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Disordered quantum transport in quantum anomalous Hall insulator-superconductor junctions
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In this work we numerically studied disordered quantum transport in a quantum anomalous Hall insulator-
superconductor junction based on the effective edge model approach. In particular, we focus on the parameter
regime with the mean-free path due to elastic scattering much smaller than the sample size and superconductor
coherence length, and discuss disordered transport behavior in the presence of different numbers of chiral edge
modes, as well as nonchiral metallic modes. Our numerical results demonstrate that the presence of multiple
chiral edge modes or nonchiral metallic modes will lead to a strong Andreev conversion, giving rise to half-
electron half-hole transmission through the junction structure, in sharp contrast to the suppression of Andreev
conversion in the single chiral edge mode case. Our results suggest the importance of additional transport modes
in the quantum anomalous Hall insulator-superconductor junction and will guide future transport measurements.
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I. INTRODUCTION

The interplay between superconductivity proximity effect
and chiral edge modes (CEMs) in a two-dimensional het-
erostructure with a quantum Hall (QH) or quantum anoma-
lous Hall (QAH) system coupled to a superconductor (SC)
has been a long-standing problem [1–10]. Recently, a strong
resurgence of the research interest in this system results from
the possible realization of a topological superconductor (TSC)
phase [11]. A TSC possesses a full bulk SC gap and gapless
quasiparticle excitations, such as Majorana zero modes [1,12]
or parafermions [13–17], at the boundary. Non-Abelian statis-
tics of these quasiparticle excitations enables the possibility of
performing topological quantum computation based on TSC
[18,19].

Early theoretical studies on the QH/SC junction focus
on the Andreev reflection process occurring at the QH/SC
interface [4–10] and the supercurrent flowing through CEMs
[20,21]. Several early experiments on SC/semiconductor het-
erostructure have revealed evidence of Andreev reflections
for two-dimensional electron gas in the high-Landau-level
states under the magnetic fields [22–27]. Low-Landau-level
states are challenging in these systems due to the limitation
of the upper critical field of SCs and the high electron density
[28]. Recent experiments have shown that the low-Landau-
level states at a relatively low magnetic field can be achieved
in the graphene system by tuning electron density through
gate voltages, thus leading to significant progress in inducing
SC correlation via the proximity effect into the graphene in
the QH regime [8,10,29,30]. Transport evidences, including
supercurrents carried by CEMs [31,32], enhanced QH plateau
conductance due to Andreev process [33], cross Andreev con-
version (AC) [34], and inter-Landau-level Andreev reflection
[35], have been found in graphene QH systems in contact
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with SC electrodes under an external magnetic field. These
encouraging experimental progresses lay the foundations for
the theoretical proposals of realizing chiral Majorana modes
(CMMs) [3,36] and Majorana zero modes [37–39] in the
SC/QH (or QAH) junctions.

More recently, an observation of an e2/2h conductance
kink is claimed to be the transport evidence of CMMs in the
TSC phase of a QAH/SC heterostructure [11]. However, this
claim is still under debate [40,41] because the early theoretical
prediction was based on the calculation of the clean QAH/SC
heterostructure model with the Landauer-Buttiker formalism
[36] while the QAH samples in experiments, particularly the
SC/QAH interface, are highly disordered [42–44]. The mean-
free path lmfp around the SC/QH(QAH) interface region is
greatly reduced due to interface roughness and normally much
smaller than the typical length scale of the SC/QH(QAH)
interface. For example, in Ref. [45], lmfp is around 0.3 nm,
much smaller than the width of a SC ribbon (around
50–600 nm). Theoretically, the disorder effect in the SC/QH
interface was investigated for the high-Landau-level systems
based on either the semiclassical skipping orbit picture or
the Landau level picture in the early literature [4,5,7,8].
More recently, several theoretical models are developed for
the disorder-induced bulk topological phase transition in the
QAH/SC heterostructures [42–44,46,47]. The disorder effect
from elastic scattering is normally not important for CEM
transport in the QH or QAH regime. However, the conduc-
tance oscillation can be induced by AC of CEMs propagating
through the SC/QH (or QAH) interface in the ballistic regime
[48,49], which is sensitive to elastic scattering. Therefore,
understanding disorder effect in the SC/QH(QAH) junctions
[50,51] is essential for any reliable theoretical interpretation.

In this work we focus on the disordered transport through
the QAH/SC junction. We consider a theoretical model for
the setup with SC partially covering the QAH system, forming
a planar junction between a pure QAH region (region I) and
a SC/QAH vertical junction region (region II), as shown in
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FIG. 1. (a) Schematics of the configuration for the SC-QAHI
heterostructure with four leads labeled 1 to 4. (b) The trajectory of
chiral edge modes going through region II in (a), which is segmented
into multiple regions with local chemical potential μi (i = 1, . . . , N).
(c) The oscillation of T13 at a fixed chemical potential μi = μ = 0.1t
for different ε in the clean limit. (d) The oscillation of T13 at finite
electron energy ε = 0.075t in the clean limit μi = μ for all i. The
circles, triangles, and diamonds are calculated from the microscopic
model, while the solid lines are from an effective edge model.

Fig. 1(a). We assume SC proximity effect is weak in the QAH
system and thus region II is topologically equivalent to the
QAH phase. As a result, the CEM at the boundary of region I
is transformed into two CMMs along the boundary of region
II [Fig. 1(a)]. Previous theoretical studies on similar configu-
rations have revealed a conductance oscillation [48,49] in the
ballistic transport regime. We focus on the elastic-scattering-
dominated transport regime, in which the edge length L of
the QAH/SC junction is much larger than the mean-free path
lmfp. In this transport regime, the disordered transport behavior
sensitively depends on the number N of CEMs and the exis-
tence of other transport channels. In the single CEM (N = 1)
case, we find that the transmission through the boundary of
QAH/SC junction region approaches unity without AC even
in the presence of disorder when the incident electron energy
approaches 0 (or the zero-bias limit in experiments). This
is a consequence of the p-wave nature of the allowed SC
proximity effect in the single CEM case. In contrast, the
transmission will quickly decay away from one and reach
certain saturating values when considering the finite incident
electron energy (or the finite bias), or multiple CEMs (N > 1),
or the coexistence of a CEM and a nonchiral metallic mode.
These results bring new insights into the existing experiments
of QAH/SC junction and reveal the important role of the
interplay between elastic scattering and CMM transport.

The paper is organized as follows. In Sec. II we first discuss
the model Hamiltonian and transport of a single CEM without
disorder. In the next section, Sec. III, we consider the potential
coupling to both the other CEMs and metallic modes under
a disordered on-site chemical potential configuration. The
coupling and interference effect can be manifested through
measurable quantities in a realistic experimental setup, as
discussed in Sec IV. Finally, the conclusion and discussion
can be found in Sec. V.

II. MODEL HAMILTONIAN AND TRANSPORT
OF A SINGLE CEM

Due to topological equivalence between the QH and QAH
states, we consider a two-band model of QAH insulator and
couple it to a SC. The Bogoliubov–de Gennes (BdG) Hamil-
tonian for a QAH/SC junction can be written as

H =
(

HQAH H�

H†
� −H∗

QAH

)
, (1)

with HQAH = [M + B(∂2
x + ∂2

y )]σz + ασx(−i∂x ) + ασy(−i∂y)
− μ and σx,y,z are the Pauli matrices for spin [48]. The super-
conducting gap term can be described generally with H� =
iσy(�0 + d · σ), where d = {dx, dy, dz} is a three-component
vector denoting the p-wave pairing and σ = {σx, σy, σz} are
the Pauli matrices. In the numerical calculation we choose
dx = dy = 0, dz = −�x(−i∂x ), which is only for demonstra-
tion purpose. In the proximity-induced SC systems with
strong spin-orbit coupling and magnetization, singlet and
triplet pairings are generally mixed with each other due to
the absence of both time reversal symmetry and inversion
symmetry [52–54]. We justify the pairing form for the current
system in Appendix A.

The parameters μ, �0, and �x are in general spatially
dependent as their values incorporate both the spatial con-
figuration of the junctions and the disorder-induced spatial
variations. We apply the Hamiltonian (1) to the configuration
in Fig. 1(a) on a rectangular geometry and adopt the recursive
Green’s function method combined with Landauer-Büttiker
formalism. The leads 1, 2, and 3 are attached on the edge
of the sample. As the system possesses the particle-hole
symmetry, the conservation of charge in a realistic system
requires the bulk of the superconductor to be grounded, shown
as lead 4 in Fig. 1(a). Leads 1 through 3 are assumed to
be semi-infinite metal with the simple parabolic bands at-
tached to the edge of the system through self-energy terms in
the Green’s function formalism. The calculation of Green’s
function allows us to obtain the full transmission matrix
between all leads, without relying on knowing the detailed
distribution of voltage or current. The transmission matrix
combined with arbitrary current profiles on leads 1 through
3 gives the voltage distribution among all leads, as well as the
four-point resistance between any two pairs of measurement
leads. The physical current conservation of the entire device is
automatically satisfied from the compensation of the current
in lead 4. As the underlying physics is closely tied with the
transmission while the experimental evidences are measured
in term of resistances, we will discuss the relation in detail in
Sec. IV. Details about Landauer-Büttiker formalism and the
calculation of transport property can be found in Appendix E.

The system is of the total size 48a0 × 88a0. The left
30a0 × 88a0 is the QAHI region (I) and the right 18a0 × La0

is the QAHI+SC region (II), where L is the variable of system
length. The rest of the system is filled with vacuum, creating
the geometry shown in Fig. 1(a). Other parameters are chosen
as B = 1.5625ta2

0, M = 2.625t , α = 1.75ta0, �0 = 0, �x =
1.2t , ε = 0.075t , where a0 ≡ 1 is the size of unit cell and t ≡
1 is the unit of energy. The parameters are extracted from a
numerical projection of wave functions from the microscopic
model to the edge model. A detailed comparison of the energy
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spectra of both the microscopic model and the effective model
is shown in Appendix B to demonstrate the validity of the
approximation.

We first study the transport behavior of the Hamiltonian (1)
in the clean limit and consider the transmission from lead 3 to
1, labeled as T13, which accounts for the transmission through
two CMMs at the boundary of region II [see Fig. 1(a)].
Through this region, electrons can transmit as an electron
or convert to a hole through the AC process. We denote the
electron-electron transmission as Tee and the electron-hole
transmission of AC as Teh, thus T13 = Tee − Teh. In Figs. 1(c)
and 1(d) the calculated T13 as a function of the length L is
shown as circles, triangles, and diamonds for different inci-
dent electron energies ε and different chemical potentials μ,
respectively. The oscillation behavior of transmission comes
from the AC at the SC/QAH boundary [48,49]. The amplitude
of the oscillation increases with ε (or Fermi momentum of
CEMs), but decreases with μ. In the ε = 0 case, the transmis-
sion T13 always keeps 1, suggesting the suppression of AC in
the zero-bias limit, which is consistent with the literature [20].

Since we focus on the edge transport regime with chemical
potential within the bulk gap of HQAH, the full Hamiltonian
of the QAH/SC junction can be projected into the subspace
spanned by CEMs, giving rise to

Heff =
(

v f k − μ −v�k
−v�k v f k + μ

)
(2)

on the CEM basis of |φe〉 and |φh〉, where v f is the Fermi
velocity of CEM and v� is the coefficient of the triplet pairing
component. Detailed derivation of the effective model can
be found in Appendix B. We notice that only the triplet
component can contribute to the pairing term for CEMs [20],
as guaranteed by the particle-hole symmetry. As described in
Appendix C, the transmission T13 can be directly computed
through the scattering matrix approach and given by

T13 = 1 −
2ε2v2

� sin2
(√

ε2v2
�+(v2

f −v2
� )μ2

v2
f −v2

�

L
)

ε2v2
� + (

v2
f − v2

�

)
μ2

, (3)

from which one finds T13 oscillates with the amplitude
2ε2v2

�

ε2v2
�+(v2

f −v2
� )μ2 and the period

v2
f −v2

�

2
√

ε2v2
�+(v2

f −v2
� )μ2

. The oscilla-

tion amplitude increases when increasing ε, but decreases
when increasing μ, while the oscillation period decreases with
increasing either ε or μ. The solid lines in Figs. 1(c) and 1(d)
are calculated values of the transmission T13 from the edge
model, with the projected parameters from the microscopic
model. Compared with the results from the microscopic
model (shown in three colored marks), the transmissions
calculated from the two models coincide well with each other,
showing a strong validity of the edge mode representation as
the key features of the microscopic model. Thus we will focus
on the analysis of the edge model hereafter.

According to Eq. (3), as the incident electron energy ε ap-
proaches zero, the oscillation amplitude vanishes, and thus the
transmission T13 always stays at 1, independent of chemical
potential μ. Physically the p-wave nature of the pairing in the
effective edge model plays an important role. As the electron
energy ε approaches zero, the transmissions of the electron
and hole components are decoupled from each other, leading

FIG. 2. (a) and (b) Single MEM case: (a) Average transmission
T̄13 as a function of L for different ε with μ = 0.1. The error bar
depicts the standard error over 1000 configurations. (b) Decay length
λ extracted from transmission as a function of ε. Other parameters
are v f = 1ta0, v� = 0.5ta0, μimp = 0.5t . Inset: The same decay
length over a wider energy range (0, 1), where the decaying trend
continues and the decay length remains small and finite. (c) and
(d) Same as (a) and (b) but for the multiple MEMs case. Other
parameters are v f 1 = 1ta0, v f 2 = 2ta0, � = 0.1t , μimp = 1t . The
fundamental difference between the two cases is the divergence of
decay length at zero energy in the single MEM case. No other
singularities of decay length are observed within the energy range
of interest.

to the absence of Andreev reflection in the system, as first
demonstrated in Ref. [20].

More generally, the transmission oscillation is sensitive
to the parameters v f , v�, and μ, which are determined by
the local properties of the material. Thus, we next consider
some spatial variation of the parameter values, and study how
impurities and disorder in real materials would affect the mea-
sured electronic signals. As a simple case, we next consider
the influence of the on-site fluctuation of chemical potential
μ in the effective edge Hamiltonian (2). We will show that
the introduced randomness would dramatically change the
behavior of the transmission, measured in the sense of the
statistical average value over random configurations.

To include randomness, we divide the QAH/SC inter-
face into N segments labeled by the index i = 1, 2, . . . , N .
Within each segment, the Hamiltonian is described by Eq. (2)
with a constant chemical potential μi, which is chosen
to be a random variable from a uniform distribution on
[−μimp/2, μimp/2] [see Fig. 1(b)]. A configuration is gener-
ated for a given number of N . As the neighboring segments
generally do not have the same chemical potentials, elastic
scattering can occur at the interface of the adjacent segments.
For each disorder configuration {μi}i=1,...,N , we compute the
transmission T13 through the transfer matrix formalism. Given
a large number of identically distributed configurations, we
may relate the “physical” value of transmission, denoted as
T̄13, with the average value of all configurations. This averag-
ing process is expected to induce the phase decoherence.

Figure 2(a) shows the long-distance evolution behavior of
the average value T̄13, which generally reveals an exponential
decay. Such decay behavior of T̄13 can be understood as
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FIG. 3. (a) and (b) The energy and chemical potential depen-
dence of the single CEM system. (c) and (d) Same as (a) and
(b) but for the multiple CEMs system. System length L = 200a0.
The unitary transmission at zero energy of (a) causes the divergence
in resistance in Fig. 6(a).

the decoherent interference between different trajectories of
electron-hole oscillation when varying chemical potential.
The characteristic length of such decay, denoted as λ, can be
extracted from Fig. 2(a) and its dependence on ε is shown
in Fig. 2(b). As ε approaches zero, λ increases rapidly, thus
T̄13 almost remains 1, indicating the suppression of AC in this
limit even when including disorder scattering. In a realistic
experiment, both electron energy ε and chemical potential μ

are easier to tune than the system length L. Figures 3(a) and
3(b) show how T̄13 is dependent on ε or μ, with a fixed system

length L. The transmission T̄13 = 1 at ε = 0 for the single
CEM case is immune to on-site random potential, as shown
in Fig. 3(a). For a nonzero ε, decreasing the absolute value of
μ enhances the oscillation for a single disorder configuration,
leading to a faster decay to equilibrium when considering the
average over multiple configurations [Fig. 3(b)].

III. DISORDERED TRANSPORT OF MULTIPLE MODES
AT THE QAH/SC INTERFACE

In addition to the single CEM case discussed above, mul-
tiple transport channels can exist at the QAH/SC interface
in real experiment devices, including (1) high-Landau level
states with multiple CEMs (N > 1) for the QH states [31,34]
and (2) the coexistence of a CEM and other nonchiral metallic
modes [55,56]. Therefore, we next go beyond the single
CEM case and study the influence of multiple modes on the
disordered transport.

We first consider the case with two CEMs (N = 2) for
simplicity. We denote the basis of the effective Hamiltonian as
{|e1〉, |e2〉, |h1〉, |h2〉}, where the subscript labels two channels.
In addition to the p-wave pairing between |e1(2)〉 and |h1(2)〉,
the pairing between |e1(2)〉 and |h2(1)〉 also exists and can be
of s-wave nature, since the electron and hole basis of two
different particles are no longer constrained by particle-hole
symmetry. As the linear term is induced from higher-order
perturbation, we assume the leading contribution is from the
constant terms. Denoting the constant pairing term as �, the
effective Hamiltonian can be written as

Hm =

⎛
⎜⎜⎝

v f 1k − μ1 0 0 �

0 v f 2k − μ2 −� 0
0 −� v f 1k + μ1 0
� 0 0 v f 2k + μ2

⎞
⎟⎟⎠. (4)

In Appendix D we justify this form of the Hamiltonian by
considering a simple model of two chiral modes coupled to
a normal SC. Unlike in the single-CEM case, the constant
� term here is expected to induce a large oscillation in the
clean limit and thus disorder can induce a strong dephasing
of the oscillation pattern, giving rise to the decay behavior.
This behavior has been previously studied for the QH/SC
interface for the high-Landau-level QH state [4,5,7,8]. We
perform transport simulations for the Hamiltonian (4) with
the on-site chemical potential disorder. Figure 2(c) shows the
averaged transmission T̄13 as a function of L, which shows an
exponential decay with the decay length λ depending on ε in
Fig. 2(d). In sharp contrast to the single-CEM case, the decay
length does not diverge at ε = 0 and is generally quite small
for a wide range of parameter choices. As a consequence, the
transmission T̄13 will be reduced close to zero for a range of ε

and μ when the length L becomes large, as demonstrated by
showing the energy and chemical potential dependence of T̄13

with a fixed system length in Figs. 3(c) and 3(d). Therefore,
the behavior of the transmission T̄13 provides a clear way
to distinguish between the single-CEM and multiple-CEMs
cases.

We next consider the coexistence of the CEM and the
nonchiral metallic mode, and this scenario has been theoret-
ically proposed [55] and later experimentally demonstrated
[56] in magnetically doped TI films. We consider the BdG
Hamiltonian

Horig =
(

Helec(k) H�

H†
� −H∗

elec(−k)

)
, (5)

where

Helec =
⎛
⎝v f k − μ1 ξ1 ξ2

ξ1 v1k − μ2 0
ξ2 0 −v1k − μ2

⎞
⎠ (6)

and

H� =
⎛
⎝ 0 �1 �2

−�1 0 0
−�2 0 0

⎞
⎠. (7)

Here Helec is written on the basis {|ec〉, |enL〉, |enR〉}, where
|ec〉 labels the CEM while |enL〉 and |enR〉 together repre-
sent the nonchiral mode due to their opposite velocities.
In magnetic TI films, nonchiral modes originate from the

144513-4



DISORDERED QUANTUM TRANSPORT IN QUANTUM … PHYSICAL REVIEW B 102, 144513 (2020)

FIG. 4. Transmissions (a) and (c) and reflections (b) and (d) be-
tween leads 1 and 3 as functions of system length, for the coexistence
of CEM and metallic mode case. Two different scenarios where
the QAH region (region I) is clean (red) and disordered (blue) are
marked. Chemical potential values are μ1 = −0.3t , μ2 = −3.2t .
For details of the calculation and other parameters, please refer to
Appendix E.

quasihelical gapless modes at the side surfaces of TI films
[55]. The coupling between the CEM and nonchiral mode
is described by the parameters ξ1,2 = ξ . The s-wave pairing
gap can exist between the CEM and nonchiral mode. Here we
assume the coupling between the CEM and the two nonchiral
modes have the same strength �1,2 = �. On the other hand,
the nonchiral nature also suggests the existence of backward
propagating channel and thus will strongly affect the transport
behavior in the QAH system [55]. The calculation involves
the transmission and reflection of all six basis and the details
can be found in Appendix D. To understand the influence
of backward propagation, we below discuss two different
scenarios, both may occur in actual experiments.

In the first scenario we assume disorder exist in the
QAH/SC junction (region II) while the transport in the QAH
side (region I) is ballistic (or quasiballistic), later referred
as the “clean QAH” case. In this situation, the nonchiral
modes have been experimentally shown to induce nonlocal
transport signal in the QAH system [56]. In our setup, the
ballistic transport of nonchiral modes in region I results in
a negligible backscattering for R̄33 and R̄11 at small L, both
saturating to certain values when increasing L in Fig. 4(b).
The transmissions T̄13 and T̄31 starts from 2 and 1 for a small L,
respectively, reflecting the number of the left and right moving
modes. For a large L, both transmissions decay to zero in
Fig. 4(a). The existence of nonzero R̄33 and R̄11 makes this
situation quite different from other situations.

For the second scenario, disordered transport is assumed
for the whole QAH insulator, spanning over both regions I
and II in Fig. 1(a), and later referred as the “disordered QAH”
case. Due to the Anderson localization, the 1D nonchiral mode
is completely localized, as manifested by the reflection R̄33 ≈
R̄11 ≈ h/e2 and T̄31 ≈ 0 in Figs. 4(b)–4(d). Even though get-

ting localized, the nonchiral mode still mediates the AC at the
QAH/SC interface [region II in Fig. 1(a)]. Consequently, the
transmission T̄13 exponentially decays to zero for a large L,
even when ε = 0, making this situation more similar to the
multiple CEMs case.

IV. EXPERIMENTAL RELEVANCE

Finally, we examine the behavior of resistance in the exper-
imental setup of Fig. 1(a). It is worth noting that for a realistic
physical system, a Schottky barrier can appear at the interface
between a metal lead and a semiconductor, which contributes
to a large contact resistance. However, since the purpose of
this work is to reveal the effect of superconductor proximity
on the quantum transport in the QAH state, we would make a
simple assumption of a good wave function matching between
the lead and the sample, corresponding to an Ohmic contact
in experiments.

We consider the current driven from leads 2 to 4 and dis-
cuss the resistance R24,14 ≡ −V14/I24 and R24,34 ≡ −V34/I24

for four different cases shown in Fig. 5. (i) Figures 5(a) and
5(b): the single CEM case. (ii) Figures 5(c) and 5(d): the mul-
tiple CEMs case. (iii) Figures 5(e) and 5(f): the coexistence
of the CEM and nonchiral metallic mode, with a clean QAH
region. (iv) Figures 5(g) and 5(h): with a disordered QAH
region. (Please see Appendix F for the resistance formula).
Here we only consider the large L case (L ∼ 1000). In case
(i), both R24,14 and R24,34 show a unique insulating behavior

FIG. 5. Resistances R24,14 and R24,34 calculated from the trans-
mission (reflection) coefficients, for the four different cases. (a) and
(b) Case (i), the single CEM case. (c) and (d) Case (ii), the multiple
CEMs case. (e) and (f) Case (iii), the clean QAH case with coexis-
tence of CEM and metallic mode. (g) and (h) Case (iv), the disorder
QAH case with coexistence of CEM and metallic mode.
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FIG. 6. (a) R24,14 and (b) R24,34 as functions of L for the coex-
istence of CEM and the metallic mode system, with red circles and
blue triangles representing the clean QAH and the disordered QAH
cases, respectively. For disordered QAH, the values of R24,14 and
R24,34 saturate to 0 and h/e2, respectively. The parameters used for
(c) and (d) are μ1 = −0.3t , μ2 = −3.2t .

at ε ∼ 0 in Figs. 5(a) and 5(b), while they drop quickly to
zero when ε is tuned away from 0. In contrast, R24,14 and
R24,34 are insensitive to the energy ε for all the other cases
(ii), (iii), and (iv). The values of R24,14 and R24,34 for cases
(ii), (iii), and (iv) can be extracted from the transmission and
reflection coefficients in the long L limit. We also notice that
total particle probability conservation gives a simple relation
between R24,34 and R24,14 in cases (i), (ii), and (iv). For cases
(i) and (iv), R24,34 and R24,14 are related by R24,34 − R24,14 =
h/e2, while for case (ii), by R24,34 − R24,14 = h/2e2, where the
right-hand side is inversely proportional to the total number
of transmission modes. For case (iii), due to the scattering
nature of the nonchiral metallic mode, R24,14 and R24,34 are
independent of each other. Therefore, measuring R24,14 and
R24,34 simultaneously can distinguish these different cases.

Finally, as a comparison, we plot resistances R24,14 and
R24,34 as a function of L for cases (iii) and (iv) in Figs. 6(a) and
6(b). The deviation of resistance summation R24,34 − R24,14

from the quantized value h/e2 differentiates the two cases. In
a realistic experiment, multiple leads can be attached along the
traversal side of the sample to make measurements of length
dependency, and the resistance summation would allow us to
determine the transport regime (ballistic or disordered) for the
QAH sample.

V. CONCLUSION

Disorder and coexistence of multiple edge modes are al-
most inevitable in the transport measurement experiments.
We showed that although the chiral edge mode is immune
to the local disorder, the presence of multiple modes (either
chiral or nonchiral) will lead to a strong Andreev conver-
sion that induces a completely different transport behavior
between the ballistic regime and the disordered regime. We
have presented several cases where after a long distance of
transmission, the saturated value of disorder-averaged con-
ductance digress from the single chiral edge mode case
where the Andreev conversion is suppressed. Our results
suggest the importance of additional transport modes in the
disordered quantum anomalous Hall insulator-superconductor
junction and will guide the future transport experiment
measurements.
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APPENDIX A: INDUCED p-WAVE SUPERCONDUCTING
COUPLING FROM TSC

In the main text we assume a general SC coupling term
containing both even and odd parity pairing. Here we show
that the odd-parity pairing term can be obtained from a
magnetic TI film with strong SOC in proximity to a super-
conductor.

We start from a BHZ-like four-band model with
inversion symmetry breaking term to represent the
2D QAHI. The Hamiltonian in the basis of 
e =
{|+, e ↑〉, |−, e ↑〉, |+, e ↓〉, |−, e ↓〉} can be written as


†
eH(k)
e = 
†

e

⎛
⎜⎝

M(k) + m U 0 A2k−
U −M(k) + m A2k+ 0
0 A2k+ M(k) − m U

A2k− 0 U −M(k) − m

⎞
⎟⎠
e, (A1)

where the ± in the basis denotes the orbit parity M(k), A2 are
model-dependent parameters, U is the asymmetric potential,
m is the magnetic exchange energy, and k± = kx ± iky. With-
out losing the generality, we choose the signs of parameters
M(k) and m so that |+, e ↓〉 and |−, e ↑〉 are the two low-
energy eigenstates at k = 0.

When a superconductor is placed in contact with the sam-
ple, the proximity effect would create coupling between orbits
of the QAHI [57–61], which may lead to complicated SC
pairing form due to strong SOC. Nevertheless, we here only
consider the standard s-wave singlet pairing in the four-band

model. The full Hamiltonian is augmented by applying the
standard BdG treatment with introducing a redundant basis
set 
h = {|+, h ↑〉, |−, h ↑〉, |+, h ↓〉, |−, h ↓〉}, the lowest-
ordered superconducting coupling term is independent of the
momentum k as



†
hH�
e = 


†
h

⎛
⎜⎝

0 0 � 0
0 0 0 �

−� 0 0 0
0 −� 0 0

⎞
⎟⎠
e. (A2)
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The full BdG Hamiltonian reads H = (H(k) H�

H†
� −H∗(−k),)

which can be projected into the low-energy subspace spanned
by |+, e ↓〉, |−, e ↑〉, |+, h ↓〉, |−, h ↑〉 via the perturbation
theory with the assumption that k, U , and � are all small

numbers. Up to the third-order perturbation, one can show that
an effective p-wave odd parity coupling is induced in the new
Hamiltonian H [Eq. (1)] between the two projected basis. For
example, the element

〈−, e ↑ |H |−, h ↑〉 = 〈−, e ↑ |H |+, e ↑〉〈+, e ↑ |H |−, e ↓〉〈−, e ↓ |H |−, h ↑〉
(E − E+,e↑)(E − E−,e↓)

+ 〈−, e ↑ |H |+, e ↓〉〈+, e ↓ |H |−, e ↓〉〈−, e ↓ |H |−, h ↑〉
(E − E+,e↓)(E − E−,e↓)

+ 〈−, e ↑ |H |+, e ↑〉〈+, e ↑ |H |+, h ↓〉〈+, h ↓ |H |−, h ↑〉
(E − E+,e↑)(E − E+,h↓)

+ 〈−, e ↑ |H |+, e ↓〉〈+, e ↓ |H |+, h ↑〉〈+, h ↑ |H |−, h ↑〉
(E − E+,e↓)(E − E+,h↑)

+ 〈−, e ↑ |H |−, h ↓〉〈−, h ↓ |H |+, h ↑〉〈+, h ↑ |H |−, h ↑〉
(E − E−,h↓)(E − E+,h↑)

+ 〈−, e ↑ |H |−, h ↓〉〈−, h ↓ |H |+, h ↓〉〈+, h ↓ |H |−, h ↑〉
(E − E−,h↓)(E − E+,h↓)

+ higher order terms (A3)

and

〈(−, e ↑)|H |(+, h ↓)〉 = 0. (A4)

The denominators of all six terms in the third-order pertur-
bative expression of 〈(−, e ↑)|H |(−, h ↑)〉 have the form of
UA2k−� or UA2k+�. For example, the first term in (A3) is

UA2k−�

(E − E+,e↑)(E − E−,e↓)
∝ k− (A5)

is linear in k. The coupling between the two lowest-energy
basis, although complicated in expression, is of odd parity in
nature.

APPENDIX B: DERIVATION OF THE EDGE MODEL

We choose the zero-energy solutions of H0 with the form

|γ1〉 = 1√
2

(u|e ↑〉 + v|e ↓〉 + u∗|h ↑〉 + v∗|h ↓〉)

≡ 1√
2

(|φe〉 + |φh〉), (B1)

|γ2〉 = 1√
2i

(u|e ↑〉 + v|e ↓〉 − u∗|h ↑〉 − v∗|h ↓〉)

≡ 1√
2i

(|φe〉 − |φh〉), (B2)

where u and v depend on material parameters and the last set
of equations define the states |φe,h〉.

The effective edge channel Hamiltonian is constructed in
the basis of |φe,h〉 from the microscopic Hamiltonian. Con-
sider an infinite system along the y direction, by integrating
out the x dependence, the chiral edge modes with the velocity
along y direction v f lead to the terms 〈φe|Heff|φe〉 = v f k − μ,
〈φh|Heff|φh〉 = v f k + μ. Given the pairing Hamiltonian H� =

iσyd · σ, the effective pairing is given by

〈φe|H�|φh〉 = (u∗2 − v∗2)dx + i(u∗2 + v∗2)dy − 2u∗v∗dz.

(B3)

The pairing term is determined by the detailed form of d
vector. Due to the particle-hole symmetry, a constant paring
term cannot appear in this basis, thus the lowest-order allowed
term is linear in k. Without losing generality, we denote the
pairing term as −v�k.

The parameter matching between the microscopic model
and the edge model is done by projecting the eigenwave
function of the tight-binding representation of the microscopic
model on a ribbon geometry to the edge model. Figure 7

FIG. 7. The energy spectra of the microscopic model (blue, rib-
bon geometry with two edges) and the effective edge model (orange,
single edge). The model parameters are the as in the main text,
and are derived from matching the projected wave function. For the
microscopic model parameters we use B = 1.5625ta2

0, M = 2.625t ,
α = 1.75ta0, �0 = 0, �x = 1.2t , ε = 0.075t with the unit cell size
a0 = 1 and ε the incident electron energy. For the edge model we use
v f = 1.75ta0, v� = 1.2ta0, μ = 0.2t .
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shows a good match between the energy spectra of the mi-
croscopic model (blue lines) and the edge model (orange).

APPENDIX C: TRANSFER MATRIX METHOD
FOR TRANSMISSION

In this Appendix we adopt the transfer matrix method to
solve for the transmission Tee and Teh given a general effective
Hamiltonian Heff, for example Eq. (2). This discussion follows
Ref. [20].

A unitary Hamiltonian needs to be constructed to maintain
the conservation of transmission probability. We perform the
transformation

H̃ = J−1/2HeffJ
1/2, (C1)

where J ≡ ∂Heff/∂k is the (particle) current operator. The
eigenstate of Hamiltonian H̃ , denoted by 
̃ ≡ J1/2
, satisfies
1 = 〈
̃|
̃〉 = 〈
|J|
〉, which means the normalization of 
̃

is equivalent to the probability current conversion of 
. The
introduction of J can simplify the expression of probability
current conservation.

The wave function 
L at position L is related to the initial
wave function 
0 by


L = QL
0 = W �LW −1
0, (C2)

where �L = diag(eik1L, eik2L ) is the evolution of the eigen-
states along the edge and W ≡ {
̃1, 
̃2} is constructed by
projecting the incident states onto the eigenstates of H̃ − εI ,
where 
̃i is the eigenvector with momentum ki and energy
ε. W is the transformation matrix taking into account the
interface scattering. The matrix QL is the transfer matrix
relating the left and right sides of the system.

We consider the initial wave function 
0 = |e〉, as the wave
function is injected from a QAHI edge state. The transmission
is determined entirely by the evolution of the wave function
through T = 1 − 2Teh and Teh = |〈h|QL|e〉|2. For the disor-
dered calculations of the single and multiple CEM cases, a
total 1000 configurations are used in the average.

APPENDIX D: DERIVATION OF THE EFFECTIVE
COUPLING BETWEEN DIFFERENT MODES

In this Appendix we consider different modes in the QAH
sample coupled to the SCs, and will demonstrate that such
coupling can lead to the SC proximity that result in the
pairing term between different modes in the QAH sample. To
be concrete, we can consider the cases of two chiral modes
coupled to a normal SC with certain hopping parameters. The
Hamiltonian of this system can be written as

H =
(

H0 Hc

H†
c Hsc

)
, (D1)

where

H0(k) =

⎛
⎜⎝

v1k − μ1

v2k − μ2

v1k + μ1

v2k + μ2

⎞
⎟⎠,

(D2)

Hsc(k) =
(

h̄2k2

2m0
− μsc i�0σy

−i�0σy − h̄2k2

2m0
+ μsc

)
, (D3)

and

Hc(k) =
(

T 0
0 −T ∗

)
, (D4)

with a generic form of hopping matrix T = t0 + txσx + tyσy +
tzσz. For simplicity we choose v1 = v2 = v and μ1 = μ2 =
μ0 and the Hamiltonian can be written as a simple form H0 =
vk − μ0τz, Hsc = ξkτz − �0σyτy, with ξk = h̄2k2

2m0
− μsc and

Hc = (t0 + txσx + tzσz )τz + tyσy. Here σ can be viewed for
spin basis and τ is for particle-hole basis. The effective model
can be obtained by the second order perturbation, given by
Heff = H0 + Hc(E − Hsc)−1H†

c . H0 is diagonal and describes
two chiral modes while the correction from Hc(E − Hsc)−1H†

c
can give rise to the off-diagonal coupling with the form

[Hc(E − Hsc)−1H†
c ]off-diagonal ∼ �0

(
t2
x + t2

y + t2
z − t2

0

)
(μ0 − μsc)2

σyτy,

(D5)

which reproduces the form in Eq. (4) in the main text. Here
we have dropped the momentum dependence, which is not
essential, and only keep the off-diagonal term. Similar deriva-
tion can also be applied to the coupling between the chiral
edge mode and nonchiral mode, which can lead to the form in
Eqs. (5)–(7) in the main text.

Equation (D5) contains the general form of both spin-
active (tx, ty, tz) hopping terms as well as spin-inactive term
t0. We can see that the effective off-diagonal term can be
nonzero even without spin-flip terms (tx = ty = tz = 0, t0 �=
0). Thus our result is valid for both spin-active and spin-
inactive interfaces.

APPENDIX E: COEXISTENCE OF CHIRAL
AND METALLIC MODE

Equation (5) represents a minimal example of a chiral
mode coexisting with the nonchiral modes with one left and
one right mover. The nonchiral modes can originate from the
ordinary parabolic band or from the quasihelical modes at
the side surface of topological insulator films. The energy
dispersion for this system is shown in Fig. 8.

The introduction of backscattered mode causes the
left/right boundary and incoming/outgoing modes to not co-
incide. Thus it is more convenient to switch from the transfer
matrix picture into the scattering matrix picture where the
matrix relates the incoming and outgoing states. Both the
transfer matrix and the scattering matrix are 6 × 6 matrices,
with three electron basis e, e1, and e2 and three corresponding
hole basis h, h1, and h2. The transition from the Q matrix to S
matrix is performed as following: First we organize the basis
of the Hamiltonian in right-going/left-going blocks, such that

{
e→L, 
h1→L, 
h→L, 
e1→L, |
e2←L, 
h2←L}T

= Q{
e→0, 
h1→0, 
h→0, 
e1→0, |
e2←0, 
h2←0}T ,

(E1)

144513-8



DISORDERED QUANTUM TRANSPORT IN QUANTUM … PHYSICAL REVIEW B 102, 144513 (2020)

FIG. 8. (a) Red curves are the band spectra for the Hamiltonian
[Eq. (6), PH partner not included] as an example to demonstrate
the coexistence of CEM and a pair of helical modes. The helical
modes can also approximate the spectrum of a metallic mode with
a parabolic dispersion, as shown in the blue curves.

where the pipe separates the right-going and left-going modes.
The above equation can be shortened as

{
→L, 
←L}T = Q{
→0, 
←0}T , (E2)

with 
→(L,0) and 
←(L,0) being rank 4 and 2 spinors, respec-
tively.

The scattering matrix on the other hand relates incoming
and outgoing states, defined as

{
←0, 
→L}T = S{
→0, 
←L}T . (E3)

The relation between the matrix S and Q can be generalized
from the 2 × 2 case as

S =
( −Q−1

←←Q←→ Q−1
←←

Q→→ − Q→←Q−1
←←Q←→ Q→←Q−1

←←

)
, (E4)

where the first (second) subscript ← and → correspond to
subspaces of Q with dimensions of rows (columns) of 2 and
4, respectively.

The major task is to calculate the the transmission and
reflection through the QAH/SC interface, particularly the
transmissions and reflections T13, T31, R11, and R33 for leads
1 and 3 in our setup. Due to the coexistence of chiral and
nonchiral modes in our system, we further label the chiral
mode as e and h and the nonchiral modes as e1, e2 and h1, h2
where 1 and 2 denotes two opposite propagation directions,
and define the transmissions and reflections between different
modes as Rαβ and Tαβ where α, β = e, e1, e2, h, h1, h2. The
transmissions and reflections Ti j and Rii (i, j = 1, 3) between
different leads can be related to Tαβ and Rαβ by

T13 =
∑

α=e,e1

Tα,e + Tα,e1 − Tα,h − Tα,h1,

T31 = Te2,e2 − Te2,h2,

R11 = Te2,e + Te2,e1 − Te2,h − Te2,h1,

R33 =
∑

α=e,e1

Rα,e2 − Rα,h2.

(E5)

Furthermore, the total probability current conservation re-
quires the conditions

∑
i=e,e1

Ri,e2 + Ri,h2 + Ti,e + Ti,h1 + Ti,h + Ti,e1 = 2,

Re2,e2 + Re2,h2 + Te2,e + Te2,h1 + Te2,h + Te2,e1 = 1.

(E6)

Figure 9 demonstrates an example of the oscillation behavior
of the 18 quantities on the left-hand side of (E6) as functions
of the system length L. The unity values at L = 0 shows the
type of incident particle of e, e1, and e2, respectively. The
transmissions and reflections of incident holes are associated
with the above case by PHS, and will not be further discussed.
In the calculation of the total transmission/reflection from the
left, we assume the ensemble of incident electrons are equally
distributed between e and e1 channels.

With the introduction of disorder on the SC region,
Figs. 10(a)–10(d) and Figs. 10(e)–10(h) show the energy ε

dependence of the transmissions and reflections in Eq. (E5)
for a given system length, for the clean QAH and disordered
QAH systems, respectively. The weak dependency and lack of
feature around ε = 0 is the main difference compared with the
single CEM case Figs. 3(a) and 3(b), but resemble the multiple
CEMs case in Figs. 3(c) and 3(d).

The parameters used for the disordered system simulation
are v f = 3ta0, v f 1 = −v f 2 = 4.5ta0, k1 = 1/a0, ξ = 0.3t . In
addition to the disorder on chemical potential μ, an uncor-
related random variation drawn from [ξimp/2, ξimp/2] with
ξimp = 0.3t is also applied on the electron-coupling term ξ to
obtain a shorter decay length for convenience. Qualitatively,
we note that the decay and saturation of T̄13 and R̄33 still
holds without the ξ disorder. For both models, a total of 100
configurations are used for deriving the average and standard
error. The disordered QAH system of case (iv) is modeled
as a one-dimensional system with spatial-dependent � = 0
for x < LQAH and x > LQAH + L, where the lengths of the
disordered QAH section LQAH is chosen to be 3500, much
longer than the disorder localization length, leading to a full
Anderson localization for the helical metallic mode, as shown
by the schematic plot of the configuration in Fig. 9.

APPENDIX F: LANDAUER-BÜTTIKER FORMALISM IN
SUPERCONDUCTOR AND DERIVATION OF RESISTANCE

FROM THE TRANSMISSION COEFFICIENTS

In this Appendix we will review the general expression
for Landauer-Büttiker formalism in a superconducting system
[62]. In the BdG representation of the superconductor Hamil-
tonian, the transmission of quasiparticles between lead p and
q can be calculated as

T e,h
pq = Tr[�pPe,h

pq G�q(Pe,h
pq G)†], (F1)

where e, h stands for the electron/hole particle species, and
P is the projection operator to project the Green’s function
G onto the corresponding subspace, � is determined by the
characteristic of the lead. The total measurable transmission
coefficient is obtained by Tpq = T e

pq − T h
pq, and the currents

in different leads are related to the voltages through the
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FIG. 9. A schematic figure of the effective edge model showing the three regions of disordered QAHI region (I and I′) and the QAHI+SC
region (II). The incident and transmitted/reflected particles are shown as blue arrows. The CEMs are shown as red arrows. (a)–(c) An example
of the 18 quantities in Eq. (E6), as functions of system length, sorted by the incident modes e, e1, and e2, respectively. The entire length of L
is within region II. In (a) and (b), e and e1 are injected at x = 0, respectively, as indicated by the unitary value of the respective transmissions.
For (c), e2 is injected at x = L.

transmission coefficient by

Ip =
∑

q

TpqVq =
∑

q

(T e
pq − T h

pq)Vq. (F2)

We will derive the resistance of the experimental setup
in the Fig. 1 in the main text from the transmissions and
reflections for different cases. The transmission coefficients
Tpq form a matrix T , which is written as a 3 × 3 matrix, with
basis corresponding to leads 1 to 3 in Fig. 1. The voltage

distribution on the leads is determined by

�V = T −1 · �I, (F3)

where both �V and �I are vectors of length 3, denoting the
voltage and current values on leads 1 through 3. By choosing
the values of components of �V or �I , we could enforce the leads
to be of constant current or constant voltage to fit our needs.

As the BdG Hamiltonian allows creation and annihilation
of electron pairs, the current conservation condition in clas-

FIG. 10. The (weak) energy dependence of the forward transmission T̄13, reflection R̄33 and backward transmission T̄31, reflection R̄11

for the coexistence model. (a)–(d) The clean QAH case with system length L = 200. (e)–(h) The disordered QAH case with system length
L = 500. (The values of system length are chosen to be comparable with the decay length of the corresponding systems). Red circles are
for parameter set μ1 = 0, μ2 = −4.4, blue triangles are for μ1 = 0.2, μ2 = −3.6, conforming to the parameters used in Figs. 6(c) and 6(d).
Contrary to the single CEM case, no significant features are present around ε ∼ 0.
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sical Landauer-Büttiker formalism, manifested by the irre-
versibility of the matrix T , is removed. The physical expla-
nation is that any deficiency or redundancy of current will
be compensated by the ground lead from an infinite electron
reservoir. Thus the current through lead 4 is implied through
total current conservation.

Let us take the single CEM case as an example. The
transmission matrix Eq. (F4) depends on the electronic trans-
mission T13 = Tee − The. Moreover, due to the chiral nature of
the edge mode, we have T21 = T32 = 1 (in unit of h/e2) and
T11 = T22 = T33 = −1 followed by the standard reflection-
transmission conservation. When T13 = 1, the T matrix re-
produces the well-known quantum Hall case [62]. It should
be noted that the transmission from lead 4 in contact with
superconductors is not explicitly shown in the T matrix.
However, it is implicitly required to conserve the current
of the whole system [63]. Therefore, the voltage V4 is al-
ways set to zero since the superconductor is grounded and
its current is set to conserve the total current from other
leads.

Once the value of transmission T is obtained, resistance
can be calculated after choosing a specific voltage/current
distribution. Here we always set up the current configuration
and solve the voltages in different leads as a function of
the currents. Let us take the example of resistance R24,34 =
V34/I24. To evaluate this resistance, we may drive a current
from lead 2 to SC body, mandating I24 = I0, a known value of
current, and further setting I1 = I3 = 0 (this means that leads

1 and 3 are voltage leads). With such current configuration
of I1,2,3, we can use the T matrix to solve all the voltages
V1,2,3. In particular, we find V3 = −1/(T13 − 1)I0, and thus
R24,34 = −1/(T13 − 1). All the other resistances can be solved
numerically with the same procedure. The results are listed
below.

(1) Single CEM case:

T =
⎛
⎝−1 0 T13

1 −1 0
0 1 −1

⎞
⎠, (F4)

R24,34 = − 1

T13 − 1
, (F5)

R24,14 = − T13

T13 − 1
. (F6)

(2) Multiple CEM case (N = 2):

T =
⎛
⎝−2 0 2T13

2 −2 0
0 2 −2

⎞
⎠, (F7)

R24,34 = − 1

2(T13 − 1)
, (F8)

R24,14 = − T13

2(T13 − 1)
. (F9)

(3) Coexistence of CEM and nonchiral modes with the
clean QAH insulator:

T =
⎛
⎝−(3 − R11) 1 T13

2 −3 1
T31 2 −(3 − R33)

⎞
⎠, (F10)

R24,34 = − −2R11 + T31 + 6

R11(7 − 3R33) + 7R33 + 3T13T31 + 4T13 + T31 − 15
, (F11)

R24,14 = − −R33 + 2T13 + 3

R11(7 − 3R33) + 7R33 + 3T13T31 + 4T13 + T31 − 15
. (F12)

(4) Coexistence of CEM and nonchiral modes with the
disordered QAH insulator:

T =
⎛
⎝−(3 − 2) 0 T13

1 −(3 − 2) 0
0 1 −(3 − 1 − R33)

⎞
⎠, (F13)

R24,34 = − 1

R33 + T13 − 2
, (F14)

R24,14 = − T13

R33 + T13 − 2
. (F15)
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