behavior is also reproduced by the scattering theory
formalism [44].

For larger frequencies comparable with the superconduct-
ing gap and enhanced interfacial couplings, we get significant
shifts of the FMR line. These shifts act towards increasing the
resonant field H0 at a given frequency. This behavior is oppo-
site to the one found in recent experiments at low frequencies
[14,17–19].
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APPENDIX A: ABSENCE OF SPIN RESPONSE
WITHOUT SPIN RELAXATION

In the absence of spin-orbit scattering, τ−1
so = 0 and q = 0,

the susceptibility can be written as follows:

χh(�, q = 0) = πT
∑

ω

�2 + s1s2 − ω1ω2

s1s2(s1 + s2)
.

We can use the relations s2
1 − s2

2 = ω2
1 − ω2

2 and 2(ω1ω2 −
�2 − s1s2) = (ω1 + ω2)2 − (s1 + s2)2, so that

∑
ω

(ω1 + ω2)2 − (s1 + s2)2

s1s2(s1 + s2)

=
∑

ω

[
(ω1 + ω2)2

s1s2(s1 + s2)
− s1 + s2

s1s2

]

=
∑

ω

[
(ω1 + ω2)

(ω1 − ω2)

(
s−1

2 − s−1
1

) − s−1
1 − s−1

2

]

= − 1

�

∑
ω

[
(ω2 − ω1)

(
s−1

1 + s−1
2

) − (ω1 + ω2)
(
s−1

2 − s−1
1

)]

= 2

�

∑
ω

[
ω1s−1

1 − ω2s−1
2

] = 2

�

∑
ω

[sgn(ω1) − sgn(ω2)].

(A1)

Thus, after analytical continuation we can write

χh(�) + 1 =
∫ ∞

−∞

dε

2�
[n0(ε + �) − n0(ε)] = 1,

so that χh(�) = 0 at � �= 0.
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APPENDIX B: NORMAL METAL LIMIT

In the normal metal limit � = 0 and ξ1,2 = |ω1,2|. Then

χh + 1 = πT
∑

ω

1 − sgn(ω1)sgn(ω2)

(|ω1| + |ω2| + 4/3τso)
. (B1)

Analytical continuation is implemented as follows:

χh + 1

=
∫ ∞

−∞

dε

4i

[n0(ε − 1) − n0(ε)][1 − sgn(ω1)Rsgn(ω2)A]

(|ω1|R + |ω2|A + 4/3τso)
,

where we have used |ω1|R → s(−iεR
1 ) = i(ε − �) + �

and |ω2|A → s(−iεA
2 ) = −iε + �, so that |ω1|R + |ω2|A →

−i(ε − �) + iε + 2� = i� + 2�.
Then we obtain

χh + 1 =
∫ ∞

−∞

dε

2i

[n0(ε) − n0(ε + �)]

(i� + 2� + 4/3τso)

= �

� − 2i(2/3τso + �)
. (B2)

From this we obtain Eq. (22).

APPENDIX C: DERIVATION OF THE STRONG SPIN
RELAXATION LIMIT (26)

Substituting Eq. (21), obtained assuming strong spin relax-
ation, into the general analytical continuation rule (14), we
obtain

8

3iτso
χh = �2

∫
dε

[F1(ε − �)

ξA(ε)
+ F1(ε + �)

ξR(ε)

]

+
∫

dε
[F2(ε − �)ε

ξA(ε)
+ F2(ε + �)ε

ξR(ε)

]

+
∫

dε
[F2(ε)(ε + �)

ξA(ε + �)
− F2(ε − �)ε

ξA(ε)

]
, (C1)

where ξR,A(ε) =
√

(εR,A)2 − �2, F1 = n0(ε)N (ε)/ε, F2 =
n0(ε)N (ε), and N = Re(ε/ξR) is the DOS. The contribution
of the last term can be calculated to equal −i� using the
asymptotic F2(ε ± ∞) = ±1 and ε/ξA(ε) → −1 at large en-
ergies. The first two terms can be calculated using expansions
F (ε ± �) = F (ε) ± �∂εF , which yields

2

3τso

Imχh

�
=

∫ ∞

−∞
dε

N

ε
(�2∂εF1 + ε∂εF2) − 1. (C2)

Integrating by parts this equation can be rewritten as Eq. (26)
in the main text.

APPENDIX D: CALCULATION OF LOCAL SPIN
SUSCEPTIBILITY IN A FILM WITH FINITE THICKNESS

To take into account finite metallic film thickness we
incorporate the interfacial exchange field as the boundary

conditions to the nonstationary Usadel equations:

Dǧ ◦ ∂zǧ(z = 0) = iJsd [τ̂3σ̂m, ĝ]t . (D1)

Mathematically, it is more convenient to consider the equiv-
alent problem incorporating the interfacial exchange field as
the point source to the Usadel equation:

− i{τ̂3∂t , ǧ}t + D∂z(ǧ ◦ ∂zǧ)

= i[τ̂3τ̂2�, ǧ] + [̌so◦, ǧ]t + iJsdδ(z)[m̂, ǧ]t . (D2)

This equation is considered in the interval |z| < dM . If the
interfaces with vacuum are at z = ±dM , the current vanishes,

ǧ ◦ ∂zǧ(z = ±dM ) = 0. (D3)

If the interfaces with very strong spin sink are at z = dM , the
correction to GF vanishes,

ǧh(z = ±dM ) = 0. (D4)

We assume that magnetization depends on time as m(t ) =
m�e−i�t and search for the corrections to the GF in the form

ĝ(t, t ′) = T
∑

ω

[ĝ0(1)e−iω1(t1−t2 ) + ĝh(12)e−i(ω1t1−ω2t2 )],

(D5)

where ω2 = ω1 − � and ĝh represents the correction to the
first order of the oscillating field m�. To satisfy boundary
conditions we search for the solution in the form

ĝh(12) =
∞∑

n=0

gqn (12) cos(qnz), (D6)

with qn = nπ/dM in the case of the vacuum interface (D3) and
qn = (n + 1/2)π/dM in the case of the strong spin sink inter-
face (D4). Using the expansion δ(z) = (2dM )−1 ∑

n cos(qnz),
we have the equation for the correction:

(s̃1 + Dq2)ĝ0(1)ĝq(12) − s̃2ĝq(12)ĝ0(2)

= i(h�σ̂ )[ĝ0(1)τ̂3 − τ̂3ĝ0(2)], (D7)

where h� = (G↑↓
i /2νdM )m�. Using the commutation relation

ĝ0(1)ĝk (12) + ĝk (12)ĝ0(2) = 0, we get the solution given by

ĝq(12) = i(h�σ̂ )
τ̂3 − ĝ0(1)τ̂3ĝ0(2)

s1 + s2 + 4/3τso + Dq2
. (D8)

The spin polarization at the M/F interface can be written
in terms of the susceptibility,

S(z = 0) = νheffχm(�)m�. (D9)

Substituting the solution (D8) into the expression for the spin
polarization,

S(t, z) = −i
πν

4
Tr[σ̂τ̂3ĝ]|t1,2=t , (D10)

we get the imaginary frequency local susceptibility of the
finite-thickness film (39).
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