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We propose an efficient microscopic design procedure of electronic band structures having intrinsic spin
and momentum dependences in spin-orbit-coupling free antiferromagnets. Our bottom-up design approach to
creating desired spin-split and reshaped electronic band structures could result in further findings of practical
spin-orbit-coupling free materials exhibiting a giant spin-dependent and/or nonreciprocal transport, magneto-
electric and elastic responses, and so on, as a consequence of such band structures. We establish a systematic
guideline to construct symmetric/antisymmetric spin-split and antisymmetrically deformed spin-independent
band structures in spin-orbit-coupling free systems by using two polar multipole degrees of freedom, i.e.,
electric and magnetic toroidal multipoles. The two polar multipoles constitute a complete set and describe
arbitrary degrees of freedom in the hopping Hamiltonian, whose onsite and offsite degrees of freedom in a
cluster are described as the so-called cluster and bond multipoles, respectively, and another degree of freedom
connecting between clusters is expressed as momentum multipoles. By using these multipole descriptions, we
elucidate simple microscopic conditions to realize intrinsic band deformations in magnetically ordered states:
The symmetric spin splitting is realized in collinear magnets when cluster and bond multipoles contain the
same symmetry of multipoles. The antisymmetric spin splitting occurs in noncollinear antiferromagnets when
a bond-type magnetic toroidal multipole is present. Furthermore, the antisymmetric band deformation with
spin degeneracy is realized in noncoplanar antiferromagnets. We exemplify three lattice systems formed by a
triangle unit, triangular, kagome, and breathing kagome structures, to demonstrate the band deformations under
the magnetic ordering. On the basis of the proposed procedure, we list up various candidate materials showing
intrinsic band deformations in accordance with MAGNDATA, magnetic structures database.
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I. INTRODUCTION

The electronic band structures in solids play an impor-
tant role in determining fundamental physical properties. In
general, the electronic band dispersions εσ (k), which are
characterized by the wave vector k and the spin σ , are clas-
sified according to the presence and absence of space-time
inversion symmetry, where the spatial inversion operation, P ,
transforms εσ (k) as Pεσ (k) = εσ (−k) and the time-reversal
operation, T , transforms εσ (k) as T εσ (k) = ε−σ (−k). In the
presence of P and T , i.e., in the centrosymmetric param-
agnetic state, the system has a twofold degeneracy, εσ (k) =
εσ (−k) = ε−σ (k) in the entire Brillouin zone. The spin-split
band structure is realized once either P or T is broken: The
breaking of T (P) results in the (anti)symmetric spin splitting
in momentum space, provided that the spin and momentum
degrees of freedom are coupled with each other. This is re-
ferred to as the spin-momentum locking [1–3].

One of the microscopic key ingredients to connect the
spin degree of freedom with kinetic motion of electrons is
the spin-orbit coupling (SOC). For example, the relatively
large SOC brings about the large antisymmetric spin split-
ting in the noncentrosymmetric materials, such as a polar
semiconductor BiTeI [1,4,5] and monolayer transition-metal

dichalcogenides, MX2 (M = Mo, W and X = S, Se) [6–9].
Although materials with the large SOC give rise to in-
triguing physical phenomena, such as the magnetoelectric
effect [10–14], spin Hall effect [2,15–18], and nonrecipro-
cal optics [19–24], it is usually nontrivial to control them
microscopically, since the SOC is predominant in the compli-
cated atomic orbitals and chemical composition. It prevents
us engineering large spin splittings by tuning the built-
in SOC of the materials constituted of moderately heavier
elements.

On the contrary, recent studies indicate that even with-
out relying on the SOC, a change of electronic state by
magnetic orderings leads to a similar spin splitting de-
pending on the crystal momentum [25–30]. It has been
discussed that the symmetric spin splitting with respect
to momentum is realized in a nonsymmorphic organic
compound, κ-(BETD-TTF)2Cu[N(CN)2]Cl [26,28] and a dis-
torted tetragonal compound, RuO2 [25,31] with collinear-type
antiferromagnetic (AFM) structures. The subsequent similar
works also discuss the spin splitting based on the band calcu-
lation in one of the candidate materials, MnF2 [30]. Moreover,
antisymmetric spin splitting can be realized as well in a trig-
onal oxide Ba3MnNb2O9 with a noncollinear AFM structure
[29].
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(ii) Perform irreducible decomposition 

: electric multipole  (onsite, real bond)
: magnetic toroidal multipole  (imaginary bond)

(iv) Decompose the Hamiltonian into scalar form.

(v) Extract couplings among multipoles and spin.  

- hopping part (bond and momentum multipoles)

- mean-field part (cluster multipoles and spin)

Symmetric spin splitting

Antisymmetric spin splitting

Antisymmetric band deformation

matrix onsite
1st neighbor (real)
1st neighbor (imaginary)
2nd neighbor (real)

…
…

…

(iii) Assign multipoles for each irrep. 

symmetry-adapted basis set

: strength of the mean field 

FIG. 1. Outline of the engineering procedure of the spin-split and reshaped band structures in terms of augmented multipoles.

The spin splittings driven by the magnetic phase tran-
sition induce interesting physical phenomena through the
anisotropic spin-dependent kinetic motions of electrons, for
instance, it is proposed the spin current generation by an
electric field [25–27] in collinear magnets and by a shear-type
strain in noncollinear magnets [29]. It is also shown that
nonreciprocal transport arising from the antisymmetrically
reshaped band structure is expected in noncoplanar mag-
nets [29,32]. Such a magnetic-order-driven band deformation
has an advantage in its flexible controllability, i.e., it can
be accessible by external fields, pressure, and temperature.
Furthermore, due to their kinetic origin, large spin splittings
can be expected for the materials even with the negligibly
small SOC. This aspect is significant to extend the scope of
materials and explore further efficient functional materials in
the field of AFM spintronics [33,34].

In the present study, we further develop the above scenario,
and we provide a complete microscopic guideline to engineer
spin- and momentum-dependent band structures in SOC free
AFMs. Our guideline is essentially based on local symmetry,
which is embodied by the concept of augmented multipoles,
especially with the electric and magnetic toroidal multipoles
[35–39]. The analysis of couplings among these multipoles in
the given Hamiltonian provides necessary ingredients for the
band deformations, instead of performing band calculations.
By introducing cluster-, bond-, and momentum-type electric
and magnetic toroidal multipoles in a magnetic cluster, we can
analyze which effective multipole coupling realizes the spin
splitting and/or band deformation. Specifically, the symmetric
spin splitting occurs in collinear AFMs when the Hamiltonian
contains cluster and bond multipoles with the same sym-
metry. Similarly, the antisymmetric spin splitting is realized
in noncollinear AFMs when a bond-type magnetic toroidal
multipole is activated through the magnetic phase transi-
tion. Furthermore, the antisymmetric band deformation with
keeping spin degeneracy is realized in noncoplanar AFMs.
We exemplify three lattice systems consisting of a triangle
unit, triangular, kagome, and breathing kagome structures,
to demonstrate how the (spin-dependent) band deformations

occur. Our analysis provides a simple prescription of bottom-
up design for arbitrary electronic band structures from a
microscopic viewpoint. This simple procedure promotes fur-
ther findings of materials exhibiting a giant spin splitting and
related physical responses in SOC free AFMs. As a fruitful
outcome, we list up candidate materials showing intrinsic
spin splitting and/or band deformations in accordance with
MAGNDATA [40], magnetic structures database.

II. OUTLINE

First, let us show the abstract procedure to engineer the
spin-split and/or reshaped band structures by AFM. The over-
all guideline is summarized in Fig. 1, which consists of the
following five parts:

(i) Set an N-site magnetic cluster to describe AFM struc-
tures, such as triangle, square, hexagon, and tetrahedron, in
accordance with the crystallographic point groups.

(ii) Perform irreducible decomposition of an arbitrary her-
mitian matrix in the cluster for onsite and nth-neighbor bonds
according to the point group. The independent N × N degrees
of freedom are decoupled into the symmetry-adapted N onsite
degrees of freedom, and N (N − 1) off-diagonal ones in which
half of them are for real part, and another half of them are
imaginary part.

(iii) Assign the augmented multipoles to each decom-
posed irreducible representation (irrep.), which gives intuitive
view of microscopic degrees of freedom. In the decoupled
spin and orbital basis, an introduction of two types of multi-
poles, electric and magnetic toroidal multipoles, is sufficient,
which describe polar tensors with time-reversal even and odd,
respectively. The onsite and real bond degrees of freedom are
represented by the electric multipoles, whereas the imaginary
bond degrees of freedom are represented by the magnetic
toroidal multipoles. These multipoles are used to span the
given Hamiltonian as the symmetry-adapted basis set.

(iv) Decompose the hopping and mean-field Hamiltonians
into a “scalar-product” form in terms of electric and magnetic
toroidal multipoles. The hopping Hamiltonian is described by
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a linear combination of products between bond and momen-
tum multipoles, while the mean-field Hamiltonian is described
by a linear combination of products between cluster multi-
poles and Pauli matrices of spins.

(v) Extract effective spin-multipole couplings by eval-
uating momentum-dependent spin moments. An effective
coupling between cluster (molecular field) and bond multi-
poles induces momentum multipoles, which yields symmet-
ric, antisymmetric spin splittings, and antisymmetric band
deformations depending on the type of multipole couplings:
The symmetric spin splitting is represented by momentum
electric multipoles, and the antisymmetric spin splitting or
spin-independent band deformation is represented by momen-
tum magnetic toroidal multipoles.

Through the above procedure, the microscopic conditions
(e.g., which part of hopping element is indispensable, or
significant to obtain large splitting, deformation, etc.) for
emergent symmetric and antisymmetric spin splittings and
antisymmetric band deformations are systematically derived.

The rest of the paper is organized as follows. In Sec. III, we
set a magnetic cluster and perform irreducible decomposition
for onsite and bond degrees of freedom, which corresponds
to the procedures (i) and (ii). The remaining procedures (iii)
to (v) are explained in Secs. IV and V. In Sec. IV, we
introduce the concept of three kinds of multipoles, cluster,
bond, and momentum multipoles representing different elec-
tronic degrees of freedom. We describe a general condition of
the spin-split band structure and asymmetric spin-degenerate
band deformation in Sec. V. In Sec. VI, we show three ex-
amples by considering the periodic lattice systems comprised
of the triangle unit. We discuss potential candidate materials
to exhibit spin splittings and band deformations driven by the
magnetic order and summarize the paper in Sec. VII. In two
Appendices, we show the explicit expressions of the electric
multipoles in Appendix A, and classification of multipoles
under eleven Laue classes in Appendix B.

Throughout this paper, we focus on the limit of negligibly
small SOC to extract intrinsic role of the multipole-spin cou-
plings, and then we adopt the spin-orbital decoupled basis to
express the electronic degrees of freedom.

III. MAGNETIC CLUSTER AND IRREDUCIBLE
DECOMPOSITION OF ELECTRONIC

DEGREES OF FREEDOM

Before introducing the multipole descriptions, we perform
the irreducible decomposition of the internal electronic de-
grees of freedom by using the group theory. A magnetic
cluster is introduced as a unit to represent the AFM structure.
In other words, the magnetic cluster represents the minimal
magnetic unit cell we focus on. In the following, we consider
the single-orbital model and ignore the atomic orbital degree
of freedom, although the extension to the multiorbital system
is straightforward. Then, a spinless basis wave function is
represented by φ = (φ1, φ2, · · · , φN ) where φi is the wave
function at sublattice i and N is the number of sublattices.
The Hamiltonian for one-body electronic state is represented
by the N × N matrix except for the spin degree of freedom.
As the Hamiltonian is hermitian matrix, its matrix elements
are decomposed into the N diagonal part, the N (N − 1)/2 real

matrix
A

B

C

D

onsite degree of freedom

real bond degree of freedom

imaginary bond degree of freedom

1st neighbor

1st neighbor

2nd neighbor

2nd neighbor

Ex.) Square cluster

FIG. 2. Schematic picture of a four-site square cluster. The 16 in-
dependent matrix elements are decomposed into four onsite degrees
of freedom hi, six plus six bond degrees of freedom ti j = t ′

i j + it ′′
i j

for the real and imaginary components. The corresponding matrix
elements and irrep. under the point group D4h are also shown.

and imaginary off-diagonal parts. The N diagonal elements
correspond to the onsite degrees of freedom such as charge
and spin densities, while the N (N − 1) off-diagonal elements
correspond to the bond degrees of freedom representing off-
site kinetic motion of electrons. For each part, the irreducible
decomposition can be performed according to the point group
symmetry. It is noted that the N (N − 1) bond degrees of
freedom can be further decomposed into nth-neighbor bond
degree of freedom of the real and imaginary components.

As an example, let us consider a square cluster consisting
of four sublattice as shown in Fig. 2, which belongs to the
point group D4h. The Hamiltonian matrix in spinless space is
generally represented by the 4 × 4 matrix as

H =
∑

i, j=A,B,C,D

c†
i Hi jc j, (1)

H =

⎛
⎜⎝

hA tAB tAC tAD

tBA hB tBC tBD

tCA tCB hC tCD

tDA tDB tDC hD

⎞
⎟⎠, (2)

where c†
i (ci) is the creation (annihilation) operator at site i. hi

and ti j = t∗
ji (i, j = A, B, C, D) are real and complex numbers

corresponding to onsite and hopping terms, respectively. The
Hamiltonian matrix H in Eq. (2) is specified by giving 16 in-
dependent model parameters consisting of four hi and twelve
ti j .

The matrix H is decomposed into the onsite potential
and the hopping parts. The sublattice-basis wave function
{φA, φB, φC, φD} is decomposed into the irreducible repre-
sentation (irrep.) of the point group D4h as A1g ⊕ B2g ⊕ Eu,
each of which represents the molecular orbital belonging to
its irrep. Then, the internal degrees of freedom is given by
its direct product as (A1g ⊕ B2g ⊕ Eu) ⊗ (A1g ⊕ B2g ⊕ Eu) =
2A+

1g ⊕ B+
1g ⊕ B+

2g ⊕ 2E+
u ⊕ A−

2g ⊕ B−
2g ⊕ 2E−

u , where the sub-
script represents the spatial parity (even: g, odd: u) and
the superscript represents the time-reversal parity (even: +,
odd: −). Among them, for the onsite part, four parameters
(hA, hB, hC, hD) are decomposed into A+

1g ⊕ B+
2g ⊕ E+

u . By
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TABLE I. Irreducible decomposition of the Hamiltonian matrix for the representative clusters [27]. # represents the number of sublattice.
The parentheses in the fifth and sixth columns represent the irrep. for each neighbor bond.

Cluster # PG Onsite Real bond Imaginary bond

Triangle 3 D3h A′+
1 ⊕ E ′+ A′+

1 ⊕ E ′+ A′−
2 ⊕ E ′−

Rectangle 4 D2h A+
g ⊕ B+

1g ⊕ B+
2u ⊕ B+

3u (A+
g ⊕ B+

2u) ⊕ (A+
g ⊕ B+

3u) ⊕ (A+
g ⊕ B+

1g) (B−
1g ⊕ B−

3u) ⊕ (B−
1g ⊕ B−

2u) ⊕ (B−
2u ⊕ B−

3u)
Square 4 D4h A+

1g ⊕ B+
2g ⊕ E+

u (A+
1g ⊕ B+

1g ⊕ E+
u ) ⊕ (A+

1g ⊕ B+
2g) (A−

2g ⊕ B−
2g ⊕ E−

u ) ⊕ (E−
u )

Hexagon 6 D6h A+
1g ⊕ B+

1u ⊕ E+
1u ⊕ E+

2g (A+
1g ⊕ B+

1u ⊕ E+
1u ⊕ E+

2g) (A−
2g ⊕ B−

2u ⊕ E−
1u ⊕ E−

2g)
⊕(A+

1g ⊕ B+
2u ⊕ E+

1u ⊕ E+
2g) ⊕ (A+

1g ⊕ E+
2g) ⊕(A−

2g ⊕ B−
1u ⊕ E−

1u ⊕ E−
2g) ⊕ (B−

1u ⊕ E−
1u)

Tetrahedron 4 Td A+
1 ⊕ T +

2 A+
1 ⊕ E+ ⊕ T +

2 T −
1 ⊕ T −

2

Octahedron 6 Oh A+
1g ⊕ E+

g ⊕ T +
1u (A+

1g ⊕ E+
g ⊕ T +

1u ⊕ T +
2g ⊕ T +

2u ) (A−
2g ⊕ E−

g ⊕ T −
1g ⊕ T −

1u ⊕ T −
2u ) ⊕ (T −

1u )
⊕(A+

1g ⊕ E+
g )

Cube 8 Oh A+
1g ⊕ A+

2u ⊕ T +
1u ⊕ T +

2g (A+
1g ⊕ E+

g ⊕ T +
1u ⊕ T +

2g ⊕ T +
2u ) (A−

2u ⊕ E−
u ⊕ T −

1g ⊕ T −
1u ⊕ T −

2g )
⊕(A+

1g ⊕ A+
2u ⊕ E+

g ⊕ E+
u ⊕ T +

1u ⊕ T +
2g ) ⊕(T −

1g ⊕ T −
1u ⊕ T −

2g ⊕ T −
2u )

⊕(A+
1g ⊕ T +

2g ) ⊕(A−
2u ⊕ T −

1u )

applying the symmetry operation of D4h to the degrees of
freedom in the magnetic cluster, one can find that the matrix
elements in each irrep. are given by

A+
1g : hA = hB = hC = hD,

B+
2g : hA = hB = −hC = −hD,

E+
u : hA = −hB = −hC = hD,

: hA = −hB = hC = −hD. (3)

For the hopping part, the hopping parameters ti j are divided
into the real (t ′

i j = t ′
ji ) and imaginary (t ′′

i j = −t ′′
ji ) components.

By performing the irreducible decomposition for each nth-
neighbor bond, the real part is decomposed into

A+
1g : t ′

AC = t ′
AD = t ′

BC = t ′
BD,

B+
1g : −t ′

AC = t ′
AD = t ′

BC = −t ′
BD,

E+
u : t ′

AD = −t ′
BC, t ′

AC = t ′
BD = 0,

: t ′
AC = −t ′

BD, t ′
AD = t ′

BC = 0, (4)

for the first-neighbor bond, and

A+
1g : t ′

AB = t ′
CD,

B+
1g : t ′

AB = −t ′
CD, (5)

for the second-neighbor bond.
Similarly, the imaginary bond degree of freedom is decom-

posed into

A−
2g : −t ′′

AC = t ′′
AD = t ′′

BC = −t ′′
BD,

B−
2g : t ′′

AC = t ′′
AD = t ′′

BC = t ′′
BD,

E−
u : −t ′′

AC = t ′′
BD, t ′′

AD = t ′′
BC = 0,

: −t ′′
AD = t ′′

BC, t ′′
AC = t ′′

BD = 0, (6)

for the first-neighbor bond, and

E−
u : −t ′′

AB = t ′′
CD,

: t ′′
AB = t ′′

CD, (7)

for the second-neighbor bond.
In general, the N × N matrix elements in N sublattice

cluster are also represented by the irreps. of the given point

group. It is noted that such an irreducible decomposition is
performed much more intuitively by using the multipole de-
scription, as will be shown in the next section. We summarize
the irreducible decomposition for onsite and bond degrees of
freedom in the representative clusters in Table I [27].

IV. MULTIPOLE DESCRIPTION

In this section, we describe the concept of multipole. We
introduce three kinds of multipole notations, which are nec-
essary to describe the distinct electronic degrees of freedom
in the tight-binding model. The cluster multipole is used to
describe the onsite degree of freedom in Sec. IV A, the bond
multipole is for the bond degree of freedom in Sec. IV B,
and the momentum multipole is for a wave-vector-dependent
form factor in periodic lattice systems in Sec. IV C. Then, we
show the correspondence between the irreps. explained in the
previous section and these multipoles in Sec. IV D.

A. Cluster multipole

The cluster multipole is defined to describe the onsite de-
gree of freedom in the tight-binding Hamiltonian. As arbitrary
onsite degrees of freedom are represented by a superposition
of local potentials at each atomic site, all the anisotropic
charge distributions in a cluster are systematically represented
by using the spherical harmonics with the origin at the center
of the cluster, which is related to the electric multipole de-
gree of freedom [41–43]. Eventually, the anisotropic charge
distributions on cluster sites are described as a cluster electric
multipole Q̃(c)

lm , which is given by

Q̃(c)
lm =

N∑
i=1

q(lm)
i Olm(Ri ), (8)

where Olm(Ri ) = √
4π/(2l + 1)Rl

iY
∗

lm(R̂i ), Ri = (Xi,Yi, Zi ) is
the position vector of ith cluster site, q(lm)

i is the local elec-
tric charge of ith cluster site, and N is the number of sites
in a cluster. We omit electric charge unit −e for notational
simplicity. Ylm(R̂i ) is the spherical harmonics as a function of
angle R̂i = Ri/|Ri| with the azimuthal and magnetic quantum
numbers, l and m (−l � m � l). In the following, we regard
the symbol Olm(r) as the harmonics of the point group such
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(a)

(b)

FIG. 3. (a) Collinear AFM order in a square cluster under the
point group D4h. The collinear order parameter (Q(c)

xy σy) is decom-
posed into the electric-quadrupole-type alignment of point charges
(Q(c)

xy ) and the spin along the y direction (σy). (b) Coplanar magnetic
order in a square cluster, which is regarded as a superposition of two
collinear spin components with Q(c)

x σx and Q(c)
y σy.

as cubic and hexagonal ones instead of the spherical harmon-
ics, which are real functions given by linear combinations of
Olm and Ol−m as shown in Appendix A [41]. Through this
expression, we define q(lm)

i for the specified electric multipole,
and the corresponding matrix (operator) expression is given
by Q(c)

lm = ∑
i q(lm)

i |i〉 〈i| where |i〉 is the atomic site basis.
Such a cluster multipole can also describe magnetic order-

ing patterns in a cluster [44,45]. In the spin-orbital decoupled
basis, it is useful to express the magnetic structure as a linear
combination of direct products of Q(c)

lm and the Pauli ma-
trices of spin σ = (σx, σy, σz ). Then, any types of magnetic
orderings coupled with the corresponding molecular fields are
expressed by a linear combination of Q(c)

lm σμ. Namely, the
mean-field Hamiltonian of the AFM ordering is represented
by

Hm =
∑
lm

∑
μ=x,y,z

mμ

lmQ(c)
lm σμ, (9)

where the coefficient mμ

lm is a conjugate field of an order
parameter in the AFM state. As Q(c)

lm is time-reversal-even
and σμ is time-reversal-odd, Hm is time-reversal-odd as it is
a symmetry breaking term. From the multipole viewpoint,
the ordering pattern is characterized by the type of the emer-
gent multipole: The ferromagnetic structure corresponds to
the isotropic electric monopole and the AFM structure cor-
responds to the anisotropic electric multipoles for l � 1.

In the case of the collinear AFM order, the mean-field
Hamiltonian matrix is represented by the single component of
σμ where μ denotes the ordered moment direction, although
it is taken to be arbitrary in the absence of the SOC. We show
an example of the staggered AFM ordering in a square cluster
under the point group D4h in Fig. 3(a). By decomposing this
magnetic structure into the alignment of point charges and
spin as shown in Fig. 3(a), and then, evaluating Q(c)

lm via
Eq. (8), one can find that the corresponding multipole is Q(c)

xy .

Such a multipole description is also understood from a
symmetry viewpoint. The mean-field matrix in a square clus-
ter in Eq. (2) is represented by

Hm = hσ

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠, (10)

where σ = ±1 for up and down spins. From Eq. (3), this
matrix element except for σ belongs to the irrep. B+

2g under
the point group D4h, which is the same irrep. of the Q(c)

xy -type
electric quadrupole (See also the correspondence between the
irrep. under the point group and multipoles in Sec. IV D) [37].
More intuitively, the real-space point charge alignment in a
square cluster clearly indicates the presence of xy-type electric
quadrupole; the positive charges are in the [110] direction,
while the negative ones are in the [1̄10] direction.

In a similar manner, coplanar and noncoplanar magnetic
structures are described by a linear combination of two and
three components of σμ, respectively. Figure 3(b) shows an
example of the coplanar spin structure in a square cluster
where each spin points to the 〈110〉 radial direction. Also in
this case, the plane including spins is taken to be arbitrary due
to spin rotational symmetry. By using Eq. (8) for two spin
components, one can find that the spin pattern in Fig. 3(b)
is proportional to Q(c)

x σx + Q(c)
y σy. The mean-field matrix is

given in the form of

Hm = h

⎡
⎢⎣σx

⎛
⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ + σy

⎛
⎜⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠

⎤
⎥⎦. (11)

It is apparent from Fig. 3(b) that Q(c)
x and Q(c)

y represent the x
and y electric dipoles in the multipole language.

B. Bond multipole

The bond multipole is introduced to describe the bond
degree of freedom in the system, which corresponds to the
off-diagonal hopping part in the tight-binding Hamiltonian
[46].

First, to get an intuitive insight into the relation between
bond multipoles and hoppings, let us consider a two-site prob-
lem connected by the complex hopping t = t ′ + it ′′. The two
sites are denoted as A and B, which are separated by the
distance a in the x direction. By using the molecular-orbital
basis {|φ1〉 , |φ2〉} instead of the atomic site basis {|A〉 , |B〉},
the real and imaginary hopping matrices are transformed as

Re[Ht ] =
(

t ′ 0
0 −t ′

)
, iIm[Ht ] =

(
0 −it ′′

it ′′ 0

)
, (12)

where |φ1〉 = (1/
√

2)(|A〉 + |B〉) and |φ2〉 = (1/
√

2)(|A〉 −
|B〉). As the anisotropy of the molecular orbitals {|φ1〉 , |φ2〉} is
the same as the s- and px-orbital wave functions, the ordinary
atomic-scale multipole description in Ref. [36] can be applied.
Then, by comparing the matrix elements in s-px orbital basis,
Re[Ht ] corresponds to the electric monopole Q0, while Im[Ht ]
corresponds to the magnetic toroidal dipole Tx [36]. This re-
sult indicates that the real hopping is expressed as the electric
monopole on the bond center, while the imaginary hopping
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is expressed as the magnetic toroidal dipole along the bond
direction. This assignment of multipole moments on the bond
center is reasonable from a symmetry viewpoint, since the real
(imaginary) hopping is equivalent with the time-reversal-even
scalar (time-reversal-odd polar vector), which corresponds to
the electric monopole (magnetic toroidal dipole).

This result is generalized for arbitrary cluster systems. Any
types of hoppings are represented by bond electric and mag-
netic toroidal multipoles, Q̃(b)

lm and T̃ (b)
lm , which are expressed

as

Q̃(b)
lm =

Nbond∑
(i j)

q(lm)
(i j) Olm(R(i j) ), (13)

T̃ (b)
lm =

Nbond∑
(i j)

t (lm)
(i j) · ∇Olm(R(i j) ), (14)

where Nbond is the number of bonds in a cluster and R(i j) is the
position vector at the i- j bond center. q(lm)

(i j) and t (lm)
(i j) are the lo-

cal electric charge and local magnetic toroidal dipole at R(i j),
respectively, where t (lm)

(i j) = it ′′(lm)
i j ni j with ni j being the unit

vector connecting between i and j sites. The multipole assign-
ment is independently performed per nth-neighbor bond. The
corresponding matrices (operators) of bond electric and mag-
netic toroidal multipoles are given by Q(b)

lm = ∑
(i j) q(lm)

(i j) | j〉 〈i|
and T (b)

lm = ∑
(i j)(t

(lm)
(i j) · ni j ) | j〉 〈i|.

By using these matrices, we express any bond modulations
in terms of bond multipoles. In particular, the bond magnetic
toroidal multipoles, T (b)

lm , represent the anisotropic current
distribution including a loop-current distribution discussed
in cuprates and iridates [47–49], as the imaginary hopping
represents a local current along the bond.

Let us again consider an example in a square cluster under
the point group D4h, whose Hamiltonian is shown in Eq. (2).
There are six real and imaginary bond degrees of freedom,
which are assigned as six electric and magnetic toroidal
multipoles, respectively. By using Eqs. (13) and (14), the first-
neighbor four real (imaginary) bonds correspond to electric
monopole Q(b1)

0 , electric quadrupole Q(b1)
v , and electric dipoles

(Q(b1)
x , Q(b1)

y ) [magnetic toroidal hexadecapole T α(b1)
4x , mag-

netic toroidal quadrupole T (b1)
xy , and magnetic toroidal dipoles

(T (b1)
x , T (b1)

y )], while the second-neighbor two real (imagi-

nary) bonds correspond to electric monopole Q(b2)
0 and electric

quadrupole Q(b2)
xy [magnetic toroidal dipoles (T (b2)

x , T (b2)
y )]

where the integer (n = 1, 2) in superscript represents the nth-
neighbor bond. The specific examples of Q(b1)

v , T (b1)
x , Q(b1)

x ,
and T α(b1)

4z are shown in Fig. 4. It is noted that the magnetic
toroidal hexadecapole T α(b1)

4z with the vortex-like alignment
of t (i j) in Fig. 4 is equivalent to the magnetic dipole along z
direction. Nevertheless, we use the higher-rank hexadecapole
T α(b1)

4z since we use the convention in this paper that all bond
degrees of freedom are described by the electric or magnetic
toroidal multipoles.

C. Momentum multipole

Finally, we introduce momentum multipoles to represent
the momentum dependence in crystals. In the k → 0 limit,

FIG. 4. The examples of bond multipoles in a square unit. The
real and imaginary hoppings correspond to the presence of the elec-
tric monopole on the bond center and the magnetic toroidal dipole
t (i j) along the bond direction, respectively. See also Eqs. (13) and
(14). From the left, the electric quadrupole Q(b1)

v , magnetic toroidal
dipole T (b1)

x , electric dipole Q(b1)
x , and magnetic toroidal hexade-

capole T α(b1)
4z are presented.

the spherical harmonics as a function of k̂ = k/|k|, Ylm(k̂),
gives the anisotropic momentum distribution. As k is a polar
vector with time-reversal odd, the even-(odd-)rank component
in Ylm(k̂) corresponds to the electric (magnetic toroidal) mul-
tipoles, which are defined as

Q(m)
lm (k) = Olm(k) for even l, (15)

T (m)
lm (k) = Olm(k) for odd l. (16)

The explicit expressions are given by replacing r with k in
Table VIII in Appendix A where the odd-rank multipoles in
Table VIII should be replaced with T (m)

lm (k).
In general, the momentum dependence in crystals has peri-

odicity and is represented by a superposition of trigonometric
functions of k. In this case, the momentum form factor con-
sists of the momentum multipoles up to the infinite rank
belonging to the same irrep. For example, we consider the
single-band tight-binding model on a simple square lattice
under the point group D4h with the lattice constant a. The
momentum form factor for the nearest-neighbor bond f (k) is
given by a linear combination of momentum multipoles as

f (k) = cos(kxa) + cos(kya) (17)

= 2 − a2

2

(
k2

x + k2
y

) + a4

24

(
k4

x + k4
y

) + · · · (18)

= c1Q(m)
0 (k) + c2Q(m)

u (k) + c3Q(m)
4 (k) + · · · , (19)

where ci (i = 1, 2, · · · ) are the expansion coefficients. f (k)
clearly consists of the multipoles belonging to the totally sym-
metric irrep. A1g under D4h. To specify the type of multipole,
we use the lowest-rank multipole in the superscript of f (k) as
the convention is often used in the field of superconductivity
[50,51]. In this case, f (k) is expressed as f Q0 (k).

Similarly, the form factors belonging to the other irreps. are
also described by the different set of multipoles. In the case of
D4h, when the sign of the hopping along the y direction is
opposite, the form factor is given by

f (k) = cos(kxa) − cos(kya) (20)

= −a2

2

(
k2

x − k2
y

) + a4

24

(
k4

x − k4
y

) + · · · (21)

= c1Q(m)
v (k) + c2Q(m)

4v (k) + · · · , (22)
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which belongs to the irrep. B1g. In this situation, we denote
f (k) as f Qv (k).

Moreover, when the imaginary hopping appears only in the
x direction under D4h, the form factor is given by

f (k) = sin(kxa) (23)

= akx + a3

3
k3

x − + · · · (24)

= c1T (m)
x (k) + c2T α(m)

x (k) + · · · , (25)

which belongs to the irrep. Eu. In this situation, we denote
f (k) as f Tx (k). Such form factors in Eqs. (20) and (23) can
appear in the tight-binding Hamiltonian when the system has
the sublattice degree of freedom, as the local site symmetry is
lowered than the lattice symmetry.

D. Irreducible representation of multipoles in crystal

In the crystal systems, a part of the rotational symmetry
and/or inversion symmetry are lost due to the regular and dis-
crete alignment of the ions. As a result, the multipole degrees
of freedom belonging to the same irrep. are not distinguished
from the symmetry viewpoint. In other words, the irrep. of the
rotational group split into subgroups according to the point-
group irrep. For example, some even-parity and odd-parity
multipoles belong to the same irrep. in noncentrosymmetric
crystals.

To avoid such confusion, we uniquely assign the multi-
poles of irrep. as in Sec. III by the following rules: Among
the multipoles belonging to the same irrep., we adopt the
lowest even-rank electric multipoles for time-reversal even
quantities, whereas we adopt the lowest odd-rank magnetic
toroidal multipoles for time-reversal odd quantities. In this
convention, the momentum-type odd-rank electric multipoles
and even-rank magnetic toroidal multipoles do not appear in
the Hamiltonian, as will be clarified in Sec. V.

Following the above rules, the multipoles and the irrep.
have a one-to-one correspondence. We summarize the cor-
responding multipole notations under 32 point groups in
Appendix B, where we divide them into eleven Laue classes
with the same number of the irreps., in Tables IX–XIX. The
compatibility relation of multipole within the same Laue class
is given in the same row in the table. However, for the com-
patibility relation of multipole between the different Laue
classes, we use the group-subgroup compatibility relation and
adopt the lower-rank multipole to assign the irrep. For exam-
ple, by the relation between Td and T , the electric monopole
Q0 belonging to A1 and the electric hexadecapole Q6t belong-
ing to A2 under the point group Td turn into the same irrep. A
under the point group T . In this case, the multipole belonging
to A under T is denoted as Q0.

Let us remark on the connection of the quantities intro-
duced in the cluster and the lattice. Although we assign the
multipoles to the electronic degrees of freedom by introducing
the magnetic cluster, there is a situation where the lattice sym-
metry is higher than the cluster symmetry due to the additional
operations combined with the translation. In such a situation,
we replace the irreps. in a cluster with the corresponding
ones in a lattice in accordance with the compatibility relation.
Accordingly, the multipoles in a cluster are mapped onto those

in a lattice. In Sec. VI, we exemplify this by considering the
triangular and kagome lattices consisting of the triangle unit
where the cluster and lattice symmetries are different with
each other.

V. MOMENTUM-DEPENDENT SPIN SPLITTING AND
BAND DEFORMATION

By using the multipole notations introduced in Sec. IV, we
express the Hamiltonian in terms of multipoles in Sec. V A.
Then, we analyze systematically when and how the spin
splitting and antisymmetric deformation in the band structure
occur in Sec. V B.

A. Hamiltonian

In the absence of the SOC, the single-orbital Hamiltonian
consists of the hopping part without the spin dependence and
the mean-field part gives rise to the symmetry breaking due to
the magnetic ordering. The total tight-binding Hamiltonian is
generally represented by

H =
∑

kσσ ′γ γ ′
c†

kγ σ

[
δσσ ′

(
HQ

t + HT
t

)γ γ ′ + δγ γ ′Hσσ ′
m

]
ckγ ′σ ′ ,

(26)

where c†
kγ σ

(ckγ σ ) is the creation (annihilation) operator at

wave vector k and sublattice γ . HQ
t and HT

t stand for the
real and imaginary hopping matrices, respectively, which are
represented by a linear combination of the product between
bond and momentum multipoles as

HQ
t =

∑
lm

f Qlm (k)Q(b)
lm (l : even), (27)

HT
t =

∑
lm

f Tlm (k)T (b)
lm (l : odd). (28)

In Eq. (27), the electric monopole contribution f Q0 (k)Q(b)
0

always appears in HQ
t , while the higher-rank contribution de-

pends on the lattice symmetry. However, HT
t in Eq. (28) exists

only in the absence of the local inversion symmetry. It is noted
that the cross terms f Tlm (k)Q(b)

lm and f Qlm (k)T (b)
lm do not appear

in the Hamiltonian due to the time-reversal symmetry. The
mean-field term Hm is represented by the cluster multipole as
already introduced in Eq. (9).

B. Band deformation

Let us first discuss the essential points for the spin-split
band structures in AFMs without the SOC. We consider three
types of band deformations, the symmetric spin splitting, the
antisymmetric spin splitting, and the antisymmetric band de-
formation, which are categorized into the different symmetry
classes. Note that the time-reversal symmetry is always bro-
ken, as we focus on magnetic orderings.

The first category is the symmetric spin splitting with re-
spect to k when there is the spatial inversion symmetry in the
system. In this situation, the spin-dependent band dispersion
is described by the product of the even function of k and spin
σ . This means that the symmetric spin splitting arises through
the effective coupling between the momentum electric mul-
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Symmetric spin splitting Antisymmetric spin splitting Antisymmetric band deformation

)c()b()a(

FIG. 5. Schematic pictures of three types of band deformations;
(a) the symmetric spin splitting, (b) the antisymmetric spin splitting,
and (c) the antisymmetric band deformation with spin degeneracy. In
panels (a) and (b), the red and blue curves represent the up-spin and
down-spin polarized bands, respectively.

tipole Q(m)
lm (k) and σ . The lowest-order contribution is given

by the rank-0 electric monopole, which merely corresponds
to the momentum-independent Zeeman-like spin splitting in
the band structure. In the following, we mainly focus on the
higher-rank contribution for l � 2. The schematic example in
the case Q(m)

xy (k)σ ∼ kxkyσ is shown in Fig. 5(a).
The second category is the antisymmetric spin splitting

with respect to k in the absence of the spatial inversion
symmetry and the product symmetry of time-reversal and
spatial inversion operations in addition to the breaking of
time-reversal symmetry. The functional form of the spin split-
tings is represented by the product of the odd function of k
and spin σ . Thus, the antisymmetic spin splitting occurs when
momentum magnetic toroidal multipole T (m)

lm (k) is coupled
with σ . The schematic example in the case of T (m)

x (k)σ ∼ kxσ

is shown in Fig. 5(b).
The third category is the antisymmetric band deformation

with the spin degeneracy in the absence of spatial inversion
symmetry, with preserving the product symmetry of time-
reversal and spatial inversion operations. The band structure
becomes asymmetric due to the contribution from the odd
function of k in addition to the even function of k. In terms
of the multipole description, the antisymmetric part of the
band deformation is described by the emergence of the mo-
mentum magnetic toroidal multipole T (m)

lm (k) solely without
spin dependence [52–55]. The schematic example in the case
of T (m)

x (k) ∼ kx is shown in Fig. 5(c).
To clarify a necessary condition of the microscopic model

parameters for the band deformations in AFM orderings be-
yond symmetry argument, one can need to know when and
how the momentum multipoles, Q(m)

lm (k) and T (m)
lm (k), become

active and are coupled with spin σ . To examine such condi-
tions, we introduce the following quantity at wave vector k in
the magnetic unit cell,

Tr[e−βHkσμ] =
∑

s

(−β )s

s!
gμ

s (k), (29)

where μ = 0, x, y, z, H = ∑
k Hk and β is the inverse tem-

perature. By means of a sort of high-temperature expansion,
the sth order expansion coefficient of the μ-component,
gμ

s (k), gives the corresponding effective multipole coupling
as gμ

s (k)σμ/2. As the Hamiltonian in Eq. (26) consists of
the cluster and bond multipoles in the matrix form, the sth
order expansion of e−βHk can be described by the product of

the s-tuple of the matrices, Q(b)
lm , T (b)

lm , and Q(c)
lm . It is noted

that the k dependence arises from the momentum multipoles
f Qlm (k) and f Tlm (k), which are always coupled with the bond
multipoles in the scalar form as Eqs. (27) and (28). This
analysis can be applied to not only Q = 0 orderings but also
finite commensurate Q orderings by choosing the appropriate
minimal magnetic unit cell.

We present microscopic conditions for the band deforma-
tions from a multipole viewpoint in the cases of symmetric
spin splitting, antisymmetric spin splitting, and antisymmetric
band deformation with spin degeneracy in Secs. V B 1, V B 2,
and V B 3, respectively.

1. Symmetric spin splitting

The symmetric spin splitting, gμ
s (k) = gμ

s (−k) for μ =
x, y, z, occurs under the presence of the spatial inversion
symmetry and the absence of the time-reversal symmetry.
The conditions for the symmetric spin splitting are obtained
by considering the space-time inversion properties (P, T );
the product of s-tuple of multipoles, which consists of the
coupling between the bond and cluster multipoles, must have
the same parities as those of the symmetric spin splitting, i.e.,
(P, T ) = (+1,−1).

Since the bond multipoles consist of electric multipoles
with (P, T ) = (+1,+1) and magnetic toroidal multipoles
with (P, T ) = (−1,−1), while the cluster multipoles (elec-
tric multipoles) coupled with spin with (P, T ) = (+1,−1),
we obtain the following conditions for the product of s-tuple
of multipoles to realize the symmetric spin splitting:

(i) Bond electric multipoles or even number of bond mag-
netic toroidal multipoles are involved.

(ii) Odd number of cluster electric multipoles are in-
volved.

(iii) Trace of the sublattice degree of freedom (product of
cluster multipoles) remains finite.

The conditions (i) and (ii) are required from the symmetry
of the symmetric spin-split band dispersions, as mentioned
above. The condition (ii) indicates that only the symmetric
spin splitting occurs in collinear magnets. From the condi-
tion (iii), one can find that the symmetric spin splitting can
occur when HQ

t and Hm contain the same symmetry of elec-
tric multipoles, while the term HT

t is not necessary. In other
words, the momentum electric multipole can be coupled with
σ through the higher-order coupling between the bond electric
multipoles and cluster electric multipoles, which is necessary
to yield the symmetric spin splitting.

Let us look at the example in an AFM with the collinear
order parameter

∑
lm hz

lmQ(c)
lm σz. The lowest-order contribution

to Eq. (29) arises from the third order, which is proportional
to

Tr[{Ht , {Ht , Hm}}σμ] ∝ mμ

lmTr
[{

Ht ,
{
Ht , Q(c)

lm

}}]
, (30)

where {· · · } is the anticommutator and Ht = HQ
t + HT

t . Here,
the nonzero anticommutator between HQ

t (or HT
t ) and Hm is

essential to give rise to the spin-split band structure, since it
gives a nontrivial coupling between the kinetic motions of
electrons and the spin textures instead of the SOC. We can
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use the following relations among Q(b)
lm , T (b)

lm , and Q(c)
lm ,

{
Q(b)

l ′m′ , Q(c)
l ′′m′′

} =
∑
lm

clmQ(b)
lm ,

{
T (b)

l ′m′ , Q(c)
l ′′m′′

} =
∑
lm

clmT (b)
lm ,

{
Q(b)

l ′m′ , Q(b)
l ′′m′′

} =
∑
lm

clmQ(b)
lm +

∑
lm

c′
lmQ(c)

lm ,

{
T (b)

l ′m′ , T (b)
l ′′m′′

} =
∑
lm

clmQ(b)
lm +

∑
lm

c′
lmQ(c)

lm ,

{
Q(b)

l ′m′ , T (b)
l ′′m′′

} =
∑
lm

clmT (b)
lm , (31)

where clm and c′
lm are expansion coefficients. These expres-

sions are obtained from the comparison of the spatial and
time-reversal parities of electric and magnetic toroidal mul-
tipoles in both sides. We omit the indices l ′m′ and l ′′m′′ of clm

and c′
lm for notational simplicity. By using the first and third

relations in Eq. (31), one can easily find that

gμ
s (k) ∼ mμ

lm f Q0 (k) f Ql′m′ (k) × Tr
[{

Q(b)
0 ,

{
Q(b)

l ′m′ , Q(c)
lm

}}]
becomes nonzero only when Ht and Hm contain the same
symmetry of multipole, i.e., l ′ = l , m′ = m. Then, the func-
tional form of the spin splitting is given by f Q0 (k) f Qlm (k) ∼
Q(m)

lm (k). In other words, the functional form of the spin split-
ting is characterized by the higher-rank momentum electric
multipole Q(m)

lm (k). Note that the bond magnetic toroidal mul-
tipoles can also contribute to the spin splitting by the effective
coupling as mμ

lmTr[{T (b)
l ′m′ , {T (b)

l ′′m′′ , Q(c)
lm }}] when T (b)

l ′m′T
(b)

l ′′m′′ be-
longs to the same irrep. as Q(c)

lm .

2. Antisymmetric spin splitting

In contrast to the symmetric spin splitting, the antisym-
metric spin splitting, gμ

s (k) = −gμ
s (−k) for μ = x, y, z, occurs

only in noncollinear magnets. This is because in collinear
magnets without the spin-orbit coupling the spin rotational op-
eration [(k, σ ) → (k,−σ )] with combining the time-reversal
operation [(k, σ ) → (−k,−σ )] ensures the spatial inversion
symmetry [(k, σ ) → (−k, σ )] [27].

By similar argument as in the symmetric spin splitting, the
conditions for the product of s-tuple of multipoles are given
as follows:

(i) Odd number of bond magnetic toroidal multipoles are
involved.

(ii) At least, two spin components leading to noncollinear
spin textures are involved.

(iii) Trace of the sublattice degree of freedom (product of
cluster multipoles) remains finite.

The conditions (i) and (ii) are required from the anti-
symmetric spin-split band dispersions under the breakings of
spatial, time-reversal, and their product symmetries, which are
obtained from the similar analysis in Sec. V B 1. From the
above conditions, the emergence of the antisymmetric spin
splittings are due to the effective coupling between the bond
magnetic toroidal multipoles and cluster electric multipoles.

Let us look at the example in a noncollinear AFM with
the order parameter

∑
lm(hx

lmQ(c)
lm σx + hy

lmQ(c)
lm σy). One of the

contributions comes from the fifth order, which is proportional
to

Tr[{Ht , {{Ht , Hm}, {Ht , Hm}}}σz]. (32)

In contrast to Eq. (31), where the spin is simply traced out
leaving the anticommutator without spin dependence, the plu-
ral Hm terms depending on different component of spins are
involved in this case. All the necessary anticommutator ap-
pearing in Eq. (29) are represented in the form

{Xlmσμ,Yl ′m′σν} = {Xlm,Yl ′m′ }δμ,νσ0

+ i[Xlm,Yl ′m′ ]
∑

κ

εμνκσκ, (33)

where [· · · ] is the commutator, and i[Xlm,Yl ′m′ ] is the hermite
matrix. From the fact that the imaginary unit i represents the
time-reversal-odd scalar and the antisymmetric tensor εμνκ

changes the sign of the spatial parity, the commutation relation
is given as follows:

i
[
Q(c)

l ′m′ , Q(c)
l ′′m′′

] = 0,

i
[
Q(b)

l ′m′ , Q(c)
l ′′m′′

] =
∑
lm

clmT (b)
lm ,

i
[
T (b)

l ′m′ , Q(c)
l ′′m′′

] =
∑
lm

clmQ(b)
lm ,

i
[
Q(b)

l ′m′ , Q(b)
l ′′m′′

] =
∑
lm

clmT (b)
lm ,

i
[
T (b)

l ′m′ , T (b)
l ′′m′′

] =
∑
lm

clmT (b)
lm ,

i
[
Q(b)

l ′m′ , T (b)
l ′′m′′

] =
∑
lm

clmQ(b)
lm +

∑
lm

c′
lmQ(c)

lm , (34)

where clm and c′
lm are expansion coefficients where we again

omit their indices, l ′m′ and l ′′m′′. By using the first and second
relations in Eq. (31) and the sixth relation in Eq. (34), we find
that

Tr
[{

Q(b)
0 ,

{{
Q(b)

0 , Q(c)
lm σx

}
,
{
T (b)

l ′m′ , Q(c)
l ′′m′′σy

}}}
σz

]
becomes nonzero for the σz component perpendicular to
the coplanar magnetic moments. The functional form of the
spin splitting is then given by the active magnetic toroidal
multipole f Tl′m′ (k)( f Q0 (k))2 ∼ T (m)

l ′m′ (k). Note that the other
multipole coupling can also contribute to the spin splitting,
e.g.,

Tr
[
T (b)

l ′′′m′′′ ,
{{

T (b)
l ′′′′m′′′′ , Q(c)

lm σx
}
,
{
T (b)

l ′m′ , Q(c)
l ′′m′′σy

}}
σz

]
,

as long as the quantity remains finite after tracing them out.

3. Antisymmetric band deformation with spin degeneracy

Finally, we discuss the antisymmetric band deformation
with spin degeneracy, g0

s (k) = −g0
s (−k), which occurs in non-

coplanar magnets without spatial inversion symmetry. The
conditions for the effective multipole couplings are given as
follows:

(i) Odd number of bond magnetic toroidal multipoles are
involved.

(ii) Three spin components, which are necessary to repre-
sent noncoplanar spin structures, are involved.
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TABLE II. Three types of band deformations and their functional
forms: symmetric spin splitting (SS), antisymmetric spin splitting,
and antisymmetric band deformation (BD). The necessary conditions
of space-time parities of the system and magnetic textures are also
shown.

Type Form P PT Magnetic textures

Symmetric SS f Qlm (k)σμ ◦ × Collinear
Antisymmetric SS f Tlm (k)σμ × × Coplanar
Antisymmetric BD f Tlm (k) × ◦ Noncoplanar

(iii) Trace of the sublattice and spin degrees of freedom
remains finite.

The conditions (i) and (ii) are required to satisfy the sym-
metry for the antisymmetric band deformations. The condition
(iii) indicates that the spin dependence is not important.

We show the example in a noncoplanar AFM with the order
parameter

∑
lm(hx

lmQ(c)
lm σx + hy

lmQ(c)
lm σy + hz

lmQ(c)
lm σz ). One of

the six-order contributions to the antisymmetric band defor-
mation is given by

Tr[{{Ht , Hm}, {{Ht , Hm}, {Ht , Hm}}}]. (35)

By using Eq. (33), the contribution

Tr
[{{

Q(b)
0 , Q(c)

lm σz
}
,
{{

Q(b)
0 , Q(c)

lm σx
}
,
{
T (b)

l ′m′ , Q(c)
l ′′m′′σy

}}}]
can remain finite. Although the noncoplanar magnets are rare
as compared to the coplanar magnets, the antisymmetric band
deformations can also be realized by applying the magnetic
field to the coplanar AFMs without the spatial inversion sym-
metry in the out-of-plane-moment direction [29].

We summarize the functional form of the band deforma-
tions and related magnetic textures in Table II.

VI. APPLICATION TO TRIANGULAR LATTICE SYSTEMS

We apply the present scheme to specific lattice systems. We
take three examples consisting of a triangle cluster: triangular,
kagome, and breathing kagome structures. After introduc-
ing multipole degrees of freedom in the triangle cluster in
Sec. VI A, we show that spin splittings and band deforma-
tions are induced by the 120◦ AFM ordering on three specific
lattices. We present the antisymmetric spin splitting on a tri-
angular lattice in Sec. VI B, the symmetric spin splitting on a
kagome lattice in Sec. VI C, and symmetric and antisymmetric
spin splittings on a breathing kagome lattice in Sec. VI D.
We also show the effect of an external magnetic field on
the noncollinear ordering on a breathing kagome lattice in
Sec. VI E.

A. Triangle cluster

We consider a triangle cluster whose sublattice basis func-
tion consists of (|A〉 , |B〉 , |C〉) as shown in Fig. 6. This cluster
belongs to the point group D3h and has nine multipole degrees
of freedom. From the irreducible decomposition in Table I
and corresponding multipole table in Table XV, three onsite
degrees of freedom with A′+

1 ⊕ E ′+ correspond to Q(c)
0 , Q(c)

v ,
and Q(c)

xy , three real bond degrees of freedom with A′+
1 ⊕ E ′+

correspond to Q(b)
0 , Q(b)

v , and Q(b)
xy , and three imaginary bond

-2

-2

× 2

bond (Re)

bond (Im)

onsite

A B

C

FIG. 6. Cluster and bond multipoles in a triangle cluster [29].
The correspondence between multipoles and matrix elements is
shown. The red (blue) circles represent the positive (negative) on-
site potential, and the red (blue) lines and orange arrows on each
bond represent the positive (negative) real and imaginary hoppings,
respectively. The gray lines represent no hoppings.

degrees of freedom with A′−
2 ⊕ E ′− correspond to T (b)

3a , T (b)
x ,

and T (b)
y . It is noted that there are two settings in choosing the

C′
2 rotational axis in D3h. Here, we take the y axis as the C′

2
rotational axis (see the column D3h in Table XV).

The specific matrix elements for each multipole are shown
in Fig. 6 [56]. In the following sections, we assume the
noncollinear 120◦ AFM magnetic structure with the form
of Q(c)

xy σx + Q(c)
v σy on the triangular, kagome, and breathing

kagome structures. We implicitly assume that the spin rota-
tional symmetry is spontaneously broken through the phase
transition.

B. Triangular

First, we consider the triangular lattice with the lattice
constant a, as shown in Fig. 7. It is noted that the sym-
metry of the triangular lattice D6h is different from that of
the triangle cluster D3h, both of which belong to the same
Laue class 6/mmm, as shown in Table XV. In this case, from
compatibility relation from D3h to D6h, the irrep. should be
replaced as A′+

1 → A+
1g, A′′−

1 → A−
1u, and so on. Meanwhile,

by looking the correspondence between the multipoles and the
irrep. in the same row in Table XV, one can find that the same
multipole notations, e.g., Q4a, Qzx, are used for cluster and
lattice systems.

y

x

FIG. 7. Schematic pictures of the 120◦ AFM on a triangular
lattice. The active multipoles are also shown.

144441-10



BOTTOM-UP DESIGN OF SPIN-SPLIT AND RESHAPED … PHYSICAL REVIEW B 102, 144441 (2020)

The matrices of the hopping and mean-field Hamiltonians
in the three-sublattice triangular system are given by

HQ
t = f Q0 (k)Q(b)

0 ,

HT
t = f T3a (k)T (b)

3a ,

Hm = −m
(
Q(c)

xy σx + Q(c)
v σy

)
, (36)

where the form factors for the nearest-neighbor site are repre-
sented by

f Q0 (k) =
√

6ta(cos kxa + 2 cos k̃xa cos k̃ya),

f T3a (k) = −
√

6ta(sin kxa − 2 sin k̃xa cos k̃ya), (37)

with the hopping amplitude ta. Here and hereafter, we use
the abbreviated notations k̃x = kx/2 and k̃y = √

3ky/2. We
consider the first-neighbor hopping in Eq. (36), which is
expressed by the electric monopole and magnetic toroidal oc-
tupole degrees of freedom. The presence of magnetic toroidal
multipole, T (b)

3a , is attributed to the introduction of the sublat-
tice degree of freedom by taking into account the magnetic
unit cell, and it does not exist in the case of a single-site unit
cell. As we will show below, T (b)

3a plays an important role
for the emergent spin splitting as a result from the coupling
with the noncollinear three-sublattice magnetic structures.
The mean-field matrix Hm consists of two spin components
to express the 120◦ noncollinear magnetic order with the
amplitude m.

It is noted that the active bond multipoles appearing in the
hopping matrices, HQ

t and HT
t depend on the nature of hop-

ping and the choice of the magnetic unit cell. For example, the
further neighbor hoppings may bring about the other types of
electric and magnetic toroidal multipoles, as shown in Table I.
Nevertheless, in the present triangular-lattice case, the further
neighbor hoppings do not give rise to the other multipoles due
to the lattice symmetry. Thus, the symmetric spin splitting
does not appear even by taking account of further neighbor
hoppings due to the lack of higher-rank electric multipoles
in HQ

t . However, the antisymmetric spin splitting can occur
according to the conditions given in Sec. V B 2. The lowest-
order contribution is given by

gz
5(k) = −1

3

√
2

3
m2 f T3a (k)[( f T3a (k))2 − 3( f Q0 (k))2]. (38)

As f T3a (k) ∝ kx(k2
x − 3k2

y ) and f Q0 (k) ∝ 1 in the k → 0 limit,
the essential anisotropy is given by

gz
5(k) 


√
2

3
m2( f Q0 (k))2 f T3a (k)

= 24m2t3
a sin k̃x(cos k̃y − cos k̃x )

× (2 cos k̃x cos k̃y + cos kx )2


 27

2
m2t3

a kx(k2
x − 3k2

y )a3. (39)

In this way, the functional form of the antisymmetric spin
splitting satisfying the magnetic space group symmetry is
obtained from the effective multipole coupling. Moreover,
one can obtain the model parameter dependence for the spin
splitting. As is consistent with the discussion in Sec. V B 2, the
expressions in Eq. (39) contain the product of the even number

(b)

-1

 0

 1

KM M

M M

K

-0.3

 0

 0.3

-8

-4

 0

 4

 8

En
er

gy

M

-1
KM M M

 0

 1(a)

-4

-2

 0

 2

 6

En
er

gy

 4

-1

 0

 1

M M

K

FIG. 8. (Left panel) The band structure of the model on the
triangular lattice at (a) m = 0.2 and (b) m = 6. The other model
parameter is ta = 1. The dashed lines show the band dispersions and
the color map shows the spin polarization of the z component at each
wave vector. (Right panel) The isoenergy surfaces at μ = −2.5 and
μ = −6.5. The hexagon in the right panel represents the magnetic
first Brillouin zone.

of order parameters as m2 and the bond magnetic toroidal
multipole T (m)

3a (k). The opposite spin alignment is realized
by reversing the vector spin chirality; the sign of one spin
components in Hm is reversed as Hm = −m(Q(c)

xy σx − Q(c)
v σy).

This is consistent with the analysis in Eq. (32), which results
in opposite sign to Eq. (39).

The effective multipole coupling leads to physical phe-
nomena related with the inversion symmetry breaking [29].
For example, the active magnetic toroidal multipoles in the
form of T (m)

3a (k)σz ∼ kx(k2
x − 3k2

y )σz in Eq. (39), implies that
a spontaneous threefold rotational nonreciprocity is induced
by a magnetic field along the z direction if one divides it as
kx(k2

x − 3k2
y ) × σz.

The emergent antisymmetric spin splitting is confirmed by
diagonalizing the Hamiltonian. We show the electronic band
structure in Figs. 8(a) and 8(b). The result clearly shows the
spin splitting along the M1-�-M2 line, while there is no spin
splitting along the K-�-K ′ line irrespective of the value of m,
which is consistent with Eq. (39).

C. Kagome

Next, we consider the 120◦ AFM on the kagome lattice
with the lattice constant 2a, as shown in Fig. 9. The point
group of the kagome structure is D6h, which is the same as
that of the triangular lattice. Owing to the different lattice
geometry from the triangular lattice in the previous section,
the different bond and momentum multipoles appear, as will
be shown below.

The matrices of the hopping and mean-field Hamiltonians
in the three-sublattice kagome system are given by

HQ
t = f Q0 (k)Q(b)

0 + f Qv (k)Q(b)
v + f Qxy (k)Q(b)

xy ,

HT
t = 0,

Hm = −m
(
Q(c)

xy σx + Q(c)
v σy

)
, (40)
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y

x

FIG. 9. Schematic pictures of the 120◦ AFM on a kagome lattice.
The active multipoles are also shown.

where the form factors for the nearest-neighbor site are repre-
sented by

f Q0 (k) = 2

√
2

3
ta(cos kxa + 2 cos k̃xa cos k̃ya),

f Qv (k) = 4√
3

ta(cos k̃xa cos k̃ya − cos kxa),

f Qxy (k) = 4ta sin k̃xa sin k̃ya, (41)

with the hopping amplitude ta. There are two differences
from the case in the triangular lattice in Sec. VI B: One is
that the higher-rank electric multipoles are present, which
indicates that the symmetric spin splitting can occur. The
other is that there are no magnetic toroidal multipoles in the
hopping matrix, since all the sublattice sites have the local
inversion symmetry. Thus, any antisymmetric band deforma-
tions do not occur within the three-sublattice ordering in the
kagome structure. We consider the 120◦ AFM structure where
the mean-field matrix Hm is the same as that in the case of
triangular lattice.

The symmetric spin splitting due to the presence of Q(b)
v

and Q(b)
xy is given by

gx
3(k) = m[2 f Q0 (k) f Qxy (k) +

√
2 f Qv (k) f Qxy (k)], (42)

gy
3(k) = m(2 f Q0 (k) f Qv (k)

− 1√
2
{[ f Qv (k)]2 − [ f Qxy (k)]2}). (43)

As f Q0 (k) ∝ 1, f Qv (k) ∝ k2
x − k2

y , and f Qxy (k) ∝ kxky in the
k → 0 limit, the essential anisotropy is given by

gx
3(k) 
 2m f Q0 (k) f Qxy (k) 
 12

√
2mt2

a kxkya2, (44)

gy
3(k) 
 2m f Q0 (k) f Qv (k) 
 6

√
2mt2

a

(
k2

x − k2
y

)
a2. (45)

In contrast to the antisymmetric spin splitting in Eq. (39),
gx

3(k) and gy
3(k) are proportional to m, which implies that

the one spin component, i.e., the collinear spin structure, is
sufficient to realize the symmetric spin splitting, as discussed
in Sec. V B 1. In fact, when we switch off one of the order
parameters mQ(c)

v = 0 or mQ(c)
xy = 0, gx

3(k) or gy
3(k) remains

finite, i.e., the symmetric spin splittings for x and y spin
components are independent with each other. Moreover, one
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FIG. 10. (Left panel) The band structure of the model on the
kagome lattice at ta = 1 and m = 1. The dashed lines show the
band dispersions and the color map shows the spin polarization of
the (a) x and (b) y components at each wave vector. (Right panel)
The isoenergy surfaces at μ = −1. The hexagon in the right panel
represents the magnetic first Brillouin zone.

can find the opposite direction of the AFM moment results in
the opposite spin splittings.

The symmetric spin splitting as a result of the effective
multipole coupling affects physical response tensors [37]. For
example, from the coupling between σx and Qxy(k) ∼ kxky

in Eq. (42), we can expect the magnetoelastic effect where
a spontaneous xy-type shear stress is induced by a magnetic
field along the x direction or the spin-current generation where
the spin current along the x direction with the x-spin com-
ponent is generated by an electric field along the y direction
[26,27].

The above analysis for the symmetric spin splitting is
confirmed by calculating the electronic band structure. Fig-
ures 10(a) and (b) show the band structure at ta = 1 and m = 1
where the color map shows the spin polarization for the x
and y components, respectively. The result clearly shows that
the spin splittings are symmetric with respect to k and their
functional forms are characterized by Q(m)

xy (k)σx in Fig. 10(a)
and Q(m)

v (k)σy in Fig. 10(b).

D. Breathing kagome

The last example is the 120◦ AFM on the breathing kagome
lattice with the lattice constant a + b, as shown in Fig. 11. The

y

x

FIG. 11. Schematic pictures of the 120◦ AFM on a breathing
kagome lattice. The active multipoles are also shown.
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point group of the breathing kagome structure is D3h, which
is the same as that of the triangular cluster.

The matrices of the hopping and mean-field Hamiltonians
in the three-sublattice breathing kagome system are given by

HQ
t = f Q0 (k)Q(b)

0 + f Qv (k)Q(b)
v + f Qxy (k)Q(b)

xy ,

HT
t = f T3a (k)T (b)

3a + f Tx (k)T (b)
x + f Ty (k)T (b)

y ,

Hm = −m
(
Q(c)

xy σx + Q(c)
v σy

)
, (46)

where the form factors are represented by

f Q0 (k) =
√

2

3

∑
η

tη(cos kxη + 2 cos k̃xη cos k̃yη),

f Qv (k) = 2√
3

∑
η

tη(cos k̃xη cos k̃yη − cos kxη),

f Qxy (k) = 2
∑

η

tη sin k̃xη sin k̃yη,

f T3a (k) = −
√

2

3

∑
η

pη(sin kxη − 2 sin k̃xη cos k̃yη),

f Tx (k) = 2√
3

∑
η

pη(sin kxη + sin k̃xη cos k̃yη),

f Ty (k) = 2
∑

η

pη cos k̃xη sin k̃yη, (47)

for η = a, b, pa = ta, and pb = −tb. The hopping amplitudes
are defined as ta within upward triangles and tb within down-
ward triangles. The mean-field matrix Hm is the same as that
in Eqs. (36) and (40).

Owing to the presence of bond electric and magnetic
toroidal multipoles for l � 1, both the symmetric and an-
tisymmetric spin splittings can occur. The lowest-order
contribution to the symmetric spin splitting arises at s = 3 in
Eq. (29) as

gx
3(k) = m[2 f Q0 (k) f Qxy (k) +

√
2 f Qv (k) f Qxy (k)

− 2 f T3a (k) f Ty (k) −
√

2 f Tx (k) f Ty (k)], (48)

gy
3(k) = m

(
2 f Q0 (k) f Qv (k) − 1√

2

{
[ f Qv (k)]2 − [ f Qxy (k)]2

}

+2 f T3a (k) f Tx (k) − 1√
2

{
[ f Tx (k)]2 − [ f Ty (k)]2

})
.

(49)

It is easily confirmed that the effective multipole couplings
with electric multipoles are the same as those in Eqs. (42)
and (43). There are additional effective multipole couplings
with magnetic toroidal multipoles. When the limit of k → 0
is taken, the essential anisotropy is given by

gx
3(k) 
 m[2 f Q0 (k) f Qxy (k) −

√
2 f Tx (k) f Ty (k)]


 6√
2

mtatb(a + b)2kxky, (50)

gy
3(k) 
 m

(
2 f Q0 (k) f Qv (k)

− 1√
2

{
[ f Tx (k)]2 − [ f Ty (k)]2

})
,


 3√
2

mtatb(a + b)2
(
k2

x − k2
y

)
. (51)

Also in this case, the functional forms are similar to those in
the case of the kagome lattice in Eqs. (44) and (45). In fact,
gx

3(k) and gy
3(k) for the kagome and breathing kagome lattices

are identical when we regard as a + b → 2a and tb → ta.
There are the contributions to the antisymmetric spin split-

ting in the z-component due to the presence of bond magnetic
toroidal multipoles. The lowest-order contribution is obtained
at the fifth order in Eq. (29) as

gz
5(k) = m2

6
√

3
{6

√
2 f Q0 (k)2 f T3a (k)

+ 6
√

2 f Q0 (k)( f Qxy (k) f Ty (k) − f Qv (k) f Tx (k))

− 3
√

2[ f Qv (k)2 + f Qxy (k)2] f T3a (k) − 2
√

2 f T3a (k)3

− 6[ f Qv (k)2 − f Qxy (k)2] f Tx (k)

− 12 f Qv (k) f Qxy (k) f Ty (k)

+ 3
√

2 f T3a (k)[ f Tx (k)2 + f Ty (k)2]

+ 2 f Tx (k)[ f Tx (k)2 − 3 f Ty (k)2]}. (52)

All the terms contain the odd number of magnetic toroidal
multipoles, as shown in Eq. (38). In the k → 0 limit, gz

5(k)
becomes

gz
5(k)


√
2

3
m2

{
f Q0 (k)[ f Qxy (k) f Ty (k) − f Qv (k) f Tx (k)]

+ f Q0 (k)2 f T3a (k)+ 1

3
√

2
f Tx (k)[ f Tx (k)2 − 3 f Ty (k)2]

}

= 8m2tatb(ta − tb) sin k′
x(cos k′

x − cos k′
y)


 −1

2
(a + b)3m2tatb(ta − tb)kx

(
k2

x − 3k2
y

)
, (53)

where k′
x = kx(a + b)/2 and k′

y = ky(a + b)
√

3/2. From the
expression in Eq. (53), the antisymmetric spin splitting occurs
for ta �= 0, tb �= 0, and ta �= tb, i.e., the breathing structure is
important.

The above analysis for the spin splittings is also con-
firmed by calculating explicitly the electronic band structure.
Figures 12(a) and 12(b) show the band structure at ta = 1,
tb = 0.5, and m = 1 where the color map shows the spin
polarization for the x and y components, respectively. The
result is similar to that in the kagome case in Fig. 10; the
symmetric spin splittings are characterized by Q(m)

xy (k)σx in
Fig. 12(a) and Q(m)

v (k)σx in Fig. 12(b). In contrast to the result
in the kagome system, the antisymmetric spin splitting occurs,
as shown in Fig. 12(c), which is similar to that in the triangular
case in Fig. 8.

E. Effect of external magnetic field

We investigate the effect of an external magnetic field on
the breathing kagome AFM. To this end, we add the Zeeman
coupling term, −H · ∑

iσσ ′ c†
iσ σσσ ′ciσ ′ , to the Hamiltonian in
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FIG. 12. (Left panel) The band structure of the model on the
breathing kagome lattice at ta = 1, tb = 0.5, and m = 1. The dashed
lines show the band dispersions and the color map shows the spin
polarization of the (a) x, (b) y, and z components at each wave vector.
(Right panel) The isoenergy surfaces at μ = −1. The hexagon in the
right panel represents the magnetic first Brillouin zone.

Eq. (46), which is given in the multipole notation as

Hmag = −Q(c)
0 H · σ. (54)

With this Zeeman term, the expansion procedure leads to
the additional multipole couplings according to the symmetry
reduction. There are mainly two types of additional couplings.
One is the term proportional to the odd order of H , and the
other is the term proportional to the even order of H .

For H ‖ [100], the antisymmetric contributions propor-
tional to Hx are given by

g0(k) ∼ mHxQ(m)
xy (k) ∼ k2 sin 2φ, (55)

gx(k) ∼ m2HxQ(m)
v (k) ∼ k2 cos 2φ, (56)

gy(k) ∼ m2HxQ(m)
xy (k) ∼ k2 sin 2φ, (57)

gz(k) ∼ m3HxQ(m)
xy (k)T (m)

3a (k) ∼ k5 sin φ, (58)

TABLE III. Some of active momentum multipoles when the
magnetic field is applied in the xy plane, H = H (cos θ, sin θ, 0). The
superscript (m) and (k) in the multipoles Q(m)

lm (k) and T (m)
lm (k) are

omitted for notational simplicity.

H (cos θ, sin θ, 0) σ0 σx σy σz

H cos θ mQxy m2Qv m2Qxy m3QxyT3a

H sin θ mQv m2Qxy m2Qv m3QvT3a

H 2 cos 2θ m2Qv mQxy m3, mQv m4QvT3a

H 2 sin 2θ m2Qxy m3, mQv mQxy m4QxyT3a

TABLE IV. Some of active momentum multipoles when the
magnetic field is applied in the zx plane, H = H (sin θ, 0, cos θ ). The
superscript (m) and (k) in the multipoles Q(m)

lm (k) and T (m)
lm (k) are

omitted for notational simplicity.

H (sin θ, 0, cos θ ) σ0 σx σy σz

H cos θ m2T3a m3QxyT3a m3QvT3a m2H 2Qv

H sin θ mQxy m2Qv m2Qxy m3QxyT3a

H 2 cos 2θ m2Qv mQxy m3, m3Qv m2T3a

H 2 sin 2θ m3QxyT3a m2T3a m4QxyT3a mQxy

where k = k(cos φ, sin φ) and we omit the subscript of gμ
s (k).

Thus, one can expect the following additional effects under
the [100] magnetic field: the xy-type shear stress in the form of
Q(m)

xy (k), the symmetric spin splitting in forms of Q(m)
v (k) and

Q(m)
xy (k) for σx and σy spin components, respectively, and the

antisymmetric spin splitting in the form of Q(m)
xy (k)T (m)

3a (k).
Especially, the last additional antisymmetric spin splitting is
related to the magnetoelectric effect, since Q(m)

xy (k)T (m)
3a (k) has

the same symmetry as the electric dipole Qx [37].
The symmetric contributions proportional to H2

x are given
by

g0(k) ∼ m2H2
x Q(m)

v (k) ∼ k2 cos 2φ, (59)

gx(k) ∼ mH2
x Q(m)

xy (k) ∼ k2 sin 2φ, (60)

gy(k) ∼ m3H2
x Q(m)

0 (k) ∼ 1, (61)

gz(k) ∼ m4H2
x Q(m)

v (k)T (m)
3a (k) ∼ k5 cos φ. (62)

The obtained expressions indicate that magnetization in the
y component is spontaneously induced by applying the mag-
netic field even along the [100] direction. In this way, the
multipole couplings under the magnetic field are obtained sys-
tematically. We summarize some of active multipoles under
the magnetic field along various directions in Tables III, IV,
and V.

VII. DISCUSSION ON MATERIALS AND SUMMARY

The spin splittings and band deformations by the effective
multipole-spin couplings irrespective of the SOC are ubiq-
uitously found in various structures of magnetic materials
with a variety of chemical compositions. The symmetric spin
splitting in collinear AFM state has been studied for an or-
ganic κ-(BETD-TTF)2Cu[N(CN)2]Cl [26–28,57], transition

TABLE V. Some of active momentum multipoles when the mag-
netic field is applied in the zy plane, H = H (0, sin θ, cos θ ). The
superscript (m) and (k) in the multipoles Q(m)

lm (k) and T (m)
lm (k) are

omitted for notational simplicity.

H (0, sin θ, cos θ ) σ0 σx σy σz

H cos θ m2T3a m3QxyT3a m3QvT3a m2H 2Qv

H sin θ mQv m2Qxy m2Qv m3QvT3a

H 2 cos 2θ m2Qv m3Qxy m3, mQv m2T3a

H 2 sin 2θ m3QvT3a m4QxyT3a m2T3a mQv
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TABLE VI. Symmetric spin-splitting materials listed in Ref. [40]. SG, MSG, and MPG represent space group, magnetic space group, and
magnetic point group, respectively. P stands for the presence (◦) or absence (×) of the spatial inversion symmetry. # represents the serial
number of space group. The symbol * shows that there are different magnetic patterns.

Crystal systems Materials # SG MSG MPG P

Monoclinic LiFeP2O7 4 P21 P21 2 ×
*CaFe5O7 11 P21/m P21/m 2/m ◦
*CaFe5O7 11 P21/m P2′

1/m′ 2′/m′ ◦
Nd2NaRuO6 14 P21/n P21/c 2/m ◦
LiFe(SO4)2 14 P21/c P21/c 2/m ◦
Li2Co(SO4)2 14 P21/c P2′

1/c′ 2′/m′ ◦
Li2Mn(SO4)2 14 P21/c P21/c 2/m ◦
La2LiRuO6 14 P21/n P21/c 2/m ◦
Y2MnCoO6 14 P21/c P2′

1/c′ 2′/m′ ◦
FeCl5D2O(ND4)2 14 P21/c P2′

1 2′ ×
Ca2MnReO6 14 P21/c P21/c 2/m ◦
Sr2MnReO6 14 P21/c P2′

1/c′ 2′/m′ ◦
Li3Fe2(PO4)3 14 P21/n P2′

1/c′ 2′/m′ ◦
*Tb2MnNiO6 14 P21/c P2′

1/c′ 2′/m′ ◦
*Tb2MnNiO6 14 P21/c P2′

1/c′ 2′/m′ ◦
*Tb2MnNiO6 14 P21/c P2′

1/c′ 2′/m′ ◦
*Tb2MnNiO6 14 P21/c P21/c 2/m ◦
Tl2NiMnO6 14 P21/c P21/c 2/m ◦
*Cu2(OD)3Cl 14 P21/c P21/c 2/m ◦
*Cu2(OD)3Cl 14 P21/c P21/c 2/m ◦
Sr2CoTeO6 14 P21/n P21/c 2/m ◦
Sr2Co0.9Mg0.1TeO6 14 P21/n P21/c 2/m ◦
Ho2CoMnO6 14 P21/c P2′

1/c′ 2′/m′ ◦
*Tm2CoMnO6 14 P21/c P2′

1/c′ 2′/m′ ◦
*Tm2CoMnO6 14 P21/c P2′

1/c′ 2′/m′ ◦
Cu1.94Mn1.06BO5 14 P21/c P2′

1/c′ 2′/m′ ◦
KMnF4 14 P21/a P2′

1/c′ 2′/m′ ◦
RbMnF4 14 P21/a P1̄ 1̄ ◦
Li2FeP2O7 14 P21/c P21/c 2/m ◦
Co4(OH)2(C10H16O4)3 14 P21/c P2′

1/c′ 2′/m′ ◦
Mn2ScSbO6 14 P21/n P21/c 2/m ◦
[CH3NH3] [Co(COOH)3] 14 P21/n P2′

1/c′ 2′/m′ ◦
La2CoIrO6 14 P21/n P21/c 2/m ◦
Fe3(PO4)2(OH)2 14 P21/c P21/c 2/m ◦
Cs2FeCl5D2O 15 C2/c C2 2 ×
*BiCrO3 15 C2/c P1̄ 1̄ ◦
*BiCrO3 15 C2/c C2/c 2/m ◦
FeSO4F 15 C2/c C2′/c′ 2′/m′ ◦
Sr2CoOsO6 15 B2/n C2/c 2/m ◦
NaCrGe2O6 15 C2/c C2′/c′ 2′/m′ ◦
Na2BaFe(VO4)2 15 C2/c C2′/c′ 2′/m′ ◦

Orthorhombic SrMn(VO4)(OH) 19 P212121 P21 2 ×
BaCrF5 19 P212121 P2′

12′
121 2′2′2 ×

GaFeO3 33 Pna21 Pna′2′
1 m′m2′ ×

*Fe2O3 33 Pna21 Pna′2′
1 m′m2′ ×

*Fe2O3 33 Pna21 Pna′2′
1 m′m2′ ×

*[C(ND2)3]Cu(DCOO)3 33 Pna21 Pna21 mm2 ×
*[C(ND2)3]Cu(DCOO)3 33 Pna21 Pn′a′21 m′m′2 ×
Y2Cu2O5 33 Pna21 Pna21 mm2 ×
BaCuF4 36 Cmc21 Cm′c′21 m′m′2 ×
Ca3Mn2O7 36 Cmc21 Cm′c2′

1 m′m2′ ×
ErGe1.83 36 Cmc21 Cmc21 mm2 ×
Cu2V2O7 43 Fdd2 Fd ′d ′2 m′m′2 ×
BiFe0.5Sc0.5O3 46 Ima2 Im′a2′ m′m2′ ×
[C(ND2)3]Mn(DCOO)3 52 Pnna Pn′n′a m′m′m ◦
[C(ND2)3]Co(DCOO)3 52 Pnna Pn′na′ m′m′m ◦
Fe1.5Mn1.5BO5 55 Pbam Pbam mmm ◦
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TABLE VI. (Continued).

Crystal systems Materials # SG MSG MPG P

Fe[N(CN2)]2 58 Pnnm Pnn′m′ m′m′m ◦
KCo4(PO4)3 58 Pnnm Pnn′m′ m′m′m ◦
Mn[N(CN2)]2 58 Pnnm Pnn′m′ m′m′m ◦
*TmMn3O6 59 Pmmn Pm′m′n m′m′m ◦
*TmMn3O6 59 Pmmn Pmm′n′ m′m′m ◦
*α-Mn2O3 61 Pbca Pbca mmm ◦
*α-Mn2O3 61 Pbca Pbca mmm ◦
Ca2RuO4 61 Pbca Pbca mmm ◦
CuFePO5 62 Pnma Pnma mmm ◦
NiFePO5 62 Pnma Pnma mmm ◦
CoFePO5 62 Pnma Pnm′a′ m′m′m ◦
Fe2PO5 62 Pnma Pnma mmm ◦
CoSO4 62 Pnma Pnma mmm ◦
YCr0.5Mn0.5O3 62 Pnma Pn′ma′ m′m′m ◦
*Mn2GeO4 62 Pnma Pn′m′a m′m′m ◦
*Mn2GeO4 62 Pnma Pnma mmm ◦
*Mn2GeO4 62 Pnma P21/c 2/m ◦
NH4Fe2O6 62 Pnma Pnma mmm ◦
*NdMnO3 62 Pnma Pn′ma′ m′m′m ◦
*NdMnO3 62 Pnma Pn′ma′ m′m′m ◦
ErVO3 62 Pbnm P2′

1/m′ 2′/m′ ◦
NiTe2O5 62 Pnma Pnma mmm ◦
(Tm0.7Mn0.3)MnO3 62 Pnma Pnm′a′ m′m′m ◦
Cu4(OD)6FBr 62 Pnma Pn′m′a m′m′m ◦
Nd5Ge4 62 Pnma Pnm′a′ m′m′m ◦
ErVO3 62 Pbnm P21/c 2/m ◦
RbFe2F6 62 Pnma Pnma mmm ◦
Ca2PrCr2NbO9 62 Pnma Pn′m′a m′m′m ◦
Ca2PrCr2TaO9 62 Pnma Pn′m′a m′m′m ◦
DyVO3 62 Pbnm P2′

1/m′ 2′/m′ ◦
NaOsO3 62 Pnma Pn′ma′ m′m′m ◦
Ca2Fe0.875Cr0.125GaO5 62 Pnma Pn′m′a m′m′m ◦
La0.5Sr0.5FeO2.5F0.5 62 Pnma Pn′ma′ m′m′m ◦
ScCrO3 62 Pnma Pnma mmm ◦
InCrO3 62 Pnma Pnma mmm ◦
TlCrO3 62 Pnma Pnma mmm ◦
*Co2SiO4 62 Pnma Pnma mmm ◦
*Co2SiO4 62 Pnma Pnma mmm ◦
Mn2SiO4 62 Pnma Pn′m′a m′m′m ◦
Fe2SiO4 62 Pnma Pnma mmm ◦
DyFeO3 62 Pnma Pn′a′21 m′m′2 ×
LaCrO3 62 Pnma Pnma mmm ◦
BiFe0.5Sc0.5O3 62 Pnma Pn′m′a m′m′m ◦
*NdFeO3 62 Pnma Pn′ma′ m′m′m ◦
*NdFeO3 62 Pnma P2′

1/c′ 2′/m′ ◦
*TbFeO3 62 Pbnm Pn′ma′ m′m′m ◦
*TbFeO3 62 Pbnm Pn′m′a m′m′m ◦
TbCrO3 62 Pbnm Pn′m′a m′m′m ◦
TbPt0.8Cu0.2 62 Pnma Pn′m′a m′m′m ◦
NdNi0.6Cu0.4 62 Pnma Pnm′a′ m′m′m ◦
[CH3NH3][Co(COOH)3] 62 Pnma Pn′ma′ m′m′m ◦
LaMnO3 62 Pnma Pn′ma′ m′m′m ◦
*NdMnO3 62 Pnma Pn′ma′ m′m′m ◦
*NdMnO3 62 Pnma Pn′ma′ m′m′m ◦
La0.75Bi0.25Fe0.5Cr0.5O3 62 Pnma Pnma mmm ◦
*Rb2Fe2O(AsO4)2 62 Pnma Pnma mmm ◦
*SmFeO3 62 Pbnm Pn′m′a m′m′m ◦
*SmFeO3 62 Pnma Pn′ma′ m′m′m ◦
*Rb2Fe2O(AsO4)2 62 Pnma Pn′ma′ m′m′m ◦
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TABLE VI. (Continued).

Crystal systems Materials # SG MSG MPG P

Ca2Fe2O5 62 Pcmn Pcm′n′ m′m′m ◦
TeNiO3 62 Pnma Pn′m′a m′m′m ◦
NdSi 62 Pnma Pn′m′a m′m′m ◦
PrSi 62 Pnma Pnm′a′ m′m′m ◦
TmNi 62 Pnma Pn′m′a m′m′m ◦
Y3Co3.25Al0.75 63 Cmcm Cm′cm′ m′m′m ◦
CaIrO3 63 Cmcm Cm′cm′ m′m′m ◦
LaCaFeO4 64 Cmce Cm′c′a m′m′m ◦
Gd2CuO4 64 Aeam Cm′ca′ m′m′m ◦
Sr4Fe4O11 65 Cmmm Cmm′m′ m′m′m ◦
YNi4Si 65 Cmmm Cmm′m′ m′m′m ◦
*Y2SrCu0.6Co1.4O6.5 72 Ibam Ib′a′m m′m′m ◦
*Y2SrCu0.6Co1.4O6.5 72 Ibam Ib′a′m m′m′m ◦
*YBaMn2O5.5 72 Icam C2/m 2/m ◦
*YBaMn2O5.5 72 Icam Ib′a′m m′m′m ◦
Pr0.5Sr0.5CoO3 74 Imma Im′m′a m′m′m ◦

Tetragonal MnPrMnSbO6 86 P42/n P42/n 4/m ◦
MnLaMnSbO6 86 P42/n P2′/c′ 2′/m′ ◦
KyFe2−xSe2 87 I4/m C2′/m′ 2′/m′ ◦
TlFe1.6Se2 87 I4/m I4/m 4/m ◦
RbyFe2−xSe2 87 I4/m C2′/m′ 2′/m′ ◦
MnV2O4 88 I41/a I41/a 4/m ◦
SrMn2V2O8 110 I41cd Ib′a2′ m′m2′ ×
Ba2MnSi2O7 113 P4̄21m P4̄21m 4̄2m ×
Ba2CoGe2O7 113 P4̄21m Cm′m2′ m′m2′ ×
Ca2CoSi2O7 113 P4̄21m P212′

12′ 2′2′2 ×
CsCoF4 120 I 4̄c2 I 4̄′ 4̄′ ×
CeMn2Ge4O12 125 P4/nbm P4′/nbm′ 4′/mm′m ◦
CeMnCoGe4O12 125 P4/nbm Pb′an′ m′m′m ◦
ZrCo2Ge4O12 125 P4/nbm Pb′an′ m′m′m ◦
ZrMn2Ge4O12 125 P4/nbm P4′/nbm′ 4′/mm′m ◦
CsMnF4 129 P4/nmm Pmm′n′ m′m′m ◦
MnF2 136 P42/mnm P4′

2/mnm′ 4′/mm′m ◦
NiF2 136 P42/mnm Pnn′m′ m′m′m ◦
CoF2 136 P42/mnm P4′

2/mnm′ 4′/mm′m ◦
Nd2NiO4.11 138 P42/ncm P42/nc′m′ 4/mm′m′ ◦
*Nd2NiO4 138 P42/ncm P42/nc′m′ 4/mm′m′ ◦
*La2NiO4 138 P42/ncm Pc′c′n m′m′m ◦
Sr2Mn2CuAs2O2 139 I4/mmm I4/mm′m′ 4/mm′m′ ◦
Mn2.85Ga1.15 139 I4/mmm I4/mm′m′ 4/mm′m′ ◦
EuCr2As2 139 I4/mmm I 4̄m′2′ 4̄2′m′ ×
CaFe4Al8 139 I4/mmm I4′/mmm′ 4′/mm′m ◦
Pr0.5Sr0.5CoO3 140 I4/mcm Fm′m′m m′m′m ◦
NiCr2O4 141 I41/amd Fd ′d ′d m′m′m ◦
Sr2Ir0.92Sn0.08O4 142 I41/acd Ib′c′a m′m′m ◦

Trigonal Mn2ScSbO6 146 R3 P1 1 ×
Mn2FeMoO6 146 R3 R3 3 ×
Mn2FeSbO6 148 R3̄ P1̄ 1̄ ◦
NiN2O6 148 R3̄ R3̄ 3̄ ◦
Li3Fe2(PO4)3 148 R3̄ R3̄ 3̄ ◦
Cr2S3 148 R3̄ P1̄ 1̄ ◦
NaMnFeF6 150 P321 P32′1 32′ ×
GaFeO3 161 R3c Cc′ m′ ×
ScFeO3 161 R3c Cc′ m′ ×
MnTiO3 161 R3c Cc′ m′ ×
PbNiO3 161 R3c R3c 3m ×
[NH2(CH3)2][FeCo(HCOO)6] 163 P3̄c1 C2′/c′ 2′/m′ ◦
[NH2(CH3)2][FeMn(HCOO)6] 163 P3̄c1 C2′/c′ 2′/m′ ◦
Mn3Si2Te6 163 P3̄1c C2′/c′ 2′/m′ ◦
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TABLE VI. (Continued).

Crystal systems Materials # SG MSG MPG P

Mn3Ti2Te6 163 P3̄1c C2′/c′ 2′/m′ ◦
Na2BaCo(VO4)2 164 P3̄m1 P3̄m′1 3̄m′ ◦
Nd3Sb3Mg2O14 166 R3̄m R3̄m′ 3̄m′ ◦
NiCO3 167 R3̄c C2/c 2/m ◦
CoF3 167 R3̄c R3̄c 3̄m ◦
FeF3 167 R3̄c C2′/c′ 2′/m′ ◦
CoCO3 167 R3̄c C2/c 2/m ◦
Sr3LiRuO6 167 R3̄c C2′/c′ 2′/m′ ◦
MnCO3 167 R3̄c C2/c 2/m ◦
FeCO3 167 R3̄c R3̄c 3̄m ◦
FeBO3 167 R3̄c C2′/c′ 2′/m′ ◦
Ca3Co2−xMnxO6 167 R3̄c R3c 3m ×
Ca3LiOsO6 167 R3̄c C2′/c′ 2′/m′ ◦
[NH2(CH3)2]n[FeIIIFeII(HCOO)6]n 167 R3̄c R3̄c′ 3̄m′ ◦
Sr3NaRuO6 167 R3̄c C2′/c′ 2′/m′ ◦
Ca3LiRuO6 167 R3̄c C2′/c′ 2′/m′ ◦
*α-Fe2O3 167 R3̄c C2′/c′ 2′/m′ ◦
*α-Fe2O3 167 R3̄c P1̄ 1̄ ◦

Hexagonal Cu4(OH)6FBr 176 P63/m P2′
1/m′ 2′/m′ ◦

Fe2Mo3O8 186 P63mc P6′
3m′c 6′mm′ ×

*Co2Mo3O8 186 P63mc P6′
3m′c 6′mm′ ×

Mn2Mo3O8 186 P63mc P63m′c′ 6m′m′ ×
*Co2Mo3O8 186 P63mc P6′

3m′c 6′mm′ ×
Mn5Ge3 193 P63/mcm P63/mc′m′ 6/mm′m′ ◦
*Mn3Sn 194 P63/mmc Cmc′m′ m′m′m ◦
*Mn3As 194 P63/mmc Cmc′m′ m′m′m ◦
*Mn3As 194 P63/mmc Cm′cm′ m′m′m ◦
*MnPtGa 194 P63/mmc Cm′c′m m′m′m ◦
*MnPtGa 194 P63/mmc Cm′c′m m′m′m ◦
*Mn3Sn 194 P63/mmc Cm′cm′ m′m′m ◦
*Mn3Ge 194 P63/mmc Cm′cm′ m′m′m ◦
*Mn3Ge 194 P63/mmc C2′/m′ 2′/m′ ◦
Ba5Co5ClO13 194 P63/mmc P6′

3/m′m′c 6′/m′mm′ ◦
*Pr3Ru4Al12 194 P63/mmc Cm′c′m m′m′m ◦
*Pr3Ru4Al12 194 P63/mmc C2′/c′ 2′/m′ ◦
Nd3Ru4Al12 194 P63/mmc Cm′c′m m′m′m ◦
Mn2.85Ga1.15 194 P63/mmc P6′

3/m′m′c 6′/m′mm′ ◦
Cubic Cu2OSeO3 198 P213 R3 3 ×

Na3Co(CO3)2Cl 203 Fd 3̄ Fd 3̄ m3̄ ◦
MnTe2 205 Pa3̄ Pa3̄ m3̄ ◦
NiS2 205 Pa3̄ Pa3̄ m3̄ ◦
Tb2C3 220 I 4̄3d Fd ′d2′ m′m2′ ×
Mn3Cu0.5Ge0.5N 221 Pm3̄m R3̄m 3̄m ◦
*Mn3NiN 221 Pm3̄m R3̄ 3̄ ◦
*Mn3NiN 221 Pm3̄m R3̄ 3̄ ◦
Mn3Ir 221 Pm3̄m R3̄m′ 3̄m′ ◦
Mn3Pt 221 Pm3̄m R3̄m′ 3̄m′ ◦
Mn3GaN 221 Pm3̄m R3̄m 3̄m ◦
Mn3ZnN 221 Pm3̄m R3̄m 3̄m ◦
*Mn3AlN 221 Pm3̄m R3̄m′ 3̄m′ ◦
*Mn3AlN 221 Pm3̄m Cmm′m′ m′m′m ◦
Mn4N 221 Pm3̄m R3̄m′ 3̄m′ ◦
Mn3(Co0.61Mn0.39)N 221 Pm3̄m R3̄ 3̄ ◦
Ho2CrSbO7 227 Fd 3̄m I41/am′d ′ 4/mm′m′ ◦
Bi2RuMnO7 227 Fd 3̄m Fd ′d ′d m′m′m ◦
Gd2Sn2O7 227 Fd 3̄m I4′

1/amd ′ 4′/mm′m ◦
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Tb2Ti2O7 227 Fd 3̄m R3̄m′ 3̄m′ ◦
Tb2Sn2O7 227 Fd 3̄m I41/am′d ′ 4/mm′m′ ◦
Nd2Hf2O7 227 Fd 3̄m Fd 3̄m′ m3̄m′ ◦
Nd2Zr2O7 227 Fd 3̄m Fd 3̄m′ m3̄m′ ◦
*Ho2Ru2O7 227 Fd 3̄m I41/am′d ′ 4/mm′m′ ◦
Er2Sn2O7 227 Fd 3̄m I4′

1/amd ′ 4′/mm′m ◦
Er2Pt2O7 227 Fd 3̄m I4′

1/amd ′ 4′/mm′m ◦
Er2Ti2O7 227 Fd 3̄m I4′

1/am′d 4′/mm′m ◦
Tm2Mn2O7 227 Fd 3̄m I41/am′d ′ 4/mm′m′ ◦
Er2Ru2O7 227 Fd 3̄m I4′

1/am′d 4′/mm′m ◦
Yb2Sn2O7 227 Fd 3̄m I41/am′d ′ 4/mm′m′ ◦
Yb2Ti2O7 227 Fd 3̄m I41/am′d ′ 4/mm′m′ ◦
*Ho2Ru2O7 227 Fd 3̄m I41/am′d ′ 4/mm′m′ ◦
Cd2Os2O7 227 Fd 3̄m Fd 3̄m′ m3̄m′ ◦
CdYb2S4 227 Fd 3̄m I41/amd 4/mmm ◦
CdYb2Se4 227 Fd 3̄m I41/amd 4/mmm ◦
Nd2Sn2O7 227 Fd 3̄m Fd 3̄m′ m3̄m′ ◦
*Nd0.5Tb0.5Co2 227 Fd 3̄m C2′/m′ 2′/m′ ◦
*Nd0.5Tb0.5Co2 227 Fd 3̄m C2′/m′ 2′/m′ ◦
*NdCo2 227 Fd 3̄m Imm′a′ m′m′m ◦
*NdCo2 227 Fd 3̄m C2′/c′ 2′/m′ ◦
*NdCo2 227 Fd 3̄m I41/am′d ′ 4/mm′m′ ◦
TbCo2 227 Fd 3̄m R3̄m′ 3̄m′ ◦
Dy3Al5O12 230 Ia3̄d Ia3̄d ′ m3̄m′ ◦

metal oxide RuO2 [25,31], and transition metal fluoride MnF2

[30]. Moreover, the antisymmetric spin splitting and band
deformation have been studied for a transition metal oxide
Ba3MnNb2O9 [29,58]. A similar analysis can be applied to
the exchange Hamiltonian for insulating noncollinear magnets
where an emergent Dzyaloshinskii-Moriya interaction with-
out the SOC arises through the multipole couplings [59].

With the knowledge of the multipole couplings, we list
up the candidate materials that could exhibit spin-split band
structures at the onset of the AFM phase transition having
ordering vector Q = 0 in Tables VI and VII, which are ob-
tained in accordance with MAGNDATA, magnetic structure
database [40]. It is noted that the AFM materials with a fi-
nite ordering vector Q are also candidates, as exemplified for
Ba3MnNb2O9 [29]. In the candidate materials, the symmet-
ric spin splitting emerges in the magnetic-ordered-moment
direction, while the antisymmetric spin splitting emerges in
the direction perpendicular to the coplanar magnetic struc-
ture, when the present mechanism dominates over ordinary
SOC one. Since the present mechanism of the spin splitting
and band deformation does not rely on the presence of the
SOC, we can explore a variety class of materials including
simple compounds with lighter elements. The multipole-spin
couplings can be flexibly tuned by temperature, pressure,
and magnetic fields as discussed in this paper. The effect
of the splitting and deformation is expected to be large as
compared with those by the spin-orbit coupling origin since
the magnitude of the effective coupling is characterized by
the kinetic energy and the molecular field of AFM, which is
the order of the Coulomb interaction. These advantages fur-

ther promote the efficient engineering of spin-orbit-coupling
free materials exhibiting a giant spin-dependent and/or
nonreciprocal transport, magnetoelectric and magnetoelastic
responses.

To summarize, we have clarified the efficient bottom-up
design procedure of electronic band structures in AFMs with-
out the spin-orbit coupling. Our microscopic guideline to
engineer the spin and momentum dependent band structures
was established by introducing the concept of augmented
multipoles consisting of the electric and magnetic toroidal
multipoles. We showed that arbitrary Hamiltonians in the
tight-binding model are decomposed into a scalar-product
form in terms of electric and magnetic toroidal multipoles.
The hopping Hamiltonian is expressed as a linear combina-
tion of products between bond and momentum multipoles,
while the mean-field Hamiltonian is expressed as a lin-
ear combination of products between cluster multipoles and
spins. By using such multipole degrees of freedom, we
demonstrated that the spin-split and reshaped electronic band
structures are caused by the effective multipole couplings.
The symmetric spin splitting emerges in the presence of
the coupling between cluster and bond multipoles with the
same symmetry in collinear AFMs, whereas the antisymmet-
ric one is induced by the coupling including a bond-type
magnetic toroidal multipole in noncollinear AFMs. Further-
more, we found that the antisymmetric band deformation
with spin degeneracy is realized in noncoplanar AFMs. We
analyzed the band deformations under the AFM orderings
by exemplifying three lattice systems consisting of a triangle
cluster, triangular, kagome, and breathing kagome structures.
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TABLE VII. Antisymmetric spin-splitting materials listed in Ref. [40]. The notations are the same as those in Table VII.

Crystal systems Materials # SG MSG MPG P

Monoclinic ∗Tb2MnNiO6 14 P21/c P2′
1 2′ ×

SrCo(VO4)(OH) 19 P212121 P212121 222 ×
Orthorhombic Mn3B7O13I 29 Pca21 Pc′a2′

1 m′m2′ ×
Ni3B7O13Br 29 Pca21 Pc′a2′

1 m′m2′ ×
Ni3B7O13Cl 29 Pca21 Pc′a2′

1 m′m2′ ×
Co3B7O13Br 29 Pca21 Pc′a2′

1 m′m2′ ×
Tm2Cu2O5 33 Pna21 Pn′a′21 m′m′2 ×
CaBaCo4O7 33 Pbn21 Pna′2′

1 m′m2′ ×
DyCrWO6 33 Pna21 P21 2 ×
Er2Cu2O5 33 Pna21 Pna21 mm2 ×
Tb3Ge5 43 Fdd2 Fdd2 mm2 ×
DyFeO3 62 Pnma P212121 222 ×
TbFeO3 62 Pbnm P2′

12′
121 2′2′2 ×

*Cu3Mo2O9 62 Pnma P2′
12′

121 2′2′2 ×
*Cu3Mo2O9 62 Pnma Pm′c2′

1 m′m2′ ×
FePO4 62 Pnma P212121 222 ×
Fe3BO5 62 Pnma Pm′c2′

1 m′m2′ ×
Tetragonal U3Al2Si3 79 I4 C2′ 2′ ×

Nd5Si4 92 P41212 P412′
12′ 42′2′ ×

Ho2Ge2O7 92 P41212 P41212 422 ×
KMnFeF6 106 P42bc Pb′a2′ m′m2′ ×
FeSb2O4 135 P42/mbc Pmc21 mm2 ×
FePbBiO4 135 P42/mbc Pmc21 mm2 ×

Hexagonal Cu0.82Mn1.18As 174 P6̄ P6̄′ 6̄′ ×
*HoMnO3 185 P63cm P63cm 6mm ×
*HoMnO3 185 P63cm P63cm 6mm ×
*HoMnO3 185 P63cm P6′

3c′m 6′mm′ ×
*HoMnO3 185 P63cm P6′

3cm′ 6′mm′ ×
*HoMnO3 185 P63cm P63c′m′ 6m′m′ ×
*YMnO3 185 P63cm P6′

3 6′ ×
*YMnO3 185 P63cm P63cm 6mm ×
*ScMnO3 185 P63cm P63 6 ×
*ScMnO3 185 P63cm P63c′m′ 6m′m′ ×
LuFeO3 185 P63cm P63c′m′ 6m′m′ ×
YbMnO3 185 P63cm P6′

3c′m 6′mm′ ×
Co6(OH)3(TeO3)4(OH) ∼ 0.9(H2O) 186 P63mc P6′

3mc′ 6′mm′ ×
Nd15Ge9C0.39 186 P63mc P63m′c′ 6m′m′ ×
TmAgGe 189 P6̄2m Am′m′2 m′m′2 ×

Cubic U3P4 220 I 4̄3d R3c′ 3m′ ×
U3As4 220 I 4̄3d R3c′ 3m′ ×

Lastly, we listed candidate materials showing intrinsic band
deformations driven by the magnetic orderings by refer-
ring MAGNDATA, magnetic structures database, which
would be useful to unveil unexplored fascinating functional
materials.
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APPENDIX A: EXPRESSIONS OF ELECTRIC MULTIPOLES

In this Appendix, we show the multipole expressions by using the cubic and hexagonal harmonics up to rank 4 in Table VIII.

TABLE VIII. The correspondence between electric multipoles and cubic and hexagonal harmonics up to rank 4. The expressions for
rank-0-2 harmonics are common. (lm) and (lm)′ stand for (−1)l (Olm + O∗

lm )/
√

2 and (−1)l (Olm − O∗
lm )/

√
2i, respectively.

Cubic harmonics

Rank Symbol Definition Correspondence

0 Q0 1 (00)

1 Qx , Qy, Qz x, y, z (11), (11)′, (10)

2 Qu, Qv
1
2 (3z2 − r2),

√
3

2 (x2 − y2) (20), (22)

Qyz, Qzx , Qxy

√
3yz,

√
3zx,

√
3xy (21)′, (21), (22)′

3 Qxyz

√
15xyz (32)′

Qα
x

1
2 x(5x2 − 3r2) 1

2
√

2
[
√

5(33) − √
3(31)]

Qα
y

1
2 y(5y2 − 3r2) − 1

2
√

2
[
√

5(33)′ + √
3(31)′]

Qα
z

1
2 z(5z2 − 3r2) (30)

Qβ
x

√
15
2 x(y2 − z2) − 1

2
√

2
[
√

3(33) + √
5(31)]

Qβ
y

√
15
2 y(z2 − x2) 1

2
√

2
[−√

3(33)′ + √
5(31)′]

Qβ
z

√
15
2 z(x2 − y2) (32)

4 Q4
5
√

21
12 (x4 + y4 + z4 − 3

5 r4) (4) ≡ 1
2
√

3
[
√

5(44) + √
7(40)]

Q4u
7
√

15
6 [z4 − x4+y4

2 − 3
7 r2(3z2 − r2)] − 1

2
√

3
[
√

7(44) − √
5(40)]

Q4v
7
√

5
4 [x4 − y4 − 6

7 r2(x2 − y2)] −(42)

Qα
4x

√
35
2 yz(y2 − z2) − 1

2
√

2
[(43)′ + √

7(41)′]

Qα
4y

√
35
2 zx(z2 − x2) − 1

2
√

2
[(43) − √

7(41)]

Qα
4z

√
35
2 xy(x2 − y2) (44)′

Qβ

4x

√
5

2 yz(7x2 − r2) 1
2
√

2
[
√

7(43)′ − (41)′]

Qβ

4y

√
5

2 zx(7y2 − r2) − 1
2
√

2
[
√

7(43) + (41)]

Qβ

4z

√
5

2 xy(7z2 − r2) (42)′

Hexagonal harmonics

Rank Symbol definition Correspondence

3 Qα
z

1
2 z(5z2 − 3r2) (30)

Q3a

√
10
4 x(x2 − 3y2 ) (33)

Q3b

√
10
4 y(3x2 − y2) (33)′

Q3u, Q3v

√
6

4 x(5z2 − r2),
√

6
4 y(5z2 − r2) (31), (31)′

Qβ
z , Qxyz

√
15
2 z(x2 − y2),

√
15xyz (32), (32)′

4 Q40
1
8 (35z4 − 30z2r2 + 3r4) (40)

Q4a

√
70
4 yz(3x2 − y2) (43)′

Q4b

√
70
4 zx(x2 − 3y2) (43)

Qα
4u, Qα

4v

√
10
4 zx(7z2 − 3r2),

√
10
4 yz(7z2 − 3r2) (41), (41)′

Qβ1
4u , Qβ1

4v

√
35
8 (x4 − 6x2y2 + y4),

√
35
2 xy(x2 − y2) (44), (44)′

Qβ2
4u , Qβ2

4v

√
5

4 (x2 − y2)(7z2 − r2),
√

5
2 xy(7z2 − r2) (42), (42)′
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APPENDIX B: MULTIPOLE NOTATIONS UNDER 11 LAUE
CLASSES

We show the multipole notations per each Laue class in
Tables IX–XIX.

TABLE IX. Multipoles under Laue class m3̄m. The upper
and lower columns represent even-parity electric and odd-parity
magnetic toroidal multipoles, respectively. We omit the numerical
coefficients of the basis functions.

Oh O Td MP Basis functions

A+
1g A+

1 A+
1 Q0 1

A+
2g A+

2 A+
2 Q6t (k2

y − k2
z )(k2

z − k2
x )(k2

x − k2
y )

E+
g E+ E+ Qu

1√
3
(3k2

z − k2)
Qv k2

x − k2
y

T +
1g T +

1 T +
1 Qα

4x kykz(k2
y − k2

z )
Qα

4y kzkx (k2
z − k2

x )
Qα

4z kxky(k2
x − k2

y )
T +

2g T +
2 T +

2 Qyz kykz

Qzx kzkx

Qxy kxky

A−
1u A−

1 A−
2 T9u kxkykz(k2

x − k2
y )(k2

y − k2
z )(k2

z − k2
x )

A−
2u A−

2 A−
1 Txyz kxkykz

E−
u E− E− T5u

√
3kxkykz(k2

x − k2
y )

T5v −kxkykz(3k2
z − k2)

T −
1u T −

1 T −
2 Tx kx

Ty ky

Tz kz

T −
2u T −

2 T −
1 T β

x kx (k2
y − k2

z )
T β

y ky(k2
z − k2

x )
T β

z kz(k2
x − k2

y )

TABLE X. Multipoles under Laue class m3̄.

Th T MP Basis functions

A+
g A+ Q0 1

E+
g E+ Qu − iQv

1√
3
(3k2

z − k2) − i(k2
x − k2

y )
Qu + iQv

1√
3
(3k2

z − k2) + i(k2
x − k2

y )
T +

g T + Qyz kykz

Qzx kzkx

Qxy kxky

A−
u A− Txyz kxkykz

E−
u E− T5u − iT5v

√
3kxkykz(k2

x − k2
y ) + ikxkykz(3k2

z − k2)
T5u + iT5v

√
3kxkykz(k2

x − k2
y ) − ikxkykz(3k2

z − k2)
T −

u T − Tx kx

Ty ky

Tz kz

TABLE XI. Multipoles under Laue class 4/mmm. We take the x
([110]) axis as the C′

2 rotation axis for D2d (D′
2d).

D4h D4 D2d D′
2d C4v MP Basis functions

A+
1g A+

1 A+
1 A+

1 A+
1 Q0 1

A+
2g A+

2 A+
2 A+

2 A+
2 Qα

4z kxky(k2
x − k2

y )
B+

1g B+
1 B+

1 B+
2 B+

1 Qv k2
x − k2

y

B+
2g B+

2 B+
2 B+

1 B+
2 Qxy kxky

E+
g E+ E+ E+ E+ Qyz kykz

Qzx kzkx

A−
1u A−

1 B−
1 B−

1 A−
2 T5u kxkykz(k2

x − k2
y )

A−
2u A−

2 B−
2 B−

2 A−
1 Tz kz

B−
1u B−

1 A−
1 A−

2 B−
2 Txyz kxkykz

B−
2u B−

2 A−
2 A−

1 B−
1 T β

z kz(k2
x − k2

y )
E−

u E− E− E− E− Tx kx

Ty ky

TABLE XII. Multipoles under Laue class 4/m.

C4h C4 S4 MP Basis functions

A+
g A+ A+ Q0 1

B+
g B+ B+ Qv k2

x − k2
y

Qxy kxky

E+
g E+ E+ Qyz − iQzx kykz − ikzkx

Qyz + iQzx kykz + ikzkx

A−
u A− B− Tz kz

B−
u B− A− Txyz kxkykz

T β
z kz(k2

x − k2
y )

E−
u E− E− Tx + iTy kx + iky

Tx − iTy kx − iky

TABLE XIII. Multipoles under Laue class mmm.

D2h D2 C2v MP Basis functions

A+
g A+ A+

1 Q0 1
B+

1g B+
1 A+

2 Qxy kxky

B+
2g B+

2 B+
1 Qzx kzkx

B+
3g B+

3 B+
2 Qyz kykz

A−
u A− A−

2 Txyz kxkykz

B−
1u B−

1 A−
1 Tz kz

B−
2u B−

2 B−
2 Ty ky

B−
3u B−

3 B−
1 Tx kx

TABLE XIV. Multipoles under Laue class 2/m.

C2h C2 Cs MP Basis functions

A+
g A+ A′+ Q0 1

B+
g B+ A′′+ Qzx kzkx

B+
g B+ A′′+ Qyz kykz

A−
u A− A′′− Tz kz

B−
u B− A′− Ty ky

B−
u B− A′− Tx kx
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TABLE XV. Multipoles under Laue class 6/mmm. For D6h, we
take the y and x axes as the C′

2 and C′′
2 rotation axes, respectively

[60–62]. We take the x (y) axis as the C′
2 rotation axis for D′

3h (D3h).
The sign and coefficient in two dimensional irrep. are chosen to
satisfy the mutual relationship between two components.

D6h D6 C6v D3h D′
3h MP Basis functions

A+
1g A+

1 A+
1 A′+

1 A′+
1 Q0 1

A+
2g A+

2 A+
2 A′+

2 A′+
2 Q6s kxky(3k2

x − k2
y )(k2

x − 3k2
y )

B+
1g B+

1 B+
2 A′′+

1 A′′+
2 Q4b kzkx (k2

x − 3k2
y )

B+
2g B+

2 B+
1 A′′+

2 A′′+
1 Q4a kykz(3k2

x − k2
y )

E+
1g E+

1 E+
1 E ′′+ E ′′+ Qzx kzkx

Qyz kykz

E+
2g E+

2 E+
2 E ′+ E ′+ Qv

1
2 (k2

x − k2
y )

Qxy −kxky

A−
1u A−

1 A−
2 A′′−

1 A′′−
1 T7u kxkykz(3k2

x − k2
y )(k2

x − 3k2
y )

A−
2u A−

2 A−
1 A′′−

2 A′′−
2 Tz kz

B−
1u B−

1 B−
1 A′−

1 A′−
2 T3b ky(3k2

x − k2
y )

B−
2u B−

2 B−
2 A′−

2 A′−
1 T3a kx (k2

x − 3k2
y )

E−
1u E−

1 E−
1 E ′− E ′− Tx kx

Ty ky

E−
2u E−

2 E−
2 E ′′− E ′′− T β

z
1
2 kz(k2

x − k2
y )

Txyz −kxkykz

TABLE XVI. Multipoles under Laue class 6/m.

C6h C6 C3h MP Basis functions

A+
g A+ A′+ Q0 1

B+
g B+ A′′+ Q4a kykz(3k2

x − k2
y )

Q4b kzkx (k2
x − 3k2

y )

E+
1g E+

1 E ′′+ Qzx + iQyz kzkx + ikykz

Qzx − iQyz kzkx − ikykz

E+
2g E+

2 E ′+ Qv + iQxy
1
2 (k2

x − k2
y ) + ikxky

Qv − iQxy
1
2 (k2

x − k2
y ) − ikxky

A−
u A− A′′− Tz kz

B−
u B− A′− T3a kx (k2

x − 3k2
y )

T3b ky(3k2
x − k2

y )

E−
1u E−

1 E ′− Tx + iTy kx + iky

Tx − iTy kx − iky

E−
2u E−

2 E ′′− T β
z + iTxyz

1
2 kz(k2

x − k2
y ) + ikxkykz

T β
z − iTxyz

1
2 kz(k2

x − k2
y ) − ikxkykz

TABLE XVII. Multipoles under Laue class 3̄m. We take the x (y)
axis as the C′

2 rotation axis for D′
3d and D′

3 (D3d and D3). For D′
3d and

C3v (D3d and C′
3v), we take the yz (xz) plane as the σv or σd mirror

plane. The sign and coefficient in two dimensional irrep. are chosen
to satisfy the mutual relationship between two components.

D3d D′
3d D3 D′

3 C3v C′
3v MP Basis functions

A+
1g A+

1g A+
1 A+

1 A+
1 A+

1 Q0 1

A+
1g A+

2g A+
1 A+

2 A+
2 A+

1 Q4b kzkx (k2
x − 3k2

y )

A+
2g A+

1g A+
2 A+

1 A+
1 A+

2 Q4a kykz(3k2
x − k2

y )

E+
g E+

g E+ E+ E+ E+ Qzx kzkx

Qyz kykz

E+
g E+

g E+ E+ E+ E+ Qv
1
2 (k2

x − k2
y )

Qxy −kxky

A−
1u A−

2u A−
1 A−

2 A−
1 A−

2 T3b ky(3k2
x − k2

y )

A−
2u A−

1u A−
2 A−

1 A−
2 A−

1 T3a kx (k2
x − 3k2

y )

A−
2u A−

2u A−
2 A−

2 A−
1 A−

1 Tz kz

E−
u E−

u E− E− E− E− Tx kx

Ty ky

TABLE XVIII. Multipoles under Laue class 3. C3i = S6.

C3i C3 MP Basis functions

A+
g A+ Q0 1

E+
g E+ Qzx + iQyz kzkx + ikykz

Qzx − iQyz kzkx − ikykz

E+
g E+ Qv − iQxy

1
2 (k2

x − k2
y ) − ikxky

Qv + iQxy
1
2 (k2

x − k2
y ) + ikxky

A−
u A− Tz kz

E−
u E− Tx + iTy kx + iky

Tx − iTy kx − iky

TABLE XIX. Multipoles under Laue class 1̄.

Ci C MP Basis functions

A+
g A+ Q0 1

A−
u A− Tx kx

A−
u A− Ty ky

A−
u A− Tz kz
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