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We investigate the Josephson transport properties in a Josephson junction consisting of a conventional
s-wave superconductor coupled to a multiorbital noncentrosymmetric superconductor marked by an orbitally
driven inversion asymmetry and isotropic interorbital spin-triplet pairing. Contrary to the canonical single band
noncentrosymmetric superconductor, we demonstrate that the local interorbital spin-triplet pairing is tied to
the occurrence of sign-changing spin-singlet pair amplitude on different bands with d-wave symmetry. Such
multiband d±-wave state is a unique superconducting configuration that drives unexpected Josephson effects
with 0-π transitions displaying a high degree of electronic control. Remarkably, we find that the phase state of a
noncentrosymmetric/s-wave Josephson junction can be toggled between 0 and π in multiple ways through a vari-
ation of electron filling, strength of the spin-orbital coupling, amplitude of the inversion asymmetry interaction,
and junction transparency. These results highlight an intrinsic orbital and electrical tunability of the Josephson
response and provide unique paths to unveil the nature of unconventional multiorbital superconductivity as well
as inspire innovative designs of Josephson quantum devices.
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I. INTRODUCTION

Breaking of inversion symmetry offers an unique pos-
sibility for the design of unconventional superconducting
phases [1] in noncentrosymmetric quantum materials [2,3]. In
canonical single band noncentrosymmetric superconductors
(NCSs), the lack of inversion symmetry naturally leads to the
mixing of even (spin-singlet) and odd (spin-triplet) parity pair-
ing configurations [4]. The resulting degree of parity mixing
is a general consequence of the strong inversion asymmetric
spin-orbit coupling and of the structure of the pairing interac-
tion and can be observed in bulk materials.

In the framework of single band NCS, a lot of attention and
intense research efforts have been devoted to determine the
relative amplitude of the opposite parity pairing components
especially for the perspective of achieving a topological super-
conducting phase [5–8] with the spin-triplet component being
dominant. Apart from direct spectroscopic [9] or thermody-
namic means to access the structure of the superconducting
order parameter, a common and powerful approach is to
design junctions that contain NCS interfaced to NCS or con-
ventional s-wave superconductors (SCs). Several proposals
have been put forward to assess the nature of the NCS as
the formation of helical Andreev bound states (ABSs) and
the corresponding anomalies in the conductance [9,10], the
nonlocal features of the crossed Andreev reflections [11], the
distinctive marks of the temperature dependence of the critical
current [12] and the current-voltage characteristics in NCS-
NCS junctions [13].

The phenomenology of the Josephson response in
suitably designed heterostructure with NCS can be

quite rich due to the multicomponent superconducting
pairing especially when they are comparable in size. While
the emergence of π states is typically bound to occur
in superconductor/ferromagnet/superconductor junctions
[14–16], due to the extra π shift originating from the exchange
coupling in the ferromagnetic layer, the role of spin-orbit
fields can bring additional channels for the generation and
control of 0-π transitions. Indeed, a π -Josephson effect
and 0-π transitions can be realized in NCS-NCS junctions
with the two NCSs having opposite orientation of the
Rashba spin-orbit field [17] or by interfacing nanowires
with low-dimensional electronic channels having nontrivial
geometric shape at the nanoscale [18]. An anomalous
Josephson current phase relation (CPR) can be also obtained
by engineering magnetic quantum dots at the NCS/s-wave
spin-singlet superconductor (SSC) interface [19].

Interestingly, even without magnetic effects, when consid-
ering a junction between a conventional SSC and a NCS, one
can achieve a transition between 0- and π/2-type of CPRs
in the SSC/NCS junction through an anomalous φ-junction
behavior by uniquely tuning the ratio between spin-singlet and
spin-triplet component [20]. In most of these configurations it
is the balance between the spin-triplet and spin-singlet com-
ponents that determines the overall phase coherent response
of the junction.

Differently from the case of single band NCSs, it has
been recently recognized that in materials with a strong cou-
pling between spin-orbital degrees of freedom the breaking
of inversion symmetry can lead to unconventional pairing
with exotic topological properties [21]. Indeed, for electronic
systems with atomic spin-orbit and orbital Rashba couplings,

2469-9950/2020/102(14)/144512(10) 144512-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.144512&domain=pdf&date_stamp=2020-10-13
https://doi.org/10.1103/PhysRevB.102.144512


FUKAYA, YADA, TANAKA, GENTILE, AND CUOCO PHYSICAL REVIEW B 102, 144512 (2020)

superconducting phases with isotropic orbital-dependent spin-
triplet superconductivity can display point nodes that are
topologically protected and manifest an extraordinary recon-
struction of the excitation spectra both in the bulk and at
the edge of the SC [21]. Compared with the conventional
Rashba spin-orbit coupling [22], it has been realized that spin-
momentum locking can be achieved by a pure orbitally driven
asymmetric interaction. The resulting orbital Rashba effect
then yields chiral orbital textures and nonstandard orbital de-
pendent spin-textures through the atomic spin-orbit coupling
[23–27]. Remarkably, apart from the complexity of the spin-
orbital polarization pattern in the reciprocal space arising from
the interplay of the atomic spin-orbit and orbital Rashba in-
teractions, the spin vector of the superconducting excitations
display clear hallmarks of the interorbital spin-triplet pairing
with unique spin-winding around the nodal points [28]. The
substantial nonstandard of the superconducting behavior for
this type of multiorbital pairing configuration poses funda-
mental questions on the nature of the transport properties in
a Josephson junction based on such NCS and in general on
the role of orbital degrees of freedom in setting out the phase
state of the junction.

In this paper, we demonstrate that isotropic interorbital
spin-triplet pairing in NCSs generally leads to an intricate
Josephson response within the electronic phase space mani-
festing 0-π phase transitions when considering a junction that
contains a conventional spin-singlet s-wave SC. This behav-
ior is imprinted in the emergence of a unique sign-changing
intraorbital spin-singlet pair amplitude on different bands
with d-wave symmetry. Due to the anisotropic and orbital-
dependent sign change of the induced intraorbital spin-singlet
pair amplitude in the NCS, the Josephson current manifests
an intrinsic tendency to undergo a transition from a 0- to a π -
phase state. We determine the phase diagram associated with
the 0 and π states in the space spanned by the strength of the
atomic spin-orbit coupling (λSO) and the orbital Rashba inter-
action (�is) for various electron filling factor. Due to the subtle
orbital dependence of the induced intraorbital spin-singlet pair
amplitude, the increase of the electron filling tends to activate
more orbital channels and in turn stabilize the π -phase state
in a large portion of the [�is, λSO] parameters space. The tem-
perature dependence of the maximal Josephson current has an
anomalous behavior for a junction orientation that is parallel
to the nodal direction with a low-temperature rapid upturn that
arises due to the presence of flat surface ABSs [29–32]. A
variation of the orientation leads to a dominant second har-
monic contribution in the Josephson current originating from
the zero-energy surface ABSs. Due to the orbital tunability,
the Josephson effect can bring unique fingerprints to unveil
the nature of unconventional multiorbital superconductivity
as well as inspire innovative designs of Josephson quantum
devices.

The structure of the paper is as follows. In Sec. II, we
introduce the model Hamiltonian and the methodology to
determine the Josephson current. Section III is devoted to the
analysis of the induced intraorbital spin-singlet pair amplitude
in the bulk. Then, we present the behavior of the CPR in
Sec. IV in terms of the spin-orbital interactions by varying
the electron filling and discuss the origin of the sign change
in the Josephson current. Section V is devoted to the study

FIG. 1. (a) Sketch of the noncentrosymmetric superconductor
(NCS)/normal (NI)/single orbital s-wave superconductor (SC). In
the NCS, the interorbital B1 pairing belongs to the C4v point group
[21]. (b) Schematic illustration of interorbital spin-triplet pairing
with B1 symmetry in the three-orbital NCS which is based on the
mixing of the dxy with dzx and dyz orbitals [21]. [(c)–(e)] Fermi
surface of NCS for λSO/t = 0.10 and �is/t = 0.20. We choose three
representative chemical potentials as (c) μL/t = −0.50, (d) −0.25,
and (e) 0.0. Filled circles denote the position of the nodes for the
interorbital B1 pairing. (f) Fermi surface of the single orbital s-wave
SC at the chemical potential μR/t = 2.5.

of the temperature dependence of the maximum Josephson
current. Finally, the discussion and the concluding remarks
are presented in Sec. VI.

II. MODEL AND METHODOLOGY

In this section, we introduce the model Hamiltonian and
the methodology that has been employed to calculate the
Josephson current for the three-orbital NCS/single band s-
wave SC junction.

A. Model Hamiltonian

In the superconducting state we adopt a Bogoliubov-de
Gennes (BdG) description. The left-side SC [Fig. 1(a)] of
the junction refers to a three-orbital NCS with isotropic in-
terorbital spin-triplet pairing as schematically indicated in
Fig. 1(b). For this type of SC, the BdG Hamiltonian can be
generally expressed in the following form:

ĤL
BdG(k) =

(
ĤL(k) �̂L

�̂
†
L −Ĥ∗

L (−k)

)
. (1)

The Hamiltonian for the normal state ĤL(k) describes the
electronic states of d orbitals belonging to the t2g manifold
and is given by

ĤL(k) = Ĥ0(k) + ĤSO + Ĥis(k), (2)
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with the three terms Ĥ0(k), ĤSO, and Ĥis(k) [21,33] being as-
sociated with the orbital dependent kinetic energy, the atomic
spin-orbit coupling, and the orbital Rashba interaction, re-
spectively. The first term denotes the kinetic part,

Ĥ0(k) = ε̂(k) ⊗ σ̂0, (3)

where σ̂i=x,y,z,0 are the Pauli matrices and the identity matrix
in the spin space. ε̂(k) corresponds to the intraorbital kinetic
energy for each t2g orbital,

ε̂(k) =
(

εyz(k) 0 0
0 εzx(k) 0
0 0 εxy(k)

)
, (4)

εyz(k) = −μL + 2t3(1 − cos kx ) + 2t1(1 − cos ky), (5)

εzx(k) = −μL + 2t1(1 − cos kx ) + 2t3(1 − cos ky), (6)

εxy(k) = −μL + 4t2 − 2t2 cos kx − 2t2 cos ky + �t, (7)

with μL being the chemical potential of the NCS. ĤSO

expresses the canonical atomic spin-orbit coupling and is
given by

ĤSO = λSO[l̂x ⊗ σ̂x + l̂y ⊗ σ̂y + l̂z ⊗ σ̂z], (8)

where λSO is the amplitude of the atomic spin-orbit interac-
tion, l̂ j=x,y,z are the orbital angular momentum operators in the
basis (dyz, dzx, dxy) projected out of the L = 2 space. They are
expressed as

l̂x =
(0 0 0

0 0 i
0 −i 0

)
, l̂y =

(0 0 −i
0 0 0
i 0 0

)
,

l̂z =
( 0 i 0

−i 0 0
0 0 0

)
. (9)

The third term in ĤL stands for the antisymmetric orbital
Rashba interaction and is given by

Ĥis(k) = �is[l̂y sin kx − l̂x sin ky] ⊗ σ̂0, (10)

with �is being the strength of the inversion symmetry break-
ing coupling. In the examined three-orbital NCS, we consider
a form of interorbital local pairing that has been exten-
sively studied in Refs. [21,28]. There, the pair potential �̂L

can be made up by components with spin-singlet/orbital-
triplet/s-wave and spin-triplet/orbital-singlet/s-wave pairing
symmetry. Thus the pair potential �̂L is described by the
t2g-orbital characters α, β = yz, zx, xy for each interorbital
pairing symmetry,

�̂
(α,β )
L = iσ̂yψ

(α,β ) + i[d (α,β ) · σ̂]σ̂y, (11)

where ψ (α,β ) is the spin-singlet/orbital-triplet pair potential
and d (α,β ) are the d vectors,

d (xy,yz) = (
d (xy,yz)

x , d (xy,yz)
y , d (xy,yz)

z

)
,

d (xy,zx) = (
d (xy,zx)

x , d (xy,zx)
y , d (xy,zx)

z

)
,

d (yz,zx) = (
d (yz,zx)

x , d (yz,zx)
y , d (yz,zx)

z

)
.

The spin-triplet/orbital-singlet state for each interorbital
isotropic pairing is described by the following d vectors,

�̂
(α,β )
L =

(
�

(α,β )
↑↑ �

(α,β )
↑↓

�
(α,β )
↓↑ �

(α,β )
↓↓

)

=
(−d (α,β )

x + id (α,β )
y d (α,β )

z

d (α,β )
z d (α,β )

x + id (α,β )
y

)
.

In this study, we consider an interorbital pairing state belong-
ing to the B1 representation of the C4v point group [Fig. 1(b)]
that is the most favorable energetically among all the allowed
interorbital pairings [21]. This pairing state is described by a
pure spin-triplet configuration and exhibits nodal points along
the diagonal direction [Figs. 1(c)–1(e)] which are topologi-
cally protected by the chiral symmetry of the BdG Hamilto-
nian [21]. The d vector of the interorbital B1 pairing state is
given by

d (xy,zx)
x = d (xy,yz)

y ,

�↑↑
xy,yz = �↓↓

xy,yz = id (xy,yz)
y ,

�↑↑
xy,zx = −�↓↓

xy,zx = −d (xy,zx)
x . (12)

We point out that a different d-vector orientation is associated
with the interorbital pairing when mixing the (dxy, dzx ) or
(dxy, dyz ) orbitals.

On the other hand, for the description of the right-side SC
in the junction we consider a canonical single orbital s-wave
state,

ĤR
BdG(k) =

(
ĤR(k) �̂R

�̂
†
R −Ĥ∗

R(−k)

)
. (13)

Here, ĤR(k) denotes the Hamiltonian in the normal state for
the single orbital model,

ĤR(k) = ξR(k) ⊗ σ̂0, (14)

ξR(k) = −μR + 4t4 − 2t4 cos kx − 2t4 cos ky, (15)

with μR being the chemical potential of the single orbital s-
wave SC. The pair potential �̂R is given by

�̂R = iσ̂yψR, (16)

with the spin-singlet/s-wave pair potential ψR.
In the normal layers between the two SCs, we consider the

following single orbital model Hamiltonian:

ĤNI(k) = ξNI(k) ⊗ σ̂0, (17)

ξNI(k) = −μNI + 4t5 − 2t5 cos kx − 2t5 cos ky, (18)

with μNI being the chemical potential setting the electron
density at the normal insulating layer.

In our calculation, we set the parameters as t2 =
t1 = t4 = t5 = t , t3 = 0.10t , �t = −0.50t , μR = 2.5t , and
μNI = −0.50t . In addition, we fix the critical tempera-
ture of the two SCs as TcL/t = 1.0 × 10−5 and TcR/t =
10TcL. Then, we assume that the gap amplitude of the
SCs �L(T ) and �R(T ) has a BCS-like temperature
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dependence T ,

�X (T ) = �X (0) tanh

[
1.74

√
TcX − T

T

]
,

�X (0) = 3.53

2
TcX , (19)

where X = L, R denotes the index for the left and right-side
SCs within the junction, respectively.

B. Recursive Green’s function approach

In order to compute the Josephson current, we em-
ploy the recursive Green’s function method [34]. As shown
in Fig. 1(a), we consider the two semi-infinite SCs and
two normal layers sandwiched between the SCs as stud-
ied in Ref. [35]. Firstly, we calculate the semi-infinite
surface Green’s functions for the left and right-side SCs
GL(k‖, iεn) and GR(k‖, iεn, φ) with iεn = i(2n + 1)πkBT be-
ing the fermionic Matsubara frequency, φ the phase difference
between two SCs, and k‖ the momentum that is parallel to the
interface. When we include the normal layers at the boundary
of a SC, these surface Green’s functions, i.e., GL0(k‖, iεn) and
GR1(k‖, iεn, φ), are given by

GL0(k‖, iεn) = [iεn − ûNI − t̂†
L,NIGL(k‖, iεn)t̂L,NI]

−1, (20)

GR1(k‖, iεn, φ) = [iεn − ûNI − t̂R,NIGR(k‖, iεn, φ)t̂†
R,NI]

−1,

(21)

with ûNI setting the on-site electron density of the normal
layer. Here, t̂L,NI (t̂R,NI) means the tunnel Hamiltonian be-
tween left- (right)-side SC and the normal insulating layer,

t̂X,NI(k‖) =
(

t̃X,NI(k‖) 0
0 −t̃∗

X,NI(−k‖)

)
. (22)

In the (100) direction, these are described by

t̃L,NI(k‖) = tint

⎛
⎜⎜⎜⎜⎜⎝

−t 0
−t 0
−t 0
0 −t
0 −t
0 −t

⎞
⎟⎟⎟⎟⎟⎠, (23)

t̃R,NI(k‖) = tint

(−t 0
0 −t

)
, (24)

and in the (110) direction,

t̃L,NI(k‖) = tint

⎛
⎜⎜⎜⎜⎜⎝

t (k‖) 0
t (k‖) 0
t (k‖) 0

0 t (k‖)
0 t (k‖)
0 t (k‖)

⎞
⎟⎟⎟⎟⎟⎠, (25)

t̃R,NI(k‖) = tint

(t (k‖) 0
0 t (k‖)

)
, (26)

with t (k‖) = −2t cos k‖ and tint setting the degree of the junc-
tion’s transparency. Next, when connecting two SCs with a

normal layer as shown in Fig. 1(a), one can calculate the local
Green’s functions G00(k‖, iεn, φ) and G11(k‖, iεn, φ),

G00(k‖, iεn, φ) = [
G−1

L0 (k‖, iεn) − t̂NIGR1(k‖, iεn, φ)t̂†
NI

]−1
,

(27)

G11(k‖, iεn, φ) = [
G−1

R1 (k‖, iεn, φ) − t̂†
NIGL0(k‖, iεn)t̂NI

]−1
,

(28)

and the nonlocal Green’s functions G01(k‖, iεn, φ) and
G10(k‖, iεn, φ),

G01(k‖, iεn, φ) = GL0(k‖, iεn, φ)t̂NI(k‖)G11(k‖, iεn, φ), (29)

G10(k‖, iεn, φ) = GR1(k‖, iεn, φ)t̂†
NI(k‖)G00(k‖, iεn, φ), (30)

with the t̂NI(k‖) being the nearest-neighbor hopping term in
the normal layer. Concerning the current operator, one can cal-
culate the Josephson current Ic(φ) at a given phase difference
φ between the left and right side of the junction by evaluating
the following expression:

Ic(φ) = ie

h̄

∫ π

−π

Tr′kBT
∑
iεn

[t̂NI(k‖)G01(k‖, iεn, φ)

− t̂†
NI(k‖)G10(k‖, iεn, φ)]dk‖. (31)

Here, Tr′ means the trace over the electronic degrees of
freedom. In this study, we focus on three representative
types of spin-resolved Fermi surfaces for the NCS at μL/t =
−0.50 [Fig. 1(c)], μL/t = −0.25 [Fig. 1(d)], and μL/t = 0.0
[Fig. 1(e)], and we fix the chemical potential of the single
orbital s-wave SC at μR/t = 2.5 [Fig. 1(f)]. In the NCS,
we consider the spin-split Fermi surfaces with both nonzero
spin-orbit coupling λSO and the orbital Rashba interaction �is.
At μL/t = −0.50 [Fig. 1(c)] and μL/t = −0.25 [Fig. 1(d)],
there are two Fermi surfaces and the dxy is the dominant
orbital component at the Fermi level. On the other hand, for
μL/t = 0.0 [Fig. 1(e)], the number of Fermi surfaces is four
and these Fermi surfaces typically include all t2g orbitals. We
can thus evaluate the influence of the orbital character and
the number of Fermi surfaces by calculating the Josephson
current for each selected μL.

III. INDUCED INTRAORBITAL SPIN-SINGLET
PAIR AMPLITUDE

We start by analyzing the induced intraorbital spin-singlet
pair amplitude for the three representative types of spin-split
Fermi surfaces as shown in Figs. 1(c)–1(e) at μL/t = −0.50,
μL/t = −0.25, μL/t = 0.0 and we will consider its profile
both in the bulk and in the following section at the junction’s
interface.

In the Josephson junction upon examination, the even-
frequency spin-singlet pairing components in both left and
right-side SCs can interfere and contribute to the first har-
monic term of the overall Josephson current. For this reason,
it is useful to investigate the spin-singlet components of the
pair amplitude on the Fermi surfaces in the NCS both in the
inner side at a given k in the reciprocal space or along the edge
of the junction’s interface for the conserved component of
the momentum. Hereafter, we indicate as F (α,β )

↑↓−↓↑(k) the spin-
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FIG. 2. Even-frequency spin-singlet intraorbital pairing ampli-
tude on the Fermi surfaces with dxy character evaluated in the bulk of
the NCS at (a) μL/t = −0.50 and (b) −0.25. Spin-singlet intraorbital
pairing amplitude with (c) dyz, (d) dzx , and dxy orbital character in the
NCS bulk at μL/t = 0.0. All even-frequency spin-singlet intraorbital
components have the d±

x2−y2 -wave structure with sign change when
comparing with the inner and outer Fermi surfaces. (f)Schematic
illustration of the Josephson junction. Black dotted line denotes the
direction along which nodal points occur while green circles stand
for the position of the node. We set the parameters as λSO/t = 0.10,
�is/t = 0.20 for the spin-orbit and orbital Rashba couplings and the
temperature is T = 0.10TcL.

singlet pair amplitude associated with the electron pairing in
the orbitals (α, β ) at a given value of the momentum k.

Regarding the bulk NCS, we find that at the Fermi
surface, for the two representative values of the chemical
potential μL/t = −0.50 and −0.25, the intraorbital spin-
singlet component associated with the dxy configuration has a
sign-changing dx2−y2 -wave structure with nodal points along
the diagonal direction for each Fermi surface as shown in
Figs. 2(a) and 2(b). In particular, we point out that the sign
of the pair amplitude on the inner Fermi surface is opposite
as compared with that on the outer Fermi surface. Thus the
intraorbital spin-singlet pair amplitude realizes a d±

x2−y2 -wave
pairing configuration with a band dependent sign of the pair
amplitude that resembles the isotropic s±-wave proposed in
the framework of the iron based SCs [36–38]. Likewise,
at the Fermi level μL/t = 0.0, the intraorbital spin-singlet
component has also d±

x2−y2 -wave structure with nodal points
along the diagonal direction as explicitly demonstrated in

Figs. 2(c)–2(e). However, due to the contribution of the dzx

and dyz bands, the momentum distribution of the pair ampli-
tude is more anisotropic than the dxy case when considering
the corresponding intraorbital configurations [Figs. 2(d) and
2(e)]. We note that also for this d±

x2−y2 -wave state, the in-
traorbital spin-singlet component pair amplitude has opposite
signs on the inner and outer Fermi surface [Figs. 2(c)–2(e)].
Thus the induced d±

x2−y2 -wave pairing, as schematically shown
in Fig. 2(f), emerges as a relevant element to interpret and
evaluate the Josephson effect especially when considering the
junction with the NCS interfaced to a s-wave spin-singlet SC.
Indeed, even if the interorbital spin-triplet pairing symmetry is
dominant in the NCS, we expect that the induced intraorbital
spin-singlet d±

x2−y2 -wave configuration will play a key role in
setting the Josephson current and would naturally lead to a
sign frustration in the Josephson current due to the sign effects
at the Fermi surface. Moreover, due to the significant orbital
dependence and the momentum anisotropy we also expect that
0-π transitions can be sensitive to the junction transparency.

IV. CURRENT PHASE RELATION: PHASE DIAGRAM,
ROLE OF INTERFACE ORIENTATION, TRANSPARENCY,

AND TEMPERATURE

In this section, we present the CPR for the interor-
bital B1 state NCS/NI/single orbital s-wave SC junction
(NCS/NI/SSC). The CPR can be generally expanded in
Fourier series in terms of all the harmonics with respect to
the applied phase difference φ as follows:

Ic(φ) =
∑

n

[In sin(nφ) + Jn cos(nφ)]. (32)

Since for the examined junction both SCs have the time-
reversal symmetry, the cosine term Jn equals to zero [39].

Let us first discuss the outcome of the CPR for the (100)
junction orientation. In Fig. 3(a), we report the CPR assuming
that the charge transfer electronic processes at the interface set
out a regime of high transparency with the hopping amplitude
tint = 1.0. Hence, in order to assess the role of the orbital
degree of freedom we investigate three representative chem-
ical potentials for the NCS, i.e., μL/t = −0.50 (red line),
μL/t = −0.25 (blue line), and μL/t = 0.0 (green line) in
Fig. 3(a). Here, when the Fermi surface is dominated only
by the dxy−orbital, we find that the CPR has a conventional
sinusoidal 0-junction behavior at μL/t = −0.50 (red line) as
shown in Fig. 3(a). However, with the increase of the electron
filling via μL, the Josephson current relation changes to a
π -phase profile with a sign change [Fig. 3(a)]. This trend
indicates that a 0 junction can be turned into a π junction by
suitably tuning the band occupation through the chemical po-
tential μL. On the other hand, for the case of low transparency
(tint = 0.10), we find that the Josephson current is always
conventional and no sign change is observed [Fig. 3(b)].

A change in the junction orientation leads to a dramatic
impact on the Josephson response. Indeed, if we select a
junction interface with (110) direction the presence of nodal
points both in the dominant isotropic interorbital spin-triplet
pairing component and in the induced spin-singlet d±

x2−y2 -
wave pairing offers the opportunity to explore a highly
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FIG. 3. Current phase relation (CPR) for the NCS/NI/SSC junc-
tion with the interface perpendicular to the (100) direction assuming
that μL/t = −0.50 (red line), −0.25 (blue line), and 0.0 (green line).
The amplitude of the spin-orbital and orbital Rashba interactions
corresponds to λSO/t = 0.10 and �is/t = 0.20. The temperature is
set at T = 0.10TcL. The results correspond to two different regimes
of junction’s transparency: High transparency with tint = 1.0 in (a),
and low transparency for tint = 0.10 in (b). We find that in the regime
of high transparency there is a 0-π transition which is obtained by
varying the electron filling from low to high density. For the low
transparent regime at the interface (i.e., tint = 0.10), there is no phase
change. This indirectly indicates that by modifying the transparency
one can drive a 0-π transition.

nontrivial case of unconventional superconductivity. As for
the (100) orientation, for the first harmonic term the even-
frequency/spin-singlet intraorbital component in the NCS can
be coupled to the even-frequency/spin-singlet pairing in the
s-wave SC. However, for this case, first harmonic term I1

vanishes since the B1 pairing in the NCS is odd under the
mirror symmetry along the diagonal direction, while SSC is
even. It is the same as the case of the single band d-wave based
superconducting junctions [29–32]. Moreover, the Josephson
current is substantially independent of the amplitude of the
chemical potential μL as demonstrated in Fig. 4.

Next, we study the first harmonic (I1) contribution to the
Josephson current in the (100) direction as a function of the
spin-orbit coupling λSO and orbital Rashba interaction �is in
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FIG. 4. CPR for the NCS/NI/SSC junction in the (110) direction
for μL/t = −0.50 (red line), −0.25 (blue line), and 0.0 (green line).
We set the amplitude of the spin and orbital electronic parameters
as λSO/t = 0.10, �is/t = 0.20, tint = 1.0, and T = 0.10TcL. In the
(110) the second harmonic contribution dominates the Josephson
current behavior.
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FIG. 5. Phase diagram reporting the 0 and π phases, which are
determined by evaluating the sign of the first harmonic term of the
Josephson current I1 for the NCS/NI/SSC of the (100) direction
in the parameters space spanned by the spin-orbit coupling (λSO/t)
and the inversion symmetry breaking term (�is/t). We consider the
impact of the electron filling variation by determining the phase
diagram for various values of the NCS chemical potential: (a) μL/t =
−0.50, (b) −0.40, (c) −0.25, (d) −0.15, (e) −0.10, and (f) 0.0. The
other parameters are set at tint = 1.0 and T = 0.99TcL.

the regime of high transparency since we have seen that only
in that case one can observe a 0-π phase transition. Apart
from the role of the electron filling of the various bands, it
is important to assess whether a variation of the electronic
parameters associated with the strength of the spin-orbital
entanglement and of the inversion asymmetry breaking can
be employed to drive the 0- to π -phase transition. The out-
come is remarkable and unveils an intricate interplay between
the band occupation (i.e., the orbital character of the Fermi
surfaces) and the combination of λSO and �is. In Fig. 5, we
present the resulting phase diagram constructed by evaluat-
ing the sign of the first harmonic term I1 in the Josephson
current in each point of the parameters space. We notice
that there can be one or two boundaries that separate the 0
(I1 > 0) from the π -phase (I1 < 0) region in the parameters
space (λSO,�is ). This implies that a reentrant type of 0-π
transition can be also obtained. For instance, by increasing
the orbital Rashba coupling at μL = −0.15 for values of
the λSO lower than about 0.10t , one can achieve a 0-π -0
changeover of the Josephson CPR. Another trend that can
be deduced by inspection of the phase diagram is that the
increase of the chemical potential μL moves or generates
0-π phase boundaries. The 0-π boundary (red line in Fig. 5)
shrinks towards the point (λSO,�is ) = (0, 0) by increasing the
chemical potential. On the other hand, at higher values of the
electron filling, another boundary (blue line in Fig. 5) occurs
at a lower threshold of the orbital Rashba coupling �is. This
phenomenon can be mainly ascribed to the t2g-orbital com-
ponents and the anisotropy of the spin-split Fermi surfaces
with both nonzero λSO and �is. It is particularly relevant to
observe that in the low electron density regime, with only two
Fermi surfaces and dominant dxy character, the π phase can be
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achieved only for enough large λSO and �is. Indeed, π phase
at μL/t = −0.50 appears at large (λSO,�is ) [Fig. 5(a)]. The
increase of the electron filling favors the interorbital mixing
and the spin-orbital coupling can in turn activate the π -phase
with smaller thresholds in the amplitude. When going through
the Lifshitz transition [40] from two to four Fermi surface
electronic configuration, one observes an optimal regime for
the π phase that now covers almost the whole phase space in
the explored λSO and �is amplitude. This outcome unveils the
subtle role of the orbital degree of freedom in setting the π

state in the Josephson junction. Additionally, having found a
0-π transition both in terms of a change in the electron filling
and of the orbital Rashba coupling, we argue that this type
of Josephson junction can manifest a dramatic response to
an application of a gate voltage. We note that the behavior
in Fig. 5 holds in the low temperatures since 0-π transition
does not occur by changing the temperature.

In order to get more insight into the origin of the sign
change of the Josephson current in the (100) direction in
terms of the variation of the chemical potential μL in the
regime of high transparency tint = 1.0, we check the relation
between the first harmonic term of the Josephson current I1

in the (100) direction and the induced intraorbital spin-singlet
pair amplitude at the interface as a function of the conserved
momentum ky (Fig. 6). The pair amplitude F̂X is obtained by
evaluating

G̃X = 1

iεn − ĤX
BdG

=
(

ĜX F̂X

F̄X ḠX

)
. (33)

In the case of the three-orbital NCS (left-side SC), the pair
amplitude for the (α, β ) orbitals F̂ (α,β )

L is described by

F̂ (α,β )
L =

(
F (α,β )

↑↑ F (α,β )
↑↓−↓↑ + F (α,β )

↑↓+↓↑
−F (α,β )

↑↓−↓↑ + F (α,β )
↑↓+↓↑ F (α,β )

↓↓

)
, (34)

and the single orbital s-wave SC F̂R,

F̂R =
(

F↑↑ F↑↓−↓↑ + F↑↓+↓↑
−F↑↓−↓↑ + F↑↓+↓↑ F↓↓

)
. (35)

In the Josephson junction upon examination, the spin-
singlet pairing components in both left and right-side SCs can
interfere and contribute to the first harmonic term I1 of the
overall Josephson current. For this reason, it is useful to focus
on the spin-singlet pair components and in particular to have a
close inspection of their behavior at the junction’s interface by
computing the k-resolved amplitude. Here, F (α,β )

↑↓−↓↑(ky) refers
to the NCS while F↑↓−↓↑(ky) is for the spin-singlet amplitude
in the single band s-wave SC.

As expected, the spin-singlet pair amplitude in the NCS
is nonvanishing due to the combination of atomic spin-orbit
coupling λSO and orbital Rashba interaction �is. Since the
intraorbital components are larger than the interorbital ones
regarding the B1 representation, the behavior of the intraor-
bital terms is more relevant for evaluating their role in setting
out the Josephson current. The analysis has been conducted
with the aim to identify the driving mechanisms or key
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FIG. 6. Fermi surface in the NCS at (a) μL/t = −0.50, (b)
−0.25, and (c) 0.0. Pair amplitude of intraorbital spin-singlet compo-
nent for each t2g orbital in the NCS FL(ky ) = F (α,α)

↑↓−↓↑ (α = yz, zx, xy)
at (d) μL/t = −0.50, (e) −0.25, and (f) 0.0. Product of FL with FR

where FR(ky ) = F↑↓−↓↑ is the spin-singlet pairing amplitude in the
single orbital s-wave SC at (g) μL/t = −0.50, (h) −0.25, and (i)
0.0, respectively. We note that FL and FR are calculated in the semi-
infinite systems. Momentum resolved first harmonic term I1p(ky ) of
the Josephson current normalized by I1p(ky = 0) for high trasparency
(tint = 1.0) in (j)–(l) and low transparency (tint = 0.10) in (m)–(o),
respectively. In these panels, we select the chemical potential of the
NCS as μL/t = −0.50 for (j) and (m), μL/t = −0.25 for (k) and (n),
and μL/t = 0.0 for (l) and (o). Here, we obtain the first harmonic
term I1p(ky ) by the summation over the Matsubara frequency at
iεn = −iπkBT and iπkBT . The other parameters are λSO/t = 0.10,
�is/t = 0.20, and T = 0.10TcL.

physical quantities behind the formation of the π state in the
junction. As we have seen in the previous section, the intraor-
bital spin-singlet pair amplitude in the bulk has a sign change
on the inner and outer Fermi surfaces with d-wave pattern.
Then the CPRs which come from the outer and inner Fermi
surfaces in the bulk NCS compete each other. This kind of
cancellation has been proposed in iron-based s± SC/canonical
SSC Josephson junction [41]. Moreover, a closer inspection
of the amplitude distribution in the momentum space reveals
a sublte anisotropy. Indeed, for the lowest electron filling
(μL/t = −0.50) the strength of the spin-singlet pairing is
larger along the kx or ky symmetry directions, while in the in-
termediate electron density, corresponding to μL/t = −0.25,
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the pair amplitude is more enhanced close to the diagonal
directions. A similar behavior is also obtained for the dxy

projected spin-singlet pairing at μL/t = 0.0. For this elec-
tron filling, the dzx or dyz components, on the other hand,
have a significant amplitude difference along the outer Fermi
surfaces indicating that for those momenta the sign change
cannot result into a complete cancellation when contributing
to the Josephson processes. Specific aspects that point to sign
competition and anisotropy are also found for the ky-projected
intraorbital spin-singlet pair amplitude at the edge of the NCS
close to the junction interface. We generally find that the
intraorbital spin-singlet pair amplitude FL tends to have a sign
change for momenta ky [Figs. 6(d)–6(f)] that are in between
those associated with the nodal points of the spin-triplet gap
in the NCS [Figs. 6(a)–6(c)]. Moreover, FL can have a high
intensity for values of ky corresponding to the Fermi wave
vectors at ky = 0 or nearby the nodal points. Those momenta
are characteristic of the nodal topological SCs and of the
underlying Fermi surface. In particular, it is useful to highlight
the ky distribution of the intraorbital spin-singlet FL amplitude.
The outcome of the analysis indicates a strong orbital and
electron filling dependence. The dxy component has compa-
rable amplitude at small and large ky for μL/t = −0.50 and
−0.25, respectively, while for a higher electron filling (e.g.,
μL/t = 0.0) the dominant spectral weight is distributed at
large value of ky towards the position of the nodal points.
On the other hand, the behavior of the dzx and dyz pairing
amplitude is quite different from that of the dxy. Indeed, the
spectral distribution of the dzx indicates that the corresponding
spin-singlet pairing amplitude is mostly contributing when ky

is close to the nodal points momenta. Hence, the behavior of
the induced spin-singlet pair amplitude at the edge typically
changes sign as a function of ky and its amplitude is strongly
dependent on the orbital character and electron filling.

With this know-how, we are ready to evaluate a possible
link between the behavior of the k-resolved intraorbital spin-
singlet pair amplitude with that of the first harmonic term of
the Josephson current. In particular, in the tunneling regime
the product of the left and right intraorbital spin-singlet com-
ponent FLFR can be directly compared with the first harmonic
Josephson term I1. Indeed, for such configuration we have
that I1 ∼ FLFR as one can deduce by comparing the results
in Figs. 6(g), 6(h), and 6(i) with those in Figs. 6(m), 6(n),
and 6(o). The lack of a π -phase state emerges out of a sub-
tle competition between the positive and negative Josephson
channels when inspecting the k-resolved first harmonic term.
Here, I1p(ky) is obtained by the summation over the Matsubara
frequency at iεn = −iπkBT and iπkBT ,

I1 ∝
∑

ky

I1p(ky), I1p(ky)∼ I1p(ky,−iπkBT ) + I1p(ky, iπkBT ).

On the contrary, for high transparency, the behavior of
I1p(ky) does not correlate with that of the intraorbital spin-
singlet pairing amplitude product in Figs. 6(g), 6(h), and 6(i).
Since the conductance at the high transparency is larger than
that at the low transparency for large momentum as shown
in Fig. 7, I1p(ky) can be more affected by the contribution
of multiple injection and reflection processes for the vari-
ous momenta. We find that the contributions of the large

FIG. 7. Normalized charge conductance with normal metal con-
figurations in the two sides of the junction at (a) tint = 1.0 and
(b) 0.10. Red, blue, and green lines denote the examined chemical
potentials, i.e., μL/t = −0.50, −0.25, and 0.0, respectively. We set
the parameters as λSO/t = 0.10 and �is/t = 0.20.

momentum regions to the Josephson current are those that al-
low to turn the sign from positive to negative when integrating
the Josephson current over all of the momenta ky.

V. TEMPERATURE DEPENDENCE
OF JOSEPHSON CURRENT

In this section, we present the temperature dependence of
the maximum Josephson current. The behavior of the maxi-
mum Josephson current for the temperature T depends on the
zero-energy surface ABSs at the interface’s junction [29–32].
In the present case, since the s-wave SC does not have the
surface ABSs at the edge, we focus on the surface ABSs in the
NCS. For the (100) direction, the helical edge states appear in
the case with two Fermi surfaces and the surface ABSs not
connecting at the zero-energy appear in the case with four
Fermi surfaces [21]. In the (110) direction, zero-energy flat
bands occur due to the topological properties of the nodal
points in the NCS [21].

For these zero-energy surface ABSs, we can expect that
the maximum Josephson current increases as the temperature
is reduced [29–32]. Figure 8(a) shows the temperature depen-
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FIG. 8. Temperature dependence of the maximum Josephson
current regarding the interorbital B1 state in the NCS for the
NCS/NI/SC junction. (a) Temperature dependence of the maxi-
mum Josephson current in (100) junction at μL/t = −0.50 (red
line), −0.25 (blue line), and 0.0 (green line). (b)Temperature de-
pendence of the maximum Josephson current in (110) junction at
μL/t = −0.50 (red line), −0.25 (blue line), and 0.0 (green line). The
parameters are λSO/t = 0.10, �is/t = 0.20, and tint = 1.0.
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dence of the maximum Josephson current at μL/t = −0.50
(red line), −0.25 (blue line), and 0.0 (green line) in the (100)
direction. At μL/t = −0.50 and −0.25, the Josephson current
tends to increase, however, at μL/t = 0.0 its amplitude satu-
rates at low temperature. As we have shown in the previous
section, intraorbital even-frequency/spin-singlet/d±

x2−y2 -wave
pair amplitude can be coupled to spin-singlet s-wave state thus
directly affecting the Josephson current. The emergent prop-
erties of the intraorbital even-frequency/spin-singlet/d±

x2−y2 -
wave components [Fig. 5(f)] can also determine the behavior
of the temperature dependence of the maximum Josephson
current. In the (100) direction, since the sign of the intraor-
bital even-frequency/spin-singlet/d±

x2−y2 -wave pair amplitude
does not change at the interface, the thermal behavior of
the Josephson current is not influenced by the spin-singlet
pair amplitude. As a result, the Josephson current increases
at low temperature due to the zero-energy surface ABSs at
μL/t = −0.50 and −0.25, and is saturated by no zero-energy
surface ABSs at μL/t = 0.0 [12].

Likewise, we determine the temperature dependence of
maximum Josephson current in the (110) direction as shown
in Fig. 8(b) at μL/t = −0.50 (red line), −0.25 (blue line), and
0.0 (green line). At low temperature, the Josephson current
shows a rapid upturn owing to the zero-energy surface ABSs.
These zero-energy surface ABSs indicate that the sign of
the intraorbital even-frequency/spin-singlet/d±

x2−y2 -wave pair
amplitude changes for processes associated with the (110)
direction. Thus the Josephson current in the (110) direction
increases at very low temperature due to the anisotropy of
the intraorbital even-frequency/spin-singlet/d±

x2−y2 -wave pair
amplitude of the interorbital B1 pairing [29–32].

VI. CONCLUSIONS AND DISCUSSION

We study a Josephson junction made of an NCS with local
interorbital spin-triplet pairing interfaced with a conventional
spin-singlet s-wave SC by considering different junction’s
orientation and exloring the various regimes of electron filling
and spin-orbital coupling. We demonstrate that this type of
superconducting pairing leads to a sign-changing intraorbital
spin-singlet pair amplitude on different bands with d-wave
symmetry. Such multiband d±-wave state is responsible of
unexpected Josephson effects with 0-π transitions display-

ing a high degree of electronic control. Remarkably, we find
that the phase state of a NCS/NI/SSC Josephson junction
can be switched between 0 and π in multiple ways through
a variation of electron filling, strength of the spin-orbital
coupling, amplitude of the inversion asymmetry interaction,
junction orientation, and transparency. These results highlight
an intrinsic orbital and electrical tunability of the Josephson
response especially when considering the variation of the
orbital Rashba coupling due to an applied electric field.

The presented results can find application in quantum ma-
terials where the electronic structure is marked by a strong
interplay of spin and orbital degrees of freedom. This is com-
monly encountered in transition metal oxides and in particular
at oxide interfaces or surfaces. A paradigmatic example is
provided by the two-dimensional electron gas forming at the
LAO-STO interface [42,43]. There, the transport properties of
a suitably designed Josephson junction reveal the presence of
competing 0 and π channels [44]. We argue that the interor-
bital pairing here studied can account, at least qualitatively, for
the observed anomalies and the Josephson phase frustration
as a consequence of the nontrivial surface ABSs arising from
both the spin-triplet and spin-singlet pairing components.

Finally, we have proposed the spin-orbitronics functional-
ities to control the 0-π transitions in Josephson devices. In
particular, the remarkable tunability of the Josephson effect
by means of electron filling, orbital Rashba interaction and
the interface’s transparency indicate several ways towards an
electrical design of Josephson devices by directly gating the
SC or by gating the interface.
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