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In this paper, we present a detailed comparative study of various analytical and numerical methods intended
for the evaluation of the escape rate over high-energy barriers (transition rate or, equivalently, switching times)
in magnetic systems, using the archetypal application-relevant model of a biaxial macrospin. First, we derive
a closed-form analytical expression of the transition rate for such a particle, using the general formalism
of Dejardin et al. [Phys. Rev. E 63, 021102 (2001)], and define a parameter which determines whether the
system is in the low, intermediate, or high damping regimes. Then we carry out a comprehensive analysis of
three numerical algorithms: time-temperature extrapolation method, “energy bounce” methods [S. Wang and P.
Visscher, J. Appl. Phys. 99, 08G106 (2006)], and the forward-flux sampling [R. J. Allen et al., Phys. Rev. Lett.
94, 018104 (2005)], which appear to be the most promising candidates for evaluating the transition rate using
computer simulations. Based on underlying physical principles and peculiarities of magnetic moment systems,
we suggest several optimization possibilities, which strongly improve the performance of these methods for
our applications. For energy barriers AE in the range 10kg7T < AE < 60kgT we compare the switching times,
which correspondingly span more than 20 orders of magnitude, obtained with all the above-mentioned analytical
and numerical techniques. We show that although for relatively small barriers all methods agree well with each
other (and with straightforward Langevin dynamics simulations), for larger barriers the differences become
significant, so that only the forward-flux method provides physically reasonable results, giving switching times
which exceed the prediction of analytical approaches (interestingly, the ratio tfFS /72" is nearly constant for
a very broad interval of switching times). The reasons for the corresponding behavior of numerical methods
are explained. Finally, we discuss the perspectives of the application of the analyzed numerical techniques to
full-scale micromagnetic simulations, where the presence of several contributions to the total system energy

makes the situation qualitatively different from that for the macrospin approach.

DOI: 10.1103/PhysRevB.102.144419

I. INTRODUCTION

During the recent two decades, a large progress by the eval-
uation of escape rates over high-energy barriers in different
physical systems in general and in magnetic systems in par-
ticular has been achieved. First of all, for systems of magnetic
particles with and without internal magnetization structure
several methods for computing the height of energy barriers
separating their metastable energy minima have been imple-
mented: minimization of the Onsager-Machlup functional [1]
for an interacting system of single-domain particles [2], string
method searching for the “minimal energy path” based on the
condition that the energy gradient component perpendicular
to this path should be zero along the whole path [3], and the
closely related “nudged elastic band” (NEB) method [4]. The
latter method, which is presently the most widely used, is the
“micromagnetic” adaptation of the NEB algorithm of Jonsson
etal. [5], with the main idea to connect the neighboring system
states along the transition path with artificial “springs” to
prevent a too large distance between these states during the
path-finding procedure.

However, knowledge of the energy barrier AE alone is
obviously not enough to compute the average lifetime of a
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system within an energy well (or, correspondingly, the es-
cape rate I' out of this well), the quantity of real interest for
applications. The simplest possibility to evaluate this rate is
provided by the Arrhenius law I' = v, exp(AE /kgT'), where
the “attempt frequency” v, is usually interpreted as the os-
cillation frequency of the system near the energy minimum.
The evaluation of this frequency by itself for systems with
an internal magnetization structure is a highly nontrivial task
due to the existence of internal eigenmodes in such systems
(see, e.g., [6,7]). But, even with the properly evaluated vy,
the Arrhenius formula can not be considered as a satisfactory
approach from a fundamental point of view, as stressed, e.g.,
in [8,9], because it does not contain a dependence of the
switching rate on the system damping, which is mandatory
according to the fluctuation-dissipation theorem.

The problem of providing an analytical expression of the
escape rate, which would explicitly contain the damping pa-
rameter, was first solved in the intermediate-to-high damping
(IHD) regime by Brown [10] and later for very low damping
(VLD) by Klik and Guiither [11]. In the meantime, the correct
analytical description of the escape rate for a system with
an arbitrary damping was provided in the classical paper of
Mel’nikov and Meshkov [12], who have evaluated both the
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lifetime of a Brownian particle in a single energy well and
decay rates in a double-well potential in the corresponding
general case. The formalism and ideas from [11,12] were
successfully applied to a single-domain magnetic particle
in [13,14], resulting in an analytical formula for the escape
rate out of a single well and transition rates between two
energy minima in a double-well magnetic system valid for all
damping regimes. The comprehensive treatment of this topic
can be found in the extensive review [9].

Although very useful, this analytical approach has sev-
eral limitations. Even for single-domain particles, the method
cannot take into account the so-called “back-hopping” trajec-
tories, where the system magnetization returns back to the
initial local minimum shortly after crossing the saddle point,
i.e., without reaching the (partial) thermodynamic equilibrium
in the target minimum. Further, for magnetic systems with a
symmetry lower than the perfect uniaxial anisotropy with two
equivalent minima, as it is the case, e.g., for particles in an
external field (both along the easy axis [15] and oblique [16]),
or for particles with the anisotropy more complicated than a
uniaxial one [17], the treatment becomes increasingly com-
plicated, making corresponding final expressions difficult in
practical applications.

The really serious problem of the analytical treatment,
however, is that it cannot be applied to most application-
relevant cases, where the particle size is larger than either
the exchange or demagnetizing characteristic micromagnetic
length (for corresponding definitions and discussion see,
e.g., [18]). For such systems, magnetization configuration be-
comes spatially nonhomogeneous, thus making the usage of
analytical methods nearly impossible. For this reason, there
exists a pressing demand for numerical methods comput-
ing not only the energy barrier, but the actual escape rate.
Straightforward Langevin dynamics (LD), being a powerful
tool for short-time simulations (see, e.g., [19-23], is obvi-
ously not applicable for studying magnetization transitions
between minima separated by high-energy barriers (about
AE > 10kgT) because waiting times become macroscopi-
cally large.

Numerical methods for evaluating the escape rate in sys-
tems with high barriers usually employ the paradigm of a
“gradual climbing” uphill the energy surface by computing
the probability p(A;,_; — X;) to reach some intermediate in-
terface A; from the previous interface A;_;. The subsequent
interfaces should be positioned relatively close to each other,
either in the coordinate space or in the energy space, so that
p(ri—1 — A;) can be computed reasonably fast and accurately
by standard LD simulations. Multiplication of these transition
probabilities for all interface pairs between the two energy
minima of interest should give (augmented by a properly
defined factor with the dimensionality 1/7) the total transition
rate.

The most successful general-purpose representative of the
methods outlined above is the forward-flux sampling (FFS)
(see [24-26] for specific issues and [27] for a comprehensive
review). In FFS, the interfaces are defined in the coordinate
space, usually by setting the desired values of the so-called
“reaction coordinate” or an “order parameter,” which value
defines whether the transition has occurred or not. In mi-
cromagnetics, this method was applied for two very specific

systems in [28,29]. A related method, where the interfaces
were defined as the system energy values used to confine
the magnetization motion, is the “energy bounce” algorithm
introduced in [30]; this short paper contains only the basic
idea and the application example to a macrospin with only
one value of the energy barrier.

Hence, it can be seen that as far as micromagnetic appli-
cations are considered, the methods for computing transition
rates over high barriers are at their infancy (what can be seen
already from a very small number of corresponding publi-
cations). Physical understanding of their functioning when
applied to micromagnetic simulations is insufficient, system-
atic comparison of corresponding numerical results with the
available analytical expressions is, up to our knowledge, not
available, and the optimization of the algorithms with re-
spect to the minimization of the computational time (what
is crucial for such time-consuming simulations) has not been
accomplished. Further, the analysis of possible alternative al-
gorithms capable of computing the switching time without a
gradual climbing from the minimum to the saddle point has
also not been performed.

In our study, we intend to fill in the gaps outlined
above, performing detailed analytical and numerical studies
of magnetization transitions over energy barriers. We con-
fine our study to purely classical processes, leaving aside the
phenomenon of macroscopic quantum tunneling of magneti-
zation; the latter is usually relevant at very low temperatures
(according to various estimations, for T < Ty, where Ty ~
100 mK =+ 10 K [31,32]), which are of no interest for appli-
cations we have in mind. This paper is organized as follows:
In Sec. IT we describe our biaxial macrospin model and derive
closed-form analytical expressions for its switching rate both
in the Arrhenius approximation and in the general formal-
ism [13,14] for an arbitrary damping value. In Sec. III we
present results of LD simulations, to be used as a reference
for further comparisons. In this section we also discuss in
detail a very important question of distinguishing between
“false” and “true” transitions, when the magnetization pro-
jection of interest changes its sign. In Sec. IV we present
the most straightforward method for computing switching
rates for a system with arbitrarily high barriers using only
LD simulations, our “time-temperature” extrapolation method
(related to the idea suggested in [33]). In this method we
use the extrapolation of switching rates obtained at several
higher temperatures toward the room temperature to obtain
the desired quantity. Next, in Sec. V, we perform the detailed
analysis of the energy bounce method (EBM) and introduce
two versions of this method, which enable to strongly reduce
the corresponding computation time and to prepare EBM for
usage in full-scale micromagnetic simulations. In addition, we
discuss again the criterion for filtering out the false switch-
ings, as the dynamics in EBM is qualitatively different from
that by nonconstrained LD simulations. Section VI is devoted
to our implementation of the FFS method, where we sug-
gest the placement of interfaces in the energy space (instead
of using magnetization projections), allowing us to obtain
the best interface positions without any optimization, thus
greatly increasing the statistical accuracy of results. Finally, in
Sec. VII we compare the results obtained by all analytical and
numerical methods used in our study for energy barriers in

144419-2



EVALUATION OF THE SWITCHING RATE FOR MAGNETIC ...

PHYSICAL REVIEW B 102, 144419 (2020)

FIG. 1. Coordinate
nanoelements.
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and geometry of

the interval 10kg7 < AE < 60kgT, so that the correspond-
ing switching times span over 20 orders of magnitude. In
the Conclusion, we summarize our findings and discuss the
comparative quality of the studied methods and perspectives
of their application of all methods to full-scale micromagnetic
simulations.

II. SIMULATED MODEL AND ANALYTICAL
APPROXIMATIONS FOR THE ESCAPE RATE

A. Macrospin approximation (MSA)

In this study, we simulate magnetization switching of el-
liptical nanoelements with the thickness 2 = 3 nm, the short
axis b =40 nm, and different long axes a = 50-100 nm.
Corresponding geometry together with Cartesian coordinates
assumed throughout the paper is shown in Fig. 1. We use
magnetization M = 800 G and Gilbert damping A = 0.01
and neglect the magnetocrystalline anisotropy (magnetic pa-
rameters typical for Py). Shape anisotropy is introduced in
the standard way via the demagnetizing field tensor N with
diagonal components N,, N,, and N, [23]; in our geometry, we
always have N, < N, < N;. For all methods presented below,
we have determined the transition rate at room temperature
(T =300 K).

In our simulations we use the macrospin approximation,
i.e., we assume that the magnetization of nanoellipses is ho-
mogeneous in space and can only rotate as a whole. We point
out that from the physical point of view this approximation
is not valid for nanoelements of these sizes, because at least
the long axis of our ellipses greatly exceeds the single-domain
particle size for Py, which is estimated to be ~10 nm. How-
ever, we shall employ the macrospin model in order to focus
our study on fundamental questions important for all meth-
ods intended for simulation of thermally activated switching,
without yet being involved into the complicated problems
related to internal dynamic modes of a switching system; cor-
responding problems (arising by the application of methods
discussed below to full-scale micromagnetic simulations) will
be discussed in Sec. VII.

From the four standard contributions to the micromag-
netic energy (energy in an external field, magnetocrystalline
anisotropy, exchange and magnetodipolar energy), only two
terms are present in frames of MSA: energy in an external
field and the magnetodipolar energy, which in this approxi-
mation is usually called the shape anisotropy energy. The first
term is absent in our case, as we study magnetization switch-
ing without an external field. The shape anisotropy energy

is defined using the above-mentioned tensor N and Cartesian
components of the unit magnetization vector m as

Eu = 2 M2V (Nem? + Nym? + Nom?), (1

where V denotes the particle volume. Expression (1) (biaxial
anisotropy) is the simplest analytical approximation for the
shape anisotropy energy of a flat elliptical magnetic nanoele-
ments shown in Fig. 1; this shape is widely used for many
applications including, e.g., in-plane magnetic random access
memory (MRAM) cells. In addition, this is the simplest pos-
sible model where one has the easy-plane anisotropy (with
Oxy as the easy plane) and the energy barrier between the two
equilibrium states in this plane, along +x and —x directions.

For analytical calculations of the switching rate, we shall
need the expansion of the density of this energy (¢ = E/V)
near the energy minima (where m, = +1) and the saddle
points (in-plane switching, hence, m, = %1) in terms of two
remaining magnetization projections. Using the relation m? +
m% + mf = 1 for the elimination of m, in the first case and m,
in the second case, we obtain

€min(M) = € + 27M2(Cyem? + Coom?), )
Esad(m) = 6:2; + 27TM52 (nym;% + CZymzz)’ (3)

where Cog = N, — Ng (a0, B = x, Y, 2); note that our constants
Cyp differ from the analogous constants c; in [9] by the factor
4 M?.

In this paper we shall study the escape rate from the
minimum corresponding to m, = 41 (the region around this
starting point is denoted as the basin A) to the minimum
with m, = —1 (with the surrounding region denoted as the
basin B).

For the analysis of the behavior of different numerical
methods, we shall need the density of states (number of states
per unit energy interval) D(E). Analytical evaluation of this
dependence for a macrospin with a biaxial anisotropy is very
tedious. For this reason, we have computed D(E) numerically
by evaluating the system energy (1) for all moment orienta-
tions on the (6, ¢) grid in the spherical coordinate system
shown in Fig. 1, with the polar axis along the x axis and
the azimuthal axis ¢ = 0, along the y axis of our coordinate
system. Correspondingly weighted (w o sin€) energy val-
ues were assembled to a histogram. Resulting (normalized)
D(E) for several macrospin sizes are shown in Fig. 2. Note
that the density of states for a biaxial macrospin diverges
at the saddle-point energy Eqq = E(@ =n/2, ¢ =0o0r m)
(because at this point both partial energy derivatives are zero:
0E /m, = 0E /m, = 0); however, this divergence is not as
strong as for a uniaxial macrospin, where the saddle on the
energy surface is represented by the whole line 6 = /2.

In terms of this density of states, the probability p(E) to
observe an energy E for a system in thermodynamic equilib-
rium is

P(E) = D(E)e E/kT )

B. Arrhenius approximation of the escape rate

As mentioned in the Introduction, the simplest (and still
most widely used) analytical approximation for the escape
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FIG. 2. Densities of states D(E) for macrospins with various
long ellipse axis a as shown in the legend.

rate resulting from the Arrhenius law is called the transition
state theory rate [34]:

AT _ %e—AE/kBT 5)

2

(k is Boltzmann constant). In MSA, both the energy barrier
AE and the attempt frequency wy entering this expression
can be evaluated analytically:

5, Thab
AE:KV:Z]TMSCvxT, (6)
Wy = Y47 M nyczx @)

(for the last expression see, e.g., [35]), where y is the gyro-
magnetic ratio.

Dependencies of these quantities on the long axis of our
elliptical nanoelement are shown in Fig. 3. Demagnetizing
factors required in (6) and (7) have been computed in our
paper [23] by comparing initial slopes of the hysteresis loop
calculated by full-scale micromagnetic simulations (using the
cell size 2 x 2 nm? in plane) with the corresponding slope ex-
pected in MSA. As explained in detail in [23], demagnetizing
factors computed this way represent a better approximation

a (nm)

60 .80 _ 100

50 60 70 80 90 100 110
a (nm)

FIG. 3. Attempt frequency v,y = w,y/27 (main plot) and energy
barrier (6) (inset) as functions of the long ellipse axis a (short axis
b = 40 nm).

to the demagnetizing factors of a flat elliptical nanoelement
than those computed from the axis ratios of the corresponding
three-dimensional (3D) ellipsoid. Note that the dependence
AE(a) is slightly nonlinear because demagnetizing coeffi-
cients Ny, ) also depend of a; however, this effect is weak
compared to the linear dependence V ~ a.

The switching time in this approximation is

1
W = Sram ®)

where the additional factor % is due to the existence of two
saddle points in our system. Note that in the interval of the
long axis lengths a = 50-110 nm studied here the switching
time spans about 25 orders of magnitude. The dependence of
log(zA™) vs a is also slightly nonlinear, not only due to the
nonlinearity of AE(a), but also due to the nonlinear depen-
dence vy (a) (see Fig. 3).

C. Magnetization escape rate for a biaxial particle
by arbitrary damping

The Arrhenius expression has two well-known technical
drawbacks: (i) it does not take into account the curvature of
the energy landscape around the saddle point and (ii) it does
not consider the possibility of a reverse transition shortly after
the particle has crossed the energy barrier (back hopping).
However, a much more serious problem is that the Arrhenius
law does not include the damping constant, meaning that in
this formalism the switching can occur without any damp-
ing, which is clearly impossible (no coupling to thermal bath
present, see [8] for details). Large effort has been undertaken
to derive physically meaningful expressions for various damp-
ing regimes [8,12,36]; corresponding results for the magnetic
particle switching (where the precessional motion plays a very
important role) have been summarized in the comprehensive
review [9].

To proceed with our specific case, we shall need the general
analytical expression for the magnetization escape rate I'*",
valid (in the limit of the high-energy barrier AE > kgT) for
all values of the damping parameter « [9,14]:

1

ra = gA(aS)FA”, i = ) )
s W 2Tan

Here, the damped saddle angular frequency €2

M2V 1 ,  4C,C,
Q= kBT E (ny - Czy) - T - (ny + Czy)

(10)

[C,y and C., are defined after the Eq. (3)] contains the charac-
teristic diffusion time of the magnetization
VM, 1+ o?

= 11
2ykgT « (1D

™

The undamped saddle angular frequency wy is defined analo-
gously to the attempt frequency (7):

ws = yA4T M\ /—CpyCoy (12)

(note that C,, = N, — N, < 0).
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Prefactor A, called the depopulation factor because the
decrease rate of the particle concentration within an energy
minimum is proportional to A, has been derived in case of
an arbitrary damping for the first time by Melnikov and
Meshkov [12] and has the form

| d
A(aS) = exp —/ In{1 — e_"‘5(12’Ll/4)}—Z .
T Jo Z2+ 1/4

13)

For small @ — 0, the asymptotic behavior of this prefactor
is A(aS)— aS, so Eq. (9) reduces to the result of Klik and
Gunther [11]. For large damping ¢ — oo we have A(aS)— 1,
and Eq. (9) reproduces the escape rate in the intermediate-to-
high (IHD) damping range [37].

The dimensionless action S in the depopulation factor (13)
is given in case of a magnetic particle by the integral (p =
cosd) [9,11]

Ve

S=—
kB T E=Egq

2o gy L 0¢
[[1 Py ds 1_p23¢dp},

(14)

where € denotes the energy density, expressed as the func-
tion of spherical coordinates of the magnetic moment: € =
€(0, ¢). This integral should be taken along the trajectory
where the system energy E is equal to the saddle-point energy
E.q; hence, the polar angle 6 can be viewed as a function of
the azimuthal angle ¢, so that p = cos8 = p(¢).

To evaluate the action (14), we shall use the energy den-
sity expression (2) and introduce the reduced energy density
u(my, m;) as

u(my, m;) = Camy (6, ) + Coom’ (0, ¢)

so that the action takes the form

5)

2T M2V, L 1 du
s=T0 (=) dg — ———dp
ksT  Je=E,, ap 1 —p*d¢
2 M2V,
= ——[ + L]. 16
ioT [ + ] (16)

J

sin ¢

In the spherical coordinate system with the polar axis along
the Cartesian x axis, and ¢ defined as the angle between the
projection of m onto the yz plane and y axis, we have m, =
cos®, m, =sinf cos ¢, m; = siné sin ¢, so that the energy
density (15) is

u(®, ¢) = sin? 6(Cy, cos® ¢ + Cy, sin® ¢)
= sin” 0C,x (1 + K sin” ¢)

= (1 = p*)(1 +« sin’ ¢), (17)
where the ratio x = (C,,
duced.

The integration trajectory passes through the saddle point
(0 =m/2, ¢ =0) and hence the function u(0, ¢) along this
trajectory is equal to u = ugq(7 /2, 0) = Cyy, leading to the
relation

— Cy)/Cyx = C;y/Cy > 0 is intro-

(1 —pH(1 +« sin®¢p) = 1. (18)
Using this condition by calculating partial derivatives of
the energy density (17) and substituting them into the inte-
gral (16), we obtain

8 s
I = ?g_ [1 —P2(¢)]£ d¢ = —4nyf0 p(@)de, (19)

1 Odu dp
L= —% ———dp= —CXK% sin2¢—d¢.
E=FEzq 1- P2 a¢ * U=Ugd d¢ (20)

Employing the same relation (18), we can find the derivative

cos ¢u

dp
Py o200
(1 + k sin® ¢)3/2

= 21
7 (21
where the upper sign corresponds to the interval ¢ € [0, ],
the lower sign to ¢ € (w, 2m). Substituting this derivative
into (20) and reducing integration limits over ¢ to [0, 7], we
obtain

Kk sin ¢ cos® ¢

T
L+ =-4C,, K/ -
1 2 y«/— 0 I:(1+K51n2¢)1/2

(the minus sign appears due to the chosen integration direction
along the trajectory and hence can be ignored, as we need only
the absolute value of the action).

For « > 0 the integral (k) in (22) can be evaluated analyt-
ically: I(k) = 2/(1 + «). Hence, the final result for the action
Sis

MV,
S =16n
ksT

Cy:Cy. (23)
An important remark is in order. The depopulation factor
A [Eq. (13)] depends on the product «S. Hence, it is clear
already from the prefactor in the action expression (16) that
the parameter which defines whether we are in the region of
a small, intermediate, or large damping is not the value of the
damping parameter « by itself, but the value of the product of

(1 + « sin® ¢)3/2

}w = —4C, Vi (1 + () (22)

(

« and the relation of the energy barrier to the thermal energy
AE [kgT (~M3V/kBT in our case). We shall return to this
statement below by comparing the results obtained by various
methods.

III. LANGEVIN DYNAMICS (LD) SIMULATIONS

The most straightforward method to determine the switch-
ing rate between the two metastable system states is the
simulation of the system dynamics in presence of thermal
fluctuations using the corresponding stochastic equation of
motion [38]. Taking into account that we are interested
in magnetic systems by temperatures much lower than the
Curie temperature (so that the magnetization magnitude
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M = const), we use the Landau-Lifshitz-Gilbert equation

dM
o= —y[M x (Hgee + Hy)]
t
A
- VH[M x [M x (Hgee + Hg)]] (24)

to describe the system dynamics. Here, the fluctuation field
accounting for thermal fluctuations has the properties (H?) =
0 and (H?(O) . Hg (t)) = 2Dp8(t )8y, where the fluctuation
power is Dﬁ = )"/(1 + A.Z)(kBT/]//.L) (§9 W =X Z), n being
the magnetic moment magnitude. The deterministic field Hye
contains the contributions from all magnetic energy terms,
what in our case reduced to the anisotropy field only (we recall
that we simulate nanoelements in the absence of an external
field). The constant y in (24) relates to the gyromagnetic ratio
yo and the damping « in the alternative form of this equa-
tion proposed by Gilbert M = —p[M x (H — («/M;)M)] as
y &y via y = yp/(1 + «?), and damping parameters A and
«a are equal; for further details, see, e.g., [39].

We have performed LD simulations using our micromag-
netic package MICROMAGUS[40] where Eq. (24) is integrated
using one of the adaptive step-size algorithms (Runge-Kutta
or Bulirsch-Stoer) for the stochastic differential equations
(SDE) describing the dynamics of vector fields with the
constant vector magnitudes. The possibility to apply such
methods to SDE (24) is justified in [41], where we have shown
that for M = const both Ito and Stratonovich stochastic calculi
lead to identical results. For generation of the thermal noise
we have used the version of the vector statistics (VS) Gaussian
random numbers generator from Intel MKL library, which
employs the inverse cumulative distribution function method
(ICDF-type generator) to produce a sequence of independent
Gaussian random numbers with the prescribed mean and dis-
tribution width; this generator is known for its high quality.
Cross checks with other (simpler) random number generators,
like those from [42], have shown that final results remain the
same (in frames of statistical errors).

Simulation of magnetization switching using Langevin dy-
namics is possible only for systems with relatively small
energy barriers (not higher than AE ~ 10 kgT) because sim-
ulation times grow exponentially with the energy barrier. For
this reason we could perform LD studies only for macrospins
corresponding to nanoellipses with a = 50 nm (AE ~ 9kgT)
and a = 55 nm (AE = 14 kgT); we remind that T = 300 K.

Taking into account that both energy minima for our sys-
tem are equivalent (Heyx, = 0), the average switching time 7P
for LD simulations can be computed as

LD Tsim
T N (25)
where g, denotes the (physical) simulation time and N,
the number of switching events between the energy minima
observed during the simulation run.

However, in order to calculate TP properly, we have to
correctly determine whether the true switching (defined as
the transition between two metastable energy minima with
m, = £1) took place. For this purpose, it is not enough
to count the number of times when the dependence m,(¢)
changes its sign [see Fig. 4(a)] (or, to be more careful, crosses

False
switchings

True
switching

/

Only[l true
switiching

10 12 14 16 18 20

FIG. 4. Difference between “true” and “false” switchings (see
text for details). On (c) the 3D magnetization trajectory in the time
interval 17 ns < v < 20 ns is depicted.

some negative threshold, say, m, = —0.2, when coming from
positive values). For the correct determination of Ny, we have
to distinguish between true and false switchings.

A simple example where this difference is clear is illus-
trated in Figs. 4(a)—4(c). Here, a true switching has occurred
at T & 13 ns; corresponding pieces on the dependencies m, ()
(which changes sign during the switching) and m,(¢) are
drawn in green. But, the (numerous!) sign changes of m,(t)
in the interval 7 ~ 18-19 ns clearly do not correspond to
any real switching process. 3D representation of the corre-
sponding piece of the magnetization trajectory, marked in red
in Fig. 4(c), demonstrates that these sign changes of m, are
due to the so-called out-of-plane (OOP) precession. By this
precession kind the magnetization rotates in the high-energy
region of the energy landscape (because |m,]| is relatively
large), so that during this process no real switching between
the energy minima occurs. Hence, in Fig. 4 during the time
interval 17 < t < 20 ns only one real switching is observed.

To distinguish between true and false switchings, one could
in principle perform the analysis of “candidate” cases, i.e.,
events when the sign change of m, has been detected, using
the time dependencies of other magnetization projections.
For example, for the particular case shown in Fig. 4, the m,
projection does not change its sign during the whole time
interval marked in red, indicating that the magnetization pre-
cession takes place only on one side of the easy plane of
the nanoelement (m, < 0), meaning that the OOP precession
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FIG. 5. Excitation of the macrospin before and its equilibration
after the true switching as m,(t) dependence (a) and 3D magnetiza-
tion trajectory (b) (the switching process itself is highlighted in dark
red). Only the switchings after which the macrospin spends in the
new basin more time than the equilibration time (&3 ns) are counted
as true switching events.

(and not a true switching) is in process. However, consider-
ation of all particular cases would make the corresponding
“projection-based” differentiating algorithm too complicated
and thus unreliable.

For this reason, we have adopted a more general method
to identify true switching events. The method is based on
the very definition of “switching” which is understood as a
transition between two metastable states, whereby the system
under study must spend sufficient time in the vicinity of each
state in order to achieve a partial thermal equilibrium within
corresponding energy basins. If this is not the case, the switch-
ing is considered as false.

The idea is illustrated in Figs. 5 and 6. During a true
switching (Fig. 5) the magnetic moment is first excited by
thermal fluctuations so that it can overcome the energy barrier,
and afterward the equilibration in the other energy well takes
place. This equilibration, as shown in Fig. 5(a), takes about
feq & 2 ns, whereby t., depends mainly on the damping pa-
rameter A and slightly on the energy landscape near the energy
minima. Based on this finding, we consider a switching as
being “true” when the time Aty spent by the system in the
target energy well after the switching is larger than #eq.

To further support this idea, we have collected the his-
togram of time intervals between two subsequent sign
changes of m, (). This histogram shows a huge peak for small

(a) 10* (b) 1500
1000
<102 <
500 -
10° 0 —
0 500 1000 1500 2000 0 05 1 1.5 2
t(ns) t(ns)
() 4 — d) o2,
N0
E)( 0 E
02/
1 %
-1 0\'\\ __—
0 1 2 3 4 5 \0 1
At (ns 4
(ns) m, m

X

FIG. 6. (a) The region of the histogram of t,, obtained from
LD simulations when all time moments when m, changes sign are
counted as switchings (note the log scale of the y axis). (b) The region
of this histogram for # < 1 ns. (c) A typical m,(t) dependence for a
false switching event [taken from the p(t,) peak shown in (b)] and
(d) the corresponding 3D magnetization trajectory.

time intervals, as shown in Fig. 6(a) (note the logarithmic
scale of the y axis!); this peak is presented in Fig. 6(b) in a
much higher resolution. The analysis of magnetization trajec-
tories corresponding to the events attributed to this peak has
clearly demonstrated that these events typically represent an
“excursion” of the magnetization toward the opposite energy
minimum [see trajectories in Figs. 6(c) and 6(d)], and are
clearly “false” switchings. So, in further analysis we have
used the criterion Afyen > feq to identify real (true) switching
events in LD simulations.

In order to obtain a sufficiently accurate statistics, for
nanoelements with a = 50 nm, we have simulated a col-
lection of 100 macrospins during fy, = 150 us and for
elements with @ = 55 nm an ensemble of 400 macrospins
during f4m = 5 ms = 5 x 10° ns, applying the approach de-
scribed in our paper [23]. After subtracting false switching
events (using the criterion described above), we have ob-
tained t2P(a = 50 nm) = 2.36(£0.3) x 10% ns and tP(a =
55 nm) = 1.3(£0.2) x 10° ns. Note that for « = 50 nm the
switching time is 1.6 times and for a = 55 nm about 1.4
times larger than the analytical values for these elements given
by (9). This difference is most probably due to the fact that the
approximation (9) does not take into “return” trajectories and
thus overestimates the transition rate.

IV. TIME-TEMPERATURE EXTRAPOLATION
METHOD (TTE)

The most straightforward idea which can be used to obtain
switching rates for systems with energy barriers unachievable
for standard LD simulations at room temperature is to per-
form LD simulations at higher temperatures and extrapolate
obtained switching rates to the temperature of interest. From
the quantitative point of view, this method (which we shall
call the time-temperature extrapolation method or TTE) em-
ploys the assumption that the main temperature dependence
of 7,y is due to the exponential factor in the expression 7y, =
79 exp(AE /kgT) and all other dependencies on 7', which may
be hidden in the prefactor 7y, are weak. This assumption
implies that we can try to overcome the inherent limitation
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of the Langevin dynamics’ ability to model only systems with
relatively low barriers in the following way.

For a system with a high-energy barrier we should perform
LD simulations of the magnetization switching at several tem-
peratures (all of them much larger than the temperature of
interest), thus obtaining the dependence t,(7) at relatively
high temperatures. Then we can use the analytical form g, =
c exp(b/T) to extrapolate the obtained dependence g, (T)
toward the desired low temperature (we note that a somewhat
similar idea was used in [33] to obtain hysteresis loops in
a low-frequency external field at a low temperature by sim-
ulating the loops in a high-frequency field at much larger
temperatures).

The main physical deficiency of this idea is that by simu-
lations at elevated temperatures the system will spend most of
the simulated time in regions of the energy landscape which
are inaccessible for this system at actual transition tempera-
tures. However, as long as switching events remain relatively
rare (so that the system mostly stays in the vicinity of energy
minima), we can hope that the accuracy of the extrapolated
result is reasonable.

The precision of the proposed method crucially depends
on (i) the lowest temperature achievable in simulations for
the given energy barrier and (ii) on the statistical accuracy of
the switching time values (obtained in LD simulations) which
will be used in the subsequent extrapolation. For our nanoele-
ments, the lowest temperature for which LD simulations have
been performed was chosen from the requirement that during
the simulation time of 1 ms approximately 500 switching
events should occur. Corresponding lowest temperature in-
creases from T, = 600 K for a = 60 nm to T,,;, = 1800 K
for a = 100 nm. For two smallest elements a = 50 (55) nm
we have stopped to decrease T at Tp,;, = 400 (500) K in order
to check how the extrapolation results agree with direct LD
simulations available for 7 = 300 K for these nanoelements.

For each temperature, LD simulations were performed
simultaneously for 100 nanoelements using our approach
described in [23]. For each macrospin size a, averaged
switching times obtained from these simulations tg,(7")
were fitted using the function t,(T) = ¢, exp(b,/T) where
data points were weighted according to their statistical er-
rors. An example of the corresponding fitting is shown in
Fig. 7.

300 T . : . . .
Exp. fitting
® Simulation
» 200 ]
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FIG. 7. Simulated temperature dependence of the switching time
(open circles) and its fitting by the function T = c,e’/T (solid line)
for the macrospin corresponding to the nanoelement @ = 50 nm.
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FIG. 8. Relation AE /kgT, obtained analytically using (6), com-
pared with the coefficients b,/T obtained from the fitting of TTE
dependencies 7,(T) = ¢, exp(b,/T).

Interestingly, energy barrier AE®T /kgT = b,/T obtained
from this fitting was always somewhat smaller than the actual
barrier AE /kgT evaluated from the analytical expression (6),
as shown in Fig. 8. As a consequence, for large barriers the
switching time evaluated by the TTE method is smaller than
the analytical result (9), as it will be discussed in Sec. VII

Finally, switching times for all sizes at room temperature
were evaluated by extrapolating the fitting functions 7,(7) to
T = 300 K as shown in Fig. 9 by dashed green lines; switch-
ing times obtained this way are plotted in the same figure by
red circles. Analysis of these results is postponed to Sec. VII,

T (K)
2000 1000 700 500 400 300
1025 | : : T T T
Exp. fitting 100 nm
O Simulation
1020 I O  Extrapolation ]
590 nm
1015 1 © 80 nmy
)
£
3
& 0 70nm
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108 o 55nm
W l % g O 50 nm
10° : : '
0 1 2 3 4
1/T (1/K) %1073

FIG. 9. Extrapolation of switching time obtained for higher
temperatures using the LD dynamics (blue open circles) to T =
300 K (red open circles) for nanoelement sizes a = 50-100 nm.
The extrapolated t,, for the macrospin with @ = 50 nm is T /F =
2.18(£0.2) x 10* ns, for @ = 100 nm it is tI'® = 1.2(£0.7) x
10% ns.
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FIG. 10. Energy landscape with “bounce energy” contours Ey,.

where switching times obtained by all methods (analytical and
numerical) will be compared.

V. ENERGY BOUNCE METHOD
A. Basic idea and analysis of the original methodology

The main idea of the “energy bounce” algorithm [30] is to
enable LD simulations of the switching rate for arbitrary high-
energy barriers by forcing the point representing the system
state in the phase space to climb an “energy ladder” from
the energy minimum to the saddle point. For this purpose,
the energy interval AE between the minimum and the saddle
is divided into much smaller intervals (in our simulations
we have used §E = kgT'). Corresponding “splitting” of the
energy landscape is visualized in Fig. 10.

Now, we start LD simulations from the energy minimum
and continue until the energy histogram is computed with a
sufficient accuracy (the importance of this criterion will be ex-
plained below). At the next stage, simulations start from some
state (achieved so far) with the energy E > Eni, + 6E = Eélll)
and all LD steps which would lead to a state with an energy
E < Eg;) are rejected, i.e., the system is allowed to move
only in its phase-space region defined by the condition E >
E}grll . Again, these LD simulations run until the accumulated
energy histogram in this energy interval is sufficiently accu-
rate (the duration of our LD simulations above each Eg;) is
twak = 2000 ns). Then, at the next stage the minimal allowed
energy is again increased by §E (i.e., LD steps are rejected if
E < Et()i) = El;i) + §E), etc.

This procedure is repeated until the bounce energy E,gfl)
is only a few kg7 lower than the saddle point, so that a
sufficient number of transitions over the saddle is observed
by LD simulations above E.”. In other words, for these values

of Eé:l) the apparent escape time from the energy well A (see

Fig. 10) TX,)app = At /N® can be computed with a reason-

able precision (here At/(() is the time spent in the well A during
LD simulations with E > E").

The key question here is how to connect the time Atfx")
spent by the system within A for trajectory obeying the
condition E > E), with the time spent in this well for un-
constrained simulations. As the energy near the saddle can not
be achieved for unconstrained simulations within a reasonable
time, this connection can be established only recursively, i.e.,

the time At/(\i) spent in A during simulations with £ > Eé;)
should be related to At/("fl) during the previous stage (when
E > Eé:l)). If we denot¢ the corre;sponding proportionality
coefficient as F;, i.e., At/gl) = FiAtXH), then for the determi-
nation of the actual switching rate we obtain the expression

n—1 n)
rEnB — HF,%, (26)
j=1 A
where n is the total number of bounce energy levels used
to climb the path from the energy minimum to the saddle
point.

Before proceeding to the detailed consideration of methods
for the computation of F;, we emphasize that these coefficients
have to be determined with a very high precision, whereby
systematic errors are especially dangerous. This feature fol-
lows directly from the basic expression (26), which involves
the product of all F;, meaning that any systematic error by
their calculation will be exponentially amplified.

In the original version [30] it was suggested to determine
F; from the probability densities p;(E |E > Ej ) = pi(E) to
encounter the energy E at the ith stage. Namely, in [30] it
was assumed that the probability density p;y;(E) is simply
proportional to the corresponding probability density p;(E).
This would mean that p;(E) = F;p;4(E), where the “transfer
coefficient” F; does not depend on E (for E > E (;), ie., if
the energy E is accessible for both stages i and i + 1). This
independence of F; on E is the main assumptions in this
version of the energy bounce method. It can be verified only
by the direct comparison of energy histograms obtained at
stages i and i + 1.

According to [30], the proportionality p;(E) = Fpi41(E)
approximately holds except for the energies close to Ebi:r
Basing on this finding, and in order to increase the accuracy by
the calculation of F;, Wang and Visscher [30] have suggested
to compute F; using the integral ratio

o0
o _ S v EME
’ it ey i1 (EYIE

27

where the lower limit of both integrals is larger than Eé;“)
by an offset energy eqr (= kgT in [30]) to exclude the above-
mentioned histogram region near E.-"".

Analyzing the energy histograms from our simulations, we
could confirm that the ratio p;(E)/pi+1(E) is approximately
constant, except for the regions near the bounce energies,
where this ratio becomes singular [as shown in Fig. 12(b)]
because pi1(E) — 0 for E — E\D (see Fig. 11). This
feature of accumulated histograms shows that the true ther-
modynamic equilibrium is not achieved near the bounce
energies [we note that the density of state D(E) has no
zeros or singularities near Eé;)]. In [30] it was suggested
that this is due to the finite size of the LD time step.
Indeed, our studies have shown that the width of the dis-
turbed area [where the accumulated energy histogram strongly
differs from the true-equilibrium result, see Fig. 11(b)] de-
creases when the LD step size becomes smaller. However,
this decrease is very slow so that for any reasonable time
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FIG. 11. (a) Energy histograms sampled at two subsequent val-
ues of the bounce energy. The offset €, marks the regions above
Eé";‘“) where the histogram does not correspond to the thermody-
namic equilibrium due to the influence of the “hard” energy cutoff
at Ey,. (b) Energy histogram sampled by simulations (yellow line)
compared to the exact analytical result (4) for the probability to
obtain the energy E in a true equilibrium (blue line); the ratio of the
simulated histogram to the analytical result is shown by the green
line.

step the width of the out-of-equilibrium energy interval re-
mains substantial. To avoid this region, we have also used
the offset energy e = kg7 (Fig. 11). Consequences of
the existence of this disturbed region for the switching
rate computed via the expression (26) will be discussed in
Sec. VIIL.

In addition to the problem discussed in the previous para-
graph, the ratio p;(E)/p;+1(E) exhibits a small systematic
decrease when the energy increases [see Fig. 12(b)]. To study
whether this systematic decrease affects the computed switch-
ing time, we have tested another method for the evaluation of
F;, based as average ratio of histograms

F@) <M (28)

l . .
Pir1(E) >Eg:‘ ot <E<EifL

computed at the interval from the offset energy to the maximal
energy Et! for which pi11(E) becomes too small (typi-
cally less than 5% of its maximal value) so that the ratio
Pi(E)/pir1(E) becomes ill defined due to statistical fluctu-
ations of accumulated histograms. The product of F; (see
Fig. 13) and switching times (shown in Fig. 17 for two differ-
ent macrospin sizes) were very close to those obtained using
the initial definition (27), showing the high robustness of both

methods for evaluating F; for a macrospin.
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FIG. 12. (a) Energy histograms p;(E) for subsequent stages of
the energy bounce method (8E = kgT); (b) ratios pqt1)(E)/pi(E)
for some histogram pairs (for the macrospin with a = 50 nm).

B. Alternative method to define transition coefficients

Unfortunately, the energy bounce algorithm based on
the evaluation of transfer coefficients F; employing energy
histograms (not to mention the assumption of their pro-
portionality) cannot be used for full-scale micromagnetic
simulations, where other energy contributions, in addition to
the shape anisotropy energy present for a macrospin, play
an important role. The major problem is that the height
of an energy barrier in typical magnetic systems is deter-
mined by either the magnetocrystalline anisotropy E,, or
the magnetodipolar energy Eg;p, (Which is responsible for the
shape anisotropy introduced ad hoc in the macrospin ap-
proach), whereby the energy itself is largely determined by
the exchange stiffness energy Eexn. The latter contribution is
especially high by simulations including thermal fluctuations

8 T T T T T
=—O—Int. ratio

~ @l —O—Avgr. rati9
= Ratio of times
11
Iq) 4 |
-
E 2F

0 : ‘ ! : ‘

0 10 20 30 40 50 60

E/KkT

FIG. 13. (a) Product of coefficients F; as the function of the
bounce energy for various methods to evaluate F;. (b) Ratios of the
products F™ and F* to the product of F,* (for the macrospin with
a = 100 nm).
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(what is mandatory for studies of thermally activated switch-
ing), and may exceed both E,, and Eg;, by several orders of
magnitude.

This feature of E.., makes the usage of histograms of
the total energy completely impractical because the energy of
interest, e.g., Eqip in case of shape-anisotropic particles, would
represent only a tiny contribution to this (noisy!) histogram.
Further, the analysis of histograms of Egjp only would also
be not really helpful because in a strongly interacting system
no general statements concerning the statistical distribution
of some part of the total energy (like the existence of the
Boltzmann distribution) can be made, not to mention some
proportionality assumptions like those used in [30].

For this reason, we suggest to use a qualitatively different
method to compute the coefficients F;, which employs our def-
inition of F; as proportionality coefficients between the time

interval AtXH) spent in A during simulations with E > Eg;“)

and the corresponding interval Atf‘i) during the ith stage (when
E > EY) e,
Fan _ Bt (E > EIT' + eonr)
! Aty (E > E + €ofr)

(29)

Results of simulations where this definition of F; has been
used turned out to be in a very good agreement with the orig-
inal method (27) and its modification (28) for all macrospin
sizes studied in this paper, as shown in Fig. 13 on an example
for a = 100 nm.

The advantages of this method are twofold: (i) it is very
simple and much faster than histogram-based methods be-
cause one does not need to accumulate energy histograms
with the high accuracy required for the precise determination
of F;, and (ii) it can be applied to systems, where only one
contribution to the total energy should be monitored, no matter
what the distribution of this energy term looks like. Using
a slightly modified definition (29) of F;, we could expand
the energy bounce method toward full-scale micromagnetic
simulations using the magnetodipolar energy of the spatially
averaged nanoelement magnetization as the energy of interest
entering (29). Corresponding results, being out of scope of
this publication, will be reported elsewhere.

Next, the problem how to determine another key quantity
in (26), the number of “true” switchings N over the barrier
when the system stays above the bounce energy level Eés),
should be considered. The method described in Sec. III which
is based on the criterion Aty > foq is not applicable here
because no real thermal equilibration occurs after switching
due to the artificial restriction imposed on the system energy
(E > EM).

For this reason, we have decided to consider a switching as
being “true” if after changing sign of m,, the system completes
at least one precession cycle around the new equilibrium
orientation of the magnetic moment.

This criterion was supported again by the analysis of his-
tograms of time intervals between subsequent sign changes
of m,, which always look like the example shown in Fig. 14:
a large peak at very small time intervals followed by smaller
but well-distinguished peaks for larger A¢’s. The visualization
of magnetization trajectories corresponding to these peaks
has shown that the first peak corresponds entirely to magne-
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FIG. 14. Histogram of switching times for the macrospin with
a =70nm for the bounce energy near the energy barrier (Ep, =
AE — 5kT). The first peak corresponds to the out-of-plane preces-
sion cycles [see Figs. 15(a) and 15(b)], so that these events are not
counted as switchings

tization “excursions” toward the opposite energy minimum,
where in most cases one cycle of the OOP precession is
accomplished [see Figs. 14(a) and 14(b)]. The next peaks con-
tained real switching events, where the number of precession
cycles around the energy minimum was equal to the sequence
number of corresponding peak in the histogram (if the first
peak is not counted) [see an example in Figs. 14(c) and 14(d)].
For these reasons, the switching was considered as being true,
if the time spent in the energy basin after switching exceeded
the time separating the OOP peak and the next peak on the
histogram p(Atyen); the corresponding threshold is shown in
Fig. 14 by the red dashed line.

The remaining question is how to choose the total num-
ber of energy bounce levels n which is best suited for the
switching rate computation. This question is briefly addressed
in [30], but a more detailed discussion is clearly necessary.
Namely, the stability of the evaluation of '™ using (26) as-
sumes the existence of a delicate balance between the product
of F;’s and the number of switching events N observed dur-

ing LD simulations above the bounce energy Eéz). Whereas
the product of F;’s exponentially decreases with n, because
F; < 1 according to its definition (see Fig. 13), the number of
switchings N should exponentially increase with n because
we approach the saddle point. From the analytical point of
view, these two tendencies should exactly compensate each
other, providing the same answer for 'E"® no matter how
many bounce levels we use.

However, in real simulations with the limited #, for each
Eé;) a sufficiently large number of switchings (Ng, > 100)
necessary to establish the exponential trend N o exp(n)
with a sufficient accuracy (Fig. 16) is observed only for high
bounce energies E. > AE — 5kT'. On the other hand, the ith
bounce energy level should not be too close to the energy
barrier because otherwise the very concept of switching as
a rare transition over the barrier becomes invalid. These two
conditions leave a relatively narrow window of bounce en-
ergies where we really have N o exp(n), as demonstrated
in Fig. 16. Only in this interval of Ey, the switching time

tEnB — 1/T'EnB [see (26)] is approximately independent on
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FIG. 15. Typical m,(¢) dependencies and 3D magnetization tra-
jectories for false (a), (b) and true (c), (d) switchings when Ei, is
close to the energy barrier. Events shown on (a) and (b) correspond to
the first peak and on (c) and (d) to the second peak on the histogram
shown in Fig. 14.

the number of the bounce level n (see two examples in Fig. 17,
where the plateaus suitable for the determination of tg, are
explicitly marked). These plateaus should be determined man-
ually, making the application of the whole method rather
nontrivial.

Further, in order to improve the statistics in determination
of N, we have set fy,x = 500 ns for Ey, < AE — S5kgT, and
increased tyu to 107 ns for Ey, > AE — 5kgT. At the same
time, the bounce energy step in this interval was decreased to
SE = 0.5kgT.

Comparison between switching times obtained using dif-
ferent versions (27)—-(29) for the evaluation of transfer
coefficients is given in Fig. 18. Overall, the agreement be-
tween all three versions can be considered as being fairly
good: we emphasize here that computed switching times cover
more than 20 orders of magnitude, so that they had to be
divided by the exponential factor exp(AE/kgT) to enable
a meaningful comparison between them on a single plot.
Among all versions, our method (28) provides the best agree-
ment with the results of LD simulations available for small
barriers. Switching times computed according to the more
universal method (29) (yellow curve) lie systematically some-
what lower than for other two versions (compare to Fig. 13).
However, this difference becomes smaller than statistical er-
rors when the energy barrier increases (for AE /kgT > 30),

E/KT

FIG. 16. Number of switchings as the function of the bounce
energy for the macrospin with the long axis a = 100 nm.
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FIG. 17. Switching times as functions of the last bounce energy
E"™ for the macrospin with @ = 50 nm (a) and with @ = 100 nm
(b) used for calculation of t, via (26). Different line colors corre-
spond to two approaches (27) and (29) for calculating F;. Plateau
which can be used to establish 7y, are marked with curly brackets.
Dashed lines show the energy barriers AE.

i.e., this energy bounce version is clearly applicable for the
most interesting region of energy barriers.

The relation between switching times obtained with the
energy bounce method and other methods (analytical and nu-
merical) for all macrospin sizes studied here will be discussed
in Sec. VIL

VI. FORWARD-FLUX SAMPLING (FFS)

The forward-flux sampling method was initially suggested
as a method to evaluate switching rates between different
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i - & Aver. ratio
e 0.3 5{ Ratio of times
u\.l E A Lang. dyn.
49 0.2} N 1
= \D“\
o ~a
01} ~— |
\\*—~
O 1 1 1 1
0 10 20 30 40 50 60
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FIG. 18. Average switching time [divided by exp(AE /kgT') for
the presentation clarity] obtained from the three approaches (27)—
(29) used to compute ty,, in the energy bounce method as the function
of the energy barrier.
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FIG. 19. Illustration of FFS method. Transition between wells A
and B over interfaces A;.

metastable configurations of complex molecules in biochem-
istry [24]. In principle, FFS can be adopted to any biological,
chemical, or physical applications where transitions rates over
high-energy barriers have to be evaluated, including micro-
magnetic problems (see, e.g., [29]).

A. General methodology of FFS

The idea of FFS can be understood from Fig. 19. Basins
A and B (in the corresponding system coordinate space) sur-
rounding the two corresponding metastable states of interest
are confined by the interfaces Ao and Ap. Intermediate inter-
faces A;, i =1, ..., n, are constructed in-between A4 and Ap
so that transitions between two the subsequent interfaces i and
i+ 1 can be expected during LD simulations of the system
within a reasonable time.

LD simulations are then started from the state m, = +1
and thermalization within the basin A is carried out (i.e.,
simulations are performed until the average energy does not
exhibit any systematic trend). Afterward, the flux per unit time
out of the basin A is computed as the relation

®Pp = Nao/Ata, (30)

where Nj_,¢ is the number of times when the system tra-
jectory coming from the basin A has reached (crossed) the
interface Ay during the simulation time interval Afs. System
states corresponding to these Ny crossings are saved as poten-
tial starting states for the next stage.

Next, My trial trajectories are started from the states chosen
randomly out of the set of above-mentioned Ny saved states
on the interface Aq. If a trial trajectory returns into the basin
A, it is disregarded. If such a trajectory reaches the interface
A1, the system state corresponding to this crossing point is
saved. If the total number of these crossing events is Nj, then
the conditional probability that a trajectory starting from the
interface Ao will reach the interface A is p(A1|Ao) = Ny /M.

Repeating the same procedure starting from the subsequent
interfaces, we can then compute the required transition rate
straightforwardly as

I = @, p(islro) = Oa [ [ pCuiraln), B

i=0
where X,+; = Ag; here, we have used the chain rule stating
that the conditional probability p(Ag|Ag) equals to product
of corresponding conditional probabilities that a trajectory
will reach the interface A;;; when having started from the

interface A; [p(Ai+1|A;) = Nix1/M;]. In our simulations which
results are presented below, we have used N, = 500 attempts
for each macrospin size and M; = 500 trial trajectories for
starting from each interface within the given attempt.

B. Positioning the interfaces based on the energy considerations

The FFS method as such does not contain any adjustable
parameters like, e.g., the offset energy in the energy bounce
method. The procedure described above leads to the unbiased
estimation (31) of the escape rate. Hence, the primary question
is how to maximize the efficiency of FFS, meaning how to
minimize the statistical error of the computed escape rate for
the fixed amount of the computer time spent by calculations.

This problem has been analyzed in details in several
publications [26,27] treating FFS in general, i.e., without a
reference to any specific physical system. This analysis has
led to the intuitively expected result that the best efficiency of
FFS is achieved when the flux between the two subsequent in-
terfaces M;p(A;+1|A;) is constant “along” the system, in other
words, does not depend on the interface number. Taking into
account that the number of trial “shots” from each interface
is usually the same, we arrive at the statement that in order to
minimize the statistical error, we should construct the set of
interfaces so that the transition probability p; = p(Ai+1]X;) =
const.

Several methods for the construction of the corresponding
set {);} have been suggested [26,27]. All these methods are
iterative and provide some recipes how to shift the interfaces
{X;} based on the transition probabilities p; obtained on this
set.

In our case, a much simpler solution is possible. We con-
sider the escape of a physical system over an energy barrier,
and thus have to our disposal the Boltzmann distribution p
exp(—E /kgT) of the probabilities to find a system with an
energy E at the temperature 7. Hence, we can position the
interfaces employing the idea that the transition probability
between the two subsequent interfaces is roughly proportional
to the energy difference between them: p; o exp[(Ei+1 —
E;)/ksT]. This relation is not exact, as there can be small
deviations due to the dependence of the density of system
states on the system energy, but this correction is usually small
compared to the exponential dependence of the probability on
the energy difference.

Using this proportionality, we introduce for the “uphill”
path the set of interfaces, which are equidistant in the energy
space. Namely, we first define the boundary A of the basin A
(from which we start the simulation) by the energy E(Ap) =
Enin + ksT. Then we place the interface Ao used for the flux
calculation (30) one kgT higher: E(Ag) = E(Ap) + kgT . Fi-
nally, we place the uphill interfaces A; (i = 1, ..., n) so that
E" (%) = E;® = E(ko) + iE;¢, where the number of inter-
faces n is chosen so that (i) the last uphill interface is placed
in the vicinity of the saddle point, but slightly beyond it, so
that E,* ~ E* = E_;, + AE, whereas m,(},) < 0 and (ii)
the energy difference between the interfaces §Ej ~ kgT .

The positioning of interfaces on the downhill path is less
important because the flux toward the basin B after passing
the saddle point is large, so that corresponding conditional
probabilities rapidly tend to 1.0. Hence, we use here only two
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FIG. 20. Conditional probability p as the function of the inter-
face energy E for the macrospin with a = 50 nm (energy barrier
AE = 9kgT), obtained for 500 attempts and N; = 500 starting points
from each interface

additional interfaces with the energies Ef"" = Es* — kpT
and EJ" = ES* — 3kT.

Placing of interfaces in the energy space requires a
special discussion because usually the interfaces are posi-
tioning in the coordinate space {x} of the studied system.
From the mathematical point of view, assignment of inter-
faces in the energy space can be considered as a specific
form of placing coordinate-based interfaces with coordi-
nates defined via an implicit function Eif = Ei{x}. In our
specific case where the energy is given by the simple
expression (1), this implicit function, together with the re-
lation |m|| = 1, defines closed ellipselike contours nymf +
szmg = Eif/anfV, m, = £(1 — m}2 — mzz)l/2 on the unit
sphere. The plus (minus) signs before the m, projection cor-
respond to interfaces on the uphill (downhill) path. In case of
more complicated systems, e.g., in full-scale micromagnetic
simulations, the simple recipe of placing interfaces using the
total energy does not work for the same reason as the usage of
this total energy as energy bounce intervals (see discussion in
the Sec. V B). Corresponding extension of the interface posi-
tioning method will be discussed in the upcoming publication.

Using our methodology for the interface positioning, we
have introduced another optimization which strongly reduces
the total computation time. In the standard FFS version, the
trajectory is abandoned (the attempt is considered as failed),
when after having started from some interface A;, it returns
to the initial basin A. We abandon a trajectory already when
the corresponding energy drops below E(X;) — 5kT because
in this case it is exponentially unlikely that this trajectory ever
climbs above the interface A;. For the highest-energy barrier
studied here (AE = 60kgT), this optimization leads to &4 x
acceleration of simulations.

An example for the dependence of the transition probabil-
ity p; between the interfaces on the interface number i (in
fact, on the interface energy E;) is shown in Fig. 20. It can
be seen that for the uphill interfaces this probability is indeed
nearly independent on E;, thus ensuring the smallest possible
statistical error by calculating the switching rate.

Switching times calculated using the FFS modified as de-
scribed above are presented in Fig. 21 and will be discussed
in the next section.
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FIG. 21. Switching times in dependence on the macrospin size
computed by all analytical and numerical methods (a) and ratio of
switching times for all methods to the switching time obtained in the
analytical approximation (9).

VII. RESULTS AND DISCUSSION: COMPARISON OF
ANALYTICAL AND NUMERICAL METHODS

Results for the switching time dependencies on the
macrospin size (long ellipse axis a) obtained with all an-
alytical and numerical methods presented in this paper are
collected in Fig. 21. First, we point out that in the interval
of energy barriers 9 < AE /kgT < 70 studied here, switching
times span the interval of more than 20 orders of magnitude
(from ~2 s to ~30 million years). For all methods g, grows
(at least approximately) proportional to the relation AE /kgT,
so that the difference between 15, measured by various meth-
ods is barely visible when ty is plotted as the function of size
[Fig. 21(a), logarithmic scale].

For this reason, in Fig. 21(b) we have plotted the ratio
Tow/ T4y Of switching time obtained by different methods to
the corresponding time calculated using the analytical ap-
proximation (9), which is valid for AE > kgT and should
be applicable for arbitrary damping. This way we eliminate
the exponential dependence of 4, on the energy barrier (or,
equivalently, on the long axis a), enabling the meaningful
comparison of various approaches.

First of all, we note a remarkable coincidence of the Arrhe-
nius approximations (5)—(8) with the more general analytical
result (9) in the whole range of switching times: TA™ /70 ~ |
[see the blue line in Fig. 21(b)]. This agreement is due to
the fact that for our system the product of damping o = 0.01
and the ratio 10 < AE/kgT < 60 lies in the range 0.1 <
aAE /kgT < 0.6. As stated in Sec. I C, it is this product (and
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not the damping value « by itself) which governs the transition
between various damping regimes. Hence, the values of the
parameter which controls the transition from the low to the
high damping regime lie for our macrospins in the interme-
diate region, where a good agreement between the simple
transition state theory (Arrhenius law) and the sophisticated
analytical result (9) is indeed expected (see, e.g., Fig. 9 in [9]).

Next, we discuss the relation between switching times
obtained by different numerical methods and the analytical
approximation (9).

For relatively small energy barriers (AE/kgT < 195),
where a comparison with straightforward LD simulations is
still possible, all numerical methods agree with LD results
within the statistical errors of the latter (only the TTE result
is slightly below the LD value). Further, all numerically com-
puted switching times for these small barriers are larger than
the analytical ones (tjy™ /t&y > 1fora < 55 nm, see Fig. 21).
This relation is in accordance with the well-known feature
of analytical approximations: they overestimate the transition
rate (thus underestimating the switching time) because they
do not take into account the possibility that a system trajec-
tory can return to the initial basin A shortly after crossing
the saddle (i.e., without visiting the basin B) [9]. Note that
these “back-hopping” events should not be mixed up with the
out-of-plane precession analyzed in Sec. IIL.

When the energy barrier increases, results of numerical
methods exhibit considerably different trends.

Time-temperature extrapolation method. Relation of
switching times obtained via TTE to analytically computed
times decreases with increasing AE, becomes smaller than
1.0 for AE/kgT > 20, and drops to tiTE/t ~ 0.1 for
the largest particles studied here with a =90 and 100 nm
(AE /kgT > 50).

From the “technical” point of view, this decrease is due to
the fact that “effective” energy barriers obtained by the expo-
nential fitting of TTE switching times (computed by higher
temperatures) are systematically lower than actual barriers,
and this difference increases with the barrier height, as shown
in Fig. 8. The most probable physical explanation of this
behavior is that for larger energy barrier LD simulations in
the TTE method have to be conducted by higher temperatures,
so that magnetic moments precess in the higher-energy range
than by the room temperature. In this energy range the cur-
vature of the energy landscape (i.e., the density of states) is
considerably different from the curvature near the bottom of
the energy minimum, which may result in a lower “effective”
energy barrier.

Still, we point out that this conceptually very simple (so
that it can be easily extended to full-scale micromagnetics)
and relatively fast method performs surprisingly well: In the
interval of g, covering more than 20 orders of magnitude,
TTE switching times 7 IF differ in the worst case only by
one order of magnitude from results obtained by much more
sophisticated methods.

Energy bounce method. For this method, relation of its
switching times to the analytical ones also decreases with
the energy barrier, although much slower than for TTE.
Still, the ratio tE"™B /730 drops below unity for AE /kgT > 30
and achieves the value ~0.5 for a = 100 nm (AE /kgT ~
60). Taking into account that the switching time computed

numerically should be larger than 73 (see the explanation
above), the reason for this systematic decrease of the ratio
tEmB /730 should be found.

In the energy bounce expression for the switching rate (26),
the number of switching events N at the nth stage of
the method is determined using the same criteria as for the
straightforward LD simulations without the bounce energy.
Hence, the only possible source of the systematic underes-
timation of the actual switching time in the energy bounce
algorithm is the systematic error by the computation of the
transition factors F;.

To explain the appearance of such deviation by computing
F;, we remind that these factors are evaluated using either
the ratio of energy histograms obtained for different bounce
energy levels Eé;) (in the initial version) or the ratio of times
spent above these levels (in our version). In both versions,
the interval between Ep, and Ey, + €. Where the system
equilibrium is strongly disturbed is excluded (see Fig. 11) in
order to compute these ratios as correct as possible.

However, in spite of the exclusion of this interval, the
introduction of artificial energy levels Ey, (and the prohibition
to visit the phase space with E < Ej,;,) still leads to systematic
errors by the computation of F;’s. The reason for these errors
is that the true thermal equilibrium is disturbed for all ener-
gies above Ey,. This perturbation can be demonstrated using
the normalized probability histograms shown in Fig. 11(b).
Here, it can be seen that for £ > Ey, + €., the probability
p(E |E]§:1)) is always larger compared to the true-equilibrium
distribution p(E') because for energies close to Eé;), the energy
bounce histogram is smaller than the actual p(E). This sys-
tematic deviation is different for different Ey, levels due to the
energy dependence of the system density of states D(E) (see
Fig. 2). Hence, the coefficients F; computed as ratio of any
quantities derived from system trajectories above Ep, + €of
also exhibit systematic deviation from the correct transfer
coefficients.

The effect considered above is small because the main
energy dependence of the probability p(E) is due to the
Boltzmann exponent exp(—E /kgT ), and not to the depen-
dence D(E). Still, this small effect, accumulated in course of
subsequent multiplications of F;’s, most probably leads to the
above-mentioned systematic underestimation of the switching
time by the energy bounce method.

In spite of this underestimation, the energy bounce method
performs considerably better than the TTE method, leading
for the highest studied barrier to the underestimation of gy
only by two times compared to the analytical approximation
and three times to the forward-flux method.

Forward-flux sampling. Among all numerical methods con-
sidered here, the FFS is the only one which uses neither
any far-reaching extrapolation from high-7 results nor any
artificial boundaries restricting the system motion in the phase
space. All LD simulations in frames of FFS are conducted
for an undisturbed system, so that the method should be as
reliable as the LD itself. The only problem of FES is the re-
quirement to achieve a high accuracy by the evaluation of the
transition probabilities between the interfaces p(A;41|A;). As
explained above, we have solved this problem by positioning
interfaces in the energy space and thus could obtain switching
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times with a very low statistical error, as demonstrated in
Fig. 21 (see yellow lines).

Switching times computed by FFS coincide with the LD
results for low-energy barriers (within the statistical errors of
the latter method). Further, tf'S lie systematically above the
analytical approximation (9), as it should be according to the
consideration of back-hopping trajectories (see above).

The significance of the back-hopping processes for our
system can be estimated from Fig. 20. Here, it can be seen
that the probability to go downhill from the interface A; (for
which we have already m, < 0, so that this interface is slightly
beyond the barrier) is ~90%, meaning that about 10% of
trajectories starting at this interface, go back to the initial
basin A. Further, probability to go downhill from the interface
Ag is only slightly larger than 90%, so that again ~10% of
trajectories go back from this interface to the basin A. Finally,
we recall that the interface A is already beyond the barrier, so
that some back hopping may occur between the separatrix and
this interface (note that the back-hopping probability is larger
for trajectories in the immediate vicinity of the saddle point).
Hence, we can conclude that the fraction of back-hopping
trajectories is significant (in any case much larger than 20%),
which makes the systematic increase of the FFS switching
time in Fig 21(b) over the analytical expression plausible.
Interestingly, the ratio tf'S /73 is nearly constant (~1.5)
for a very broad interval of switching times considered here.
It might be an indication that for the macrospin model, the
fraction of trajectories which return to the initial basin after
crossing once the saddle point depends only weakly on the
energy barrier height.

VIII. CONCLUSION

In this paper we have studied the dependence of the switch-
ing time for a bistable biaxial magnetic particle in dependence
of its in-plane size, which translates into the dependence on
the energy barrier separating two energy minima. We have ap-
plied two analytical methods (a simple transition state theory
leading to the Arrhenius law and the sophisticated approach
based on the Melnikov-Meshkov solution of the Kramers
problem for an arbitrary damping) and four numerical tech-
niques (straightforward LD simulations, the time-temperature
extrapolation method, the energy bounce method, and the
forward-flux sampling).

Analyzing the results obtained by analytical methods, we
have shown that the parameter which governs the transition
from the low damping to the high damping regime is not the
damping A in the LLG equation by itself, but rather the prod-
uct of A and the reduced energy barrier AE /kgT . Taking into

account that the damping for a typical magnetic material used
in applications is A ~ 0.01 and the energy barrier required to
achieve a stability during a macroscopic time interval is AE ~
50kgT, we conclude that magnetization switching proceeds
usually in the intermediate damping regime AAE /kgT ~ 1.
Our comparison of switching times obtained in the Arrhenius
approximation and in the Melnikov-Meshkov formalism con-
firms this conclusion.

Comparison of numerical methods has shown that for low-
to-moderate energy barriers (AE < 10kgT') where direct LD
simulations are possible, results of all numerical methods
agree within statistical errors. However, when the energy
barrier height increases, the relation of switching times ob-
tained by the TTE and by the energy bounce methods to
tiy systematically decreases (the decrease is slower for the
energy bounce method), so that for sufficiently high barriers
the analytically computed switching time becomes larger than
the numerical one. We could show that this artificial trend
is the consequence of physical principles the corresponding
methods are based on. Hence, the quality of results obtained
by the TTE and energy bounce method is limited.

For the forward-flux sampling, our recipe for choosing
the interfaces which are equidistant in the energy space (for
the evaluation of transition probabilities p;) has led to nearly
interface-independent probabilities p; without any a posteriori
optimization, assuring the high accuracy by the computation
of switching times. Corresponding values tF coincide with
LD results for low barriers and are higher than & for all en-
ergy barriers studied here, demonstrating that FFS represents
a reliable technique for computing switching rate in magnetic
systems, and that a very high accuracy can be potentially
achieved by this method.

In this research, we have concentrated on the inherent
properties of various techniques to study the escape of mag-
netic systems over energy barriers, and thus have performed
our studies in frames of the macrospin approximation. For
real applications, a full-scale micromagnetic framework is
clearly necessary. The corresponding generalization of our
techniques proposed in this paper, except of the TTE method,
is highly nontrivial due to the contribution of other energy
terms (mainly the exchange energy). This problem and its
solution will be discussed in details in the forthcoming publi-
cation.

ACKNOWLEDGMENTS

Financial support of the Deutsche Forschungsgemeinschaft
(German Research Society), DFG Project No. BE 2464 /18-1
is greatly acknowledged.

[1] L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953).

[2] D. Berkov, J. Magn. Magn. Mater. 186, 199 (1998).

[3] W.E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301
(2002).

[4] R. Dittrich, T. Schrefl, and H. Forster, IEEE Trans. Magn. 39,
2839 (2003).

[5] H. Jonsson, G. Mills, and K. Jacobsen, Nudged elastic band
method for finding minimum energy paths of transitions, in

Classical and Quantum Dynamics in Condensed Phase Sim-
ulations (World Scientific, Singapore, 1998), Chap. 16, pp.
385-404.

[6] H.-B. Braun, J. Appl. Phys. 76, 6310 (1994).

[7] G. Fiedler, J. Fidler, J. Lee, T. Schrefl, R. L. Stamps, H. Braun,
and D. Suess, J. Appl. Phys. 111, 093917 (2012).

[8] H. Kramers, Physica (Amsterdam) 7, 284 (1940).

[9] W. Coftey and Y. Kalmykov, J. Appl. Phys. 112, 121301 (2012).

144419-16


https://doi.org/10.1103/PhysRev.91.1505
https://doi.org/10.1016/S0304-8853(98)00078-X
https://doi.org/10.1103/PhysRevB.66.052301
https://doi.org/10.1109/TMAG.2003.816239
https://doi.org/10.1063/1.358279
https://doi.org/10.1063/1.4712033
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1063/1.4754272

EVALUATION OF THE SWITCHING RATE FOR MAGNETIC ...

PHYSICAL REVIEW B 102, 144419 (2020)

[10] W. F. Brown Jr, IEEE Trans. Magn. 15, 1196 (1979).

[11] I Klik and L. Gunther, J. Stat. Phys. 60, 473 (1990).

[12] V. Mel’nikov and S. Meshkov, J. Chem. Phys. 85, 1018 (1986).

[13] W. T. Coftey, D. A. Garanin, and D. J. McCarthy, Crossover
formulas in the Kramers theory of thermally activated escape
rates—application to spin systems, in Advances in Chemical
Physics, edited by 1. Prigogine and S. A. Rice (John Wiley &
Sons, 2001), Vol. 117, p. 483.

[14] P. M. Déjardin, D. S. F. Crothers, W. T. Coffey, and D. J.
McCarthy, Phys. Rev. E 63, 021102 (2001).

[15] W. T. Coffey, D. S. F. Crothers, Y. P. Kalmykov, and J. T.
Waldron, Phys. Rev. B 51, 15947 (1995).

[16] W.T. Coffey, D. S. F. Crothers, J. L. Dormann, L. J. Geoghegan,
Y. P. Kalmykov, J. T. Waldron, and A. W. Wickstead, Phys. Rev.
B 52, 15951 (1995).

[17] Y. P. Kalmykov, W. T. Coffey, B. Ouari, and S. V. Titov,
J. Magn. Magn. Mater. 292, 372 (2005).

[18] A. Hubert, Magnetic Domains: The Analysis of Magnetic
Microstructures (Springer, Berlin, 1998).

[19] S. Wang and P. Visscher, J. Appl. Phys. 99, 08G106 (2006).

[20] R. Dittrich, T. Schrefl, A. Thiaville, J. Miltat, V. Tsiantos, and
J. Fidler, J. Magn. Magn. Mater. 272-276, 747 (2004).

[21] A. Meo, P. Chureemart, S. Wang, R. Chepulskyy, D. Apalkov,
R. W. Chantrell, and R. F. L. Evans, Sci. Rep. 7, 16729 (2017).

[22] J.-H. Moon, T. Y. Lee, and C.-Y. You, Sci. Rep. 8, 13228
(2018).

[23] E. K. Semenova and D. V. Berkov, AIP Adv. 9, 055307 (2019).

[24] R.J. Allen, P. B. Warren, and P. R. ten Wolde, Phys. Rev. Lett.
94, 018104 (2005).

[25] R.J. Allen, D. Frenkel, and P. R. ten Wolde, J. Chem. Phys. 124,
194111 (2006).

[26] E. E. Borrero and F. A. Escobedo, J. Chem. Phys. 129, 024115
(2008).

[27] R. Allen, C. Valeriani, and P. R. ten Wolde, J. Phys.: Condens.
Matter 21, 463102 (2009).

[28] C. Vogler, F. Bruckner, B. Bergmair, T. Huber, D. Suess, and C.
Dellago, Phys. Rev. B 88, 134409 (2013).

[29] C. Vogler, F. Bruckner, D. Suess, and C. Dellago, J. Appl. Phys.
117, 163907 (2015).

[30] S. Wang and P. Visscher, IEEE Trans. Magn. 43, 2893 (2007).

[31] M. Chudnovsky, J. Appl. Phys. 73, 6697 (1993).

[32] B. Barbara and W. Wernsdorfer, Curr. Opin. Solid State Mater.
Sci. 2,220 (1997).

[33] J. Xue and R. Victora, Appl. Phys. Lett. 77, 3432 (2000).

[34] P. Haenggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62,
251 (1990).

[35] C. Kittel, Phys. Rev. 71, 270 (1947).

[36] E. Pollak, H. Grabert, and P. Hinggi, J. Chem. Phys. 91, 4073
(1989).

[37] L. J. Geoghegan, W. T. Coffey, and B. Mulligan, Differen-
tial recurrence relations for non-axially symmetric rotational
fokker-planck equations, in Advances in Chemical Physics (Wi-
ley, Hoboken, NJ, 2007), pp. 475-641.

[38] S. Gardiner, Handbook on Stochastic Processes (Springer,
Berlin, 1997).

[39] D. Berkov, Magnetization dynamics including thermal fluctu-
ations, in Handbook of Magnetism and Advanced Magnetic
Materials, edited by H. Kronmuller and S. Parkin, Vol. 2 (Wiley,
Hoboken, NJ, 2007), Chap. 4, pp. 795-823.

[40] D. V. Berkov and N. L. Gorn, MICROMAGUS: package for mi-
cromagnetic simulations, http://www.micromagus.de

[41] D. V. Berkov and N. L. Gorn, J. Phys.: Condens. Matter 14,
L281 (2002).

[42] W. Press, S. A. Teukolsky, V. W. T., and B. P. Flannery, Nu-
merical Recipes in Fortran 77: The Art of Scientific Computing
(Cambridge University Press, Cambridge, 1992).

144419-17


https://doi.org/10.1109/TMAG.1979.1060329
https://doi.org/10.1007/BF01314931
https://doi.org/10.1063/1.451844
https://doi.org/10.1103/PhysRevE.63.021102
https://doi.org/10.1103/PhysRevB.51.15947
https://doi.org/10.1103/PhysRevB.52.15951
https://doi.org/10.1016/j.jmmm.2004.11.233
https://doi.org/10.1063/1.2176868
https://doi.org/10.1016/j.jmmm.2003.11.274
https://doi.org/10.1038/s41598-017-16911-3
https://doi.org/10.1038/s41598-018-31639-4
https://doi.org/10.1063/1.5096264
https://doi.org/10.1103/PhysRevLett.94.018104
https://doi.org/10.1063/1.2198827
https://doi.org/10.1063/1.2953325
https://doi.org/10.1088/0953-8984/21/46/463102
https://doi.org/10.1103/PhysRevB.88.134409
https://doi.org/10.1063/1.4918902
https://doi.org/10.1109/TMAG.2007.892595
https://doi.org/10.1063/1.352507
https://doi.org/10.1016/S1359-0286(97)80069-1
https://doi.org/10.1063/1.1331094
https://doi.org/10.1103/RevModPhys.62.251
https://doi.org/10.1103/PhysRev.71.270.2
https://doi.org/10.1063/1.456837
http://www.micromagus.de
https://doi.org/10.1088/0953-8984/14/13/101

