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Influence of scattering on the optical response of superconductors

F. Yang and M. W. Wu*

Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled
Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

(Received 16 September 2019; revised 18 March 2020; accepted 29 September 2020; published 12 October 2020)

By using the gauge-invariant kinetic equation [Yang and Wu, Phys. Rev. B 98, 094507
(2018); 100, 104513 (2019)], we analytically investigate the influence of the scattering on the optical
properties of superconductors in the normal-skin-effect region. Both linear and second-order responses are
studied under a multicycle terahertz pulse. In the linear regime, we reveal that the optical absorption σ1s(ω),
induced by the scattering, exhibits a crossover point at ω = 2|�|. Particularly, it is further shown that when
ω < 2|�|, σ1s(ω) from the scattering always exhibits a finite value even at low temperature, in contrast to the
vanishing σ1s(ω) in the anomalous-skin-effect region as the Mattis-Bardeen theory [Mattis and Bardeen, Phys.
Rev. 111, 412 (1958)] revealed. In the second-order regime, responses of the Higgs mode during and after the
optical pulse are studied. During the pulse, we show that the scattering causes a phase shift in the second-order
response of the Higgs mode. Particularly, this phase shift exhibits a significant π jump at ω = |�|, which
provides a very clear feature for the experimental detection. After the pulse, by studying the damping of the
Higgs-mode excitation, we reveal a relaxation mechanism from the elastic scattering, which shows a monotonic
enhancement with the increase of the impurity density.
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I. INTRODUCTION

In the past few decades, the optical properties of the su-
perconducting states have attracted much attention in both
linear and nonlinear regimes. The linear response is focused
on the behavior of the optical conductivity [1–20], which
was first discussed by Mattis and Bardeen (MB) within the
framework of the Kubo current-current correlation approach
in the anomalous-skin-effect region [21,22]. In this region,
the excited current at one space point, depends not only on
the electric field at that point but also on the ones nearby. This
nonlocal effect dominates in systems with a small skin depth
δ in comparison with the mean free path l , as usually the case
in thin-film superconductors or clean type-I superconductors,
whereas the scattering effect in this circumstance is marginal.
The MB theory suggests that the optical absorption at zero
temperature is realized by breaking the Cooper pairs into
quasiparticles when the optical frequency ω is larger than
twice the superconducting gap amplitude |�| [21]. Thus the
real part of the optical conductivity σ1s(ω) vanishes at T =
0 K when ω < 2|�| but becomes finite above 2|�|, leading to
a crossover point at 2|�|. At finite temperature, an additional
quasiparticle contribution appears below 2|�|. This theory
so far has successfully described the observed data in the
anomalous-skin-effect region, as experiments in In [1], Pb
[2,6,7], Al [8], thin-film Nb [5], and NbN [3,4,9] supercon-
ductors demonstrated.
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The counterpart of the anomalous-skin-effect region is
known as the normal-skin-effect one [9,23] (l < δ) where the
dirty type-II superconductors lie in and the scattering effect
becomes important. The optical absorption in the normal-
skin-effect region, as experiments in dirty Nb [9,11], MgB2
[12,13], NbTiN [14,15], NbN [16,18], MoN [19], and Al
[17,20] superconductors, always exhibits a finite σ1s(ω) even
at low temperature for ω < 2|�|, in contrast to the vanishing
σ1s(ω) in the anomalous-skin-effect region. Moreover, with
the decrease of ω in terahertz (THz) regime from ω � 2|�|,
the observed σ1s(ω) first decreases at ω > 2|�| and then
shows an upturn below 2|�|, leading to a crossover point at
2|�|. Although the experimental observations are very con-
vincing, theories in the normal-skin-effect region where the
scattering effect dominates, are still in progress. The diffi-
culty within the Kubo formalism comes from the inevitable
calculation of the vertex correction due to the scattering,
which becomes hard to tackle in superconductors [23,24].
Whereas the Eilenberger equation is restricted by the nor-
malization condition [25–28], and is also hard to handle for
calculation of the scattering. So far, to fit the experimental
data, the MB theory derived from the anomalous region is
excessively used [9,11,13–20]. Nevertheless, such an unphys-
ical fit underestimates σ1s(ω) below 2|�| particularly at low
temperature where the quasiparticle contribution from MB
theory is too small to count for finite experimental result
[9,11,13–20]. To explain the residual σ1s(ω), several works
[16,17,20] considered the influences of the collective gap-
ful Higgs [29–33] and gapless Nambu-Goldstone [32–45]
(NG) modes, which describe the amplitude and phase fluc-
tuations of the order parameter, respectively. However, the
Higgs mode is charge neutral and does not manifest itself

2469-9950/2020/102(14)/144508(15) 144508-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.144508&domain=pdf&date_stamp=2020-10-12
https://doi.org/10.1103/PhysRevB.98.094507
https://doi.org/10.1103/PhysRevB.100.104513
https://doi.org/10.1103/PhysRev.111.412
https://doi.org/10.1103/PhysRevB.102.144508


F. YANG AND M. W. WU PHYSICAL REVIEW B 102, 144508 (2020)

in the linear regime [29,32,33] unless under the dc super-
current injection [46]. The linear response of the NG mode
does not occur either due to its coupling with the long-range
Coulomb interaction [29,32,34,35,38,39,43], which causes
the original gapless energy lifted up to the plasma frequency
as a result of Anderson-Higgs mechanism [47]. Therefore a
detailed study capable of clarifying the scattering effect is
necessary.

As for the nonlinear regime, it was recently realized that
through the intense THz pulse, one can excite the oscillation
of the superfluid density in the second-order response, which
is attributed to the excitation of the Higgs mode [48–54]. The
most convincing evidence comes from the observed resonance
at 2ω = 2|�| [49–51], in consistency with the energy spec-
trum of the Higgs mode [29,31,32]. After the THz pulse, a fast
damping of this oscillation is observed, and then, a suppressed
gap is further observed as a consequence of the thermal effect
[48–50]. Theory in the literature for these findings is based
on Bloch [50–60] or Liouville [61–64] equation derived in
the Anderson pseudospin picture [65]. The vector potential
A naturally involves in this description as a second-order
term, which pumps up the fluctuation of the order param-
eter (pump effect). Nevertheless, the microscopic scattering
is absent in the literature. In order to describe the observed
damping after the optical pulse, the phenomenological relax-
ation time is further introduced into the Anderson pseudospin
picture [53,54]. Very recently, this whole set of approach is
challenged. On one hand, this approach with no drive effect
fails in the linear regime to give the optical current. On the
other hand, symmetry analysis from the Anderson pseudospin
picture implies that the pump effect excites the NG mode
rather than the observed Higgs mode [66]. Besides these
deficiencies, without the microscopic origin, the introduced
phenomenological relaxation mechanism is not exact and
convincing.

Very recently, by using the equal-time nonequilibrium τ0-
Green function, the gauge-invariant kinetic equation (GIKE)
of superconductivity with the microscopic scattering is devel-
oped in our previous papers [67–71]. We have proved that
the retained gauge invariance in this theory directly leads
to the charge conservation in the electromagnetic response
[71], in consistency with Nambu’s conclusion that the gauge
invariance in superconductors is equivalent to the charge con-
servation [34]. In fact, neither the Bloch [50–60] nor Liouville
[61–64] equation mentioned above are gauge invariant under
the gauge transformation in superconductors [34]. In contrast,
in the GIKE, thanks to the gauge invariance, both pump and
drive effects mentioned above are kept [67–71]. Moreover,
both superfluid and normal-fluid dynamics are involved in the
GIKE [70,71], beyond the previous Boltzmann equation of
superconductors with only the quasiparticle physics retained
[72–74].

Consequently, the well-known clean-limit results such as
the Ginzburg-Landau equation and Meissner supercurrent in
the magnetic response as well as the optical current cap-
tured by the two-fluid model can be directly derived from
the GIKE [70]. Particularly, we show that the normal fluid
is present only when the excited superconducting velocity vs

is larger than a threshold [70]. Moreover, the linear responses
of the collective modes from the GIKE also agree with the

well-known results in the literature [71]. Whereas the second-
order response from the GIKE exhibits interesting physics. On
one hand, a finite second-order response of the Higgs mode,
attributed solely to the drive effect rather than the widely
considered pump effect, is revealed [71], in contrast to the
above theory from Anderson pseudospin picture [50–64]. On
the other hand, a finite second-order response of the NG mode,
survived from the Anderson-Higgs mechanism, is predicted
as a consequence of charge conservation. An experimental
scheme for this response is further proposed [71]. Actually,
thanks to the equal-time scheme, the microscopic scattering
in superconductors, which is hard to deal with in the litera-
ture as mentioned above, becomes easy to handle within the
GIKE approach. Thus rich physics from the scattering can
be expected. Particularly, at low frequency (i.e., large vs), we
have analytically shown that due to the scattering, there exists
viscous superfluid besides the nonviscous one [70]. Then,
together with the normal fluid, a three-fluid model is proposed
[70].

In this work, by extending the previous scattering terms
in Ref. [70] into the THz regime via carefully implementing
the Markovian approximation, we further apply the GIKE
to investigate the influence of the scattering on the opti-
cal properties of superconductors in the normal-skin-effect
region (l < δ). Both linear and second-order responses are
analytically studied under a multicycle THz pulse. In the
linear regime, we show that the optical absorption σ1s(ω),
induced by the scattering, always exhibits a finite value even
at low temperature when ω < 2|�|, in contrast to the vanish-
ing σ1s(ω) in the anomalous-skin-effect region as MB theory
revealed [21]. Moreover, with the decrease of the optical
frequency from ω � 2|�|, σ1s(ω) first increases and then
drops abruptly around 2|�|. By further decreasing ω below
2|�|, an upturn of σ1s(ω) is observed, leading to a crossover
point at 2|�|. In the second-order regime, responses of the
Higgs mode during and after the optical pulse are revealed.
During the pulse, it is found that the scattering causes a phase
shift in the optical response of the Higgs mode. Particularly,
this phase shift exhibits a significant π jump at ω = |�|,
which provides a very clear feature for the experimental
detection. After the pulse, the damping of the Higgs-mode
excitation is studied. In this situation, we reveal a relax-
ation mechanism due to the elastic scattering, which shows
a monotonic enhancement with the increase of the impurity
density.

This paper is organized as follows. We first present the
GIKE of superconductivity in Sec. II. Then, we perform the
analytic analysis of the influence from the scattering on the
optical properties of superconductors in Sec. III. We summa-
rize in Sec. IV.

II. MODEL

In this section, we first introduce the complete GIKE.
Then, we present a simplified GIKE to study the opti-
cal response of superconductors in the normal-skin-effect
region. The microscopic scattering terms of the non-
magnetic impurity scattering are also addressed in this
section.
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A. GIKE

The GIKE of the s-wave BCS superconductors, which is
developed in our previous papers [70,71], reads:

∂tρ
c
k+i

[
(ξk +eφ+μH +μF )τ3+ �̂(R), ρc

k

]
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4m
τ3, τ3ρ

c
k

]
=∂tρ

c
k

∣∣∣∣
sc

. (1)

Here, [ , ] and { , } represent the commutator and anti-
commutator, respectively; ξk = k2

2m − μ with m and μ being
the effective mass and chemical potential; �̂(R) = �(R)τ+ +
�∗(R)τ−; R = (t, R) stands for the center-of-mass coordi-
nate; τi are the Pauli matrices in the particle-hole space; φ

and A denote the scalar and vector potentials, respectively; ρc
k

is the density matrix in the Nambu space; on the right-hand
side of Eq. (1), the scattering term ∂tρ

c
k|sc is added for the

completeness, whose explicit expression is shown in Sec. II C.
The superconducting order parameter �, Fock field μF and

Hartree field μH in Eq. (1) are written as

�(R) = −g
∑

k

′
Tr
[
ρc

kτ−
]
, (2)

�∗(R) = −g
∑

k

′
Tr
[
ρc

kτ+
]
, (3)

μF (R) = gδn(R)/2, (4)

μH (R) =
∑

R′
VR−R′δn(R′), (5)

where δn(R) represents the density fluctuation; VR−R′ de-
notes the Coulomb potential whose Fourier component Vq =
e2/(q2ε0); g stands for the effective electron-electron attrac-
tive potential in the BCS theory [75].

∑′
k here and hereafter

represents the summation restricted in the spherical shell
(|ξk| < ωD) with ωD being the Debye frequency [75].

The effective electric field E in Eq. (1), as a gauge-invariant
measurable quantity, is given by

eE = −∇R(eφ + μH + μF ) − ∂t eA. (6)

The gauge-invariant density n and current j read [70]

en = e
∑

k

[
1 + Tr

(
ρc

kτ3
)]

, (7)

j =
∑

k

Tr

(
ek
m

ρc
k

)
. (8)

We emphasize that Eq. (1) is gauge-invariant under the
gauge transformation first revealed by Nambu [34]:

eAμ → eAμ − ∂μχ (R), (9)

θ (R) → θ (R) + 2χ (R), (10)

where the four vectors Aμ = (φ, A) and ∂μ = (∂t ,−∇R ); θ

denotes the phase of the superconducting order parameter.
Thanks to the retained gauge invariance, the charge conser-
vation:

∂t eδn + ∇R · j = 0, (11)

is naturally satisfied during the electromagnetic response as
we proved in our latest work [71]. This agrees with the
Nambu’s conclusion via the Ward’s identity that the gauge
invariance in the superconducting states is equivalent to the
charge conservation [34]. Moreover, due to the gauge invari-
ance, both the pump [third term in Eq. (1)] and drive [sixth and
seventh terms in Eq. (1)] effects mentioned in the introduction
are kept.

B. Simplified GIKE in normal-skin-effect region

In this part, we present a simplified GIKE in the normal-
skin-effect region. We first choose a specific gauge by
transforming Eq. (1) under the gauge transformation ρk(R) =
e−iτ3θ (R)/2ρc

k(R)eiτ3θ (R)/2. Then, under a spatially uniform (i.e.,
long-wave-limit) optical field in the normal-skin-effect region,
the spatial gradient terms in the kinetic equation can be ne-
glected. Consequently, Eq. (1) becomes

∂tρk + i[(ξk + μeff )τ3 + |�|τ1, ρk] + i

8
[|�|τ1, (ps · ∂k )2ρk]

+ 1

2
{eEτ3 + ps|�|τ2, ∂kρk} = ∂tρk

∣∣∣∣
sc

, (12)

with the gauge-invariant superconducting momentum ps and
effective field μeff written as

ps = ∇Rθ − 2eA, (13)

μeff = ∂tθ

2
+ eφ + μH + μF + p2

s

8m
. (14)

Moreover, by expanding the density matrix as ρk =∑3
i=0 ρkiτi, the gap equations [Eqs. (2) and (3)] correspond-

ingly read

g
∑

k

′
ρk1 = −|�|, (15)

g
∑

k

′
ρk2 = 0. (16)

As shown in our latest work [71], Eq. (15) gives the gap equa-
tion, from which one can self-consistently obtain the Higgs
mode. The NG mode can be self-consistently determined by
Eq. (16). Moreover, under the uniform optical response, one
finds that ∇R · j = 0. Therefore, as a consequence of the
charge conservation [Eq. (11)], the density fluctuation δn and
hence both the Hartree μH and Fock μF fields vanish.

C. Microscopic scattering

We next present the scattering terms ∂tρk|sc in Eq. (12)
which are derived based on the generalized Kadanoff-Baym
ansatz [76–79]. Considering the fact that the electron-phonon
scattering is weak at low temperature, we mainly consider the
electron-impurity scattering. The specific impurity scattering
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terms read (detailed derivation can be found in Refs. [77–79]):

∂tρk|sc = −[Sk(>,<) − Sk(<,>) + h.c.], (17)

with

Sk(>,<) = ni

∑
k′

∫ t

−∞
dt ′[Ukk′ei(t ′−t )Hk′ ρ>

k′ (t ′)Uk′k

× ρ<
k (t ′)e−i(t ′−t )Hk ]. (18)

Here, ρ<
k = ρk and ρ>

k = 1 − ρk; Hk = ξk+mvsτ3τ3 + |�|τ1

denotes the BCS Hamiltonian in the presence of the supercon-
ducting velocity vs; ni is the impurity density; Ukk′ = Vk−k′τ3

stands for the electron-impurity interaction in the Nambu
space. This scattering term [Eq. (17)] is non-Markovian.

It is well established in semiconductor optics [77] and spin-
tronics [78] that the clean-limit solution of the corresponding
kinetic (i.e., Liouville) equation:

ρ
>/<

k (t ′) = e−i(t ′−t )Hkρ
>/<

k (t )ei(t ′−t )Hk , (19)

is substituted into the scattering terms as the Markovian ap-
proximation to obtain the conventional energy conservation
in the scattering. In our previous works [67–70], we also take
such approach in Eq. (18) to derive the scattering in super-
conductors. In the present work, this approach is sublated in
the presence of the multicycle THz optical field, since the free
coherent oscillation in this circumstance does not hold, i.e.,
Eq. (19) is no longer the clean-limit solution of the GIKE
in superconductors [Eq. (12)]. In fact, as shown in the next
section, during the multicycle THz pulse, the response of the
density matrix is forced to oscillate with the multiples of the
optical frequency.

III. ANALYTIC ANALYSIS

In this section, by solving the simplified GIKE [Eq. (12)]
in the normal-skin-effect region, we analytically investigate
the scattering effect in the optical response of superconductors
under multicycle THz pulse. In this circumstance, analytic
analyses for two extreme cases: during and after the pulse, are
performed to carefully handle the Markovian approximation
in order to turn the non-Markovian scattering in Eq. (17) into
the Markovian one. The multicycle THz pulse, as applied
in recent experiments [54], possesses a stable phase as well
as a narrow frequency bandwidth. Consequently, during the
optical pulse, the system is under a periodic drive scheme at a
well-defined frequency, similar to the case under a continuous
waveform field. In this situation, the response of the supercon-
ductivity is forced to oscillate with the multiples of the optical
frequency. Whereas after the optical pulse, the system is free
from the optical field, and the study in this situation reveals the
relaxation mechanism of the optically excited nonequilibrium
states.

A. Forced oscillation

During the multicycle THz pulse, by assuming the electro-
magnetic potential φ = φ0(R)eiωt and A = A0eiωt , the density
matrix ρk reads

ρk = ρ0
k + ρω

k eiωt + ρ2ω
k e2iωt , (20)

with the equilibrium-state density matrix ρ0
k given by

[67,70,71]

ρ0
k = 1

2
− 1 − 2 f (Ek )

2

(
ξk

Ek
τ3 + �0

Ek
τ1

)
. (21)

Here, ρ
ω(2ω)
k denotes the linear (second-order) response of the

density matrix; Ek =
√

ξ 2
k + �2

0 ; f (x) represents the Fermi-
distribution function.

Correspondingly, the responses of the phase θ and ampli-
tude |�| of the superconducting order parameter are written
as

θ = θωeiωt + θ2ωe2iωt , (22)

|�| = �0 + δ|�|ωeiωt + δ|�|2ωe2iωt . (23)

From Eqs. (15) and (21), with g(Ek ) = 1−2 f (Ek )
2Ek

, the
equilibrium-state order parameter �0 is determined by

�0 = −g
∑

k

′
ρ0

k1 = g
∑

k

′
[�0g(Ek )], (24)

which is exactly the gap equation in the BCS theory [75].
Moreover, as shown in our latest work [71], the Higgs mode
dose not manifest itself in the linear regime (δ|�|ω = 0). The
linear response of the NG mode from the GIKE [71], due to
its coupling to the long-range Coulomb interaction, does not
effectively occur either (i.e., μω

eff = 0 and pω
s = −2eA⊥

0 with
A⊥

0 being the physical transverse vector potential) as a result
of the Anderson-Higgs mechanism [47], in agreement with
the previous works in the literature [29,32,34,35,38,39,43].

Furthermore, it is noted that in the presence of the multicy-
cle THz pulse, the response of the density matrix [Eq. (20)],
as the solution of the kinetic equation, is forced to oscillate
with the multiples of the optical frequency, rather than the free
coherent oscillation mentioned above. Then, substituting this
forced oscillation [Eq. (20)] into the scattering term [Eq. (17)],
the nth order of the scattering during the optical pulse can be
obtained (refer to Appendix A):

∂tρk|nω
sc = −niπ

∑
k′η1η2

|Vk−k′ |2[τ3�
η1
k′
(
τ3ρ

nω
k − ρnω

k′ τ3
)
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η2
k δ
(
Eη1

k′ + nω − Eη2
k

)
+�

η2
k

(
ρnω

k τ3 − τ3ρ
nω
k′
)
�

η1
k′ τ3δ

(
Eη1

k′ − nω − Eη2
k

)]
= −niπ

∑
k′

3∑
i=0

|Vk−k′ |2[Y i
kk′ (nω)

(
ρnω

ki − ρnω
k′i
)

+ Ni
kk′ (nω)ρnω

k′i
]
, (25)

with

Y i
kk′ (nω) =

∑
η1η2

(
τ3�

η1
k′ τ3τi�

η2
k + �

−η2
k τiτ3�

−η1
k′ τ3

)
× δ

(
Eη1

k′ + nω − Eη2
k

)
, (26)

Ni
kk′ (nω) =

∑
η1η2

(
τ3�

η1
k′ [τ3, τi]�

η2
k + �

−η2
k [τi, τ3]�−η1

k′ τ3
)

× δ
(
Eη1

k′ + nω − Eη2
k

)
. (27)

Here, η = ±; the projection operators �±
k are written as �±

k =
U †

k Q±Uk with Q± = (1 ± τ3)/2 and Uk = ukτ0 − vkτ+ +
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vkτ− being the unitary transformation matrix from the particle
space to the quasiparticle one. uk = √

1/2 + ξk/(2Ek ) and
vk = √

1/2 − ξk/(2Ek ); E±
k = k · vs ± Ek denotes the tilted

quasiparticle energy. It is noted that at low frequency ω
�0,
the scattering term in Eq. (25) recovers the one in our previous
work where we propose the three-fluid model as mentioned in
the introduction [70]. In the present work for the optical prop-
erties, we focus on the THz regime where ω∼�0. Moreover,
considering a weak and fast-oscillating optical field, the tilt
in quasiparticle energy (i.e., Doppler shift k · vs), related to
electromagnetic field [70], can be neglected (i.e., E±

k = ±Ek).
Then, as seen from Eq. (25), due to the forced oscilla-

tion of the density matrix by the influence of the multicycle
THz pulse, the optical frequency ω is involved in δ(Eη1

k′ +
nω − Eη2

k ) (i.e., the energy conservation of the scattering).
Consequently, besides the intraband scattering (η1 = η2), the
interband scattering channel (η1 = −η2) is opened.

1. Linear response: optical conductivity

We first investigate the optical conductivity in the linear
regime. The linear order of the GIKE [Eq. (12)] reads

iωρω
k + i

[
ξkτ3 + �0τ1, ρ

ω
k

]+ (eE0 · ∂k )ρ0
k3τ0 = ∂tρk|ωsc.

(28)
From above equation, it is noted that only the τ0 component
of ρω

k is optically excited:

ρω
k0 = ρω

k0|cl − niπ

iω

∑
k′

|Vk−k′ |2Y 0
kk′ (ω)

(
ρω

k0 − ρω
k′0
)
, (29)

and the other components of ρω
k are zero, in consistency

with the above mentioned vanishing δ|�|ω [Eq. (15)] and
μω

eff [Eq. (16)]. Here, ρω
k0|cl = eE0·k

imω
l (Ek ) is the clean-limit so-

lution with l (Ek ) = ∂ξk [ξkg(Ek )] = −�2
0

Ek
∂Ek g(Ek ) − ∂Ek f (Ek )

consisting of superfluid [−�2
0

Ek
∂Ek g(Ek )] and quasiparticle

[−∂Ek f (Ek )] contributions, exactly same as the one in our
previous works [70,71]. The second term on the right-hand
side of Eq. (29) comes from the scattering.

The exact analytic solution of ρω
k0 from Eq. (29) is difficult

in the presence of the scattering. Nevertheless, at the rela-
tively weak scattering (i.e., ξ < l with ξ being the coherence
length), after the first-order iteration by substituting ρω

k0|cl into
the scattering term [second term on the right-hand side of
Eq. (29)], ρω

k0 can be directly solved:

ρω
k0 ≈ eE0 · kF

imω
l (Ek ) + eE0 · kF

mω2
ηk, (30)

with ηk = niπ
∑

k′ |Vk−k′ |2Y 0
kk′ (ω)[l (Ek ) − cos θkk′ l (Ek′ )].

Then, substituting the solved ρω
k0 into Eq. (8), the optical

conductivity in the superconducting states σs(ω) = σ1s(ω) +
iσ2s(ω) is obtained (refer to Appendix B):

σ1s(ω)

σ1n(ω)

=
∫ ∞

�0

dE

[
E (E + ω) − �2

0

]
[l (E ) + l (E + ω)]√

(E + ω)2 − �2
0

√
E2 − �2

0

−
∫ −�0

�0−ω

dE

[
E (E + ω) − �2

0

]
l (E + ω)√

(E + ω)2 − �2
0

√
E2 − �2

0

θ (ω − 2�0),

(31)

σ2s(ω) = − ne2

mω
+ σ1n(ω)

×
∫ �0

max(−�0,�0−ω)
dE

[
E (E + ω) − �2

0

]
l (E + ω)√

(E + ω)2 − �2
0

√
�2

0 − E2
.

(32)

where θ (x) is the step function; σ1n(ω) = ne2

mω2τp
with 1

τp
=

�0 − �1 exactly being the momentum relaxation rate in nor-
mal metals and �i = 2niπD

∫ d�k′
4π

|VkF−k′
F
|2 cos iθkk′ . D is the

density of states. It is noted that the first term in σ2s(ω)
recovers the clean-limit one in the superfluid as revealed in
our previous work [70].

Firstly, we point out that the obtained optical conductivity
from the GIKE [Eqs. (31) and (32)] becomes σn = ne2

mω2τp
+

ne2

imω
in the normal states at T > Tc with �0 = 0 (refer to Ap-

pendix C), exactly recovering the one in normal metals as the
Drude model or conventional Boltzmann equation revealed.
To the best of our knowledge, so far there is no theory of
the optical conductivity in the literature that can rigorously
recover the conductivity in normal metals from T < Tc to T >

Tc, due to the difficulty in calculating the vertex correction in
superconductors [23,24,80]. The GIKE here actually provides
an efficient approach to deal with the scattering.

We then discuss the frequency dependence of the op-
tical absorption σ1s(ω) in the superconducting states. In
Eq. (31), the first term originates from the intraband scat-
tering. Whereas the second one comes from the interband
scattering, leading to the step function. The frequency de-
pendence of σ1s(ω) is plotted in Fig. 1. As seen from the
figure, σ1s(ω) shows a significant crossover at ω = 2�0(T ),
which comes from the step function (i.e., opened interband-
scattering channel) for ω > 2�0 in Eq. (31). Secondly, at

T = 0 K with the finite superfluid contribution l (Ek ) = �2
0

2E3
k

in Eq. (31), one finds that σ1s(ω), shown by the solid curve in
Fig. 1, always exhibits a finite value even when ω < 2�0, in
sharp contrast to the vanishing σ1s(ω) in the anomalous-skin-
effect region as MB theory revealed. Moreover, as shown in
Fig. 1, with the decrease of ω from ω � 2�0, σ1s(ω) first
increases and then drops abruptly around 2�0. By further
decreasing ω below 2�0, due to the fast increase of σ1n(ω)
in Eq. (31), a significant upturn of σ1s(ω) is observed.

Results in the dirty limit (l < ξ ) require a full numerical
calculation of Eq. (29) and go beyond the analytic analy-
sis. Nevertheless, from Eq. (29), thanks to the finite value
of superfluid contribution in l (Ek ) at T = 0 K, the finite
σ1s(ω) at low temperature when ω < 2�0 is unlikely changed
even in the dirty limit. In addition, due to the existence of
δ(ω − Ek + Ek′ ) in Y 0

kk′ (ω) [Eq. (26)], the crossover point at
ω = 2�0(T ) can also be obtained in the dirty limit. These
two points, by the full numerical calculation of Eq. (29) in the
dirty limit, are justified (refer to Appendix D), in qualitative
agreement with the experimental findings [9–20].

As mentioned in the introduction, the MB theory derived
from anomalous-skin-effect region is excessively used in the
literature [10,11,13–20] to fit the experimental data in the
normal-skin-effect region where the scattering effect domi-
nates. Nevertheless, as shown by the dotted curve in Fig. 1, at
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FIG. 1. Frequency dependence of σ1s(ω) at different tempera-
tures by calculating Eq. (31). Constant σ0 = n0e2/(me0 ). In our
calculation, �0 is calculated from Eq. (24); τ−1

p = 0.6�00 with �00

denoting the order parameter at zero temperature; σ1n(ω) = σ0e0
ω2τp

.
Other parameters used in our calculation are listed in Table I. The
black dotted curve denote the results from the MB theory, in which
we artificially set σ1n(ω) = 4σ0e0

ω2τp
to enhance σ1s(ω). The inset shows

the temperature dependence of the superconducting order parameter
�0 to confirm the crossover point in the frequency dependence of
σ1s(ω).

low temperature, when ω < 2�0, σ1s(ω) from MB theory de-
rived at the anomalous-skin-effect region, which comes from
the quasiparticle contribution [21], is too small in compari-
son with the finite experimental observation [10,11,13–20].
Therefore, such an unphysical fit underestimates the upturn of
σ1s(ω) below 2�0 particularly at low temperature, and hence,
is incapable of capturing the experimental findings [10–20].

2. Second-order response: excitation of Higgs mode

We next investigate the second-order response of the Higgs
mode. The second-order GIKE is written as

2iωρ2ω
k + i

[
ξkτ3 + �0τ1, ρ

2ω
k

]+ i
[
μ2ω

effτ3 + δ|�|2ωτ1, ρ
0
k

]
+ 1

2

{
eE0τ3+pω

s τ2�0, ∂kρ
ω
k

}+ i

8

[
�0τ1, (pω

s · ∂k )2ρ0
k

]
= ∂tρk|2ω

sc , (33)

from which ρ2ω
k can be analytically solved at the relatively

weak scattering.

TABLE I. The used parameters in our calculations. With the spe-
cific values of �00 and ωD, the effective electron-electron attractive
potential g is determined by Eq. (24) at T = 0 K.

�00 1.268 meV ωD 15.856 meV
EF 700 meV e0 8 meV
(eE0/iω)2/m 10−4�00 A⊥

0 0

Substituting the solved ρ2ω
k1 into Eq. (15), the second-order

response of the Higgs mode can be self-consistently derived
(refer to Appendix E):

δ|�|2ω =
v2

F �0

6

( eE0
iω − pω

s
2

)2
dω(1 − isH )

�2
0 − ω2 + iωγH

, (34)

where

dω =
∫∞
�0

EdEo(E )d (E )∫∞
�0

EdE g(E )o(E )
E2−�2

0

, (35)

γH = �0F[g]∫∞
�0

EdE g(E )o(E )
E2−�2

0

, (36)

sH = ω�0F[d]∫∞
�0

EdEo(E )d (E )
, (37)

with d (E ) = ∂E l (E )
E , o(E ) =

√
E2−�2

0

E2−ω2 and functional function

F[g] =
∫ ∞

�0

dEo(E )o(E + 2ω)[g(E ) + g(E + 2ω)]

−
∫ 2ω−�0

�0

dEo(E )o(2ω − E )g(2ω − E )θ (ω − �0).

(38)

It is noted that in the absence of the scattering (i.e., �0 = 0),
Eq. (34) exactly reduces to the clean-limit one revealed in our
latest work [71].

As seen from Eq. (34), γH from the scattering causes
the broadening of the Higgs-mode spectrum whereas sH

represents the second-order optical absorption through the
scattering. The existences of sH and γH result in an imaginary
part in the second-order response of the Higgs mode, and
hence, lead to a phase shift in this response. The magnitude
A2ω

H (ω) and phase shift φ(ω) of the second-order response of
the Higgs mode δ|�|2ω = A2ω

H eiφ(ω) are plotted in Fig. 2(a)
and (b), respectively. As seen from Fig. 2(a), the magnitude
of the second-order response of the Higgs mode exhibits a
resonant peak at 2ω = 2�0(T ), in consistency with the ex-
perimental observation [49–51]. The phase shift φ of this
second-order response [Fig. 2(b)] exhibits a π jump at ω =
�0(T ). This is natural since from Eq. (34), the real part of
δ|�|2ω at the weak scattering is proportional to (ω2 − �2

0)−1,
whereas the imaginary one is proportional to (ω2 − �2

0)−2,
leading to tan φ ∝ (ω2 − �2

0)−1.

B. Free decay

In the previous subsection, we have investigated the re-
sponse of the superconducting states during the optical pulse.
In this part, we focus on the situation of the temporal evolu-
tion of the optically excited collective modes after the optical
pulse.

1. Simplified model

The GIKE after the optical pulse is written as

∂tρk + i[(ξk + μeff )τ3 + |�|τ1 + δ|�|τ1, ρk] = ∂tρk|sc.

(39)
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The density matrix is given by

ρk = ρ0
k + δρk, (40)

where δρk denotes the part deviated from the equilibrium state
due to the optical excitation. The fluctuations of the amplitude
(i.e., δ|�|) and phase (i.e., μeff ) of the order parameter can be
obtained from Eqs. (15) and (16), respectively.

It is noted that in Eq. (39), the second term on the left-
hand side causes the coherent oscillation of the density matrix
whereas the one on the right-hand side provides the scattering.
In this circumstance, as established in the semiconductor op-
tics [77] and spintronics [78], Eq. (19) as a clean-limit solution
of Eq. (39), can be safely used into Eq. (18) as the Markov
approximation to further derive the scattering terms. Then,
the scattering which becomes free from the influence from the
optical frequency, is given by

∂tρk|sc = −niπ
∑
k′η

|Vk−k′ |2(τ3�
η

k′τ3�
η

k ρk − τ3ρk′�
η

k′τ3�
η

k

+ ρk�
η

k τ3�
η

k′τ3 − �
η

k τ3�
η

k′ρk′τ3)δ(Ek′ − Ek )

= −niπ
∑

k′
|Vk−k′ |2[τ3(wk′kρk − ρk′wk′k ) + (ρkwkk′

− wkk′ρk′ )τ3]δ(Ek′ − Ek ), (41)

where wkk′ = ∑
η �

η

k τ3�
η

k′ = w1
kk′τ1 + w3

kk′τ3 with w1
kk′ =

�0(ξk′+ξk )
2EkEk′ and w3

kk′ = u2
k′u2

k + v2
k′v

2
k − 2ukvkuk′vk′ .

Since only the isotropic part of the density matrix in the
momentum space survives the summation in Eqs. (15) and
(16), i.e., contributes to the calculations of the amplitude and
phase of the order parameter, we neglect the anisotropic part in
δρk. Then, considering the fact wkk′ |ξk=−ξk′ = 0, the scattering
term in Eq. (41) is simplified after the summation of k′, and
the GIKE becomes

∂tρk + i[(ξk + μeff )τ3 + |�|τ1 + δ|�|τ1, ρk]

= −2�0sgn(ξk )

[
ρk2

ξk

Ek
τ2 +

(
ρk1

ξk

Ek
− ρk3

�0

Ek

)
τ1

]
. (42)

Particularly, it is pointed out that Eq. (42) in the Anderson
pseudospin picture [65] is written as

∂t sk − 2bk × sk = −2�0sgn(ξk )

[
(sk · a2)x̂ + ξk

Ek
(sk · a1)ŷ

]
,

(43)

where bk = (�0 + δ�, 0, ξk + μeff ) and sk = (ρk1, ρk2, ρk3)
denote the Anderson pseudo field and spin, respectively; a1 =
(0, 1, 0) and a2 = (ξk/Ek, 0,−�0/Ek ) are two transverse di-
rections to the equilibrium-state pseudo field b0

k . It is noted
that in Eq. (43), the second term on the left-hand side of the
equation causes the coherent precession of the Anderson pseu-
dospin, exactly same as the one in the previous works [50–60].
The terms on the right-hand side come from the scattering,
which provide the relaxation of the nonequilibrium states.
Particularly, since sx

k and sy
k contribute to the calculations of

the Higgs [Eq. (15)] and NG [Eq. (16)] modes separately, one
immediately finds that the first term on the right-hand side
of Eq. (43) provides the damping of the excited Higgs mode
whereas the second term causes the damping of the NG mode.

We point out that in the present work, the relaxation
terms on the right-hand side of Eq. (43), exactly come from
the microscopic scattering, differing from and going beyond
the previous phenomenological relaxation in the Anderson
pseudospin picture mentioned in the introduction [53,54]. In
fact, the previous phenomenological relaxation mechanism,
without the microscopic origin, is not exact and convincing.
Specifically, in Ref. [53], in analogy with the real spin pre-
cession, the longitudinal and transverse relaxation processes,
which describe the damping of the components of δsk along
and perpendicular b0

k , are introduced into the Anderson pseu-
dospin picture through the phenomenological relaxation time.
Nevertheless, one finds that the longitudinal component of
the pseudospin δsk · b0

k/Ek = (�0δρk1 + ξkδρk3)/Ek = δρ
q
k3.

Since the diagonal δρ
q
k3 is related to the quasiparticle distribu-

tion, the longitudinal relaxation process [i.e., terms like (δsk ·
b0

k)] directly describes the damping of the quasiparticles in
which only the inelastic scattering contributes and the elastic
scattering makes no contribution at all. Hence, in super-
conductors, considering the weak inelastic electron-phonon
scattering at low temperature, the longitudinal relaxation pro-
cess is marginal and only the transverse ones [i.e., terms
like (δsk · a1) and (δsk · a2)] play the important role. Partic-
ularly, there is no reason for the two transverse relaxation
processes, which provide the damping of the two collective
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FIG. 3. Temporal evolution of Higgs mode δ|�| after the optical
pulse at different scattering strengths. The inset shows the compari-
son between the analytic solution from Eq. (47) and full numerical
results from Eq. (42). In the calculation, δρk(t = 0) = ρω

k + ρ2ω
k with

ω = �0 and T = 1 K. Other parameters used in our calculation are
listed in Table I.

modes separately as mentioned above, to share the same rate.
Most importantly, since δsz

k is related to the density fluctuation
[i.e., δn = ∑

k δsz
k = 0 from Eq. (7)], as a consequence of the

charge conservation, the relaxation terms should not have any
component along z direction. All above features, unsatisfied
in Ref. [53], are well kept in our relaxation terms in Eq. (43),
thanks to the microscopic scattering in the GIKE.

2. Damping of Higgs mode

By taking the optical response of the density matrix
δρk(t = 0) = ρω

k + ρ2ω
k , we first perform the numerical cal-

culation to self-consistently solve Eq. (42) with Eqs. (15) and
(16). Then, the temporal evolution of the Higgs mode δ|�|(t )
and NG mode μeff (t ) can be self-consistently obtained. We
focus on the measurable Higgs mode in this part.

The temporal evolution of the Higgs mode after the optical
pulse is plotted in Fig. 3 at different scattering rates. As
seen from the figure, δ|�|(t ) exhibits an oscillatory decay
behavior, in consistency with the experimental observation
[48–51,53,54]. The frequency of the oscillation is around 2�0,
in agreement with the energy spectrum of the Higgs mode.
Moreover, it is also found that the damping of δ|�|(t ) shows
a monotonic enhancement with the increase of the scattering
rate.

To further understand the temporal evolution of δ|�|(t ), we
analytically derive the solution of Eq. (42) by first transform-
ing Eq. (42) into the quasiparticle space through the unitary
transformation ρ

q
k = UkρkU

†
k . Then, under a weak excitation

(i.e., small δρk), one has the components of the equation:

∂tδρ
q
k+ + 2iEkδρ

q
k+ + γkδρ

q
k+ = 2iak, (44)

∂tδρ
q
k− − 2iEkδρ

q
k− + γkδρ

q
k− = −2iak, (45)

∂tδρ
q
k3 + (

δρ
q
k+ + δρ

q
k−
)�0

Ek
�0sgn(ξk ) = 0, (46)

with γk = �0sgn(ξk ) 2ξk

Ek
and ak = (−�0

Ek
μeff + δ|�| ξk

Ek
)ρq0

k3 .
An exact solution from above equations is difficult. How-

ever, at the weak scattering, similar to the Elliot-Yafet
mechanism in the spin relaxation of the semiconductor spin-
tronics [78], the coupling terms between ρ

q
k3 and ρ

q
k± in

Eq. (46) can be effectively removed through the unitary trans-
formation as the Löwdin partition method showed [81]. Then,
ρ

q
k (t ) and hence ρk(t ) can be solved (refer to Appendix F).

Consequently, from the gap equation [Eq. (15)], the temporal-
evolution equation of the excited Higgs mode is given by

δ|�|
g

=
∑

k

{�0

Ek
ck3 + ξk

Ek
ac cos(2Ekt + θc)e−γkt

−
[
γkg(Ek )

�2
0

E2
k

] ∫ t

0
δ|�|(t ′)dt ′ + 2Ekg(Ek )

ξ 2
k

E2
k

×
∫ t

0
δ|�|(t ′) sin(2Ekδt )e−γkδt dt ′

}
, (47)

with ac =
√

c2
k1 + c2

k2 and tan θc = ck2/ck1 and δt = t − t ′.
The coefficients cki are determined by the initial optical ex-
citation:

ck1 = �0

Ek
δρk3(t = 0) − ξk

Ek
δρk1(t = 0), (48)

ck2 = −δρk2(t = 0), (49)

ck3 = −�0

Ek
δρk1(t = 0) − ξk

Ek
δρk3(t = 0). (50)

As seen from the right-hand side of Eq. (47), the first
and second terms are related with the initial excitation;
By only considering the third term, one has ∂tδ|�| =
−[g

∑
k γkg(Ek )�2

0

E2
k

]δ|�|. Thus, the third term on the right-

hand side of Eq. (47) causes the damping of δ|�| with the
relaxation rate proportional to γk . The last term show the
oscillatory decay with the time evolution, and hence, directly
lead to the oscillating damping of δ|�| with the relaxation
rate proportional to γk . The relaxation rate of the Higgs mode
therefore increases by increasing the impurity density, similar
to the Elliot-Yafet mechanism in the spin relaxation of the
semiconductor spintronics [78]. Comparisons between the an-
alytic solution [Eq. (47)] and full numerical results are plotted
in the insets of Fig. 3, where the results from the two sets of
calculations agree well with each other.

Finally, from Eq. (47), it is found that the long-time dy-
namic of the Higgs mode behaves as (refer to Appendix G)

δ�(t ) ∼ cos(2�0t )e−γ̄ t

√
�0t

, (51)

exhibiting an oscillatory decay behavior with oscillating fre-
quency at the Higgs-mode energy 2�0. Here, γ̄ is the average
of γk in the momentum space. In the absence of disorder (γ̄ =
0), Eq. (51) reduces to the previous coherent BCS oscillatory
decay [56,57,82–85] as it should be, since our kinetic equation
[Eq. (43) or Eq. (42)] without the scattering exactly recovers
the linearized Bloch (i.e., Anderson-pseudospin) equations
around the equilibrium state [56,57,84,85]. Whereas the pres-
ence of the impurity leads to exponential decay.
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IV. SUMMARY AND DISCUSSION

Within the GIKE approach, we analytically investigate the
influence of the scattering on the optical response of supercon-
ductors in the normal-skin-effect region (l < δ). Two extreme
situations: during and after a multicycle THz pulse pulse,
are considered with a careful implementation of the Marko-
vian approximation for the microscopic scattering. During
the pulse, the multicycle optical field with the stable phase
and narrow frequency bandwidth as applied in recent ex-
periments [54], exhibits the continuous-wave-like behavior.
Then, response of the density of matrix, as the solution of
the free GIKE in superconductors, is forced to oscillate with
the multiples of the optical frequency. Consequently, due to
this forced oscillation, after the Markovian approximation,
the energy conservation of the scattering is influenced by the
optical frequency. Whereas after the optical pulse, the system
is free from the optical field, and the density of matrix in
this situation exhibits the free coherent oscillation in the clean
limit. Then, after the Markovian approximation, the energy
conservation of the scattering becomes free from the influence
from the optical frequency. Rich physics in both extreme cases
is revealed.

Specifically, during the pulse, responses of the supercon-
ductivity in linear and second-order regimes are studied. In the
linear regime, we analytically derive the optical conductivity
from the GIKE at the weak scattering (l > ξ ). We show that
by taking T > Tc the optical conductivity from our theory
obtained at T < Tc exactly recovers the one in normal met-
als as the Drude model or conventional Boltzmann equation
revealed. To the best of our knowledge, so far there is no
theory in the literature that can rigorously make this recov-
ery. Whereas in the superconducting states, we find that the
optical absorption σ1s(ω), due to the contribution of super-
fluid density, always exhibits a finite value when ω < 2�0

even at low temperature, and shows an upturn with the de-
crease of frequency below 2�0, in contrast to the vanishing
σ1s(ω) in the anomalous-skin-effect region as MB theory re-
vealed [21]. Moreover, σ1s(ω) shows a significant crossover at
ω = 2�0(T ), which comes from opened interband-scattering
channel for ω > 2�0. Through the full numerical calculation,
we further show that both the upturn of the finite σ1s(ω)
below 2�0 and the crossover point at ω = 2�0(T ) in σ1s(ω)
also appear in the dirty-limit regime (ξ < l), in qualitative
agreement with the experimental observations in disordered
type-II superconductors like Nb [10,11], NbN [18], MgB2
[9,12,13,19], NbTiN [14–16], and Al [17,20].

As for the second-order regime, we study the response of
the Higgs mode. We show that the scattering causes a phase
shift in this second-order optical response. Particularly, we
find that this phase shift exhibits a significant π jump at ω =
�0, which provides a very clear feature for the experimen-
tal detection. Recently, thanks to the advanced pump-probe
technique, a π jump of the phase shift has been experi-
mentally observed at ω = �0(T ) in the second-order optical
response of the disordered high-Tc cuprates-based supercon-
ductors [54]. The origin of this jump is still controversial.
Whereas our present work suggests that the π jump of the
phase shift in the second-order optical response can also be
realized in the conventional superconductors through the scat-
tering effect.

Finally, we study the relaxation mechanism of the excited
collective modes after the pulse. In this situation, based on the
complete GIKE, a simplified model with the damping terms
in the Anderson pseudospin picture is proposed. The damping
terms in this model exactly come from the microscopic scat-
tering, differing from and going beyond the phenomenological
relaxation mechanism in the previous works [53,54]. Particu-
larly, both the charge conservation and the unique feature of
the dominant elastic scattering in superconductors: vanishing
longitudinal relaxation process, are kept in our relaxation
terms, in sharp contrast to Ref. [53]. Then, by studying the
damping of the Higgs-mode excitation, we reveal an expo-
nential relaxation mechanism due to the elastic scattering,
which shows a monotonic enhancement with the increase
of the impurity density. In addition, we also investigate the
damping of the NG mode (refer to Appendix H). It is found
that in the conventional BCS superconductors, the damp-
ing of the phase fluctuation (NG mode) is much faster than
that of the amplitude fluctuation (Higgs mode) of the order
parameter.

Note added. Recently, we became aware of a very recent
paper by Silaev [86]. In that paper, by separately using Eilen-
berger equation and diagram formalism, the author studied
the Higgs mode excitation in the presence of the scattering.
This is indeed the very first paper that rigorously calculates
the scattering influence on optical properties within the Eilen-
berger equation in the literature, even though it is too complex
to obtain final analytic solution. Nevertheless, based on the
following reasons, the results in that paper are not correct.
Firstly, in Ref. [86] by Silaev, the claimed conclusion that
the Higgs-mode generation is zero without impurity is based
on the incomplete electromagnetic effect in his approach.
Specifically, both the Hamiltonian used in his diagram for-
malism and the Eilenberger equation are not gauge invariant
with vector potential A alone [87]. It is well known that the
gauge invariance is the basic character of the electromag-
netic field. The absence of the gauge invariance indicates
that the incomplete electromagnetic effect. Secondly, another
conclusion in Ref. [86] that the Higgs mode is not sensitive
to disorder, is also incorrect. This can be easily seen by the
following simple analysis through the general physics. In the
Nambu space, the BdG Hamiltonian in the presence of the
Higgs mode excitation is written as HBdG = ξ p̂τ3 + �0(r)τ1 +
δ|�(r)|τ1 in the real space, and the electron-impurity inter-
action is given by V (r)τ3. Then, due to the noncommutation
relation

[δ|�(r)|τ1,V (r)τ3] �= 0, (52)

the Higgs mode must be sensitive to the disorder. In fact, the
scattering influence on the Higgs mode in the present work
exactly comes from this noncommutation relation. Specifi-
cally, our scattering term of the isotropic part [Eq. (41) with
wkk′ |ξk=−ξk′ = 0] is given by

∂tρk|sc = − �0

2

∫
dξk′

(
τ3

[∑
η

�
η

k τ3�
η

k , δρk

]

+ h.c.

)
δ(Ek − Ek′ ), (53)
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in which the projection operator �
η

k picks up the energy-
conserved scattering channel. Then, it is immediately ob-
served that the Higgs-mode part (τ1 component of δρk)
[
∑

η �
η

k τ3�
η

k , δρk1τ1] has the form of Eq. (52) limited by the
energy conservation.
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APPENDIX A: DERIVATION OF EQ. (25)

In this part, we derive Eq. (25). From Eq. (18), one has

Ik = Sk(>,<) − Sk(<,>) = ni

∑
k′η1η2

∫ t

−∞
dt ′|Vk−k′ |2e−i(t−t ′ )(Eη1

k′ −E
η2
k )
{
τ3�

η1
k′ [τ3ρk(t ′) − ρk′ (t ′)τ3]�η2

k

}
, (A1)

in which eitHk = ∑
η �

η

k eitEη

k is used.
The nth order of above equation during the optical response is written as

Ik|nω = ni

∑
k′η1η2

|Vk−k′ |2[τ3�
η1
k′
(
τ3ρ

nω
k − ρnω

k′ τ3
)
�

η2
k

] ∫ 0

−∞
dt ′ei(E

η1
k′ −E

η2
k +nω)t ′ = ni

∑
k′η1η2

|Vk−k′ |2 τ3�
η1
k′
(
τ3ρ

nω
k − ρnω

k′ τ3
)
�

η2
k

i
(
Eη1

k′ − Eη2
k + nω − i0+)

= πni

∑
k′η1η2

|Vk−k′ |2[τ3�
η1
k′
(
τ3ρ

nω
k − ρnω

k′ τ3
)
�

η2
k

]
δ
(
Eη1

k′ − Eη2
k + nω

)
. (A2)

Similarly, one also finds

I†
k |nω = πni

∑
k′η1η2

|Vk−k′ |2[�η2
k

(
ρnω

k τ3 − τ3ρ
nω
k′
)
�

η1
k′ τ3

]× δ
(
Eη1

k′ − Eη2
k − nω

)
. (A3)

Consequently, Eq. (25) is derived. For completeness, The explicit expressions of Y i
kk′ (nω) [Eq. (26)] are given by

Y 0
kk′ = τ0

[(
u2

ku2
k′ + v2

k v
2
k′ − 2ukuk′vkvk′

)
δ(Ek′ + nω − Ek ) + (

u2
ku2

k′ + v2
k v

2
k′ − 2ukuk′vkvk′

)
δ(Ek + nω − Ek′ )

+ (
u2

kv
2
k′ + v2

k u2
k′ + 2ukuk′vkvk′

)
δ(Ek′ + nω + Ek ) + (

u2
kv

2
k′ + v2

k u2
k′ + 2ukuk′vkvk′

)
δ(nω − Ek − Ek′ )

]
, (A4)

Y 3
kk′ = [(

u2
ku2

k′ + v2
k v

2
k′ + 2ukuk′vkvk′

)
τ3 + �0(ξk′ − ξk )/(2EkEk′ )τ1 + i(ukvk + uk′vk′ )τ2

]
δ(Ek′ + nω − Ek )

+ [(
u2

ku2
k′ + v2

k v
2
k′ + 2ukuk′vkvk′

)
τ3 + �0(ξk′ − ξk )/(2EkEk′ )τ1 − i(ukvk + uk′vk′ )τ2

]
δ(Ek + nω − Ek′ )

+ [(
u2

kv
2
k′ + v2

k u2
k′ − 2ukuk′vkvk′

)
τ3 − �0(ξk′ − ξk )/(2EkEk′ )τ1 + i(uk′vk′ − ukvk )τ2

]
δ(Ek + nω + Ek′ )

+ [(
u2

kv
2
k′ + v2

k u2
k′ − 2ukuk′vkvk′

)
τ3 − �0(ξk′ − ξk )/(2EkEk′ )τ1 + i(ukvk − uk′vk′ )τ2

]
δ(nω − Ek′ − Ek ), (A5)

Y 1
kk′ = [

�0(ξk′ − ξk )/(2EkEk′ )τ3 + (
u2

kv
2
k′ + v2

k u2
k′ − 2ukuk′vkvk′

)
τ1 + i

(
u2

k′v
2
k − u2

kv
2
k′
)
τ2
]
δ(Ek′ + nω − Ek )

+ [
�0(ξk′ − ξk )/(2EkEk′ )τ3 + (

u2
kv

2
k′ + v2

k u2
k′ − 2ukuk′vkvk′

)
τ1 − i

(
u2

k′v
2
k − u2

kv
2
k′
)
τ2
]
δ(Ek + nω − Ek′ )

+ [
�0(ξk − ξk′ )/(2EkEk′ )τ3 + (

u2
ku2

k′ + v2
k v

2
k′ + 2ukuk′vkvk′

)
τ1 + i

(
u2

k′u2
k − v2

k v
2
k′
)
τ2
]
δ(Ek + nω + Ek′ )

+ [
�0(ξk − ξk′ )/(2EkEk′ )τ3 + (

u2
ku2

k′ + v2
k v

2
k′ + 2ukuk′vkvk′

)
τ1 − i

(
u2

k′u2
k − v2

k v
2
k′
)
τ2
]
δ(nω − Ek − Ek′ ), (A6)

iY 2
kk′ = [

(ukvk + uk′vk′ )τ3 + (
u2

k′v
2
k − u2

kv
2
k′
)
τ1 + i

(
u2

kv
2
k′ + v2

k u2
k′ + 2ukuk′vkvk′

)
τ2
]
δ(Ek′ + nω − Ek )

− [
(ukvk + uk′vk′ )τ3 + (

u2
k′v

2
k − u2

kv
2
k′
)
τ1 − i

(
u2

kv
2
k′ + v2

k u2
k′ + 2ukuk′vkvk′

)
τ2
]
δ(Ek + nω − Ek′ )

+ [
(uk′vk′ − ukvk )τ3 + (

u2
k′u2

k − v2
k v

2
k′
)
τ1 + i

(
u2

ku2
k′ + v2

k v
2
k′ − 2ukuk′vkvk′

)
τ2
]
δ(Ek′ + nω + Ek )

− [
(uk′vk′ − ukvk )τ3 + (u2

k′u2
k − v2

k v
2
k′ )τ1 − i(u2

ku2
k′ + v2

k v
2
k′ − 2ukuk′vkvk′ )τ2

]
δ(nω − Ek − Ek′ ). (A7)

One also has N1
kk′ (nω) = 2Y 1

kk′ (nω), N2
kk′ (nω) = 2Y 2

kk′ (nω) and N0
kk′ (nω) = N3

kk′ (nω) = 0.

APPENDIX B: DERIVATION OF EQS. (31) AND (32)

We derive Eqs. (31) and (32) in this part. At the weak scattering, substituting the solved ρω
k0 [Eq. (30)] into Eq. (8), one has

j = j1 + j2, (B1)
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with

j1 = 2e2E0Dk2
F

3iωm2

∫
dξkl (Ek ) = ne2

iωm
E0, (B2)

j2 ≈
∑
kk′

ne2E0

mω2
niπ

∣∣VkFk′
F

∣∣2Y 0
kk′ (ω)[l (Ek ) − cos θkk′ l (Ek′ )] =

∑
k

ne2E0

2mω2

∫
dξk′Y 0

kk′ (ω)[�0l (Ek ) − �1l (Ek′ )]. (B3)

Then, with the explicit expression of Y 0
kk′ in Eq. (A4), the above equation becomes

j2 = ne2E0

mω2

1

2

∫
dξk

∫
dξk′ [�0l (Ek ) − �1l (Ek′ )]

∑
η1η2

1

2

(
1 + �0

Eη1
k Eη2

k′

)
δ
(
ω + Eη1

k + Eη2
k′
)

= ne2E0

mω2

∫
dE

∫
dE ′ EE ′[�0l (E ) − �1l (E ′)]√

E2 − �2
0

√
E ′2 − �2

0

∑
η1η2

(
1 + η1η2�0

EE ′

)
δ(ω + η1E + η2E ′), (B4)

in which we have taken care of the particle-hole symmetry to remove terms with the odd orders of ξk and ξk′ in the summation
of k and k′. After the mathematical integral, above equation becomes

j2 = σ1nE0

⎧⎨
⎩
∫ ∞

�0

dE

[
(E + ω)E − �2

0

]
[l (E + ω) + l (E )]√

E2 − �2
0

√
(E + ω)2 − �2

0

+
∫ ω−�0

�0

dE

[
(ω − E )E + �2

0

]
[l (ω − E ) + l (E )]

2
√

E2 − �2
0

√
(ω − E )2 − �2

0

θ (ω − 2�0)

+1

i

∫ ω+�0

max(ω−�0,�0 )
dE

[
(ω − E )E + �2

0

]
[l (ω − E ) + l (E )]

2
√

E2 − �2
0

√
�2

0 − (ω − E )2

⎫⎬
⎭. (B5)

Consequently, the optically excited current j in the linear regime and hence the optical conductivity σs(ω) = σ1s(ω) + iσ2s(ω)
are derived.

APPENDIX C: OPTICAL CONDUCTIVITY AT T > Tc

We give the optical conductivity at T > Tc. In the normal
state at T > Tc, with �0 = 0, one finds that l (E ) = −∂E f (E )

and E (E+ω)−�2
0√

(E+ω)2−�2
0

√
E2−�2

0

= E (E + ω)/(|E ||E + ω|). Then,

thanks to the constant density of states in normal states,
Eqs. (31) and (32) become

σ1s(ω)

σ1n(ω)
= −

∫ ∞

0
dE [∂E f (E ) + ∂E+ω f (E + ω)]

−
∫ 0

−ω

dE∂E+ω f (E + ω)

= −2
∫ ∞

0
dE∂E f (E ) = 1, (C1)

σ2s(ω) = − ne2

mω
, (C2)

which are exactly the optical conductivity in normal metals
as the Drude model or conventional Boltzmann equation re-
vealed.

APPENDIX D: OPTICAL ABSORPTION IN THE DIRTY
LIMIT

By full numerical calculation of Eq. (29), the frequency
dependence of the optical absorption towards the dirty limit
are plotted in Fig. 4. As seen from Fig. 4(a), both the upturn
of the finite σ1s(ω) below 2�0 and the crossover point at ω =
2�0(T ) in σ1s(ω) appear in the dirty-limit regime (ξ < l),
justifying our analysis in Sec. III A 1 and in qualitative agree-
ment with the experimental findings [9–20]. Thus the GIKE

provides an efficient approach to capture the optical conduc-
tivity in the normal-skin-effect region. To quantitatively fit the
experimental data in the dirty limit, the specific parameters of
the density, effective mass and momentum-relaxation rate are
necessary, and this goes beyond the scope of the present work.

APPENDIX E: DERIVATION OF EQ. (34)

We derive Eq. (34) in this part. Following the approach in
our previous work in the clean limit [71], the solution of ρ2ω

k
from Eq. (33) in the presence of the scattering is written as

ρ2ω
k2 = iωAk + Sc

k, (E1)

ρ2ω
k1 = −ξkAk − ξkSc

k

iω
+ ∂tρk|2ω,τ1

sc

2iω
, (E2)

ρ2ω
k3 = �0Ak + Bk + �0Sc

k

iω
+ ∂tρk|2ω,τ3

sc

2iω
, (E3)

where ∂tρk|2ω,τi
sc denotes the τi component of the scattering

term ∂tρk|2ω
sc ; Ak, Bk and Sc

k are given by

Ak = ak − �0
[( eE0

iω − ps
) · ∂kρ

ω
k0 − (ps · ∂k )2ρ0

k3/4
]

2
(
ω2 − E2

k

) , (E4)

Bk = − (eE0 · ∂k )ρω
k0

2iω
, (E5)

Sc
k = ξk∂tρk|2ω,τ1

sc + iω∂tρk|2ω,τ2
sc − �0∂tρk|2ω,τ3

sc

2
(
E2

k − ω2
) . (E6)
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FIG. 4. ω vs σ1s(ω)/σ1n(ω) at different temperatures by numeri-
cally calculating Eq. (29) for (a) �p = 1.5�00 and (b) �p = 0.5�00.
In our calculation, �0 is calculated from Eq. (24). �00 denotes the
order parameter at zero temperature. Other parameters used in our
calculation are listed in Table I. The inset in (b) shows analytic
solution from Eq. (31).

The scattering term ∂tρk|2ω
sc [Eq. (25)] reads

∂tρk|2ω
sc = −niπ

∑
k′

|Vk−k′ |2[Y 0
kk′ (2ω)

(
ρ2ω

k0 − ρ2ω
k0

)
+Y 3

kk′ (2ω)
(
ρ2ω

k3 − ρ2ω
k3

)+ Y 1
kk′ (2ω)

(
ρ2ω

k1 + ρ2ω
k1

)
+Y 2

kk′ (2ω)
(
ρ2ω

k2 + ρ2ω
k2

)]
. (E7)

At the weak scattering, by substituting the clean-limit solu-
tion of ρ2ω

k into the scattering terms as the first-order iteration,
Eq. (E7) becomes

∂tρk|2ω
sc = −niπ

∑
k′

|Vk−k′ |2[�0Y
3

kk′ (2ω)(Ak − Ak′ )

+ iωY 2
kk′ (2ω)(Ak + Ak′ ) − Y 1

kk′ (2ω)(ξkAk + ξk′Ak′ )

+ Y 3
kk′ (2ω)(Bk − Bk′ )

]
. (E8)

Then, ρ2ω
k is solved.

Consequently, with Y i
kk′ (2ω) given by Eqs. (A4)–(A7), sub-

stituting ρ2ω
k1 into Eq. (15), one has

δ|�|2ω

g
=
∑

k

′
ξ 2

k Ck − iniπω

4

∑
kk′

ξ 2
k ξ 2

k′

EkEk′
|VkF−k′

F
|2

×
[

Ck′δ(Ek′ + 2ω − Ek )

(Ek + ω)(Ek′ + ω)
+ Ckδ(Ek′ + 2ω − Ek )

(Ek − ω)(Ek′ − ω)

+ Ck′δ(Ek + 2ω − Ek′ )

(Ek − ω)(Ek′ − ω)
+ Ckδ(Ek + 2ω − Ek′ )

(Ek + ω)(Ek′ + ω)

+ Ck′δ(Ek′ + 2ω + Ek )

(Ek − ω)(Ek′ + ω)
+ Ckδ(Ek′ + 2ω + Ek )

(Ek + ω)(Ek′ − ω)

+ Ck′δ(2ω − Ek′ − Ek )

(Ek + ω)(Ek′ − ω)
+ Ckδ(2ω − Ek′ − Ek )

(Ek − ω)(Ek′ + ω)

]
,

(E9)

where Ck is given by

Ck = δ|�|2ωg(Ek )

E2
k − ω2

+ �0v
2
F

( eE0
iω − pω

s
2

)2
d (Ek )

6
(
E2

k − ω2
) . (E10)

Here, we have taken care of the particle-hole symmetry to re-
move terms with the odd orders of ξk and ξk′ in the summation
of k and k′; we also take ηk in ρω

k [Eq. (30)] as its average
value η̄k in the momentum space. Then, after the mathematical
integral, Eq. (34) is obtained.

APPENDIX F: SOLUTION OF EQS. (44)–(46)

In this part, we analytically solve Eqs. (44)–(46). Consider-
ing the weak scattering, we only keep zeroth and first orders of
the scattering strength �0 in the following derivation. Similar
to the Elliot-Yafet relaxation mechanism in the semiconduc-
tor spintronics [78], following the Löwdin partition method
[81], through a unitary transformation (δρs

k+, δρs
k−, δρs

k3)T =
(1 − S)(δρq

k+, δρ
q
k−, δρ

q
k3)T with

S = sgn(ξk )�0�0

2iE2
k

⎛
⎝0 0 0

0 0 0
1 −1 0

⎞
⎠, (F1)

Eqs. (44)–(46) become

∂tδρ
s
k+ + (

2iEkδρ
s
k+ + γk

)
δρs

k+ = 2iak, (F2)

∂tδρ
s
k− − (

2iEkδρ
s
k− − γk

)
δρs

k− = −2iak, (F3)

∂tδρ
s
k3 = −2

�0sgn(ξk )�0

E2
k

ak, (F4)

from which δρs
k can be directly solved:

δρs
k± = −ck± exp[−(±2iEk + γk )t] ±

∫ t

0
2iak (t ′)

× exp[−(±2iEk + γk )δt]dt ′, (F5)

δρs
k3 = −ck3 −

∫ t

0

2�0sgn(ξk )�0

E2
k

ak (t ′)dt ′. (F6)

Through the inverse transformations δρk = U †
k δρ

q
k Uk and

(δρq
k+, δρ

q
k−, δρ

q
k3)T = (1 + S)(δρs

k+, δρs
k−, δρs

k3)T , one has

δρk1 = ξk

Ek
δρs

k1 + �0

Ek

[
δρs

k3 − sgn(ξk )�0�0

E2
k

δρs
k2

]
, (F7)

δρk2 = δρs
k2, (F8)

δρk3 = ξk

Ek

[
δρs

k3 − sgn(ξk )�0�0

E2
k

δρs
k2

]
− �0

Ek
δρs

k1. (F9)
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Finally, substituting Eq. (F7) into Eq. (15), by taking care
of the particle-hole symmetry to remove terms with the odd
order of ξk in the summation of k, one obtains

δ|�|
g

=
∑

k

{
�0

Ek
ck3 + ξk

Ek
e−γkt [ck1 cos(2Ekt + φk )

− ck2 sin(2Ekt − φk )] −
[
γkg(Ek )

�2
0

E2
k

] ∫ t

0
δ|�|(t ′)dt ′

+ 2g(Ek )
ξ 2

k

Ek

∫ t

0
δ|�|(t ′) sin(2Ekδt + φk )e−γkδt dt ′

}
,

(F10)

where the phase shift φk = arctan[sgn(ξk )/ξk�
2
0�0/E2

k ] can
be neglected at the weak scattering. Then, Eq. (47) is derived.

APPENDIX G: DERIVATION OF EQ. (51)

In this part, we derive Eq. (51). To consider the long-time
dynamic behavior of the Higgs mode, by approximately tak-
ing the starting point of time as −∞ in Eq. (47), one has

δ|�|(t )

g
= Ai − �H

∫ t

−∞
δ|�|(t ′)dt ′ +

∑
k

2Ekg(Ek )
ξ 2

k

E2
k

×
∫ t

−∞
δ|�|(t ′) sin(2Ekδt )e−γkδt dt ′ (G1)

with Ai = ∑
k

�0
Ek

ck3 and �H = ∑
k [γkg(Ek )�2

0

E2
k

].

In the frequency space δ|�|(t ) = ∫
d�
2π

δ|�|�e−i�t+0+t , the
above equation becomes

Ai� =
[

1

g
− �H

i�
−
∑

k

4g(Ek )ξ 2
k

4E2
k − (� + iγk )2

]
δ|�|�. (G2)

By using Eq. (24) to replace g, one has

Ai� =
[∑

k

g(Ek )
(2�0)2 − (� + iγk )2

4E2
k − (� + iγk )2

+ i�H

�

]
δ|�|�

=
[

D
∫

dξg(Ek )
(2�0)2 − (� + iγ̄ )2

4ξ 2 + 4�2
0 − (� + iγ̄ )2

+ i�H

�

]
δ|�|�

=
[
�
√

(2�0)2 − (� + iγ̄ )2 + i�H

�

]
δ|�|�. (G3)

Here, � = Dπ

2
√

(�+iγ )2
. Considering the weak scattering, the

second term on the right-hand side of the above equation can
be neglected. By keeping the zeroth and first orders of the
scattering, one obtains

δ|�|(t ) ≈
∫

d�

π

Ai�

2�

e−i�t+0+t√
(2�0)2 − (� + iγ̄ )2

= e−γ̄ t
∫ ∞+iγ̄

−∞+iγ̄

d�

π

Ai�

2�

e−i�t√
(2�0)2 − �2

∼ e−γ̄ t
∫ ∞+iγ̄

−∞+iγ̄

d�

π

e−i�t√
(2�0)2 − �2

. (G4)

It is noted that for the integrand in Eq. (G4), in the complex
plane of �, there exist two branching points at � = ±2�0.

Then, similar to the previous work [84], after the standard
construction of the closed contour, one obtains

δ|�|(t )∼πe−γ̄ t e2i�0t + e−2i�0t

√
4�0t

= πe−γ̄ t cos(2�0t )√
�0t

. (G5)

APPENDIX H: RESPONSE OF NG MODE

As mentioned in the introduction, in our latest work for
the clean limit [71], a finite second-order response of the NG
mode, free from the influence of the Anderson-Higgs mech-
anism, is predicted as a consequence of charge conservation.
An experimental scheme for this response is further proposed
based on Josephson junction. In this part, for completeness,
we study the influence of the scattering on this response dur-
ing and after the THz pulse.

a. Excitation of NG mode in second-order response

During the pulse, substituting ρ2ω
k2 into Eq. (16), the NG

mode can be self-consistently derived:

(ω + iγ0)μ2ω
eff = ω + iγ1 + iγM

3

(
eE0

iω
− pω

s

)
· eE0

iωm
gω

+
(

eE0

iω
− pω

s

2

)2
ω + iγ2

6m
lω. (H1)

Here, gω = ∫
dξkl (Ek )z(Ek )/[

∫
dξkg(Ek )z(Ek )] and

lω = ∫
dξkm(Ek )z(Ek )/[

∫
dξkg(Ek )z(Ek )] with z(Ek ) =

(E2
k − ω2)−1 and m(Ek ) = (2ξk∂ξk + 1)l (Ek ). The scattering

contributions are given by

γM = 3
∫

dξk η̄kz(Ek )

2
∫

dξkl (Ek )z(Ek )
, (H2)

γ0 = 4�0∫
dξkg(Ek )z(Ek )

{∫ ∞

�0

dEo(E )o(E + 2ω)ω(E + ω)

× [g(E + 2ω)z(E + 2ω) − g(E )z(E )]

−
∫ 2ω−�0

�0

dEo(E )o(E − 2ω)ω(ω − E )

× g(2ω − E )z(2ω − E )θ (ω − �0)

}
, (H3)

and γ1 and γ2 are determined via replacing function g(x) on
the right-hand side of Eq. (H3) by l (x) and m(x), respectively.
It is noted that in the absence of the scattering, Eq. (H1)
exactly reduces to the clean-limit one revealed in our previous
work [71].

Consequently, similar to the investigation of the Higgs
mode in Sec. III A 2, the scattering also causes a phase-shift
in the second-order response of the NG mode. Nevertheless,
this phase shift is hard to detect, differing from the measurable
optical response of the Higgs mode in Sec. III A 2.

b. Damping of NG mode

After the pulse, by numerically solving our simplified
model in Sec. III B 1 [Eq. (42) with Eqs. (15) and (16)], the
temporal evolution of the optically excited NG mode is plotted
in Fig. 5 at different scattering rates. As seen from the figure,
the NG mode μeff (t ) = ∂tθ (t ), i.e., the phase fluctuation, after
the optical excitation exhibits an oscillatory decay behavior.
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FIG. 5. Temporal evolution of NG mode μeff after the optical
pulse at different scattering strengths. The inset shows the compari-
son between the analytic solution from Eq. (47) and full numerical
results from Eq. (42). In the calculation, δρk(t = 0) = ρω

k + ρ2ω
k with

ω = �0 and T = 1 K. Other parameters used in our calculation are
listed in Table I.

The oscillating frequency is around 2�0, and the damping
shows a monotonic enhancement with the increase of the
scattering rate. Particularly, by further comparing Figs. 3 and
5, it is interesting to find that the damping of the phase fluc-
tuation (NG mode) is much faster than that of the amplitude
fluctuation (Higgs mode) of the order parameter.

Substituting the analytic solution of δρk2 [Eq. (F8)] into
Eq. (16), by taking care of the particle-hole symmetry to
remove terms with the odd order of ξk in the summation of
k, the analytic solution of μeff (t ) is derived:

∫ t

0
μeff (t ′)

∑
k

�0g(Ek ) cos(2Ekδt )e−γkδt dt ′

= −
∑

k

ac sin(2Ekt + θc)e−γkt . (H4)

As seen from Eq. (H4), terms on both the left- and right-hand
sides show the oscillatory decay with the time evolution, and
hence, directly lead to the oscillating damping of μeff (t ) with
the relaxation rate proportional to �0. Comparisons between
the solution from Eq. (H4) and the full numerical results from
Eq. (42) are plotted in the insets of Fig. 5, and the results from
the two sets of calculations agree with each other again.
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