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Dual Fraunhofer interference and charge fluctuations in long quantum phase slip wires
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Charge interference (Aharonov-Casher effect) in a long superconducting quantum phase slip wire is con-
sidered, and from this the “dual” Fraunhofer interference effect (dual to the critical current modulation of a
short Josephson junction in an external magnetic field) is derived. The device that can be used to observe this
effect is proposed. Furthermore, the impact of wire inhomogeneities, charge disorder, and noise on the phase
slip amplitude is investigated. Although intrinsically protected against small fluctuations, the Aharonov-Casher
interference resulting from jumps of random offset charges and quasiparticles can result in significant fluctuations
of the measured current-voltage characteristics of the quantum phase slip wire, similar to the effects of Joule
heating when averaged out over many fluctuations. Possible ways to identify and mitigate such disorder are
discussed.
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I. INTRODUCTION

Significant efforts have been made in the past decades to
observe so-called “dual” Shapiro steps, an important mile-
stone towards realizing a quantum current standard, dual to
that of the Josephson volt [1,2]. Experimental demonstration
of robust dual Shapiro steps remains challenging [3,4], and a
voltage blockade due to coherent quantum phase slips (CQPS)
[5], the dual of Cooper pair tunneling, is often difficult to
distinguish from conventional Coulomb blockade due to wire
inhomogeneities [6]. Alternate methods of verifying the ex-
istence and stability of CQPS in superconducting nanowires
would, therefore, aid in the development of devices based on
the dual CQPS effect.

The demonstration of Fraunhofer interference in short
Josephson junctions [7] was important in verifying the
Josephson effect. Likewise, similar interference in the critical
voltage of a superconducting nanowire should constitute clear
evidence for coherent quantum phase slips [8]. Although sim-
ple duality arguments can be used to cast the equations for the
classical Fraunhofer interference pattern in CQPS devices [1],
a microscopic derivation of this phenomena is still lacking.
The Fraunhofer interference in Josephson junctions can be
understood in terms of the Aharonov-Bohm effect where a
charged particle (Cooper pair) can move along different tra-
jectories around a static fluxon. The dual to this effect is the
Aharonov-Casher (AC) effect [9] where fluxon interference,
carried by quantum phase slips, is obtained when trajectories
encircle static charges.
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The AC effect has been considered extensively in sys-
tems of Josephson junctions in the phase slip regime (or
analogously in nanowires with Josephson coupling between
grains) [10–17]. In particular, the effects of disorder both
due to background charge (parity) fluctuations [16–23] and
spatial variations in junction parameters [15,23–25] has been
studied in detail. The AC effect has also been demonstrated
experimentally for phase slips in Josephson junction rings
[10] and networks [12,26] as well as for CQPS in devices
made of continuous superconducting wires [27–29], yet the
appearance of the direct dual to the diffraction effects in
Josephson junctions is lacking. However, such an effect would
form striking evidence for CQPS in transport measurements
of superconducting nanowires.

Here, the dual Fraunhofer interference for a long homo-
geneous phase slip wire is derived, and conditions under
which it can be observed are discussed. From this, the role
of disorder and noise, due to local charges, on the phase slip
rate is derived. Random offset charges and charge fluctuations
along the CQPS wire are found to suppress the phase slip
rate, obscure the diffraction effects, and result in smearing
of measured current-voltage (IV) characteristics with similar
appearance as, e.g., overheating effects.

II. MODEL

In what follows, a voltage biased superconducting
nanowire of length L is considered. The length L is much
longer than the charge localization length ζ , and the wire is
assumed to be deep in the phase slip regime. The current-
voltage characteristics is given by a critical voltage Vc0 (dual
to the critical current for a Josephson junction) due to frequent
CQPS resulting in a total phase slip rate |νtot| = 2eVc0/h̄.
Below Vc0, no current flows through the device, and above
Vc0, the nanowire transitions to the resistive state, typically
characterized by a large sheet resistance Rsq ∼ Rq, where
Rq = h/4e2 is the superconducting resistance quantum.
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FIG. 1. (a) Circuit model for an array of capacitively coupled
islands, in between which frequent CQPS can occur. (b) Proposed
CQPS nanowire device for the observation of dual Fraunhofer inter-
ference for phase slips. (c) A modified implementation of (b) which
allows for compensation of individual offset charges and local con-
trol of the phase slip rate using multiple gates separated by a
characteristic distance ζ .

To generalize the problem, an approximate picture can be
used to provide an intuitive description of the AC effect. In
this picture, the CQPS wire consists of a chain of N capac-
itively coupled islands [Fig. 1(a)], and phase slips (fluxon
tunneling) are permitted in between these islands [17]. As
it turns out, any Josephson or CQPS coupling between the
islands is irrelevant for the physics in the AC picture described
here. The junction chain is, in this respect, topologically
identical to the homogeneous CQPS wire. A complete mi-
croscopic description for a CQPS wire can be derived from
the full hydrodynamic action under the sine-Gordon model
which assumes the CQPS element to be a zero-dimensional
lumped-element object with a constant charge distribution
throughout the wire [30,31]. However, under this approxi-
mation, the potential impact of induced (local) charges are
usually approximated out, and the CQPS action becomes in-
sensitive to local variations in charge. Although inclusion of
an AC-like term can be accounted for explicitly [32], an exact
solution of the full hydrodynamic CQPS action is, in general,
intractible. Here, the bare phase slip rate is assumed to be a
priori determined, and only its modification due to the AC
contribution is considered.

To translate the junction chain back onto the CQPS
nanowire, one should consider the renormalization of the rel-
evant length scales, mapping the number of islands N onto
a characteristic length ζ in the wire, i.e., N ∼ L/ζ . For a
highly disordered CQPS wire deep in the phase slip regime
with Rsq ∼ Rq, the relevant length scale for charge localiza-
tion is on the order of 1 square (of size ζ ∼ w, w being
the wire width), and if the CQPS nanowire is made up of a
granular film with weak couplings between grains, the grain

size, instead, becomes the relevant scale. Alternatively, for
a homogeneous wire dominated by order parameter disorder
[33,34] the BCS coherence length ξ0 forms the relevant length
scale.

A. Phase slip rate

To calculate the AC contribution to the phase slip rate in
the circuit depicted in Fig. 1(a), the Matveev-Larkin-Glazman
theory [10,17] is used to calculate the phase slip rate νm =
ν0e−Sm between each grain from the imaginary time-action Sm,
which yields the total phase slip rate of the long wire as

νtot =
N∑
m

ν0e−Sm . (1)

Starting with the Hamiltonian for an array of capacitively
coupled Josephson junctions, the Josephson coupling itself
can be neglected as this term does not contribute to the AC
interference effect [17],

H = 1

2

∑
i, j

[C−1]i j (Qi − qi )(Qj − q j ). (2)

Here, Qi is the charge operator and qi is the induced charge
(applied via the gate) on each grain, respectively, normalized
to 2e. Assuming only nearest-neighbor coupling, and equal
coupling capacitances Ci,i = 2C, Ci,±1 = C after a transfor-
mation to the conjugate phase variable, this results in H =
1
2

∑
i C(θ̇i )2, where θi = ϕi+1 − ϕi is the phase difference be-

tween islands. The charge contribution to the Lagrangian is,
then, given by

L = 1

2

∑
i

C(θ̇i )
2 −

∑
i

piθ̇i, (3)

with pi = ∑i−1
k=1 qk . This sum can be understood in terms of

different trajectories of a flux around the island charges, and
each trajectory has a different phase shift associated with it.
This phase shift is obtained from the total number of encircled
charges. I.e., a flux tunneling in the first and N th junction
will pick up a phase shift proportional to

∑N
i=1 qi. It can

straightforwardly be shown that the first term in Eq. (3) does
not contribute to the AC effect [10]. Thus, the imaginary time
action for a phase slip event in the mth junction δθm = 2π can
be written as

Sm = −i
∫

dt Lm = −2π ipm. (4)

From this, the total charge-dependent phase slip rate of the
wire is found to be

νtot =
N∑

m=1

ν0ηm exp

[
i2π

m−1∑
k=1

(qk + δq,k )

]
, (5)

where the two new parameters δq,k ∈ (−1, 1) and ηm ∈ (0, 1)
account for charge disorder and disorder in the local phase slip
rate, respectively. If all qk, δq,k = 0, and ηm = 1, it follows
that νtot = Nν0.

Importantly, in order to derive Eq. (4), it is assumed that
the phases of the left and right leads are the same ϕR = ϕL

(boundary conditions of a superconducting ring), and, in the
event of a phase slip, the phase difference 2π appearing be-
tween two of the grains is compensated for by adjusting the
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phase difference between all the grains by −2π/N [10]. Since
this response is equal for all junctions, it does not contribute
to the AC effect. In the case of a voltage-biased circuit, the
situation is similar. The phase difference is, instead, pinned
by the voltage source such that ϕ̇R = ϕ̇L − 2eVb/h, where Vb

is the bias voltage. Here, on the same grounds, the restoring
response to a 2π phase slip event in the chain would not
contribute to the AC part of the action [22,35].

B. Dual Fraunhofer interference

In the limit of zero fluctuations, the behavior becomes that
of a single island (N = 1) connected to reservoirs by two
phase slip centers νtot = 2eπ iq cos (πq). Such charge mod-
ulation of the phase slip rate has been observed in several
experiments [13,27–29]. For a long chain of N islands, each
having the same charge qi = q, it is straightforward to show
that Eq. (5) can be written as

νtot = ν0
sin (Nπq)

sin (πq)
eπ iq(N+1). (6)

Experiments are insensitive to the exponential phase factor as
the measured quantity is |νtot|. Figure 1(b) shows a proposed
device that can be used to show this effect: A homogeneous
superconducting wire in the phase slip regime is placed in
the vicinity of a gate electrode that uniformly induces the
same charge along the whole wire through a distributed gate
capacitance Cg. The dual Fraunhofer interference is exhibited
through the measured critical voltage Vc in a transport exper-
iment that varies with applied gate voltage Vg. Equation (6)
can, in the limits q � 1 and N � 1, be approximated as

|νtot| ≈ ν0

∣∣∣∣ sin (Nπq)

πq

∣∣∣∣, (7)

which is the more familiar expression for the Fraunhofer
interference. This is the CQPS dual of the critical current Ic

diffraction in short Josephson junctions subject to an applied
external magnetic flux 
: Ic = Ic0|sin (π
/
0)|/|π
/
0|.

In Fig. 2, Eqs. (6) and (7) are plotted. The insets show the
evolution of the phase slip rate on the complex plane at the
points indicated. Each individual phase slip center contributes
with an additional rotation on the complex plane due to the
induced charge on the island, resulting in the increased curva-
ture of the “phase slip rate contour” of fixed length. The phase
slip rate, thus, experiences minima when the accumulated
island charge is a multiple of 2e. For each such period, the
diameter of the circle on the complex plane shrinks due to
multiple windings, which results in the overall reduction in
the phase slip rate.

The full interference pattern [Eq. (6)] is also 2e periodic
in the charge of a single island. This is an interesting phe-
nomena which does not have an analog for the critical current
modulation of a short Josephson junction, arising from the
fundamentally different nature of the interfering particles.
Note also that a classical Coulomb blockade system would
maintain the same Coulomb gap (critical voltage) over many
periods in gate charge, whereas the critical voltage due to
CQPS in long wires must be quickly suppressed. As such,
the observation of a dual Fraunhofer pattern would constitute

FIG. 2. Phase slip rate for a homogeneous QPS wire without
charge disorder as a function of accumulated induced charge along
the wire (N = 20) according to Eq. (6) (solid black line). The ap-
proximate expression Eq. (7) is shown as the red solid line. The insets
show the evolution of the phase slip rate in the complex plane where
the total arc length is always the same (=Nν0), and the accumulated
charge along the wire results in a phase factor for each individual
phase slip center.

unambiguous evidence for CQPS in a DC experiment on long
superconducting wires.

However, in reality, this dual effect may be challenging to
observe: It requires a long and homogeneous CQPS wire free
of offset charges and with a uniformly applied gate voltage.
For increased control over these effects, the device sketched
in Fig. 1(c) is proposed. A large number of individual gate
electrodes can be used to equilibrate any offset charges, and
locations for phase slips are well defined by the use of lo-
cal constrictions [25]. Alternatively, controlled locations for
phase slips can be achieved by locally modifying the su-
perconductor properties [36]. A similar multi-CQPS junction
geometry has been proposed for a CQPS qubit device [37]
(using the assumed dual Hamiltonian).

C. Offset charges

The above discussion is in the limit of no charge disorder,
however, a more likely scenario is that each island is subject
to a random offset charge. These offset charges could, for
instance, be due to local charged material defects or quasi-
particles. The general effect of such offset charges would be a
reduction of the total measured phase slip rate |νtot| < N |ν0|.
For large random offset charges, the phase slip rate can be in-
terpreted as a random walk on the complex plane which results
in νtot = ν0

√
N [17]. Although such a description gives an ap-

propriate estimate for the expectation value for the phase slip
rate, the offset charges are seldom static. In fact, they typically
fluctuate on timescales commensurate with experimental du-
rations, resulting in variations in the measured phase slip rate.

There are two regimes of such fluctuations. (i) Strong
(slow stochastically switching) variations δqi ∼ 1 due to lo-
cal strongly coupled charge fluctuators or quasiparticles, and
(ii) weak (and typically high-frequency) fluctuations charac-
terized by δqi � 1, originating from fluctuations in the wider
charge environment. Case (i) is discussed in what follows, and
case (ii) is discussed in the next section.

144509-3



S. E. DE GRAAF PHYSICAL REVIEW B 102, 144509 (2020)

FIG. 3. (a) Probability distribution for the total phase slip rate |ν|/Nν0 for increasing magnitude of the random charge disorder along the
nanowire δq (2e). b) The same probability distributions as in (a) but with added disorder in the nanowire width. Here, the normalization in
the phase slip rate is taken as the sum of individual random phase slip rates |ν|/∑

i |νi|. The calculation assumes a wire with normal state per
square resistance 0.3Rq, ξ0 = 4 nm and a mean wire width w = 20 nm with a normal distributed dispersion of width δw = 5 nm. Note that
in the last two panels the probability has been multipled by a factor of 2 for enhanced visibility.

Figure 3(a) shows the probability distribution of obtaining
a given phase slip rate |νtot| as a function of N for a uniform
random distribution of static offset charges on the interval
(−δq, δq) for selected values of δq. For small δq, |νtot| ≈
N |ν0|. As δq approaches 1, the probability for a reduced phase
slip rate increases substantially for larger N , and the width
of the distribution is also significantly widened. For δq → 1,
the expected |νtot| → √

N |ν0| dependence is recovered with a
suppressed distribution width.

A realistic QPS nanowire does not only suffer from local
offset charges, but also local variations in the phase slip rate
due to a dispersion in wire properties will result in addi-
tional disorder. In particular, the exponential dependence of
the phase slip amplitude on the wire width [38] will have a
significant impact. Such dispersion in wire width is modeled
in Fig. 3(b) by assuming a normal distribution of width δw =
5 nm and mean w = 20 nm and considering typical parame-
ters for NbN [38]: ν0 = ν ′

0 exp (−κw) with κ = aRq/Rsqξ0 =
2 nm−1 and a = 0.6. Such dispersion in the nanowire width
results in a recovery of a larger phase slip rate for large
N . It also results in significant broadening of the probabil-
ity distribution as the total phase slip rate is governed by a
fewer number of strong phase slip centers. As the random
offset charges discussed above [and Fig. 3(a)] can only be
considered static for a given instance in time (these strong
offset charges could also fluctuate in time) the result is that
νtot can fluctuate in time within a range of values given by the
strength of the disorder [Figs. 3(a) and 3(b)]. As shown below,
this can result in significant smearing of the current-voltage
characteristics of a CQPS wire.

D. Charge noise

Next, the impact of small fluctuations (δqi � 1) is studied
with the aim to calculate the noise power spectral density of
the phase slip rate as a function of the charge noise power
spectral density along the wire. Here, it is assumed that the
charge noise between individual islands is uncorrelated. The
spectral density of fluctuations in the phase slip rate is defined
as

Sν (ω) = 1

2π

∫
dt

∫
dτ 〈ν(t ), ν(t + τ )〉e−2π iωτ , (8)

where 〈, 〉 denotes covariance. Inserting the expression for the
phase slip rate into Eq. (8) gives

Sν (ω)= ν2
0

2π

∫
dt

∫
dτ

N∑
k=0

N∑
m=0

〈ePk+pk (t ), ePm+pm (t+τ )〉e−2π iωτ ,

(9)
Here, the charge on each island is split into a static
part Pk = 2π i

∑k
n=1 Qk and a time-dependent part with

zero mean pk (t ) = 2π i
∑k

n=1 qk (t ). Next, it is assumed that
〈ql (t ), qm(t + τ )〉 = 0 for all l �= m. This assumption is jus-
tified by the fact that, whereas neighboring islands may still
have correlations in their time-dependent charge fluctuations,
a length scale at which fluctuations become uncorrelated can
be defined. If such length scales span over several islands, the
effective number of islands N is reduced. Furthermore, it is
assumed that all qm obey the same statistics: 〈qm(t ), qm(t +
τ )〉 ≡ 〈q(t ), q(t + τ )〉. This means that

〈pl (t ), pm(t + τ )〉 = 2π i min (l, m)〈q(t ), q(t + τ )〉.
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Finally, since Pk is constant with respect to t , this becomes

Sν (ω)= ν2
0

2π

∫
dt

∫
dτ

N∑
k=0

N∑
m=0

ePk ePm〈epk (t ), epm (t+τ )〉e−2π iωτ .

(10)
Now, assuming that the charge fluctuations are small, i.e.,
expanding the exponents to first order, leads to

Sν (ω) = 2πSq(ω)iν2
0

N∑
k=0

N∑
m=0

ePk+Pm min (k, m), (11)

where

Sq(ω) = 1

2π

∫
dt

∫
dτ 〈q(t ), q(t + τ )〉e−2π iωτ

is the charge noise power spectral density. Without
static charge disorder, the sum in Eq. (11) becomes∑N

k=0

∑N
m=0 min (k, m) = N

6 + N2

2 + N3

3 . For the ideal long
wire, when all Pk = n2π , the absolute noise power in the
phase slip rate will scale as Sν (ω) ≈ 2π iSq(ω)ν2

0 N3/3, how-
ever, this fluctuation is orthogonal to the static phase slip
amplitude. This means that the measured amplitude fluctua-
tions of the phase slip rate scales as ∝N for large N in the
absence of static charge disorder, a result verified by Monte
Carlo simulations of Eq. (9).

On the contrary, for large random static offset charges,
the impact of the local charge noise (δqi � 1) is reduced. In
fact, Sν (ω) ∝ Sq(ω) can be found numerically, showing no
dependence on N . This is an important result, highlighting
that the ideal CQPS wire (free of large offset charges) is to
first order protected from low amplitude charge noise since
this Aharonov-Casher-type noise results in fluctuations that
are orthogonal to the measured phase slip rate on the com-
plex plane. With large charge disorder, this protection towards
small fluctuations is enhanced. Instead, the dominant source
of fluctuations impacting device performance will come from
slow switching of the much stronger random charge disorder
of magnitude δq ∼ 1e along the wire.

III. CURRENT-VOLTAGE CHARACTERISTICS

Numerical calculations of the expected IV characteristics
can be performed to understand the impact of strong charge
fluctuations. Here, the CQPS wire is described by its critical
voltage Vc(t ) = 2πEs(t )/2e, where Es(t ) = h|νtot (t )| is the
phase slip energy. For a voltage-biased QPS junction in series
with an inductor L and a resistor R leading to the equation of
motion [1],

Lq̈ + 2eRq̇ + Vc(t ) sin (2πq) = Vb + Vrf sin ωrft . (12)

This charge representation allows for both QPS and the
boundary conditions for the phase arising from the environ-
ment, which are now reduced to Kirchhoff’s equation for
the charge to be well defined. Using Monte Carlo simula-
tions where Vc(t ) varies according to a normal distribution of
mean Vc0 = 33 μV and width σq = 0.1Vc0, which represents
a modest spread for a long disordered wire [cf. Fig. 3(b)].
The simulations evaluate the resulting average current I ∝ q̇
as a function of Vb, in the presence of a microwave drive with

FIG. 4. Simulated current voltage characteristics of a long CQPS
wire with fluctuating charge disorder under the presence of mi-
crowave radiation at ωrf/2π = 0.5 GHz. The black solid line shows
the case without disorder, and the solid red line shows the average
of 20 different charge configurations with a moderate total phase
slip rate dispersion of σν = 0.1Es0. The shaded region indicates the
possible spread of parameters for the given probability distribu-
tion of phase slip rates. EL = e
2

0/L = 0.25, Es0 = 2.5 GHz, R =
320 k�.

angular frequency ωrf and amplitude Vrf that generates a dual
Shapiro step at I = 2eωrf/2π .

The results are shown in Fig. 4, which evaluate the effect
of charge fluctuations on the transport characteristics of the
phase slip wire. Figure 4 shows that the smearing of the IV
curve due to averaging over a number of charge fluctuations
looks qualitatively very similar to other effects such as heating
[39] or insufficient filtering. Crucially, whereas the zero bias
blockade is still visible, plateaus due to applied microwave
radiation are more easily washed out. Therefore, these simula-
tions conclude that charge fluctuations in long quantum phase
slip wires is a major issue towards the observation of robust
dual Shapiro steps, in particular, due to the small voltages and
currents used that usually require long averaging times.

The 1/ f flicker critical voltage noise inherited from the
charge noise discussed, here, can be considered dual to the
critical current noise found in Josephson junctions and super-
conducting quantum interference devices where bias reversal
and modulation techniques have successfully been applied to
reduce noise and elude its origin [40,41]. Applying similar
techniques in experiments on CQPS wires and exploiting the
fact that the 1/ f critical voltage noise would be sensitive to
(local) gate voltage, could distinguish it from white Johnson
[39] or shot noise [42] effects, that are also expected to have a
different temperature dependence. To achieve this, high band-
width low-noise (pulsed) readout for CQPS wires is required.

IV. DISCUSSION

A number of factors can contribute to the charge and phase
slip amplitude disorder in superconducting nanowires. So far,
the result of such variations on the total phase slip rate have
been considered without any assumption of the underlying
mechanisms.
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The presence of charge disorder is a long-standing problem
for materials for microscopic quantum circuits [43], and the
most successful devices developed have been engineered to,
instead, be insensitive to charge and parity fluctuations. A
different approach has been taken by the two-dimensional
(2D) materials community where materials engineering and
encapsulation have resulted in suppressed charge disorder
and significantly improved device performance [44]. Exploit-
ing such techniques in conjunction with superconductivity
in novel 2D materials [45,46] may provide an alternative
route for CQPS which potentially could solve some of the
challenges with spatial inhomogeneities as well. Variations in
wire cross sections can easily emerge as a result of imperfect
lithography defining the nanowires as well as from uncon-
trolled oxidation of the superconducting material or thickness
variations. A similar dispersion in phase slip rate can orig-
inate from both intrinsic fluctuations of the order parameter
close to the superconductor-insulator transition [33] or due
to external magnetic moments and defects locally modifying
the order parameter [47]. Nonequilibrium quasiparticles will
also contribute to fluctuations in the phase slip rate. Such
quasiparticles are notoriously challenging to eliminate [48],
are expected to be present in larger numbers in highly dis-
ordered superconductors otherwise suitable for CQPS, and
they could also become trapped in a spatially fluctuating order
parameter and contribute to the local charge disorder [49]. The
inclusion of local electrostatic gating for CQPS nanowires [6]
provides a separate degree of freedom that can help in further
understanding CQPS physics.

V. SUMMARY

Here, the CQPS dual of the well-known Fraunhofer inter-
ference in short Josephson junctions has been derived, and

it is shown how this interference arises from the Aharonov-
Casher effect in long CQPS wires. A device is proposed that
can be used to demonstrate this effect. A major challenge
towards its experimental observation is charge noise, random
offset charges, and inhomogeneities along the CQPS wire.
The charge noise spectral density was shown to enter into
the fluctuations of the phase slip rate, and how the phase
slip rate is affected by local disorder was investigated. Rather
surprisingly, high-frequency charge noise is suppressed in
a long CQPS wire, however, significant fluctuations in the
phase slip rate is still expected due to slow random offset
charge jumps of magnitude ∼1e. The Josephson junction
analogy is a reduced critical current of the junction in the
presence of a magnetic field with the important difference
that electric fields due to stray charge are a local effect.
When multiple charge jumps are averaged over experimental
timescales, the measured current voltage characteristics of
a CQPS wire shows smearing which is similar to that of,
e.g., joule heating. These results show that it is important to
control and understand the local charge environment of CQPS
wires in order to develop practical applications based on dual
superconducting circuits.

ACKNOWLEDGMENTS

The author is grateful to D. S. Golubev, A. Y. Tzalenchuk,
and A. Kemppinen for useful discussions and J. J. Burnett
and T. Lindström for careful reading of the paper. This
work has received funding from the European Union’s Hori-
zon 2020 Research and Innovation Programme under Grant
Agreement No. 862660/QUANTUM E-LEAPS and the UK
government’s Department for Business, Energy and Indus-
trial Strategy through the UK National Quantum Technologies
Programme.

[1] J. E. Mooij and Y. V. Nazarov, Nat. Phys. 2, 169 (2006).
[2] W. Poirier, S. Djordjevic, F. Schopfer, and O. Thévenot, C. R.

Phys. 20, 92 (2019).
[3] J. S. Lehtinen, K. Zakharov, and K. Y. Arutyunov, Phys. Rev.

Lett. 109, 187001 (2012).
[4] Z. M. Wang, J. S. Lehtinen, and K. Y. Arutyunov, Appl. Phys.

Lett. 114, 242601 (2019).
[5] O. V. Astafiev, L. B. Ioffe, S. Kafanov, Y. A. Pashkin, K.

Y. Arutyunov, D. Shahar, O. Cohen, and J. S. Tsai, Nature
(London) 484, 355 (2012).

[6] S. E. de Graaf, R. Shaikhaidarov, T. Lindström, A. Y.
Tzalenchuk, and O. V. Astafiev, Phys. Rev. B 99, 205115
(2019).

[7] J. M. Rowell, Phys. Rev. Lett. 11, 200 (1963).
[8] A. J. Kerman, New J. Phys. 15, 105017 (2013).
[9] Y. Aharonov and A. Casher, Phys. Rev. Lett. 53, 319 (1984).

[10] I. M. Pop, B. Doucot, L. Ioffe, I. Protopopov, F. Lecocq, I.
Matei, O. Buisson, and W. Guichard, Phys. Rev. B 85, 094503
(2012).

[11] J. R. Friedman and D. V. Averin, Phys. Rev. Lett. 88, 050403
(2002).

[12] W. J. Elion, J. J. Wachters, L. L. Sohn, and J. E. Mooij, Phys.
Rev. Lett. 71, 2311 (1993).

[13] M. T. Bell, W. Zhang, L. B. Ioffe, and M. E. Gershenson, Phys.
Rev. Lett. 116, 107002 (2016).

[14] R. Süsstrunk, I. Garate, and L. I. Glazman, Phys. Rev. B 88,
060506(R) (2013).

[15] F. W. J. Hekking and L. I. Glazman, Phys. Rev. B 55, 6551
(1997).

[16] D. A. Ivanov, L. B. Ioffe, V. B. Geshkenbein, and G. Blatter,
Phys. Rev. B 65, 024509 (2001).

[17] K. A. Matveev, A. I. Larkin, and L. I. Glazman, Phys. Rev. Lett.
89, 096802 (2002).

[18] J. H. Cole, A. Heimes, T. Duty, and M. Marthaler, Phys. Rev. B
91, 184505 (2015).

[19] S. Khlebnikov and L. P. Pryadko, Phys. Rev. Lett. 95, 107007
(2005).

[20] K. Cedergren, R. Ackroyd, S. Kafanov, N. Vogt, A. Shnirman,
and T. Duty, Phys. Rev. Lett. 119, 167701 (2017).

[21] M. Bard, I. V. Protopopov, I. V. Gornyi, A. Shnirman, and A. D.
Mirlin, Phys. Rev. B 96, 064514 (2017).

[22] H.-K. Wu, and J. D. Sau, Phys. Rev. B 99, 214509 (2019).

144509-6

https://doi.org/10.1038/nphys234
https://doi.org/10.1016/j.crhy.2019.02.003
https://doi.org/10.1103/PhysRevLett.109.187001
https://doi.org/10.1063/1.5092271
https://doi.org/10.1038/nature10930
https://doi.org/10.1103/PhysRevB.99.205115
https://doi.org/10.1103/PhysRevLett.11.200
https://doi.org/10.1088/1367-2630/15/10/105017
https://doi.org/10.1103/PhysRevLett.53.319
https://doi.org/10.1103/PhysRevB.85.094503
https://doi.org/10.1103/PhysRevLett.88.050403
https://doi.org/10.1103/PhysRevLett.71.2311
https://doi.org/10.1103/PhysRevLett.116.107002
https://doi.org/10.1103/PhysRevB.88.060506
https://doi.org/10.1103/PhysRevB.55.6551
https://doi.org/10.1103/PhysRevB.65.024509
https://doi.org/10.1103/PhysRevLett.89.096802
https://doi.org/10.1103/PhysRevB.91.184505
https://doi.org/10.1103/PhysRevLett.95.107007
https://doi.org/10.1103/PhysRevLett.119.167701
https://doi.org/10.1103/PhysRevB.96.064514
https://doi.org/10.1103/PhysRevB.99.214509


DUAL FRAUNHOFER INTERFERENCE AND CHARGE … PHYSICAL REVIEW B 102, 144509 (2020)

[23] A. E. Svetogorov, M. Taguchi, Y. Tokura, D. M. Basko, and
F. W. J. Hekking, Phys. Rev. B 97, 104514 (2018).

[24] A. E. Svetogorov and D. M. Basko, Phys. Rev. B 98, 054513
(2018).
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