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We extend the basic theory of Andreev reflection (AR) in a normal metal/superconductor junction to the
situation with an arbitrary time-dependent bias voltage V (t ) across the junction. The central element of the theory
is the fact that the Fourier transform of the AR amplitude has a causal structure. As an example, the theory is
used to describe the current response to short pulses of the bias voltage, which create coherent superposition of
quasiparticle states with different energies. The current oscillates in time, with the gap frequency �/h̄, and also
as a function of the pulse area

∫
V (t )dt , with the period of the single-electron flux quantum e/h.

DOI: 10.1103/PhysRevB.102.144516

I. INTRODUCTION

Andreev reflection (AR) [1] is the process of conversion
of electrons in a normal metal (N) into Cooper pairs in a
superconductor (S) and vice versa, and represents the main
mechanism of electron transport across an NS interface with
large electron transparency. As a result, AR determines the
basic transport characteristics of the NS junctions, including
the linear conductance [2,3], average current [4–6], and cur-
rent noise [7,8]; in junctions with very low transparency, one
can observe individual AR transitions [9]. AR also gives rise
to an enormous amount of various other transport phenomena.
To give just a few examples, it is the basic mechanism of the
supercurrent flow in Josephson junctions [10–12] and, in the
form of multiple Andreev reflections (MAR), determines all
their transport characteristics at finite bias voltages: average
current [13–19], current noise [20–23], and full statistics of
charge transfer [24,25]. AR produces thermoelectric effects in
NS junctions [26–30], and plays an important role in super-
conducting structures with other materials, e.g., ferromagnets
[31,32], carbon nanotubes [33–35], graphene [36–39], and
topological insulators [40–43]. In all these situations, AR
is typically considered under the conditions of the constant
bias voltage, when the energy of the quasiparticles which
determine the AR amplitude can be taken to be constant
throughout the scattering process. Although the problem of
the time-dependent AR has been addressed in some specific
setups, e.g., for a quantum dot transport (see, e.g., [44–46]
and references therein), in many situations, for instance, in
the context of superconductor electronic circuits [47,48], a
more general and detailed theory of AR with an arbitrary
time-dependent bias voltage V (t ) is desirable. The primary
goal of this work is to develop such a theory.

Physically, the main feature of the time-dependent bias is
the creation of coherent quantum superposition of the quasi-
particle states with different energies. As a result, the junction
produces an oscillatory current response, the magnitude of

which is sensitive to the coherence properties of these super-
positions. For instance, as shown below, the oscillating current
generated by the AR processes is more stable to thermal aver-
aging than that produced by the quasiparticle tunneling, since
AR always involves two quasiparticles with vanishing total
energy. Also, in the limit of short pulses of the bias voltage,
the quantum superposition of quasiparticle energies leads to
the current oscillations as a function of the total “magnetic
flux”

∫
V (t )dt carried by the pulse with the period of the

single-electron flux quantum h/e.

II. MODEL AND BASIC EQUATIONS

We begin by outlining the derivation of our main results.
We use the most basic model of an NS junction, a small
constriction between the normal and superconducting elec-
trodes [Fig. 1(a)] with all transport modes characterized by
one transparency D. For short constriction, it is possible to
consider the constriction region itself as normal, reducing the
transport inside it to the motion of independent quasiparticles.
We assume that the bias voltage V (t ) across the constriction
is arbitrary, but varies on the time scale set by the energy
gap � of the superconductor and other small energies in the
problem, e.g., temperature T ; i.e., its characteristic frequen-
cies are smaller than the microscopic energy scales set by
the Fermi energy and by the traversal time of the barrier that
determines the transparency D. In this regime, we can neglect
the effect of the bias voltage on D, and also use the quasiclas-
sical approximation for the quasiparticle motion through the
constriction. This general approach is similar to the one used
to describe the time-dependent transport in normal conductors
(see, e.g., [49]).

One starts by accounting for the effect of the bias voltage
V (t ) on the quasiparticle motion between the two electrodes.
The voltage creates the electric field E (t, x) localized in the
constriction, V (t ) = ∫

dxE (t, x), where x is the coordinate
along the constriction. (The assumption of the relatively low
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FIG. 1. Sketch of (a) a short constriction between a normal metal
(N) and a superconductor (S) used as the basic model of an NS
junction, and (b) a quasiparticle scattering scheme in the junction that
consists of the normal scattering with the scattering matrix U (U ∗ for
the holes), energy change of the incident quasiparticles according to
Eq. (3) due to the time-dependent bias voltage V (t ), and Andreev
reflection at the NS interface with the amplitude A(ε) [Eq. (5)]. Also
indicated schematically in (b) is the Fermi level in the two electrodes.

frequencies of V (t ) made above also implies that E (t, x)
is quasistatic from the point of view of electromagnetism.)
Describing this field through the vector potential A(t, x),
E = −∂A/∂t , and solving the time-dependent Schrödinger
equation with A(t, x) in the quasiclassical approximation, we
see that the amplitude ψe(t ) of the wavefunction of an elec-
tron crossing the constriction from the normal metal to the
superconductor acquires the A(t, x)-dependent phase:

ψe(t ) → exp
{ ie

h̄

∫
dxA(t, x)

}
ψe(t )

= exp

{−ie

h̄

∫ t

dt ′V (t ′)
}
ψe(t ) = e−iφ(t )ψe(t ), (1)

where the phase φ is defined by the relation φ̇ = e
h̄V (t ).

Electrons passing through the constriction in the opposite di-
rection accumulate the phase of the opposite sign. The phases
acquired by the holes are switched in comparison to those
for the electrons. Physically, these phase factors describe the
acceleration and deceleration of the quasiparticles as they
move between the junction electrodes. In the quasiclassical
approximation, the particle energies change, while the change
of their velocity is small and is neglected.

Next, we introduce the Fourier components of the accumu-
lated phase:

e−iφ(t ) =
∫

dωW (ω)e−iωt , (2)

in close analogy to what is done in the “Werthamer theory” of
the time-dependent properties of the Josephson tunnel junc-
tions [50,51]. Then, the electron acceleration process (1) has
the following form in terms of the energy components a(ε) of
the wavefunction ψe(t ):

a(ε) →
∫

dωW (ω)a(ε − ω) . (3)

The quasiparticle acceleration and deceleration described
above should be combined with the standard quasiparticle
scattering scheme in the NS junction as illustrated schemat-
ically in Fig. 1(b). For electrons incident from the normal
electrode on the constriction at energy ε, the scattering process

consists of the normal barrier scattering characterized by the
scattering matrix U ,

U =
(r , t

t ′ , r′
)

, r′ = −t ′r∗/t∗, (4)

with |t |2 = |t ′|2 = D and |r|2 = |r′|2 = R, and Andreev re-
flection at the NS interface with the amplitude:

A(ε) =
{

x − sgn(x)
√

x2 − 1, |x| > 1

x − i
√

1 − x2, |x| < 1 ,
x = ε/�. (5)

For the holes incident from the normal electrode, the AR am-
plitude is the same, while the scattering matrix is U ∗. Solving
this scattering scheme for the electrons and the holes, taking
the standard average over their equilibrium energy distribu-
tions at temperature T , and combining the electron and the
hole contributions to the current, we get the total current in
the constriction:

I (t ) = eN

2π

∫
dωdνW ∗(ω)W (ν)ei(ω−ν)t

×
∫

dε[ f (ε − ω) − f (ε + ν)]

[
1+ D2 A∗(ε)

1 − [A∗(ε)]2R

× A(ε + ν − ω)

1 − A2(ε + ν − ω)R

− R
1 − [A∗(ε)]2

1 − [A∗(ε)]2R

1 − A2(ε + ν − ω)

1 − A2(ε + ν − ω)R

]
, (6)

where N is the number of the spin-degenerate transport modes
in the constriction. In principle, this expression can be used di-
rectly to calculate the current in the NS junction. For instance,
for constant bias voltage W (ω) = δ(ω − eV/h̄), and Eq. (6)
reduces to the well-known expression [4]

I = eN

2π h̄

∫
dε[ f (ε − eV ) − f (ε + eV )]

×
[

1 + D2 |A(ε)|2
|1 − A2(ε)R|2 − R

∣∣∣∣ 1 − A2(ε)

1 − A2(ε)R

∣∣∣∣
2]

, (7)

which describes the evolution of the dc IV curves from the
regime of the tunnel to the ballistic junction with increas-
ing quasiparticle transparency D. For general time-dependent
voltage, however, it is more convenient to transform Eq. (6)
explicitly into the time domain.

As the first step in this direction, we separate the term
in Eq. (6) that does not decay at large |ε|. The magnitude
of this term in the integral over ε is 1 − R = D and it gives
D

∫
dε[ f (ε − ω) − f (ε + ν)] = D(ω + ν), meaning that this

contribution in Eq. (6) corresponds to the normal-state current
IN (t ) in the junction:

IN (t ) = eND

2π

∫
dωdν(ω + ν)W ∗(ω)W (ν)ei(ω−ν)t

= eND

π

(
−i

∂

∂t
eiφ(t )

)
e−iφ(t ) = GV (t ) . (8)

Here G = e2ND/π h̄ is the normal-state conductance.
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After the separation of the normal-state part, the current
can be expressed as

I = IN + eN

2π

∫
dε f (ε)

[
D2

∣∣∣∣
∫

dωe−iωt W (ω)A(ε + ω)

1 − A2(ε + ω)R

∣∣∣∣
2

+ RD2

∣∣∣∣
∫

dωe−iωt W (ω)A2(ε + ω)

1 − A2(ε + ω)R

∣∣∣∣
2

+ 2DR

× Re

{
eiφ(t )

∫
dωe−iωt W (ω)A2(ε + ω)

1 − A2(ε + ω)R

∣∣∣∣
2}

− · · ·
]
,

(9)

where the ellipsis denotes the subtracted identical terms in
which A(ε + ω) is replaced everywhere with A∗(ε − ω). In
this expression, we can transform the AR amplitude into the
time domain. More precisely, we introduce the two response
functions that enter Eq. (9):

K (τ ) = i

2π

∫
dxe−ixτ A(x)

1 − A2(x)R
, (10)

L(τ ) = 1

2π

∫
dxe−ixτ A2(x)

1 − A2(x)R
, (11)

where τ is the time normalized to the gap frequency, τ =
t�/h̄, and the prefactors are chosen for later convenience.

An important property of the AR amplitude A(x) [Eq. (5)]
is that it can be viewed as the reduction to the real axis of the
function of the complex variable z: A(z) = z − √

z2 − 1. The
function A(z) is analytic on the whole z plane except for the
cut on the [−1, 1] interval of the real axis, and A(x) [Eq. (5)]
on this interval is the value of A(z) on the upper (Imz > 0)
branch of the cut. This property implies that the AR amplitude
in the time domain has a clear causal structure, vanishing for
τ < 0:

i

2π

∫
dxe−ixτ A(x) = �(τ )

i

2π

∮
C

dze−izτ A(z)

= �(τ )
2

π

∫ 1

0
dx

√
1 − x2 cos xτ

= �(τ )
J1(τ )

τ
, (12)

where C is the contour going clockwise around the branch
cut, and J1 is the Bessel function. One can see directly that
the denominator in functions (10) and (11) does not add any
poles to these functions and, therefore, they have the same
analytical properties as the AR amplitude A(z). From this, we
obtain directly the following expressions:

K (τ ) = �(τ )
2(1 + R)

π

∫ 1

0
dx

√
1 − x2 cos xτ

(1 + R)2 − 4x2R
, (13)

L(τ ) = −�(τ )
4

π

∫ 1

0
dx

x
√

1 − x2 sin xτ

(1 + R)2 − 4x2R

= 2

(1 + R)

∂K (τ )

∂τ
, τ > 0. (14)

Taking the inverse Fourier transform to express the ampli-
tudes W (ω) in terms of φ(t ), and using functions (13) and (14)
in Eq. (9), we obtain our main general result for the current in

the NS junction driven by an arbitrary time-dependent bias
voltage, expressed directly in the time domain:

I (t ) = IN + eNT �

h̄2

{
D2�

h̄

∫ t

−∞
dt ′dt ′′ sin[φ(t ′) − φ(t ′′)]

sinh[πT (t ′ − t ′′)/h̄]

× [K (t − t ′)K (t − t ′′) − RL(t − t ′)L(t − t ′′)]

+2DR
∫ t

−∞
dt ′ sin[φ(t ) − φ(t ′)]

sinh[πT (t − t ′)/h̄]
L(t − t ′)

}
. (15)

III. RESULTS AND DISCUSSION

Equation (15) for the time-dependent NS current can be
used to calculate the current under many different bias condi-
tions. For instance, it shows that the main qualitative feature of
the junction response to the voltage that varies rapidly on the
time scale h̄/� is interference of the quasiparticle reflection
from the gap edges which leads to oscillations of the current
in time with the gap frequency, and also to oscillations in
magnitude with the applied voltage. Consider the simplest
model of the voltage pulse that is infinitely short on the gap
time scale:

V (t ) = 
δ(t ) , φ(t ) = 2πφV �(t ).

Here 
 is the total area under the voltage pulse, which has
the meaning of the magnetic flux carried by this pulse, and
φV ≡ e
/h is the magnitude of this flux in units of the single-
electron flux quantum. (Note that this pulse should still be
smooth on the time scale set by the large energies in the prob-
lem, like the Fermi energy in the junction electrodes or the
height of the energy barrier between them, for our description
to be valid.) Equations (8) and (15) show that the current for
the δ-function voltage pulse is

I (t ) = G
δ(t ) + �(t )I0(t ) sin(2πφV ) , (16)

where qualitatively, the current I0(t ) oscillates and decays
on the time scale h̄/�. The magnitude of this oscillatory
response is modulated periodically, with the period of the
single-electron flux quantum, by the area 
 of the bias voltage
pulse.

Quantitatively, the current I0(t ) is

I0(t ) = 2eNT �

h̄2

{
D2�

h̄

∫ t

0
dt ′

∫ 0

−∞

dt ′′

sinh[πT (t ′ − t ′′)/h̄]

× [K (t − t ′)K (t − t ′′) − RL(t − t ′)L(t − t ′′)]

+ DR
∫ 0

−∞
dt ′ L(t − t ′)

sinh[πT (t − t ′)/h̄]

}
. (17)

Equation (17) can be evaluated explicitly at large tempera-
tures, T � �. In this limit, different terms in Eq. (17) have
two different behaviors as functions of temperature. The last
term (which corresponds to the quasiparticle tunneling in the
tunnel-junction limit), in general, decays exponentially with
T :

I (qp)
0 (t ) = 4G�

e
RL(t )e−πT t/h̄. (18)

This temperature dependence reflects the fact that the quasi-
particles tunnel at different energies, and thermal averaging
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FIG. 2. Oscillating current in a ballistic NS junction driven by
the δ-function pulse of the bias voltage, as a function of time t for
several temperatures T . The oscillations are produced by interference
of the quasiparticle Andreev reflection from the gap edges and are
suppressed as 1/T at large temperatures.

of the partial amplitudes at different energies results in the
exponential decay. In contrast to this, the other two terms in
Eq. (17) decay only as 1/T , as a result of all AR processes
having total zero energy and, therefore, thermal averaging
reducing only the probability of the incident quasiparticle to
have the initial energy within the range of �. Indeed, in the
limit T � �, the first two terms in Eq. (17) give at times t
larger than h̄/T , when the exponentially decaying quasiparti-
cle contribution [Eq. (18)] can be neglected:

I0(t ) = πG�2D

2eT
[K2(t ) − RL2(t )]. (19)

Equations (15)–(19) are valid for junctions with arbitrary
quasiparticle transparency D. They can be simplified further
in the two limits of ballistic and tunnel junctions. For the bal-
listic junction with D = 1, the kernel K (τ ) [Eq. (10)] is given
directly by the Fourier transform (12) of the AR amplitude,
and the total current is

I (t ) = G

{
V + πT

e

∫ t

−∞
dt ′dt ′′ sin[φ(t ′) − φ(t ′′)]

sinh[πT (t ′ − t ′′)/h̄]

× J1[(t − t ′)�/h̄]J1[(t − t ′′)�/h̄]

(t − t ′)(t − t ′′)

}
. (20)

In this case, the amplitude I0(t ) [Eq. (16)] can be calculated
numerically from Eq. (20) and is shown in Fig. 2 for several
values of the temperature T . Outside of a small range t ∼ h̄/T
near t = 0, where I0 goes to zero as t ln t , the lowest curve
in Fig. 2 agrees with Eq. (19), which for D = 1 simplifies to
I0(t ) = πG[h̄J1(t�/h̄)/t]2/(2eT ).

In the tunnel limit D 
 1, one can separate the single-
particle contribution IT to the current, which is proportional to
D and the Andreev-reflection current IAR proportional to D2.
In both of these contributions, one can calculate the kernels
K, L taking D = 0, i.e., R = 1 in Eqs. (13) and (14), to get

K (τ ) = 1
2�(τ )J0(τ ) , L(τ ) = − 1

2�(τ )J1(τ ), (21)

where J’s are Bessel functions. Equation (19) for the
large-temperature oscillatory AR current is simplified then

FIG. 3. Current in an NS tunnel junction as a function of time
t driven by the two voltage pulses [Eqs. (24)] with two different
amplitudes and the same characteristic time width t0. The curves
illustrate the pulse flux control of the interference current which
manifests itself through the oscillating “tail” of the current response
to the short voltage pulse. The oscillation amplitude is modulated
by the flux φV carried by the pulse according to Eq. (16). In the
plotted curves, the oscillations are suppressed for the larger pulse
with φV = 0.5 in comparison to the smaller pulse with φV = 0.25.

accordingly. The single-particle current is described by the
last term in Eq. (15) and explicitly is

IT (t ) = G

{
V (t ) − πT �

eh̄

∫ t

−∞
dt ′ sin[φ(t ) − φ(t ′)]

sinh[πT (t − t ′)/h̄]

× J1[(t − t ′)�/h̄]

}
. (22)

One can also see directly that expansion in D of the general
form of this term does not have the D2 part and, therefore,
the AR part of the current is given directly by the D2 term
in Eq. (15). With the current kernels (21), the time-dependent
AR current in the tunnel limit is

IAR(t ) = eNT D2�2

4h̄3

∫ t

−∞
dt ′dt ′′ sin[φ(t ′) − φ(t ′′)]

sinh[πT (t ′ − t ′′)/h̄]

× [J0(τ − τ ′)J0(τ − τ ′′) − J1(τ − τ ′)J1(τ − τ ′′)].

(23)

Finally, an important point to check is how the idealized
δ-function limit of the voltage pulses is approached by the
pulses of finite time width. To do this, we adopt the shape of
the bias voltage pulse,

V (t ) = 1

π


/t0
cosh t/t0

, φ(t ) = 4φV arctan et/t0 , (24)

related to the one that can be produced by switching Joseph-
son junctions in the context of superconductor electronics. An
example of the current in the NS tunnel junction calculated
in the quasiparticle approximation (22) for this pulse shape at
low temperatures is shown in Fig. 3. This figure shows that
the main qualitative prediction of the δ-function approxima-
tion, flux modulation of the interference component of the
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NS current, is reproduced by the pulses of the not-extremely-
small duration t0 = 0.1h̄/�. For example, as one can see in
Fig. 3, the tail of the pulse with the total integral φV = 0.5,
which vanishes completely in the δ-function approximation
[see Eq. 16], is indeed very close to zero. Minor deviations
from zero are due to the finite pulse width.
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