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Spin torque and persistent currents caused by percolation of topological surface states
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The topological insulator/ferromagnetic metal (TI/FMM) bilayer thin films emerged as promising topological
surface-state-based spintronic devices, most notably in their efficiency of current-induced spin torque. Using
a lattice model, we reveal that the surface-state Dirac cone of the TI can gradually merge into or be highly
intertwined with the FMM bulk bands, and the surface states percolate into the FMM and eventually hybridize
with the quantum well states therein. The magnetization can distort the spin-momentum locking of the surface
states and yield an asymmetric band structure, which causes a laminar flow of room-temperature persistent
charge current. Moreover, the proximity to the FMM also promotes a persistent laminar spin current. Through
a linear response theory, we elaborate that both the surface state and the FMM bulk bands contribute to the
current-induced spin torque, and their real wave functions render the spin torque predominantly fieldlike, with a
magnitude highly influenced by the degree of the percolation of the surface states. On the other hand, impurities
can generate a dampinglike torque, produce a torque even when the magnetization points in plane and orthogonal
to the current direction, and moreover strongly suppress the Edelstein effect at the surface of the topological
insulator.

DOI: 10.1103/PhysRevB.102.144442

I. INTRODUCTION

A unique feature of three-dimensional (3D) topological
insulators (TIs), namely, the existence of spin-polarized sur-
face states at low energy, has motivated the search for their
applications in spintronic devices. The dispersion of these
surface states takes the form of a Dirac cone, with the spin
polarization roughly circulating the cone, and the direction
of circulation is opposite at energy above and below the
Dirac point [1–5]. Such a spectacular spin-momentum lock-
ing profile indicates the possibility of electrically controllable
spintronic effects, which can be a great advantage for practical
applications. Various recent experiments indeed confirm this
type of effect, such as the current-induced spin polarization
at the surface of the TI [6–9]. Moreover, the experimentally
observed current-induced spin polarization remains roughly
constant over a wide range of temperature and chemical po-
tential, which has been attributed to the impurity scattering
[10], signifying the importance of disorder in these surface-
state-based spintronic effects.

Among the devices that exploit the spintronic effects of
the surface states, a particularly promising design that has
delivered remarkable performance is the TI/ferromagnetic
metal (TI/FMM) bilayers. In particular, the spin-pumping
experiment in these systems demonstrates their ability to con-
vert the spin current induced by the magnetization dynamics
into a charge current [11–15]. In retrospect, a charge cur-
rent driven through these systems induces a magnetization
dynamics, which may outperform the same phenomenon in
the usual heavy metal/FMM heterostructures [16–18], and
has stimulated a great deal of theoretical effort to understand
the underlying microscopic mechanisms [19–30].

On the other hand, there are obvious peculiarities regarding
the role of the surface states in these spintronic effects in the
TI/FMM bilayers. First, the metallic nature of the FMM in
TI/FMM bilayers seems to imply that the surface states may
no longer be entirely confined in the TI, but extending into
the FMM. Second, similar to that occurs in two-dimensional
metallic materials with Rashba spin-orbit coupling and mag-
netization [31–33], the spin-momentum locking profile of the
surface states may be altered by the magnetization, which
may also modify the spintronic effects of the TI/FMM bi-
layer. Finally, since the FMM itself certainly contains more
conducting channels than the TI, how the bulk bands of the
FMM participate in the current-induced spin torque remains
to be understood.

In this paper, we aim to clarify these issues by means of
a lattice model approach. We adopt the philosophy developed
recently in a similar system of lower dimension, namely, a
two-dimensional (2D) square lattice model of TI/FMM side
junction [34]. The square lattice model delineates the perco-
lation of the edge state of the 2D TI into the FMM, which
highly depends on the direction of the magnetization, as well
as how the Dirac cone and the FMM bulk bands intertwine.
Both the edge states and the bulk bands of the 2D FMM
contribute to the current-induced spin torque, and impurities
are found to have profound influence on the magnitude of the
current-induced spin polarization. In this work, we advance
such a lattice model approach to the 3D TI/FMM bilayers in
question. Using a tight-binding model regularized from the
low-energy sector of the TI/FMM [29], we detail how the
magnetization and band structure affect the spin-momentum
locking and percolation of the surface states, and unveil a lam-
inar flow of equilibrium persistent charge current controllable
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by the magnetization. In addition, the bilayer also supports
a persistent laminar spin current at equilibrium flowing in
both the TI and the FMM. Through a linear response theory
that simultaneously takes into account both the surface-state
Dirac cone and the FMM bulk bands, and without explicitly
invoking interface Rashba spin-orbit coupling, we show that
the real wave functions of the percolated surface states result
in a current-induced spin torque that is predominantly field-
like, with a magnitude highly influenced by the percolation.
However, the presence of impurities greatly modifies the spin
accumulation of the Edelstein effect, and subsequently gener-
ates a dampinglike spin torque in the FMM.

II. TI/FMM BILAYERS

A. Constructing the lattice model

We first discuss the construction of a cubic lattice model
a 3D TI thin film, such as Bi2Se3, deposited on a stack of
FMM layers, assuming the stacking direction is along the
crystalline ẑ direction. The low-energy sector of the TI is
formed by the basis |P1+

−,↑〉, |P2−
+,↑〉, |P1+

−,↓〉, |P2−
+,↓〉,

where the quantum numbers represent the hybridized Bi and
Se orbitals, and the {↑,↓} represents the spin index [1,2]. We
adopt the representation for the � matrices to construct the
Dirac Hamiltonian

�i = {σ 1 ⊗ τ 1, σ 2 ⊗ τ 1, σ 3 ⊗ τ 1, Iσ ⊗ τ 2, Iσ ⊗ τ 3}, (1)

with the spinor

ψk =

⎛
⎜⎜⎝

ckP1+
−↑

ckP2−
+↑

ckP1+
−↓

ckP2−
+↓

⎞
⎟⎟⎠ ≡

⎛
⎜⎝

cks↑
ckp↑
cks↓
ckp↓

⎞
⎟⎠, (2)

where s and p abbreviate the P1+
− and P2−

+ orbitals, respec-
tively, which are not to be confused with the usual notation of
atomic orbitals. The low-energy Hamiltonian obtained from
k · p theory is [2]

Ĥ = (
M + M1k2

z + M2k2
x + M2k2

y

)
�5 + B0�4kz

+ A0(�1ky − �2kx ) = d · �, (3)

where only lowest-order terms essential for the surface states
are retained. We construct the lattice model by extending the
momentum dependence to the entire Brillouin zone (BZ)

kδ → sin kδδ, k2
δ → 2(1 − cos kδδ), (4)

where δ = {a, b, c} are the lattice constants, and then Fourier
transform to real space according to

∑
k

cos k · δ c†
kAckB = 1

2

∑
i

{c†
iAci+δB + c†

i+δAciB},

∑
k

i sin k · δ c†
kAckB = 1

2

∑
i

{c†
iAci+δB − c†

i+δAciB}, (5)

here {A, B} are combined orbital and spin indices. The FMM
is described by the usual quadratic hopping and exchange
coupling. Assuming the TI stack has Nz,TI layers and the FMM
stack has Nz,FM layers, and denoting the layer at the interface

FIG. 1. (a) Schematics of the TI/FMM slab. (b) The low-energy
band structure of an isolated TI slab in the first quartet of the BZ.
Orange sheets are the surface-state Dirac cone, and the red and
green sheets are low-energy bulk bands. The spin polarization of the
eigenstate at few selected points is indicated by red arrows.

as the boundary (BD), we label the layers by

i ∈ TI ⇒ z = 1, 2 . . . Nz,TI,

i ∈ FM ⇒ z = Nz,TI + 1, Nz,TI + 2 . . . Nz,TI + Nz,FM,

i ∈ BD ⇒ z = Nz,TI. (6)

This leads to our 3DTI/FMM stack cubic lattice model

H =
∑

i∈TI,σ

M̃{c†
isσ cisσ − c†

ipσ cipσ }

+
∑

i∈TI,I

t‖{c†
iI↑ci+aI↓ − c†

i+aI↑ciI↓ + H.c.}

+
∑

i∈TI,I

t‖{−ic†
iI↑ci+bI↓ + ic†

i+bI↑ciI↓ + H.c.}

+
∑

i∈TI,σ

t⊥{−c†
isσ ci+cpσ + c†

i+csσ cipσ + H.c.}

−
∑

i∈TI,σ

M1{c†
isσ ci+csσ − c†

ipσ ci+cpσ + H.c.}

−
∑

i∈TI,δ,σ

M2{c†
isσ ci+δsσ − c†

ipσ ci+δpσ + H.c.}

−
∑

i∈FM,δIσ

tF {c†
iIσ ci+δIσ + H.c.}

+
∑

i∈FM,Iσ

Jex S · c†
iIασαβciIβ −

∑
i∈FM,Iσ

μF c†
iIσ ciIσ

−
∑

i∈BD,Iσ

tB{c†
iIσ ci+cIσ + H.c.}, (7)

where M̃ = M + 2M1 + 4M2, I = {s, p}, and I = {p, s} are
the orbital indices, δ = {a, b, c} denotes the lattice constants,
σ = {↑,↓} is the spin index, and tB is the hopping that con-
trols the interface coupling between the TI and the FMM. The
model is schematically shown in Fig. 1(a). We will consider
the situation that the periodic boundary condition (PBC) is im-
posed in the planar directions x̂ and ŷ, and the open boundary
condition (OBC) is imposed in the out-of-plane direction ẑ.

The numerical simulation done on a single cluster is
constrained by the achievable lattice size of the order of

144442-2



SPIN TORQUE AND PERSISTENT CURRENTS CAUSED BY … PHYSICAL REVIEW B 102, 144442 (2020)

∼10×10×10. Thus, we choose the following parameters:

t‖ = −M = M1 = M2 = 1, t⊥ = 0.8,

tF = tB = 0.6, Jex = 0.1, (8)

that are of the same order of magnitude as that in realistic
TIs [1,2,29] and are suitable to draw conclusions from this
lattice size. In particular, the relatively large insulating gap
M is chosen such that there are enough surface states inside
the gap. In contrast, the hopping terms in the FMM tF and
at the interface tB are typical metallic values, and so is the ex-
change coupling Jex which is usually one or two orders smaller
than hopping. The FMM chemical potential μF controls the
two generic types of band structures, as will be discussed in
Sec. II B.

Before addressing the TI/FMM bilayers, we first remark
on the spintronic properties of the TI alone. Figure 1(b) shows
the low-energy band structure of a TI slab of Nz,TI layers,
equivalent to turning off all the i ∈ FM and i ∈ BD terms
in Eq. (7). The band structure solved by applying a Fourier
transform in the planar directions

ciIσ = c(x,y,z)Iσ =
∑
kx,ky

eikxx+ikyyc(kx,ky,z)Iσ (9)

clearly captures the Dirac cones of the surface states lo-
calized at the two surfaces z = 1 and Nz,TI, with the Dirac
point located at zero energy. Focusing on the Dirac cone
of the surface state at the top surface z = Nz,TI (which is
made in contact with the FMM later), the spin polarization
〈kx, ky, nz|σ ⊗ I|kx, ky, nz〉 of these surface states exhibits the
spin-momentum locking [1–5], as indicated by the red arrows
that circulate along the Dirac cone in Fig. 1(b). Note that the
bulk bands of the TI are also spin polarized, as indicated by
the red arrows in Fig. 1(b) on the bands that are gapped.

The charge and spin current operators are constructed from
the local charge and spin density

ni =
∑
Iσ

c†
iIσ ciIσ , ma

i =
∑

I

c†
iIασ a

αβciIβ, (10)

whose equations of motion can be written in the form of
continuity equations

ṅi = i

h̄
[H, ni] = −∇ · J0

i = −1

a

∑
δ

(
J0

i,i+δ + J0
i,i−δ

)
,

ṁa
i = i

h̄

[
H, ma

i

] = −∇ · Ja
i + τ a

i

= −1

a

∑
δ

(
Ja

i,i+δ + Ja
i,i−δ

) + τ a
i , (11)

which defines the local charge and spin currents Ja
i,i+δ running

from site i to i + δ, and Ja
i,i−δ that run from i to i − δ, and τ a

i is
the local torque that comes from the Jex term in Eq. (7). Their
precise forms are detailed in the Appendix. We will define
a local charge and spin current by considering the current
running along positive bonds in either x or y direction as a
function of out-of-plane coordinate z,

Jy
x (z) ≡ Jy

i,i+a, Jx
y (z) ≡ Jx

i,i+b, (12)

and investigate their profile due to proximity to the FMM.

B. Percolation of topological surface states into the FMM

Since the TI/FMM contact requires to align the work
functions of the two materials, as that occurs in the
semiconductor-metal junctions [35,36], the FMM bands can
be shifted relative to the TI bands. Moreover, various methods
are known to be able to change the chemical potential in
the TI, such as doping [7,37,38], and thereby can be used to
engineer the relative shifting. This shift in our lattice model
is simulated by adjusting the FMM chemical potential μF in
Eq. (7). As a result of the shift, there can be what we call
the pristine type of band structure where the large part of the
Dirac cone does not overlap with the FMM bulk bands, and
the submerged type where the Dirac cone submerges deeply
into the FMM bulk bands [34]. We choose the following μF

to investigate these two generic types of band structure:

pristine : μF = 0.5, submerged : μF = −2. (13)

Figure 2 shows the band structures, wave functions, and spin
polarizations for the pristine and submerged types, with mag-
netization pointing in plane S ‖ x̂ and out of plane S ‖ ẑ,
which reveal the following interesting features.

For the pristine type of band structures, as moving from
small to large momentum, the Dirac cone gradually merges
into the FMM bulk bands. The spin polarization of the eigen-
state |kx, ky, nz〉 gradually rotates from that given by the
spin-momentum locking of the Dirac cone to that along the
magnetization, as indicated by the red arrows in the top panels
of Fig. 2. The surface-state wave function |ψ |2 (localized at
the TI boundary) gradually merges with the FMM quantum
well state wave function (standing wave inside the FMM) as
moving to large momentum. The spatial profile of the spin
polarization of |kx, ky, nz〉 is such that the wave function in
the TI region remains largely polarized in the spin-momentum
locking direction, with a small component parallel to the mag-
netization, whereas the wave function in the FMM region is
mainly polarized along the magnetization.

For the submerged type of band structure, the Dirac cone
overlaps and intertwines with the FMM bulk bands drasti-
cally. Tracking the states originating from the Dirac cone
reveals that the surface state is even more hybridized with
the FMM quantum well state, yielding a wave function that
has the feature of both states, i.e., evanescent in the TI region
and standing wave (possibly of higher harmonics [34]) in
the FMM region. A significant spin polarization along the
magnetization is induced in the TI region, indicating that the
spin-momentum locking in the TI is distorted significantly. As
we shall see in the following sections, these peculiar proper-
ties of percolated surface states have a profound influence on
the spintronic properties of the TI/FMM bilayers.

C. Persistent charge current

The dispersion for the case of out-of-plane magnetization
S ‖ ẑ is symmetric among momenta (±kx,±ky ). However, if
the magnetization lies in plane, then the dispersion becomes
asymmetric in the direction perpendicular to the magnetiza-
tion. This is because in the profile of the spin-momentum
locking, the states polarized along the magnetization become
energetically more favorable than the states polarized in the
opposite direction, hence tilting the whole band structure
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FIG. 2. The pristine and submerged types of band structures Ek that distinguish whether the Dirac cone submerges into the FMM bulk
bands, with magnetization pointing in plane S ‖ x̂ and out of plane S ‖ ẑ. We choose Nz,TI = 8 layers of TI and Nz,FM = 4 layers of FMM. Red
arrows show the spin polarization of the eigenstate at several selected (kx, ky, nz ) that gradually moves from Dirac-cone-like states to FMM
bulklike states. The bottom panels show the wave functions |ψ |2 and the spin components 〈σ a〉 as a function of out-of-plane coordinate z for
some of these (kx, ky, nz ).

[31–33]. As an example, in Fig. 3 the case of S ‖ x̂ is present,
which renders a dispersion asymmetric between +ky and
−ky for either the pristine or the submerged type of band
structures.

The asymmetric dispersion prompts us to investigate the
possibility of an equilibrium persistent current in the system
since the dispersion seems to imply the electron motions in
positive and negative directions are different. However, it is
easy to see that the asymmetric dispersion does not yield a
net current at equilibrium, or equivalently the Fermi sea does
not carry a net group velocity. This is because the expectation
value of the in-plane velocity operator va = {vx, vy} is simply
the group velocity [39]

〈
ukx,ky,nz

∣∣va

∣∣ukx,ky,nz

〉 = 〈
ukx,ky,nz

∣∣1

h̄

∂H

∂ka

∣∣ukx,ky,nz

〉
= ∂E (kx, ky, nz )

h̄∂ka
. (14)

The expectation value integrated over momentum vanishes
identically

〈va〉 =
∑

nz

∫
dkx

2π

∫
dky

2π

∂E (kx, ky, nz )

h̄∂ka
f (E (kx, ky, nz ))

= 0, (15)

where f (E (kx, ky, nz )) = 1/(eE (kx,ky,nz )/kBT + 1) is the Fermi
function. Thus, there is no net charge current in either the
direction parallel or perpendicular to the magnetization.

However, using the current operator in the Appendix, we
reveal that there exists an equilibrium local charge current
flowing in the direction perpendicular to the magnetization.
As shown in Fig. 3 for the S ‖ x̂ case, a laminar flow
of persistent charge current 〈J0

y (z)〉 ≡ 〈J0
i,i+b〉, meaning that

the direction of flow is along +ŷ or −ŷ depends on the
out-of-plane position z, is uncovered. The laminar current
exists in both the TI region z � Nz,TI and the FMM region
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FIG. 3. (Top) The pristine and submerged types of band structure
as a function of ky at kx = 0, with magnetization pointing along
S ‖ x̂. The asymmetry of the band structure between +ky and −ky is
clearly visible. (Bottom) The corresponding persistent charge current
〈J0

y 〉 as a function of out-of-plane coordinate z, where positive means
flowing along +ŷ and negative means flowing along −ŷ, as indicated
schematically in Fig. 1(a).

Nz,TI � z � Nz,TI + Nz,FM, and sums to zero
∑

z〈J0
y (z)〉 ≈ 0

up to numerical precision, in agreement with Eq. (15). This
current is absent if the magnetization points entirely out
of plane S ‖ ẑ, and there is no current along the direction
parallel to the magnetization 〈J0

x (z)〉 ≡ 〈J0
i,i+a〉, indicating

the current indeed originates from the asymmetric band
structure induced by the in-plane magnetization. The band
structure origin makes this equilibrium current easily per-
sist up to room temperature and macroscopic scale, which
is an advantage compared to that induced at the topological
superconductor/FMM interface [40,41].

D. Persistent spin current

The spin-momentum locking of the surface states shown in
Fig. 1(b) has speculated a surface spin current at equilibrium
[42–45]. For an isolated TI with OBC imposed in the ẑ direc-
tion, one expects the surface states to cause a spin current 〈Jx

y 〉
polarized along x̂ and flowing along ŷ, and a spin current 〈Jy

x 〉
polarized along ŷ and flowing along x̂ of equal magnitude. The
spin currents should be localized at the two surfaces z = 1 and
Ny,TI, and the directions of flow are opposite between the two
surfaces.

However, it is shown recently that the above naive picture
of equilibrium surface spin current has a serious flaw, namely,
it does not take into account the contribution from the valence
bands [46]. For the cubic lattice model of an isolated TI, i.e.,
the i ∈ TI terms in Eq. (7), the surface spin current produced
by the surface states is in fact canceled out exactly by the
contribution from the valence bands, rendering no net surface
spin current. This surprising statement is valid regardless the
temperature and parameters within the cubic lattice model.
A finite surface spin current appears only when the chemical
potential is shifted away from the Dirac point since the can-
cellation from the valence bands is not complete in this case.
Thus, a variety of mechanisms in reality that shift chemical
potential locally or globally, such as doping [7,37,38], gating,

FIG. 4. (a) The spin current in the TI/FMM slab for the pristine
type of band structure, and (b) for the submerged type, where the
positive and negative values indicate the flow direction, as indicated
schematically in Fig. 1(a). The spatial profile and magnitude of the
spin current only vary by few percent as changing the direction of the
magnetization S.

impurities [47], and surface band bending [48], can all be used
to promote the surface spin current [46].

Using the lattice model in Eq. (7), we further uncover that
an equilibrium spin current occurs when the TI is made in
contact with the FMM, even if the Dirac point resides at the
chemical potential. The spin current in the TI/FMM bilay-
ers shown in Figs. 4(a) and 4(b) has the following features:
(i) For the pristine type of band structure, the spin current
mainly concentrates in the TI region near the interface, but
for the submerged case the spin current in the FMM region
is dramatically enhanced. (ii) The spatial profile and mag-
nitude of the spin current remain roughly the same for any
direction of magnetization S, with only few percent variation.
(iii) The relation 〈Jx

y 〉 = −〈Jy
x 〉 is satisfied for the out-of-plane

magnetization case S ‖ ẑ, whereas for all other magnetization
directions they are approximately equal 〈Jx

y 〉 ≈ −〈Jy
x 〉. (iv)

The spin current is also a laminar flow whose direction of flow
depends on the out-of-plane position z, which is is particularly
evident for the submerged type of band structure shown in
Fig. 4(b), and the spin current does not sum to zero, i.e., there
is a net spin current.

E. Linear response theory for the magnetoelectric susceptibility

The current-induced spin torque originates from the
nonequilibrium spin accumulation in the FMM caused by
a bias voltage. In this section, we aim to calculate such a
nonequilibrium response (in contrast to the equilibrium charge
and spin currents in Secs. II C and II D). Our goal is to
calculate the local spin accumulation σ b(i, t ) induced by a
perturbation H ′(t ′) in the Hamiltonian by means of a linear
response theory [34,49,50]

σ b(i, t ) = −i
∫ t

−∞
dt ′〈[σ b(i, t ), H ′(t ′)]〉, (16)

where σ b(i, t ) = ∑
Iβγ c†

iIβ (t )σ b
βγ ciIγ (t ) is the b = {x, y, z}

component of the spin operator at position i, and ciIγ (t ) are the
electron operators defined in the Heisenberg picture. The time
variation of the longitudinal component of the vector field
A( j, t ′) = A( j)e−iωt ′

induces the electric field E = − ∂A
∂t =

iωA along the x̂ direction and the electric current, as the
situation in the experimental setup, and hence the perturbation
is

H ′(t ′) = −
∑

j

J0
x ( j, t ′)A( j, t ′), (17)
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where we have abbreviated the current operator flowing in
the x̂ direction by J0

x ( j, t ′) ≡ J0
j, j+a(t ′) in comparison with the

lattice notation in Eq. (A4). Consequently, the commutator in
Eq. (16) reads as

[σ b(i, t ), H ′(t ′)] = i

ω

∑
j

eiω(t−t ′ )E ( j, t )
[
σ b(i, t ), J0

x ( j, t ′)
]
,

(18)

where E (i, t ) = E0eiq·ri−iωt . The local spin accumulation in
Eq. (16) then becomes

σ b(r, t )

=
∑

j

∫ ∞

−∞
dt ′eiω(t−t ′ ) 1

ω
θ (t − t ′)

〈[
σ b(i, t ), J0

x ( j, t ′)
]〉

E ( j, t )

=
∑

j

∫ ∞

−∞
dt ′eiω(t−t ′ ) iπb(i, j, t − t ′)

ω
E ( j, t )

=
∑

j

iπb(i, j, ω)

ω
E ( j, t ) ≡

∑
j

χb(i, j, ω)E ( j, t ). (19)

Here, χb(i, j, ω) is the response coefficient for the contribu-
tion to the σ b(i, t ) at site i due to the longitudinal electric
field E ( j, t ) applied at site j. Assuming the electric field
is constant everywhere q → 0 such that E (i, t ) = E ( j, t ) =
Exe−iωt , Eq. (19) may be written in a form that defines the
magnetoelectric susceptibility

σ b(i, t ) =
{∑

j

χb(i, j, ω)

}
E (i, t ) = χb(i, ω)E (i, t ). (20)

The real part of the DC magnetoelectric susceptibility is what
we aim to calculate:

lim
ω→0

Reχb(i, ω) = lim
ω→0

Re

{
i

ω

∑
j

πb(i, j, ω)

}
. (21)

After diagonalizing the lattice Hamiltonian in Eq. (7), we
obtain the eigenstate |n〉 with eigenenergy En, and calculate
the retarded response function πb(i, j, ω) by [34,49,50]

πb(i, j, ω) =
∑
m,n

〈n|σ b(i)|m〉〈m|J0
x ( j)|n〉 f (En) − f (Em)

ω + En − Em + iη
,

(22)

where η is a small artificial broadening. We are led to

lim
ω→0

Reχb(i, ω) = −
∑

j

∑
m,n

〈n|σ b(i)|m〉〈m|J0
x ( j)|n〉F̃ (En, Em),

F̃ (En, Em) =
∫

dω
η

(ω − En)2 + η2

(
1

π

∂ f (ω)

∂ω

)

× η

(ω − Em)2 + η2
. (23)

Numerically, including about ∼100 states near the Fermi sur-
face in the summation

∑
n and

∑
m is already sufficient to

obtain a precise χb since the nonequilibrium magnetoelec-
tric response is mainly contributed from these states, and
we choose the artificial broadening η = 0.05 (mean-free time

τ ∼ 10−14 s). Note that the diagonal elements vanish
F̃ (En, En) = 0 as implied in the definition in Eq. (22).

The following subtleties must be taken care of when ap-
plying the above linear response theory to our lattice model
in Eq. (7). For an isolated TI, Kramers theorem dictates that
every eigenstate is twofold spin degenerate. Moreover, the
surface states localized at the top z = Nz,TI and bottom z = 1
surfaces are degenerate, in addition to the degeneracy caused
by various spatial symmetries of the cubic lattice. The wave
functions that are degenerate can arbitrarily mix up in our
numerical calculation, which complicates the evaluation of
the matrix elements 〈n|σ b(i)|m〉 and 〈m|J0

x ( j)|n〉 in Eq. (23).
Thus, the following treatments must be implemented to ob-
tain a reasonable magnetoelectric response. First, we consider
the TI/FMM bilayer instead of an isolated TI, such that the
coupling tB �= 0 to the FMM on the top surface removes the
degeneracy between the two surfaces. Despite this coupling,
the magnetoelectric susceptibility at the bottom surface y = 1
still accurately captures the Edelstein effect of an isolated TI.
Second, we add random pointlike impurities into the lattice

Himp = Uimp

∑
i∈imp,Iσ

c†
iIσ ciIσ , (24)

where i ∈ imp denotes the impurity sites. The issue of impu-
rities is a realistic concern since the surface of prototype TIs,
such as Bi2Se3, is known to host native defects [51–53]. These
defects change the local chemical potential by an amount of
the order of ∼eV, as can be extracted from fitting the impurity
resonance [51,54], which is close to the hopping terms in our
lattice model, so we choose Uimp ∼ 1. We consider a rela-
tively larger impurity density 10% for the sake of removing
spatial degeneracies and smearing out the energy spectrum,
such that the accuracy of the numerical calculation can be
improved. With these treatments, our numerical calculation
can reach about 70% ∼ 80% accuracy, as estimated from the
variation of magnetoelectric susceptibility χb at different im-
purity configurations and system sizes, which is sufficient to
draw conclusions.

1. Magnetization direction S ‖ x̂

The result of the simulation for the magnetization pointing
along the current direction S ‖ x̂ is shown in Fig. 5, where
the magnetoelectric susceptibility χb averaged over the planar
directions (x, y) plotted as a function of out-of-plane coordi-
nate z is presented for the pristine and submerged types of
band structures, at two different values of interface hopping
tB = 0.2 and 0.4. We consider two different impurity poten-
tials Uimp = 1 and 2. To interpret these results, note that for
an isolated 3D TI, the spin-momentum locking of the surface
states shown in Fig. 1(b) is expected to give a current-induced
spin accumulation polarized along ŷ at the z = 1 surface and
−ŷ at the z = Nz,TI surface, i.e., the Edelstein effect, which is
correctly captured by the large χ y in Fig. 5 (red and orange
lines). Comparing the data at different impurity potentials,
one sees that χ y at the free surface z = 1 is dramatically
reduced at large impurity potential Uimp = 2. This is qualita-
tively consistent with a recent analysis of the Edelstein effect
based on a semiclassical approach [10], which suggests that
the current-induced spin polarization reduces quadratically
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FIG. 5. The fieldlike χ y and dampinglike χ z magnetoelectric
susceptibility induced by an external electric field along x̂ direction
and a magnetization also in the same direction S ‖ x̂, averaged over
planar coordinates (x, y) and then plotted as a function of out-of-
plane coordinate z. The four panels correspond to the two different
types of band structures in Fig. 2 labeled by pristine and submerged,
and at 10% of impurities with two different impurity potentials
Uimp = 1 and 2.

with the impurity potential χ y(z = 1) ∝ 1/U 2
imp. The abso-

lute magnitude of χ y(z = 1) at Uimp = 1 is the numerical
number χ y(z = 1) ∼ 0.1 multiplied by ae/t ∼ 10−9 mC/J.
At the typical experimental charge current jc ∼ 1011 A/m2

and the electrical conductivity of the FMM ∼107 S/m, the
corresponding electric field is E ∼ 104 kgm/Cs2, which ac-
cording to Eq. (20) yields a spin polarization per unit cell
σ b(i) ∼ 10−6 in units of Bohr magneton.

Near the TI/FMM interface, from Fig. 5 one sees that χb

extends into the FMM at z � 9. Because an isolated FMM has
χb = 0 everywhere (assuming no other mechanisms give the
spin accumulation, such as Rashba spin-orbit coupling), the
finite χb in the FMM entirely comes from the proximity to the
TI. Moreover, from Eq. (23) one sees that χb originates from
the states near the chemical potential Ek = 0, which include
both the surface-state Dirac cone and the FMM bulk bands
according to the band structures in Figs. 2 and 3. The spin
torque dS/dt on the magnetization is given by the averaged
spin accumulation in the FMM region

dS
dt

= Jex

h̄

[
1

Nz,FM

∑
z∈FM

χ(z)Ex

]
× S, (25)

following the usual Landau-Lifshitz dynamics. Because the
Edelstein effect of an isolated TI gives a spin accumulation
polarized along ŷ, it is customary to define the fieldlike torque
to be along S × ŷ and the dampinglike torque to be along S ×
(S × ŷ). From Fig. 5, it follows that the dominant component
is the fieldlike χ y (red and orange lines), and the dampinglike
χ z (blue and light blue lines) is generally one order of mag-
nitude smaller. In addition, both components are much larger
in the submerged type of band structure, and moreover the
spatial profile of χ y resembles the wave-function profile |ψ |2

FIG. 6. The planar averaged magnetoelectric susceptibility χb at
magnetization direction S ‖ ŷ and S ‖ ẑ plotted as a function of out-
of-plane coordinate z, for the pristine and submerged types of band
structures. The impurity potential is fixed at Uimp = 1.

in Fig. 2, suggesting that the percolation of the surface state is
crucial to the magnitude of the spin torque.

This predominantly fieldlike torque is similar to that oc-
curs in the 2D version of this problem [34], which has
been attributed to the real wave functions of the perco-
lated surface states that cannot accumulate a spin-dependent
phase, unlike the spin-transfer torque in usual metallic het-
erostructures [55,56] and spin Hall systems [57,58] where
the spin-polarized plane waves accumulates a spin-dependent
phase that eventually yields a dampinglike torque. At a typical
external electric current jc ∼ 1011 A/m2, the spin polariza-
tion is basically the numerical values of χb multiplied by GHz,
which is close to that observed experimentally [16].

2. Magnetization directions S ‖ ŷ and S ‖ ẑ

Figures 6(a) and 6(b) show the result for the magnetization
along S ‖ ŷ. Focusing on the free surface z = 1, we uncover
that the magnetoelectric susceptibility is not only polarized
in the direction χ y (not shown) expected from the Edelstein
effect, but also has χ x and χ z components. As these two
components are beyond the usual semiclassical picture that
treats each impurity as an independent scatterer [10], they are
attributed to the interference effect at high impurity densities
(10% in our numerical calculation), and their magnitudes are
generally few times or one order smaller than χ y. Moreover,
although this S ‖ ŷ case is not expected to produce any torque
according to the discussion after Eq. (25), the magnetization
in the FMM in fact experiences a torque in both x̂ and ẑ direc-
tions as a result of this interference effect and the percolation
of the surface state. Once again, χ x and χ z are larger in the
submerged type of band structures, and has a spatial profile
that varies significantly with the interface hopping tB.

Finally, we present the result for the out-of-plane mag-
netization S ‖ ẑ in Figs. 6(c) and 6(d). This case is similar
to the other two magnetization directions, namely, we ob-
serve a predominantly fieldlike spin torque due to the χ y
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component whose percolation into the FMM is more promi-
nent in the submerged type of band structure. The dampinglike
component χ x is rather insignificant compared to the fieldlike
component. Nevertheless, at the free surface z = 1 of the TI a
significant amount of χ x is induced due to the impurity effect.
The magnitude of all these components is reduced at larger
impurity potential Uimp. As a final remark, we mention that at
the relatively large 10% impurity density we choose, quantum
interference effect is presumably more severe, which may also
be an important mechanism for these results.

III. CONCLUSIONS

In summary, the spintronic properties of TI/FMM bilayers
are investigated by means of a regularized cubic lattice model
that simultaneously takes into account the surface-state Dirac
cone and the FMM bulk bands. We distinguish the pristine and
the submerged types of band structures according to whether
the Dirac cone overlaps with the FMM bulk bands, which
is determined by the work functions of the two materials.
Through investigating the wave function and spin polariza-
tion of the eigenstates at different momenta, we find that
the surface state of the TI percolates into the FMM, and the
spin-momentum locking of the surface state is distorted by the
magnetization. As moving from small to large momentum, the
Dirac cone gradually merges with the FMM bulk bands, and
the spin polarization gradually rotates to be along the magne-
tization. For the submerged type of band structure, the Dirac
cone and the FMM bulk bands become highly intertwined,
and hence it is rather ambiguous to distinguish the surface
states and the FMM quantum well states.

Particularly for the case of in-plane magnetization, the
spin-momentum locking coupled to the magnetization renders
a band structure that is asymmetric in the direction perpendic-
ular to the magnetization. As a result, the system develops a
persistent laminar current whose direction of flow depends on
the out-of-plane coordinate, which paves a way for a mag-
netization induced room-temperature persistent current that
extends over macroscopic scale. Moreover, the proximity to
the FMM also induces a laminar spin current, whose spatial
profile is roughly independent from the direction of mag-
netization, but highly influenced by the detail of the band
structure.

The current-induced spin torque is found to be contributed
from both the Dirac cone and the FMM bulk bands, and is
predominantly fieldlike along S × ŷ owing to the real wave
functions of the percolated surface states. On the other hand,
impurities can generate a dampinglike torque along S × (S ×
ŷ). Our results suggest the following directions to engineer
the spin torque: (i) Since doping can efficiently change the

TI chemical potential [7,37,38], and the spin torque is larger
for the submerged type of band structure, doping the TI
in the TI/FMM bilayers to engineer the band structure can
change the magnitude of the spin torque, although the real-
istic band structures may render a rather complicated doping
dependence in practice. (ii) The spin torque exists even if the
magnetization points along S ‖ ŷ, which is a unique feature of
the percolated surface state beyond the usual spin-orbit torque
paradigm [31–33]. (iii) Impurities suppress the Edelstein ef-
fect in the TI dramatically [10], which may be confirmed
by comparing samples with different impurity densities. We
anticipate that these results help to engineer the spin torque to
suit practical applications, and the factors that are not included
in our minimal lattice model, such as Rashba splitting and
hexagonal warping, are left for future investigations.
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APPENDIX: DETAIL OF THE CHARGE AND SPIN
CURRENT OPERATORS

In practice, we may simplify the calculation of the current
operators by the following method. Since only hopping terms
in Eq. (7) contribute to the current operator, we focus on these
terms that generally take the form

H δ
LαMβ =

∑
j

T δ
LαMβc†

jLαc j+δMβ + T δ∗
LαMβc†

j+δMβc jLα,

(A1)

which describes the hopping of electron between
site/orbital/spin jLα and j + δMβ along the planar
directions δ = {a, b}, with T δ

LαMβ the hopping amplitude.
The hopping part of the total Hamiltonian is the summation of
Ht = ∑

δ

∑
LαMβ H δ

LαMβ . Directly evaluating the commutator
and then comparing with the definitions in Eq. (11), and
separating the i + δ and i − δ parts yield

J0
i,i+δ = ia

h̄

∑
IM

{
T δ

IσMβc†
iIσ ci+δMβ − T δ∗

IσMβc†
i+δMβciIσ

}
,

Ja
i,i+δ = ia

h̄

∑
IM

{
T δ

IλMβc†
iIησ

a
ηλci+δMβ − T δ∗

IηMβc†
i+δMβσ a

ηλciIλ
}
.

(A2)

Collecting all the hopping terms, we arrive at the charge
currents flowing the positive directions

J0
i,i+a = ia

h̄

{
t‖

∑
I

[c†
iI↑ci+aI↓ − c†

iI↓ci+aI↑] − H.c.

}∣∣∣∣∣
i∈TI

+ ia

h̄

{
M2

∑
σ

[−c†
isσ ci+asσ + c†

ipσ ci+apσ ] − H.c.

}∣∣∣∣∣
i∈TI

− ia

h̄
tF

∑
Iσ

{c†
iIσ ci+aIσ − H.c.}

∣∣∣∣∣
i∈FM

,
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J0
i,i+b = ia

h̄

{
it‖

∑
I

[−c†
iI↑ci+bI↓ − c†

iI↓ci+bI↑] − H.c.

}∣∣∣∣∣
i∈TI

+ ia

h̄

{
M2

∑
σ

[−c†
isσ ci+bsσ + c†

ipσ ci+bpσ ] − H.c.

}∣∣∣∣∣
i∈TI

− ia

h̄
tF

∑
Iσ

{c†
iIσ ci+bIσ − H.c.}

∣∣∣∣∣
i∈FM

. (A3)

The spin currents polarized along σ x and flowing along positive directions are

Jx
i,i+a = ia

h̄

{
t‖

∑
I

[−c†
iI↑ci+aI↑ + c†

iI↓ci+aI↓] − H.c.

}∣∣∣∣∣
i∈TI

+ ia

h̄

{
M2

∑
σ

[−c†
isσ ci+asσ + c†

ipσ ci+apσ ] − H.c.

}∣∣∣∣∣
i∈TI

,

− ia

h̄
tF

∑
I

{
c†

iIασ x
αβci+aIβ − H.c.

}∣∣∣∣∣
i∈FM

,

Jx
i,i+b = ia

h̄

{
it‖

∑
I

[−c†
iI↑ci+bI↑ − c†

iI↓ci+bI↓] − H.c.

}∣∣∣∣∣
i∈TI

+ ia

h̄

{
M2

∑
σ

[−c†
isσ ci+bsσ + c†

ipσ ci+bpσ ] − H.c.

}∣∣∣∣∣
i∈TI

− ia

h̄
tF

∑
I

{
c†

iIασ x
αβci+bIβ − H.c.

}∣∣∣∣∣
i∈FM

. (A4)

The spin currents polarized along σ y and flowing along positive directions are

Jy
i,i+a = ia

h̄

{
it‖

∑
I

[c†
iI↑ci+aI↑ + c†

iI↓ci+aI↓] − H.c.

}∣∣∣∣∣
i∈TI

+ ia

h̄

{
iM2

∑
σ

[σc†
isσ ci+asσ − σc†

ipσ ci+apσ ] − H.c.

}∣∣∣∣∣
i∈TI

− ia

h̄
tF

∑
I

{
c†

iIασ
y
αβci+aIβ − H.c.

}∣∣∣∣∣
i∈FM

,

Jy
i,i+b = ia

h̄

{
t‖

∑
I

[−c†
iI↑ci+bI↑ + c†

iI↓ci+bI↓] − H.c.

}∣∣∣∣∣
i∈TI

+ ia

h̄

{
iM2

∑
σ

[σc†
isσ ci+bsσ − σc†

ipσ ci+bpσ ] − H.c.

}∣∣∣∣∣
i∈TI

− ia

h̄
tF

∑
I

{
c†

iIασ
y
αβci+bIβ − H.c.

}∣∣∣∣∣
i∈FM

, (A5)

where σ = {↑,↓} = {+,−}. Finally, the spin currents polarized along σ z and flowing along positive directions are

Jz
i,i+a = ia

h̄

{
t⊥

∑
I

[c†
iI↑ci+aI↓ + c†

iI↓ci+aI↑] − H.c.

}∣∣∣∣∣
i∈TI

+ ia

h̄

{
M2

∑
σ

[−σc†
isσ ci+asσ + σc†

ipσ ci+apσ ] − H.c.

}∣∣∣∣∣
i∈TI

− ia

h̄
tF

∑
I

{
c†

iIασ z
αβci+aIβ − H.c.

}∣∣∣∣∣
i∈FM

,

Jz
i,i+b = ia

h̄

{
it⊥

∑
I

[−c†
iI↑ci+bI↓ + c†

iI↓ci+bI↑] − H.c.

}∣∣∣∣∣
i∈TI

+ ia

h̄

{
M2

∑
σ

[−σc†
isσ ci+bsσ + σc†

ipσ ci+bpσ ] − H.c.

}∣∣∣∣∣
i∈TI

− ia

h̄
tF

∑
I

{
c†

iIασ z
αβci+bIβ − H.c.

}∣∣∣∣∣
i∈FM

. (A6)

The expectation values of these current operators can then be evaluated using the eigenstates |n〉 after diagonalizing the lattice
Hamiltonian. Alternatively, one may perform the Fourier transform in Eq. (9) and then evaluate the expectation values of these
current operators in the (kx, ky, nz ) basis.
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