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Within the time-dependent Gutzwiller approximation applied to the negative-U Hubbard model, we investigate
the dynamics of a superconductor after an interaction quench for different values of the final interaction
from weak to strong coupling. The equilibrium BCS-BEC crossover becomes a sharp transition in the out-
of-equilibrium dynamics between weak- and strong-coupling dynamical phases. Two different frequencies
(2, < Q) dominate the order parameter dynamics. In the weak coupling phase, €2, follows twice the asymptotic
average value of the gap (2; & 2A,) and 2y is much larger but hardy visible in the anomalous density. At long
times the BCS dynamics is recovered but surprisingly differences remain during the transient phase. In the strong
coupling phase, the dynamics decouples from the asymptotic value of the order parameter except at exactly half
filling and close to the dynamical transition where 2y =~ 2A . The out-of-equilibrium transient spectral density
and optical conductivity are presented and discussed in relation to pump probe experiments. Both €2, and €2, give
rise to a complex structure of self-driven slow Rabi oscillations which are visible in the nonequilibrium optical
conductivity where also sidebands appear due to the modulation of the double occupancy by superconducting
amplitude oscillations. Analogous results apply to CDW and SDW systems. Our results show that in systems
with long coherence times, pump-probe experiments allow us to characterize the regime (BCS vs preformed

pairs) through very specific out-of-equilibrium fingerprints.
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I. INTRODUCTION

During the past two decades rapid progress has been made
in the study of ultracold fermionic quantum gases, in partic-
ular concerning the realization of a paired BCS state [1-3]
where the interaction strength can be tuned via Feshbach
resonances [4]. These systems provide a platform to inves-
tigate in a controlled way the coherent modes of superfluid
systems like massive amplitude (“Higgs”) or density modes
and Goldstone phase excitations of the order parameter [5].
Also in condensed matter physics the detection of the super-
conducting amplitude mode and charge modes in real time has
being the subject of intense research [6-8].

These experiments have motivated the analysis of the BCS
pairing problem with time-dependent interactions and sev-
eral proposals based on the realization of a suitable out-of
equilibrium dynamics (pump) which is then measured by a
probe pulse [9-15]. Within the pseudospin formulation of
Anderson [16] the problem can be mapped onto an effective
spin Hamiltonian for which the Bloch dynamics can be solved
exactly [17-21].

In this weak coupling regime, the effect of a sudden change
of the pairing interaction has been thoroughly studied. The
dynamics of the Cooper pair states either dephases or syn-
chronizes [19]. When the change in the attractive interaction
is small or moderate (either increasing or decreasing), the
dynamics is characterized by damped amplitude oscillations
for small quenches with a final finite value of the order pa-
rameter. Instead, if the interaction is quenched below a critical
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value in magnitude, dephasing drives the pairing amplitude to
zero. The synchronization regime occurs upon increasing the
interaction beyond a critical value. In this case a self-sustained
dynamical state is reached in which all Cooper pairs states
oscillate with the same phase. Off course in the presence of
damping the oscillations eventually decay [10].

The negative-U Hubbard model is a well established
theoretical framework to study the crossover from the
weak-coupling BCS limit to the strong-coupling limit of
Bose-Einstein condensation (BEC) under equilibrium condi-
tions (see Ref. [22] and references therein).

From the experimental side, due to the possible control
of interparticle interactions with Feshbach resonances men-
tioned above, ultracold Fermi gases provide also an excellent
platform to investigate the evolution from BCS to the BEC
regime. In this context, the formation of molecular dimers
composed of fermionic atoms, which corresponds to the re-
alization of a BEC-type superfluid in the strong coupling
limit, was reported in Refs. [23-26]. Subsequent experiments
[1-3,26] then realized the crossover to a BCS-type system by
variation of the coupling strength and the spectroscopic ob-
servation of the pairing gap [27,28] in this crossover regime.
This platform allows us to also modulate the interaction in
real time through the modulation of Feshbach resonances
[4,29], opening the possibility to study the out-of-equilibrium
dynamics of a condensate across the entire range of coupling
strengths.

In this paper we use the attractive Hubbard model to inves-
tigate the dynamics of a fermionic condensate after a sudden

©2020 American Physical Society


https://orcid.org/0000-0001-7426-2570
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.144502&domain=pdf&date_stamp=2020-10-05
https://doi.org/10.1103/PhysRevB.102.144502

G. SEIBOLD AND J. LORENZANA

PHYSICAL REVIEW B 102, 144502 (2020)

quench of the interaction parameter U and how it evolves
from the BCS to a regime of preformed pairs which at low
temperature in equilibrium would correspond to BEC. We
use the time-dependent Gutzwiller approximation (TDGA)
[30—40] in order to study the spectral properties of this model
in the resulting nonequilibrium situations. It has been shown
before that, in the linear response limit [31,34], this approach
gives a very good account of charge [35], magnetic [36], and
pairing [37,38] fluctuations as compared with exact diagonal-
ization on small clusters and has been applied with success
to the description of, for example, magnetic excitations in
cuprate superconductors [41-43]. In fact, the TDGA includes
the high-energy dynamics due to double occupancy fluctua-
tions which are missing in the conventional time-dependent
Hartree-Fock approximation. It is therefore a convenient and
reliable approach for computing nonlocal correlations in in-
homogeneous correlated systems which are much harder to
access with dynamical mean-field theory [44] (DMFT). At
the same time, it provides a reliable description of collective
modes, for example spin waves in broken symmetry states
[45] (equivalent to sound waves in superfluid systems), which
are missing in single site DMFT. Also away from linear re-
sponse [31-33] and despite the lack of true thermalization,
the TDGA provides a good description [39,40] of the order
parameter dynamics in the prethermal regimes and shows
good agreement with nonequilibrium dynamical mean-field
approximation [46—49].

The TDGA has been applied to investigate the dynamics
of correlated paramagnetic states [32,33,50], order parameter
dynamics of antiferromagnetism [39], and superconductivity
[40,51] as a result of an interaction quench from an ini-
tial to a final Hubbard interaction (U; — Up). Interestingly,
this approach reveals the occurrence of a dynamical phase
transition in the order parameter dynamics at a critical final
interaction Ur = U, which depends on density and on U;. The
dynamical transition reflects in several features: (i) In contrast
to the smooth crossover found at equilibrium, the transition
at U, is sharp and separates a ‘weak’ from a ‘strong cou-
pling’ regime where the latter is characterized by a decreasing
long-time averaged order parameter for increasing interaction
strength whereas in the weak coupling regime the order pa-
rameter follows the quenched interaction similar to standard
time-dependent Hartree-Fock theory. (ii) At U, the minimum
amplitude of the oscillating Gutziller renormalization factor
approaches zero, thus revealing an underlying ‘dynamical lo-
calization transition.” (iii) At U, the conjugate phase of the
double occupancy changes from oscillating around zero to
a precession around the unit circle similar to an estonian
swing.

Here, we study the strongly nonlinear dynamics that arises
after a sudden change in the interaction. The dynamical tran-
sition manifests as a sharp anomaly in the long-time average
of the gap which becomes a strong discontinuity at half fill-
ing. This is in contrast to the equilibrium gap which evolves
smoothly in the whole range of coupling which is thus termed
a “crossover.”” By analyzing the Fourier transform of the
anomalous density or double occupancy, two main frequen-
cies are identified in the dynamics, €2; and Qy with Q; < Q.
For final coupling strengths below the critical one the out-of-
equilibrium dynamics of the anomalous density is BCS-like

at long times. Indeed, the main oscillation has frequency 2,
and coincides with twice the gap parameter at t — oco. The
transient dynamics, however, considerably differs from the
BCS dynamics. Above the critical coupling the dynamics
changes dramatically, both frequencies become important and
for large quenches they tend to decouple from the asymptotic
gap except at exactly half filling.

We further demonstrate a nonlinear mechanism relevant at
intermediate and strong coupling by which the above oscil-
lations of macroscopic variables (like the double occupancy)
originating from a quench, act back on the superconducting
quasiparticles as a periodic drive. This produces self-sustained
Rabi oscillations originating from the interplay between €2;
and Qy excitations. Indeed, the TDGA can be viewed as an ef-
fective BCS model where the bandwidth is periodically driven
by the macroscopic oscillating variables. In the latter case,
Rabi oscillations have been demonstrated in Refs. [52,53]. We
show how the frequencies €2, and 2y reveal themselves in the
density of states (DOS) and optical conductivity. Because of
the attractive-repulsive transformation [54] and the symme-
try of the Hubbard model our results for superconductivity
at half filling apply also to spin and charge-density-wave
states.

The paper is organized as follows. In Sec. IIA we give
a brief derivation of the TDGA based on a time-dependent
variational principle. We discuss the equilibrium phase dia-
gram in Sec. II B. Section III is devoted to the analysis of the
quench dynamics, also in comparison to the weak-coupling
BCS limit. The appearance of self-sustained Rabi oscillations
is demonstrated in Sec. IV while in Sec. V we show how these
excitations reflect in the optical conductivity. We conclude our
discussion in Sec. V.

II. FORMALISM
We study the attractive Hubbard model

H = Zskc}i’ack’g +U Znnﬂ’ln@ (1)
k,o r

where electrons with dispersion ¢; on a lattice (number of sites
N) interact via a local attraction U < 0. We are interested in
the dynamics after a quench in the interaction.

A. Equations of motion

The evolution is obtained variationally by means of the
time-dependent Gutzwiller wave function

|We) = P|BCS),

with P; and |BCS) the time-dependent Gutzwiller projector
and BCS state. The variational solution of the time-dependent
Schrodinger equation can be obtained by requiring the action
S = [ dtL to be stationary with the following real Lagrangian
(31]

_ (VglH|Yg) @
(Ws|¥s)

_ 1 (%) — (¥6| W)
2 (We|We)

which leads to the equations of motion from the standard
Euler-Lagrange equations.
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Equation (2) can be evaluated within the Gutzwiller ap-
proximation (GA) [31-33] where expectation values of |W¢)
can be expressed as renormalized expectation values of a
(translationally invariant) BCS state. Superconductivity is
then most conveniently incorporated [55,56] by (a) perform-
ing a rotation in charge space to a normal state, (b) applying
the Gutzwiller approximation, and (c) rotating the density
matrix back to the original frame (cf. Ref. [37]).

The Gutzwiller approximated expectation value of the
Hamiltonian in Eq. (2) including a chemical potential term
is given by

E®* = Ty+ T, — uN + UND, A3)

I = ZCIn&k[(C;TC’k,M —{coryct )+ 11,
k

Ti=Y algiic .l ) +ailecwicn)l, @
k

where () denotes the |BCS) expectation value and we defined
the double occupancy,

D = (Vgln,1n. W),

and the regular (7p) and anomalous (77) contribution to the
kinetic energy. The anomalous contribution is a characteristic
of the Gutzwiller approximation or the equivalent slave Boson
formulation [56] and arises from the rotation in charge space
applied to the kinetic term. The explicit form of the renormal-
ization factors g and ¢ is given in Appendix A.

The dynamical variables of the problem are the density
matrix,

(ch rcht)
(C—k,yCr.1)

{circly) ) ,

R(k) =
:( ) ( <C—k,¢CT_k7¢>

the parameter D, and its conjugate phase 1 which vanishes in
the GA equilibrium state. Stationarity of the Lagrangian leads
to the following equations of motion [31-33],

d . GA
TR = —ilR(K), HOA (k)] ®)
1 9EGA
== ©)
N 0n
. 19E®A o
T="N"oD
and the Gutzwiller Hamiltonian is evaluated from
GA EGA
H k) = , 8
) = SR ) ®)

which is explicitly shown in Appendix B. Conservation of the
energy EGA(R, D, n) follows from

dEGA JECA ECA |

= Rym(k D
dt Xk:aan(k) (k) + a0 O an

aEGA
n

= —i ) TrHAMORK), K ()]} = 0
k

where the second and third term in the first line cancel because
of Egs. (6) and (7) and the first term vanishes upon permutat-
ing the trace.

It is convenient to introduce the charge spinor J; with the
components

T = 3Ucf el +emien)), ©)
T = _%“C;Tcik,i — Ck | Ck 1)), (10)
Je=5Ucipenr + ¢y jeiy) = D, (11

We also define the expectation value of raising and lowering
operators,

T = el ) (12)

J = {cokyCrn). (13)

Integrated global quantities will be denoted by dropping the
momentum label, i.e., J* = Zk J,f/N, =)+ U+
(J¥)>. We will refer to the momentum integrated J* as the
Gorkov function.

The dynamics of the density matrix, Eq. (5), can be
equivalently expressed as Bloch equations for Anderson pseu-
dospins,

Ji = 2b x I (14)
with an effective magnetic field
by = —(AL AL q)(t)ex — ). 5)

Here we defined the real (A}) and imaginary part (A}) of the
spectral gap which is given by the off-diagonal element of
the time-dependent Gutzwiller Hamiltonian Ay (z) = HgA(k)
[Eq. (AS)]. From Eq. (8) it is clear that A () is the conjugate
field of the Gorkov function.

In contrast to the BCS case, in the Gutzwiller treatment the
gap acquires a momentum dependence. This originates from
the bare dispersion, appearing in 7}, which is directly related
to HEA,

A=Ay +q) (e — 1/q)). (16)

Here we separated Eq. (AS5) into a momentum independent
part A, and a momentum dependent part which (unlike a
usual momentum-dependent gap) vanishes at the chemical
potential (see Appendix A for details).

Once the system is taken out of equilibrium both A, g
and g become time dependent. In particular, g is related to
fluctuations of the double occupancy phase §n [cf. Eq. (A2)].
In the weak coupling limit fluctuations of the double occu-
pancy phase én tend to vanish and one recovers the BCS
momentum independent gap since g; ~ n — 0. In this limit
one also recovers the BCS relation A, = UJ~. How the GA
approaches the BCS results in the dynamical case is studied
further in Sec. III B 1. The dynamics of the double occupancy
D(t) influences on the z component of by via the renormaliza-
tion factor ¢ () [Eq. (A1)] which will be an essential point in
our analysis of Rabi oscillations in Sec. I'V.

B. Static phase diagram

Before discussing the dynamics we would like to comment
on the accuracy of our approximations regarding static quan-
tities and recall the static phase diagram.
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FIG. 1. Solid red: Brinkman-Rice transition (g, = 0) for the
attractive, square lattice model in the Gutzwiller approximation re-
stricted to a nonsuperconducting ground state. Energies are given in
units of the half bandwidth B = 1. In the superconducting system a
dynamical phase transition with vanishing g, occurs upon quenching
from an initial U; to a final critical U,. The dashed blue and green
lines show U, for U; = —0.5 and U; = —1, respectively.

The Gutzwiller approximation for the repulsive Hubbard
model restricted to a nonmagnetic ground state yields the
well-known Brinkman-Rice transition [57] at a critical value
of U where electrons localize due to the vanishing of the
bandwidth renormalization factor only at half filling.

In case of the attractive model and restricting to a non-
superconducting ground state also a localization transition is
obtained, but now it appears at each density [55,56]. This is
shown in Fig. 1 where the red line indicates the Brinkman-
Rice U above which the ground state is localized.

The above phase diagram can be easily understood from
the attractive-repulsive transformation [54] which maps the
negative U-Hubbard model into a positive U-Hubbard model
with a finite magnetization given by (n — 1)/2. As is well
known, in the Brinkman-Rice picture a Mott insulator is de-
scribed as a collection of fully localized spin-1/2 fermions
thus effectively neglecting the scale J of magnetic interac-
tions. The Mott states of the negative U -Hubbard for arbitrary
n can be seen as derivatives of the familiar half-filled positive
U -Brinkman-Rice insulating state in which a certain number
of spins have been flipped to produce a finite magnetization
corresponding to (n — 1)/2 # 0. Thus, for example, a positive
U -Mott insulating state in which the magnetic configuration is
a ferromagnet with a spinflip (| | ... {1{ ... }})) maps into
a single composite boson localized at the site i of the flipped
spin, i.e., the state cz ¢CZ'L, N |0) of the negative U model. Clearly,
the Mott state reflects the formation of local pairs in the charge
language and neglecting the magnetic exchange excitations
in the positive U language is equivalent to neglecting the
boson kinetic energy in the negative U language. Thus, the
Brinkman-Rice transition reflects the transition to an incoher-
ent state of preformed pairs which is a fair description of the
system for large |U| at a temperature less than |U| but larger
than the ordering temperature. One may argue that sharp
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FIG. 2. Main panel: Symbols show the double occupation in
dynamical mean-field theory in the SC broken symmetry phase as
a function of U from Ref. [59]. Inset: U dependence of the Gorkov
function for n = 0.5. The lines in both panels were obtained with the
static GA. The underlying system is a Bethe lattice with bandwidth
parameter B = 2¢.

transitions as the Brinkman-Rice transition do not reflect the
physics of the Hubbard model. We come back to this point
below.

Allowing for superconductivity (SC) at zero temperature,
the Brinkman-Rice transition is avoided and replaced by the
smooth BCS-BEC crossover in the stationary state. We an-
ticipate that in a nonequilibrium situation a related dynamical
transition appears near the critical value of the final interaction
parameter Ur depending weakly on the initial value U;. Thus,
studying the dynamical behavior of the system one can in
principle determine the regime (weak or strong coupling) of
a given system.

Since the dynamics is based on the GA approximation it
is worth it to analyze its quality in the static case with regard
to other approaches. In Fig. 2 we compare the DMFT results
from Ref. [59] in the SC broken symmetry state with the static
GA approximation. One can see that there is almost perfect
quantitative agreement between the two approaches. As men-
tioned before, the transition from weak to strong coupling at
equilibrium is a crossover so there are no sharp features in the
static quantities. Still, for all quantities there is a noticeable
change of regime for —U of the order of the bandwidth,
i.e., in the range —U ~ 2 — 4, depending on doping. In the
dilute limit, this corresponds to the point where the chemical
potential is below the band, an unambiguous signal of the
BEC regime. For general fillings, this criteria cannot be used
as for example at half filling the chemical potential is pinned
at U/2. Fortunately, the case of half filling can be directly
mapped to the half-filled repulsive model which has being
extensively studied with DMFT [44]. Suppressing long-range
order, the system displays the well-known Mott transition
from a metallic phase to the insulating phase with the con-
comitant formation of Hubbard bands which reflects a phase
in which local magnetic moments have been formed but are
not ordered. Clearly, in the attractive model, this corresponds
to a phase of incoherent local pairs. As mentioned above,
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the Brinkman-Rice transition also describes the transition to
a phase of incoherent local pairs without off-diagonal long-
range order. Remarkably, the transition point computed in the
GA almost coincides [44] with the DMFT theory result which
again shows the surprising accuracy of the GA even suppress-
ing long-range order. Thus we conclude that in the present
model, for general filling, the Brinkman-Rice transition point
of the negative-U model marks the transition to the regime
of local pair formation analogous to the nonmagnetic Mott
phase of the repulsive model which physical significance is
well understood. The fact that the GA accurately describes
this transition at equilibrium supports the relevance of the
present study concerning the out-of-equilibrium behavior of
the SC attractive Hubbard model.

III. QUENCH DYNAMICS

We prepare the system in the GA equilibrium state for
a given particle concentration n and initial interaction U;.
Then the interaction is instantaneously changed to a final
value Ur and the resulting dynamics is studied within the
formalism developed above. As discussed in the introduction,
an interaction quench can in principle be realized in ultracold
Fermi gases manipulating a Feshbach resonance. In the solid
state, a sudden change of the interaction is not easy to imple-
ment. However, one can use a pump laser pulse to impose a
nonequilibrium and nonthermal distribution of quasiparticles.
While there is an infinite number of possible nonequilibrium
distributions one expects that the evolution does not depend
much on the details of the distribution but on integrated quan-
tities as the injected excess energy. Indeed, a large portion of
the weak-coupling BCS phase diagram (excluding the syn-
chronization regime) the average gap at long times is close
to the gap that would be obtained in a thermal distribution
with the same injected energy [19]. Thus, a quench protocol
allows us to study a family of nonequilibrium distributions
controlled by a single parameter AU = U; — Uf instead of
the implementation of pulse shape, strength, and duration. We
are of course assuming that the pulse duration is much shorter
than the thermalization scales of the system. A discussion of
how interaction ramps lead to differences with regard to the
‘sudden’ quench can be found in Ref. [40].

In order to study the effect of dimensionality we consider
two systems: First, a Bethe lattice with infinite coordination
number and density of states p(w) = #\/ B? — ? for which
the Gutzwiller approximation becomes an exact evaluation
of expectation values within the Gutzwiller wave function
(which is of course still an approximate variational wave
function). Second, a square lattice with nearest-neighbor hop-
ping which is characterized by a density of states p(w) =
#IC(\/ 1 — w?/B?%) and K is the complete elliptic integral of
the first kind. All energy scales will be defined with respect to
B = 1. In the main part of the paper we will show results for
the square lattice and comment on differences to the dynamics
of the Bethe lattice for which some results are shown in
Appendix C. From now on, long-time averages of dynamical
quantities A(t) will be denoted by (A)7, i.e.,
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FIG. 3. Time dependence of the Gorkov function J~ [panels
(a) and (d)], the double occupancy D [panel (b)], and the spectral
gap parameter at the chemical potential A, (t) [panel (c)] for a U
quench from U; = —0.5 to Ur with |Ur| < |U;|. In panel (a) the
Gorkov function is scaled with Ur in order to make comparison with
the asymptotic value of A, (t — oo) which is indicated by arrows on
the right vertical axis. Results in (a)—(c) are for a half-filled square
lattice whereas (d) compares the long time behavior of J~ between
half-filled Bethe and square lattice for Ur = —0.1.

where T comprises a sufficiently large number of oscillations.

A. |Ur| < |U;| quench

For small quenches [cf. Fig. 3(a)], similar to the (lin-
earized) BCS dynamics [20,21], the Gorkov function displays
a power law, decaying, long-time behavior

J7(1) = JZ[1 + o cosRAnot)/v/ Aot ] (17

due to dephasing [58]. At weak coupling we will refer to the
dominant frequency of the Gorkov function at long times as
;. At strong coupling, other frequencies will appear in the
Gorkov function but we will keep the denotation of 2; by
continuity with the present weak-coupling regime.

It follows from Eq. (17) that

Q) =2A0 = 2(A,(t = 00))r | (18)

i.e., the frequency of J~ is determined by the long time limit
of the spectral gap A, at the chemical potential. Further-
more, we find that at long times, with a good approximation
UJ™(t — oo) &~ A,(t — oo) which is a hallmark of BCS
weak-coupling theory. This will be analyzed in more detail
below for |Ur| > |U;| where one can tune the system from
weak to strong coupling in |Ug]|.

Panel (b) of Fig. 3 displays the dynamics of the double
occupancy. Because the dominant frequency is much larger
than for the Gorkov function, the main oscillation is not re-
solved and only the envelope is visible as the boundary of the
colored regions. We will call the dominant frequency of the
double occupancy 2y . In general Q2 > ;. For small U, Qy
is determined [31] by the bandwidth while for large U is of
order U. The intermediate behavior will be analyzed in detail
below.

For the cases in which the Gorkov function oscillates and
remains finite at long times (black and red), the dynamics
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resembles two coupled oscillators with a fast frequency Qy
and a slow frequency €2;. Indeed, the slow frequency of the
Gorkov function €2, is also clearly visible in the envelope of
the double occupancy evolution which shows that J~ and D
are significantly coupled. On the other hand, since the natural
dynamics of J~ () is much slower it does not respond to the
fast oscillation of D(¢) and therefore the fast oscillations are
hardly visible in Fig. 3(a). Notice also that the relaxation of
D(t) and J~(t) occurs on the same time scale. In case of
J~(t — 00) = 0 (blue) one recovers the situation discussed in
Refs. [32,33] where the double occupancy oscillates between
the two extrema D_ and D, [upper and lower bounds of the
blue curve in (b)].

Panel (d) of Fig. 3 shows the initial dynamics related to
the vanishing of J~. For some critical value of |Ur| < |U;| the
Gorkov function dynamically vanishes and in this limit the de-
cay from an initial J;~ is described by the general asymptotic
behavior derived in Ref. [21]

J7(1)
J
where A(t) and B(t) are decaying power laws ~1/t” with
1/2<v <2 and 0 <o < 1. As shown in the figure, the
decay in the 2D system follows a 1/t law whereas for the
Bethe lattice it is exponential, both behaviors being particular
cases of Eq. (19).

In general, for moderate to large U;, the dynamics of
the TDGA spectral gap [cf. Fig. 3(c)] is determined by
both the fast double occupancy oscillations at frequency Qy
(which are not resolved in the figure) and the slower oscil-
lations of the Gorkov function at frequency €2;, which are
revealed in the envelope of A(7). To summarize this part, we
see that in the present regime the Gorkov function shows a
BCS-like dynamics [17-19] while the gap has an additional
high frequency which is not present in weak coupling time-
dependent BCS theory. In Sec. V we show that both features
also appear in the optical conductivity, even at weak coupling
in the transient regime, which therefore in principle allows us
to validate the present approach in pump probe experiments.

= A(t)e > " 4 B(t)e i, (19)

B. |Ur| > |U;| quench
1. Weak and moderate coupling

One way to characterize the weak coupling (BCS) limit of
the dynamics is by comparing the spectral gap A, with the
product of the interaction and the Gorkov function J~. For
small values of the interaction and small interaction quenches
one should recover the BCS dynamics where the two quanti-
ties are related by A, = |U|J~. We first check the range of
validity of this expression at equilibrium in the inset panels
of Figs. 4(a) and 4(b), where both sides of the equation are
shown as a function of the interaction. We see that in this case
this relation holds when both quantities become exponentially
small, i.e., for small attractive interaction.

In order to study the crossover in the nonequilibrium case
we show in Figs. 4(c) and 4(d) the dynamics of A, and |Ur|J~
for interaction quenches from U; = —0.3 to Ur = —0.4 and
Ur = —0.32. It can be seen that dynamically at short times
the difference between A, and |Ur|J~ becomes important,
even in a regime where the equilibrium computation shows
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FIG. 4. Dynamics of the spectral gap A, and the Gorkov func-
tion J~ near the weak coupling regime. As a reference, the inset
panels (a) and (b) compare the equilibrium spectral gap A, (black)
with the equilibrium Gorkov function scaled by |U| (red) for densi-
tiesn = 1 (a) and n = 0.6 (b). Panels (c) and (d): Time dependence of
A, (light green, gray) and |U|J~ (dark green, black) for a U quench
from U; = —0.3 to Ur = —0.4 and Uy = —0.32 for densities n = 1
(c) and n = 0.6 (b). Results are for a two-dimensional square lattice.
Arrows at the right axis mark the corresponding equilibrium values
forU = Up.

small or moderate differences. Indeed, A, shows again the
fast dynamics due to the double occupancy fluctuations which
are absent in |Ur|J~. Comparing moderate (Ur = —0.4) and
small (Ur = —0.32) quenches in Fig. 4 we see that the tran-
sient phase extends longer in time for smaller quenches but
the associated oscillations of the gap decrease in amplitude
with a concomitant decrease in the difference between A, and
|Ur|J~. In both cases the difference at short times is surprising
given that the values of Ur are in a regime where at equilib-
rium there is little difference between the two quantities.

Away from half filling, the coupling of the gap to the dou-
ble occupancy oscillations is significantly enhanced and the
associated fast oscillations in A, appear with a much larger
decay time (not shown, we find r ~ 10000 for U; = —0.3,
Ur = —0.4, and n = 0.6). However, similar to the half-filled
case the crossover to the BCS dynamics occurs via a decrease
of the width of these fast oscillations so that the envelope
of A, approaches |Ur|J™ in the limit of small interaction
quenches (and small U;). Eventually, a BCS-like dynamics is
recovered in all cases at long times but important differences
remain in a transient phase which also reflect in the optical
conductivity, see Sec. V.

In BCS the Larmor precession frequency of pseudospins
(corresponding to the phase velocity of the momentum re-
solved Gorkov function J; ) is determined by the z component
of the pseudomagnetic field through a Bloch equation as in
Eq. (14) [19,21]. Analogously, here we find that in the regime
of Fig. 4 the phase velocity is found to obey w, = 2(g;&x — 1)
[cf. Eq. (15)].

We now discuss the long time averages of the various
quantities, see Figs. 5 and 6. In the weak-coupling regime
and for small quenches, the long-time average values of the
Gorkov function [scaled by Ur, panels (b)] is slightly below
but close to the equilibrium value (gray solid line) as in the
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FIG. 5. Long-time averages of (a) double occupancy (D)r,
(b) Gorkov function (J)7 scaled by Uy (circles) and (A,)r (dia-
monds), (c) Gutzwiller renormalization factor (g;)r. for a quench
from U; = —0.5 to Ur in a half-filled square lattice. The full red
circles correspond to the equilibrium values at U; [in panel (b) full
circle (blue diamond) are equilibrium values for UpJ~ (Ay)]. The
gray lines show the equilibrium value for U = Ur and the vertical
dotted line indicates the dynamical phase transition at U..

BCS case. It is interesting that the average gap (A )7 is much
more sensitive to a deviation from the weak coupling regime
as compared to Ur(J)r, leading to a divergent behavior of
both quantities as |Up| is increased.

For weak to moderate coupling also the long-time average
of the double occupancy is close to the equilibrium value
[Figs. 5(a) and 6(a)]. In this regime superconducting corre-
lations weakly influence on the characteristic frequency of the
double occupancy oscillations €2y. In the half-filled system
a linear response analysis [31] yields Qy = 4|egl,/qo0 where
&0 denotes the kinetic energy (per site) of the noninteracting
system and g is the (equilibrium) Gutzwiller renormalization
factor. Figure 8(a) (star symbol) reveals the reasonable agree-
ment of this estimate with the result of the full calculation
(triangles) for small quenches.
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FIG. 6. Same as Fig. 5 but for concentration n = 0.6.
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FIG. 7. Dynamics of the spectral gap A(t) [panels (a) and (c)]
and the Gorkov function J~(¢) [panels (b) and (d)] in the regime
|Ur| > |U;| for U; = —0.5, n = 1 [panels (a) and (b)] and U; = —1,
n = 0.6 [panels (c) and (d)].

2. Strong coupling

For large quenches |Ur|/|U;| > 1 the BCS dynamics
crosses over to a synchronized regime [17,19] characterized
by phase locked Cooper pair states and an order parameter
dynamics which oscillates nonharmonically between two ex-
trema A_ and A, . Remarkably, even in this regime the main
frequency of the order parameter in the pure BCS dynamics is
determined by the average spectral gap, i.e., it obeys Eq. (18).
Although the proof is simple, we are not aware of it in the BCS
literature, so we explicitly show it in Appendix B. The validity
of the BCS dynamics requires that |Ug|, |U;| < 1. The TDGA
approximation allows us to relax that restriction and explore
the intermediate and large coupling regime. As we will show
below, for the present parameters and large |Ur| the TDGA
replaces the synchronized regime by a damped dynamics with
zero final average gap and Gorkov function except exactly at
half filling (n = 1).

Figure 7 illustrates the dynamics for |Up| > |U;| near or
at n = 1 (left column) and for n = 0.6 (right column). It is
apparent from Figs. 7(a) and 7(c) that, as in the previous
cases, the dynamics of 2A(¢) is dominated by the fast double
occupancy oscillations which are not resolved on the scale of
the plot and which give rise to the filled finite width in the time
evolution. For the half-filled case [panel (a)] the average gap
increases with |Ur| (roughly 2A ~ |Ug|) while the amplitude
of the oscillation decreases. The exactly half-filled case is
special, in particular at strong coupling, as a small deviation
changes dramatically the long-time behavior for |Ur| > |U;|
as can be seen comparing the red line (n = 1) with the blue
line (n = 0.99) in Fig. 7(a). While in the first case the gap
oscillates around a finite value A, ~ |Ur|, the time evolution
of the spectral gap in the second case starts from a similar
initial value but then relaxes with a 1/4/7 behavior to zero.
On the other hand, (J~)7 [Fig. 7(b)] is strongly suppressed
for large final interaction (Up = —5, —6) so that the BCS
relation (A, )r = Ur(J™)r analyzed in Sec. III B 1 is strongly
violated here.

The transition from weak to strong |Up| is separated
by a dynamical phase transition at a critical interaction U,
[32,33,39,40]. This is characterized by the dynamics of the
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FIG. 8. Long-time averages of the spectral gap (black, circles)
compared to the main frequencies Q2 (triangles down, blue) and €2,
(triangles up, green) in the dynamics for: (a) quench from U; = —0.5
and n = 1, (b) and U; = —1 and n = 0.6. The horizontal axis is the
final Ur while the red dots indicate U;. The dashed line in the inset
of panel (a) shows 7T for n = 0.99. The dashed line in the main
panel shows the average of the spectral gap for n = 0.99. The insets
report the long-time average of the anomalous kinetic energy 7; (full
line), cf. Eq. (3). The vertical dotted line indicates the dynamical
phase transition at U,.. In panel (a) we also show results for n = 0.99
(dashed line) and the star symbol indicates the value of 2y from
linear response [31] in the normal system.

phase 1 which changes from oscillating around zero to a
precession around the unit circle. Figure 1 compares the den-
sity dependence of U, for two initial U values, U; = —0.5
and U; = —1 with the Brinkman-Rice equilibrium transition.
Clearly the typical scale of U for both transitions is the same.

Exactly at U, the average Gutzwiller renormalization fac-
tor g approaches zero [cf. Appendix C and Figs. 5(c) and
6(c)], indicative of an insulating state. The transition reflects
as a maximum in the time averaged double occupancy [cf.
Figs. 5(a) and 6(a)] reaching the value corresponding to full
localization D = n/2.

Examining the dynamics it has been shown [32,33] that ap-
proaching U,, the period in which Gutzwiller renormalization
factors tend to zero, logarithmically diverges. The finite values

of g, shown in the figures are due to the slow (logarithmic)
convergence of the averages at U,.

As already mentioned in the previous subsection, the long-
time average of the Gorkov function [circles, panel (b) of
Figs. 5 and 6] initially increases with |Ur| and stays slightly
below the equilibrium value for U = Uf (gray solid line). In
the same panels we also report the long-time average of the
spectral gap (A, )7 (diamonds). It also first follows a BCS-like
behavior upon increasing |Ur|, slightly below the equilibrium
value (gray dashed line), but then goes through a maximum
and approaches a minimum at Ur = U,. For n = 1(A,)r
shows a discontinuity at Ur = U, and increases for Urp > U,
whereas away from half filling a cusp appears at Ur = U, and
(A )7 vanishes together with the Gorkov function at large Ur.
This demonstrates that the BCS relation between (A)r and
(J ™) is strongly violated as soon as Up deviates from a strict
weak coupling regime.

The maximum of the Gorkov function at U, might seem
paradoxical at first sight as it implies that the underling BCS
state still has a well-defined phase and pairing amplitude. In
reality the pairs are fully localized so notwithstanding the
phase is well defined, this state is extremely fragile, i.e.,
the cost to scramble it is very low and the kinetic energy of
the pairs is completely suppressed. More precisely, we will in
Sec. V see that the phase stiffness p, tends to vanish at U,.

For larger values of |Ug| the Gorkov function diminishes
and finally vanishes. This suppression of the Gorkov function
for large quenches is opposite to what is obtained within the
time-dependent BCS approach but agrees with nonequilib-
rium studies within DMFT [47] in the context of quenched
antiferromagnetism. For the half-filled system this vanish-
ing of the Gorkov function implies the vanishing of local
superconducting correlations. However, anisotropic supercon-
ducting s-wave correlations still persist in this regime as can
be seen from the insets to Fig. 8 where we report the long-time
average of anomalous kinetic energy correlations 77, which
contributes to the total energy in the TDGA, cf. Eq. (3).
For our two-dimensional system with g = —2¢[cos(k,) +
cos(ky)], Fourier transformation of Eq. (4) yields a contri-
bution to the energy which only depends on a symmetric
combination of SC correlations between nearest neighbors,
i.e., extended s-wave symmetry, while the bare (i.e., local)
s-wave correlations vanish in the regime of large Ur at half
filling. Moving slightly away from half filling (dashed line in
the inset to Fig. 8) the intersite SC correlations vanish together
with the Gorkov function as shown in Fig. 7(a). For |Ur| 2 3
the half-filled system is characterized by finite intersite but
vanishing local SC correlations and the persistence of an av-
erage spectral gap which is of the same energy scale as the
local on-site attraction. Away from half filling extended and
local s-wave correlations vanish together with the spectral gap
at large |Ur| [cf. Fig. 6(b) and inset to Fig. 8(b)]. Therefore in
all cases we never observe a real “pseudogap state” because
the region of finite spectral gap coincides with the region of
SC correlations. In Sec. IV we will analyze this in more detail
and show how the double occupancy fluctuations drive the
fermions and with increasing strength suppress the average
Gorkov function.

Figure 8 compares the characteristic frequencies of the
dynamics 2y (double occupancy, blue triangles) and €2,
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(Gorkov function, green triangles). Upon increasing |Ur]|,
starting from |U;|, €2, has a dome shape, somehow similar
to the Gorkov function (J7)7 [Fig. 5(b), 6(b)], until both
quantities vanish. Instead, 2y remains large and of the order
of the bandwidth until for |Ur| > |U,| it increases linearly
with |Up| with a cusp singularity at U,. In the same figure
we also show the long time average (2A,,)r (black lines and
circles). For |Ur| < |U,.|, ©2; follows (2A)r (similar to the
BCS case) but then at U, the singular behavior in (2A)r arises
and 2; decouples from the gap. For |Up| > |U.| and half
filling the roles are interchanged and the gap follows Q2yy. Note
that (2A)r = Qy holds even in the regime where (J~)7 = 0.
Away from half filling this behavior persists close to U, but
then Qy keeps increasing as |Ur| thus decoupling from the
gap which is instead suppressed for large |Ur|.

The gray lines in Fig. 8 show the 7 = 0 equilibrium
value of the gap as a function of U = Ur showing how the
smooth crossover is replaced by the dynamical transition in
the out-of-equilibrium situation. Although for large quenches
(corresponding to large injection of energy into the system)
the long-time average of the spectral gap vanishes for n # 1
there remains a visible signature of the pair breaking energy
via the Qy frequency which is slightly below the BCS equi-
librium spectral gap.

In BCS it has been shown that the average gap value at
long times of the nonthermal BCS dynamics is near the value
the system would have for a closed system at thermodynamic
equilibrium [19]. Thus, for large quenches in which the inter-
action is reduced the average gap becomes zero corresponding
to an effective temperature larger than the critical temperature.
This breaks down for a large quench in which the interaction is
increased since in that case the synchronized regime is found
instead of the gapless state. Thus in BCS, the same amount of
injected energy has very different outcomes depending on if
the interaction is reduced or increased. In the TDGA the situ-
ation is more symmetric as large quenches in both directions
lead to a suppressed Gorkov function.

IV. FREQUENCY MIXING AND SELF-SUSTAINED
RABI OSCILLATIONS

In BCS the spectral gap after a quench oscillates with its
natural frequency €2;. As it is clear from Figs. 3, 4, and 7 the
Gutzwiller dynamics is more complex. Besides the frequency
€2, the spectral gap responds to the fast oscillations of the
double occupancy with frequency 2. Figure 9(a) shows the
Fourier transform of the spectral gap. We see indeed that
Q; and Qp emerge as the prevailing frequencies, but due to
the intrinsic nonlinearities of the dynamics other frequencies
emerge.

From the equations of motion, we notice that the double
occupancy oscillations are seen by the pseudospin degrees
of freedom as “external” periodic drives. In fact, the modu-
lation of the bandwidth via g (¢) [cf. Eq. (15)] adds a time
dependence to the effective magnetic field along the z direc-
tion, b} = g (t)ex which we write as b, = bZ,;O + 8b7(t). Here
b}";o = (g (t))r&k is determined by the temporal average of the
renormalization factor and we approximate the time depen-
dent part as 8b; (t) ~ y e, cos(£2p) where Qp is the frequency
of the drive. In linear response, the spectral gap responds to
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FIG. 9. (a) Fourier spectrum of A(w). The inset details the low
energy part with the Rabi excitation. Quench U; = —0.5 — Ur =
—1.6 in the half-filled 2D system. (b) From top to bottom: Gorkov
function, double occupancy, and spectral gap. (c) Energy and time
dependence of the pseudospin J{ showing population inversion at
energies &, ;.

fluctuations of the double occupancy, §D at the frequency of
the driving according to,

87, (1) = Xandbi (1), (20)

where xa, is a gap-charge susceptibility (see Ref. [52] for
an analogous treatment in the BCS problem). In addition,
there is an explicit dependence of A, on D through equations
Egs. (A1)—(A4) and (A8). So overall we can write,

b, A,

SAL() = [ xan—F

>8D(t) 1)

which explains the appearance of the 2y peak in Fig. 9(a). Ex-
tending the expansion to second order in the D(¢) and 8J%(¢)
fluctuations, similarly explains the 2€2; and the 2y % €2,
peaks. In fact, Raman like matrix elements d x »,,/3J= produce
Stokes and anti-Stokes responses at 2;; £ €2; where Q2 plays
the role of a “photon.” Furthermore, the second harmonic
frequency 2€2; is generated from 8§J7(¢)8J(¢) terms which
are already present in 857 (¢) through Eq. (Al).

Besides these linear, nonlinear, and Raman-like processes
another slower characteristic frequency appears when one ex-
amines the dynamics in very long time windows. For example,
for quenches |U;| < |Ur| < |U;| in the regime where (J )7
and Q; are maximum (Ur ~ —1.6 in Fig. 5) one observes
very slow oscillations in the envelope of all dynamical quan-
tities as shown in Fig. 9(b) for the half-filled system and a
quench U; = —0.5 — Up = —1.6. This new frequency is not
directly related to the previous ones. Indeed, the Fourier trans-
form of this oscillation yields Q2g =~ 0.014 [inset of Fig. 9(a)]
whereas the frequencies of Gorkov function and double occu-
pancy are 2; = 0.46, Qy = 1.63 [main panel (a]). The slow
frequency seems to decrease upon approaching U.,.

In order to shed some light on this excitation we show
in Fig. 9(b) the pseudospin dynamics of J{ as a func-
tion of the energy &;. One observes population inversion at
energies ¢, ~ 0.98, ¢,, = 0.68, and ¢,3 &~ 0.46. Such pop-
ulation inversion in the momentum distribution function (J;)
is characteristic of collective Rabi oscillations occurring in a
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superconductor subject to a periodic drive [52,53]. In the case
of a pure BCS dynamics as considered in Ref. [52] and for a
band width drive, collective Rabi oscillations are due to states
at “resonant” energies

5 5 L~ 2
qer = Geni = 74/S2 — (2A)°, (22)

where the average renormalization factor § = 1 in BCS. The
corresponding pseudospin will then perform a precession
around bi‘, which is the field component of by (¢) perpendicu-
lar to the static (or time-averaged) field b2 () [52]. Analogous
to magnetic resonance dynamics [60] the precession (‘Rabi’)
frequency would then be given by

1 1
Q= Sbi =y AV1—(2A/Q). (23)

In the present time-dependent Gutzwiller dynamics, drives
are generated internally as discussed above. Based on these
arguments the energies ¢,; at which population inversion is
expected can be obtained by replacing in Eq. (22) ©p by
combinations of Qy and €2; and also including the average
band width renormalization § = (g)).,

1
e = 57 QD) = 2A)2 ~ 0.98 for Q) = Qy

1
Ero = 2_q (Sz(DZ))2 - (2A)2 ~ 0.67 for Q(z) = QU — QJ

£y = 2% Q%) = 2A)2 ~ 049 for QF =20,
where for the considered quench we have g &~ 0.79 and 2A ~
0.49 ~ Q. The above theoretical estimates are in excellent
agreement with the frequencies at which population inversion
is seen in Fig. 9(c) giving support to our hypothesis that Qy
and €2 are acting as “external” driving frequencies. Notice
that the combination 2y + €2; would correspond to a drive
outside the available energy spectrum and therefore does not
produce a resonance for the present parameters.

Based on this knowledge we can now ask the question
of how these drives are related to the slow Rabi oscillation
visible in Fig. 9. Generalizing Eq. (23) to include the band-
width renormalization and taking y ~ 0.05 as obtained from
the width of the renormalization factor dynamics g;(t) one
obtains

Q> = Ag\/l — (24/20*Y)? ~ 0.015,0.014, 0.013.

The low energy Fourier transform of A(w) in the inset of
Fig. 9(a) consists of an excitation centered at wg ~ 0.014 with
a broadening which comprises the above frequencies which
again supports the consistency of our analysis.

V. OPTICAL CONDUCTIVITY

We finally analyze how the characteristic frequencies, dis-
cussed in the previous section, are visible in the optical
conductivity. In the nonequilibrium state we evaluate this
quantity from the current response

to+T
jo) = / dt'o(t,tHE{) (24)

4]

FIG. 10. Main panel: Drude weight D = j(0)/A, (black, solid)
compared to the regular kinetic energy (blue, dashed) as a function
of the quenched interaction Uy for a half-filled square lattice. The red
point indicated the equilibrium value U;. Inset: Time dependence of
both quantities for Ur = —3.

to a delta-like electric field E(t") = A¢8(t" — t;) which is ap-
plied within the interval #y < #; < #p + T in which the current
is measured. Then the optical conductivity is obtained from
the Fourier transformed of Eq. (24) as [61]

j(@) = Ao (w, 1) (25)

Within our model the delta-shaped electric field is coupled
to the system by a steplike vector potential A(z) = A¢®( —
t1) via the standard Peierls substitution say along the x direc-
tion. This induces a shift of momentum k, — k., + A, and the
current is evaluated from j(t) = §EY9* /8A,. Then the Fourier
transform of j(r) is performed for times #; < ¢ < ¢ + fiax-

In equilibrium BCS theory and for a homogeneous single
band system only a diamagnetic current is induced by A, [62]
and one finds that both charge and phase stiffness are the
same and given by the kinetic energy. The same is valid in
the equilibrium TDGA (which can be shown along similar
lines as in Ref. [62]) where in equilibrium only the normal
contribution to the kinetic energy Tp [cf. Eq. (3)] is finite.

In nonequilibrium and within standard time-dependent
BCS theory the linear coupling of a vector potential still
leads to a purely time-dependent diamagnetic current which
therefore is equivalent to the time-dependent kinetic energy.
The charge stiffness (Drude weight) D, defined as the w = 0
component of this current, is then just the time averaged
kinetic energy.

In contrast, the Peierls substitution in the TDGA also in-
fluences on the pairing term ~¢q &; [cf. Egs. (3) and (4) and
Appendix A] which generates an additional pairing compo-
nent ~7 to the current, which is significant in particular at
large quenches Uy and close to half filling as can be seen from
the inset to Fig. 8.

The main panel of Fig. 10 compares D with the regular
kinetic energy Ty [cf. Eq. (4)] along x as function of the
quenched interaction Ur. For Up & U; both quantities coin-
cide since in this limit the oscillation of the double occupancy
phase vanishes and therefore also g; — 0. Differences occur
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FIG. 11. Optical conductivity (magnitude) |o(w, t;)| for n =1
and a quench U; = —0.3 — Ur = —0.4. The Fourier transform is
obtained from the time evolution between #; and #; + tpax With f =
500.

for large quenches and close to half filling, in particular for
|Ur| > |U,|, where the normal component of the kinetic en-
ergy underestimates the Drude weight by almost a factor of
two for the present parameters. Notice that since this is an out
of equilibrium situation the Drude weight is not constrained
by the f-sum rule to be smaller than the kinetic energy and
indeed this condition is strongly violated.

The phase stiffness is given by a similar computation as
the Drude weight but the limit @ — 0 has to be taken before
the limit ¢ — 0 for a momentum and frequency dependent
vector potential A(g, w). In equilibrium, for a gapped system
at T = 0 the two limits coincide as the paramagnetic contri-
bution to the current is zero [62]. Being out of equilibrium
we will have additional absorption process due to excited
quasiparticles but we still expect that the Drude weight as
computed above provides an upper bound for the superfluid
stiffness. Thus, the strong suppression of the Drude weight
at Uc is indicative of a system which is very fragile to phase
fluctuations.

In equilibrium linear response, both BCS and TDGA do
not display an absorption at w > 0 for a homogeneous SC.
In fact, a photon with g = 0 couples neither to the quasiparti-
cle nor to the amplitude excitation at w = 2A. Also double
occupancy fluctuations are invisible in the linear response
TDGA optical conductivity because these only couple to
charge fluctuations, and since the charge-current vertex van-
ishes for ¢ — 0. the excitation at 2y is decoupled from the
current. The situation is different in nonequilibrium where the
investigation of associated optical properties is an active field
in the context of ‘Higgs spectroscopy,” see, e.g., Refs. [63,64]
and references therein. Figure 11 reports the magnitude of the
optical conductivity |o ()| in the weak coupling regime for
aquench U; = 0.3 — Up — —0.4 [cf. Fig. 4] and within dif-
ferent time intervals #; < ¢ < #] + fmax Of the dynamics. Due
to the nonequilibrium situation one now observes the ampli-
tude mode at 2; & 0.065 slightly below the equilibrium gap
2A = 0.072 for U = —0.4. In addition, the double occupancy
oscillations at €2y become visible in the optical conductivity,
where in the early transient phase (1 = 1) even the second
harmonic at 2y is admixed. Moving the time window for
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FIG. 12. Optical conductivity o(w, t; = 50) for n = 1 [(a),(b)]
and n = 0.6 [(c),(d)] and different quenches as indicated in the
panels. Main panels show the magnitude |o(w, f;)| whereas insets
report the real part. Panel (c) also reports |o (w, t;)| for t; = 0 (red
dashed) which contains the €2, excitations in the transient regime. In
panel (a) the Fourier transform has been performed for times up to
tmax = 2500 whereas in panels (b)—(d) #,,x = 500.

the Fourier transformation to later times, the 2;; peak rapidly
looses intensity whereas the amplitude ("Higgs’) mode is only
slightly decreased with respect to the early transient phase.
Thus, in the long-time limit #; — oo and weak coupling we
recover the nonequilibrium BCS result with only the Higgs-
mode visible in o (w).

In case of stronger coupling and larger quenches Fig. 12
reports o (w, ¢ ) and the corresponding density of states (DOS)
has been evaluated in Appendix D. For a better visualization
of the involved frequencies we show in the main panel the
magnitude |o (w, t;)| whereas the insets display the real part
o'(w, t;) with t; = 50. Again both frequencies €; and Q are
visible in o (w, t;) except for panel c) where the 2y oscilla-
tions are already damped for ¢t < #; = 50 and are only visible
as a broad feature if the field is switched on already at #; = 0
(red dashed).

A further feature is the coupling of the order parameter to
the double occupancy dynamics, as discussed in the previous
section, which is especially apparent in panel (a) of Fig. 12
where Qy has two side peaks at Qy & €2, as discussed in the
previous section. This coupling is also present in panels (b)
and (d) but hardly visible on the scale of the plot due to the
smallness of €2;. In panel (a) we have performed the Fourier
transform up to large times #;,,x = 2500 which includes sev-
eral Rabi periodicities. The Rabi oscillation is visible in o (w)
though the intensity is much smaller than those of the main
excitations at 2; and Q. Finally, it should be noted that
for large quenches higher harmonics of Qy appear in the
conductivity (cf. panel c).

We conclude that the TDGA adds the doublon scale Q2
to the nonequilibrium optical conductivity in contrast to the
analogous result in BCS theory where the spectra are only
characterized by the €2; feature. Even in the weak coupling
limit (cf. Figs. 4 and 11) the €y excitation can be seen in the
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transient phase which in principle allows to inspect the BCS
vs TDGA dynamics in a pump probe experiment.

VI. CONCLUSIONS

We have analyzed the dynamics of out-of equilibrium
superconductivity within the time-dependent Gutzwiller ap-
proximation. As shown previously [39,40] this approach
correctly reproduces certain aspects of nonequilibrium DMFT
[47-49] as the trapping in nonthermal states and the appear-
ance of two energy scales in the transient dynamics.

In particular, DMFT reveals a sharp crossover in the
dynamics of the Hubbard model upon quenching the nonin-
teracting system to a finite interaction U [46]. In the weak
coupling regime, below a critical interaction U,, the dou-
ble occupancy D(t) relaxes to the almost thermalized value
whereas for strong coupling D(¢) recovers and oscillates with
frequency ~U. The TDGA captures this feature as a ‘dy-
namical generalization’ of the Brinkman-Rice transition [57],
keeping in mind that for the negative U model the latter
occurs at every density. The state reached at Ur = U, is very
peculiar, it is characterized by zero kinetic energy and fully
developed composite bosons. Interestingly, this is reminiscent
of a Brinkman-Rice insulator but made of bosons instead of
fermions.

Two main frequencies, Qy and €2, determine the dynam-
ical quantities within the TDGA which for small quenches
are related to the double occupancy and SC pair correlation
dynamics. In DMFT [47,48] analogous frequencies have been
determined for the dynamics of double occupancy and antifer-
romagnetic order parameter in the repulsive Hubbard model,
which in case of half filling can be mapped onto the attractive
model studied in the present paper.

At weak coupling a BCS dynamics is recovered at long
times with €2; locked to the asymptotic average gap. However
the TDGA transient has some important differences with BCS
for not very large couplings and quenches which are visible in
the optical conductivity.

In general, both from the study of average quantities as the
spectral gap or dynamical quantities like the optical conduc-
tivity, we find that the out of equilibrium dynamics converges
much more slowly to the weak coupling regime than equilib-
rium quantities. For example, while the equilibrium GA gap
is close to BCS expectations in weak and moderate coupling,
the transient TDGA dynamics differs considerably from BCS.
This suggests that nonlinear probes will be much more sensi-
tive to strong coupling effects than linear probes, which can
serve ultimately to characterize more accurately the coupling
of a given condensate.

We have found that the dynamical phase transition at |U,|
is also associated with a decoupling of the lowest frequency
Q; from the long-time average of the gap, in sharp contradic-
tion with a BCS-like dynamics. The high frequency 2y also
decouples from the gap except for a region |Ur| > |U.| which
depends on the filling. At half filling €y remains locked to
the average spectral gap for increasing quenches |Ur|, even
when the local pair correlations are already suppressed. We
have shown that this regime of large spectral gap (~|Ur|) and
zero local pair correlations is instead characterized by inter-
site SC correlations (extended s-wave symmetry) which also

influence on the Drude weight. It would be interesting to see
whether such crossover from local to extended s-wave super-
conducting correlations is also obtained in exact approaches
in small systems or infinite dimensions.

The TDGA can be viewed as a driven BCS model where
the drive acts on the bandwidth via the time dependence of
the Gutzwiller renormalization factors. In an out-of equilib-
rium situation we have shown that the characteristic drive
frequency is not only due to the double occupancy dynamics
but can be a linear combination of the basic frequencies Qy
and €2;. This yields a consistent explanation for the structure
of low energy Rabi oscillations which can be observed in
all dynamical quantities in certain parameter regimes where
the resonant condition can be fulfilled. Moreover, since for a
bandwidth driven BCS model the increase of the drive am-
plitude results in a suppression of the Gorkov function, it is
most likely that the same mechanism is also responsible in the
TDGA for the vanishing of J~ at large interaction quenches.

The TDGA does not include thermalization mechanisms
so that in the long-time limit integrated quantities stay either
oscillating or decay due to dephasing, cf. Fig. 7, whereas in
an exact treatment one expects damping on a time scale ;.
The open question therefore remains if real systems can be
tuned towards a regime where t;; is significantly larger than
the Rabi periodicity which would allow the observation of the
latter by nonequilibrium spectroscopic methods.

The protocol studied here can be realized in ultracold
fermionic systems. For example, in Refs. [1,2] the fermion
system is initially prepared on the BCS side of the Feshbach
resonance and then, by a rapid lowering of the magnetic
field, the gas is put far in the preformed pair regime. This
corresponds to a sudden injection of energy in the system
at t+ = 0. Such sudden change of interaction cannot be eas-
ily done in the solid state. However, one can inject some
equivalent amount of energy in a pump-probe experiment.
We have shown that depending on the coupling regime of
the system, different features appear in probes as the optical
conductivity. Therefore, at least in principle, a spectroscopic
out of equilibrium experiment can give access to the relevant
coupling parameters of the system.
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APPENDIX A

The renormalization factors in Eq. (3) are given by

2 —Jt-

0 (A1)

a1 =05 +

9. = 2iQ-J7_[Q+ = iQ-?] (A2)
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with

++D —J; 4+ Jcosn]

=~ /D—J,+Jsinn.

Then the matrix elements become

D+J

0= (A3)

U J?
i) = g =+ 5 (1= )

J
dq /
Ri1(K') — Rp(k
8JZZNX:EIC[ 11(k") = Ry (k") + 1]
oo Y e[S Rt + Ry )] (A%)
2N - aJ* aJ*
uJt
Hip(k) = q\ex — 5 T
3q“ /
Ri1(K') — Ry (kK 1
Ry NZ€1<[ 11(k") — Ry (k") + 1]
+ 5 Zekf[—R W)+ Py )]  (AS)
Hoy (k) = UJ-
= & — — —
21 qL&k 27
dgy 1 /
aﬁNZsk/ [Ri(K') = Rox(K') + 1]
+— Zs[ R + Ry ()] (A6)
K| 5 R 21
Hyy (k) = Hy (k). (A7)
The spectral gap in Eq. (16) is defined as Ay = HG (k) =

A, + A} with

q* UJt
M=y =T
q|
4 oo L D elRh) ~ Rl + 1
aJ— N
+~ Zek[ LR + Ry ()], (A®)
,_ 4
A = “E(gqpe — 1) (A9)
q|
APPENDIX B

Consider the synchronized regime where the self-
consistent BCS dynamics is governed by the equation [17]

AP+ (A= A2)(AT— A =0 (B1)
and shows soliton solutions of the order parameter oscillating

between A_ < A(#) < A;. The oscillation period is then

— 0S—T .
1 oal ©n=06 ]
= | L |
./\ 0.3 1 0.37 1
Ny
\ U=05\ | 0.25 ]
— 0.17 —
L ‘
-2 -1 0 0—6 0
— 6
U=-0.5- 5
— 47
/\ L
< QA 3
(\l .
\ - 2F
~
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FIG. 13. Long-time averages of the Gorkov function [(a),(c)] and
spectral gap [(b),(d)] for the Bethe lattice with infinite coordination
number and concentrations n = 1 [(a),(b)] and n = 0.6 [(c),(d)]. Pan-
els (b) and (d) also report the frequencies 2y, 2, and the insets show
the long time average of the double occupancy.

determined from

T A dA
T:2f¢h=/ a@. (B2)
T A A

Similarly, the time-averaged order parameter is obtained from

2 (A A
Ay = — dA — B3
(A)r T/A, X (B3)
so that

At A w
@ﬁ:—/‘dA =2 ®y
Tla o Jar - a2yl - ay

i (a)‘

L1
0 50 100 150 200 0 50 100 150 200

0.2 ———— 0

0 50 100
time

150 200 0 50 100 150 200
time

FIG. 14. Dynamics of the Gorkov function (a), double occu-
pancy (b), hopping renormalization g (c), and spectral gap (d) in
close vicinity to U,. Results are obtained on a Bethe lattice with
infinite coordination number and concentration n = 1.
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FIG. 15. Long-time averages of the DOS evaluated from
Eq. (D1) for n =1 [(a),(b)] and n = 0.6 [(c),(d)] and different
quenches as indicated in the panels. Also shown are the characteristic
frequencies (where sizable) 2;, Qy, cf. Figs. 5 and 6. The yellow
shaded areas indicate the variation of the spectral gap in the time
evolution (cf. Fig. 7). Parameters for the evaluation of (p(w))r, cf.
Eq. (D1):tp = 500, T = 100, n = 5 x 1073,

where we have used Eq. (B1) and w = 27 /T is the frequency
of the oscillation. Thus also in the synchronized regime the
main frequency w of the BCS dynamics is determined by the
time-averaged spectral gap 2(A)r.

APPENDIX C

Figure 13 reports the long-time averages of spectral gap
[(a),(c)] and Gorkov function [(b),(d)] for a Bethe lattice with
infinite coordination number. No qualitative changes occur
with regard to the 2D case shown in Figs. 5 and 6.

The time dependence of Gorkov function J~(¢), double
occupancy D(t), hopping renormalization g (¢), and spectral
gap A(t) close to the dynamical phase transition is shown
in Fig. 14. The dynamics in this regime is characterized by
a periodic soliton-like behavior with long localization time

periods where D(¢) takes the Brinkman-Rice value (D = 0.5
for n = 1) and the hopping renormalization g vanishes. The
time dependence of the phase 7 (¢) has a periodicity with twice
the frequency of D(r), J~(¢), and g (t) which reflects also in
the dynamics of the spectral gap A(¢) [panel (c)].

APPENDIX D: DOS

In order to analyze the out-of equilibrium spectral proper-
ties we evaluate the density of states (DOS) obtained from the
average

1 to+T
(o(@)r = / dt p(e, 1)

GA
o, 1) = Imi Z w+Hp (k)2 ’
(o —in?— (HGAK, 1) — |A@)[?

(D)
where fy denotes a time scale after the initial transient dy-
namics and T is ‘sufficiently longer’ than the characteristic
periodicities of the system. The elements of the Gutzwiller
Hamiltonian HYA are defined in Appendix A.

Figure 15 reports the DOS for concentrations n = 1 and
n = 0.6 in case of different quenches |Ur| > |U;|. Clearly the
oscillation amplitude of A (¢) has a large impact on the low
energy structure of (p(w))r. For example, at half filling and a
quench U; = —0.5 — Up = —1.5 the spectral gap oscillates
between 0 < |A(7)] < 0.5 (not shown) which gives the im-
pression of a ‘d-wave’-shaped gap in the temporal average.
Neither 2; = (2A)r nor Qp are apparent as peculiar feature
in the averaged DOS. On the other, in case U; = —0.5 —
Ur = —2.5 [panel (b)] the frequency Qy = (2A)r fits to the
transition between two peaky structures in the DOS. For even
larger values of |Up| this feature is washed out (not shown).
Note that for the parameters of panel (b) also ©2; ~ 0.024 is
finite but quite small.

For the doped system n = 0.6 and a quench U; = —1.0 —
Ur = —2.0 it is the excitation energy €2; which now fits to
the transition between two peaky structures in the DOS [panel
(c)]. For larger quenches €2; decreases and does not appear
any more in the DOS [panel (d)].
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