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Theory of spin waves in a hexagonal antiferromagnet
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We construct a field-theoretic description of spin waves in hexagonal antiferromagnets with three magnetic
sublattices and coplanar 120◦ magnetic order. The three Goldstone modes can be separated by point-group
symmetry into a singlet α0 and a doublet β. The α0 singlet is described by the standard theory of a free relativistic
scalar field. The field theory of the β doublet is analogous to the theory of elasticity of a two-dimensional
isotropic solid with distinct longitudinal and transverse “speeds of sound.” The well-known Heisenberg models
on the triangular and kagome lattices with nearest-neighbor exchange turn out to be special cases with accidental
degeneracy of the spin-wave velocities. The speeds of sound can be readily calculated for any lattice model. We
apply this approach to the compounds of the Mn3X family with stacked kagome layers.
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I. INTRODUCTION

The study of spin waves, gentle excitations around a mag-
netic ground state, in terms of a local, continuum field theory
is well established [1]. The ordered moments are expressed
in terms of a classical spin, or magnetization, field m(t, r).
Although this approach cannot be applied on the atomic scale,
it has proved to be useful to study the slow spatial and
temporal fluctuations of magnetization. These field theories
have been extensively studied for simple magnets with one
or two magnetic sublattices [2,3]. In these highly symmetric
scenarios, the emergent field theory is a nonlinear σ model
for an appropriate order parameter. The field theory has also
been utilized to study the combined interactions of spin waves
(magnons) with solitons like domain walls [4] and magnetic
vortices [5].

The spin waves are conveniently expressed in the basis
of normal modes of the spin system. These modes form a
symmetry governed irreducible representation for the spin
degrees of freedom (rotational) in a magnetic unit cell [6]. The
normal modes in the case of a system where exchange is the
dominant interaction, provide an intuitive picture of the spin
wave excitations. In addition, they provide insight into how
the spin order couples to internal anisotropies and external
perturbations, based on symmetry arguments.

In antiferromagnets the exchange interaction enforces a
zero net magnetization per unit cell,

∑
i Si = 0, where the

summation is over sublattices. Normal modes that violate this
condition are costly and will be referred to as “hard.” We will
focus on soft modes that preserve the condition of zero net
spin, they enter the energy density U in the form of gradients.

In this paper, we construct the spin-wave theory for generic
hexagonal antiferromagnets with three magnetic sublattices.
Previous field-theoretic treatments include the works of Dom-
bre and Read [7,8] and Mineev [9]. We adopt the continuum
approach to study the universal features of this class of mag-
nets associated with its soft modes, long-wavelength spin

waves. The triangular-lattice [10] and kagome [11] antiferro-
magnets with exchange between nearest neighbors only turn
out to be special cases with accidental degeneracy of the
spin-wave spectra.

Some features unique to the three-sublattice antiferro-
magnet emerge from this construction. Firstly, there are
now three Goldstone modes as compared to two for the
two-sublattice case. This happens because the Néel order pa-
rameter (staggered magnetization) for the two-sublattice case
breaks the SO(3) symmetry of the spin vectors only partially,
down to SO(2) rotations about the Néel vector. The three-
sublattice magnetic order breaks the symmetry fully, resulting
in three Goldstone modes. Secondly, from the perspective
of point-group symmetry, the three Goldstone modes can be
partitioned into a singlet and a doublet. The field theory for
this doublet turns out to be analogous to the continuum theory
of elasticity in two dimensions.

We start by reviewing the familiar micromagnetic field
theories of the easy-plane Heisenberg ferromagnet [12,13]
and the two-sublattice Heisenberg antiferromagnet in Sec. II.
We use these familiar settings to illustrate some important
but rarely discussed issues such as the emergence of kinetic
energy for soft modes coupled through the Berry phase to
hard modes. We proceed to a study of the lattice geometry
and normal mode structure in hexagonal antiferromagnets,
Sec. III. We derive a field theory for the soft modes and
test this theory on the familiar kagome and triangular-lattice
antiferromagnets in Sec. IV, comparing our results with the
Holstein Primakoff calculations on these models [8,10,11].
In Sec. V, we apply our approach to the stacked kagome
antiferromagnets of the Mn3X family (where X = Ge, Sn).
Although structurally complex, the basic magnetic unit of this
system is the triangular antiferromagnet forming the basis for
our theory to be applied to obtain its spin wave spectrum. We
discuss the broader applicability of our effective field theory
in Sec.VI. Some of the more technical parts are collected in
the Appendix.
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II. ONE AND TWO SUBLATTICE FIELD THEORIES IN 2D

A. Easy-plane ferromagnet

The lattice model of an easy-plane ferromagnet with
nearest-neighbor Heisenberg exchange J > 0 and local
anisotropy K has the potential energy

U = −J
∑
<i j>

Si · S j + K

2

∑
i

S2
iz. (1)

Here, i and j denote lattice sites and 〈i j〉 a nearest-neighbor
bond. At distances much greater than the lattice constant a, we
may use a continuum theory where discrete spins Si of length
S are represented by a spin vector field m(r) of unit length
smoothly varying in space:

Si ≈ S m(ri ), (2)

where ri is the position of spin Si in the lattice. The length
constraint |m| = 1 can be resolved by expressing the spin field
m in terms of the polar and azimuthal angles θ and φ,

m = (sin θ cos φ, sin θ sin φ, cos θ ). (3)

The energy (1) is dominated by Heisenberg exchange,
which it is convenient to rewrite as follows:

Uex = −J
∑
〈i j〉

Si · S j = J
∑
〈i j〉

1

2
(Si − S j )

2 − S2. (4)

It is evidently minimized by a uniform state with all spins Si

pointing in the same direction. In the continuum limit, the spin
difference in the exchange energy is approximated by a spatial
gradient,

Si − S j ≈ (ri − r j ) · ∇Sm. (5)

The energy functional U [m(r)] = ∫
d2r U has the energy

density

U = J
2

(∇m)2 + K
2

m2
z

= J
2

[(∇θ )2 + sin2 θ (∇φ)2] + K
2

cos2 θ. (6)

Here, (∇m)2 ≡ ∑
n ∂nm · ∂nm with a summation over the

spatial Cartesian indices n = x, y. The coupling constants of
the continuum theory are related to those of the lattice model.
For a square lattice, J = JS2 and K = KS2/a2. Another im-
portant quantity is the density of angular momentum (spin)
S = S/a2 on a square lattice.

The dynamics of the spin field is governed by the Landau-
Lifshitz equation, equating the rate of change of the angular
momentum to the local torque:

S ṁ = −m × δU

δm
. (7)

Here, δU [m(r)]/δm(r) is the functional derivative of the en-
ergy.

The Landau-Lifshitz equation (7) can be derived from a
Lagrangian L = LB − U , where

LB ≡ S a(m) · ṁ (8)

is a kinematic term originating from the spin Berry phase
[14,15]. The vector potential a(m) represents the magnetic

field of a monopole on the spin unit sphere, ∇m × a = −m.
The standard choices for the vector potential,

LB = S (cos θ ± 1)φ̇ (9)

have a Dirac-string singularity at the north and south pole,
respectively.

The full Lagrangian of the continuum theory,

L = S (cos θ ± 1)φ̇ − J
2

[(∇θ )2 + sin2 θ (∇φ)2] − K
2

cos2 θ,

(10)
yields characteristic length and time scales of the model,

�0 =
√
J /K, t0 = S/K. (11)

The anisotropy is usually much weaker than exchange, so that
�0 � a.

The easy-plane anisotropy forces the spins to stay close to
the equatorial plane, θ ≈ π/2, making the polar angle θ a hard
mode. However, setting θ = π/2 is not a good idea because
doing so would rob the soft mode φ of its dynamics. [The
surviving kinetic term ±Sφ̇ in Eq. (10) would not contribute
to the classical equation of motion for φ].

Instead of neglecting the hard mode θ altogether, we
proceed to eliminate it more carefully. As long as we are
interested in the slow dynamics of the system (on length and
time scales longer than �0 and t0), we may neglect the gradient
term (∇θ )2 and set sin2 θ = 1 in Eq. (10). In this slow limit,
the Lagrangian simplifies to

L = S (cos θ ± 1)φ̇ − J
2

(∇φ)2 − K
2

cos2 θ. (12)

From it, we obtain the equation of motion for the hard field θ :

Sφ̇ − K cos θ = 0. (13)

It can be seen that, in the slow limit, the hard mode θ in-
stantaneously adapts to the velocity of the soft mode φ̇. This
allows us to eliminate the hard field θ and obtain the following
Lagrangian for the soft field φ:

L(φ) = ρ

2
φ̇2 − J

2
(∇φ)2, (14)

where ρ = S2/K. The slow dynamics of the φ field is
described by the wave equation ρφ̈ = J∇2φ with the char-
acteristic velocity v = √

J /ρ = �0/t0.
Our procedure of integrating out the hard mode θ produced

a kinetic energy in the effective Lagrangian (14) of the soft
field φ. This emergent inertia is common in ferromagnets and
is known as the Döring mass [16]. The elimination of the hard
mode θ is justified on length and time scales longer than the
characteristic ones (11). For fast processes, we have to retain
the hard mode θ and the full Lagrangian (10).

B. Two-sublattice antiferromagnet

Our next familiar example is the Heisenberg antiferromag-
net on the square lattice with the energy

U = J
∑
<i j>

Si · S j, (15)

where J > 0 is the strength of nearest-neighbor antiferro-
magnetic exchange. In the ground state, spins of the two
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sublattices point in the opposite directions. For this reason,
we must use two slowly varying spin vector fields of unit
length m1(r) and m2(r) for a continuum description, one for
each sublattice. Proceeding along the same lines as with the
ferromagnet, we obtain the following energy density in the
continuum approximation:

U = JS2
(2m1 · m2

a2
− 1

2
∇m1 · ∇m2

)
. (16)

Because m1 = −m2 in a ground state, it is tempting to
approximate m2 ≈ −m1 at low energies, which would reduce
the number of independent variables. We will eventually ac-
complish that. However, the process requires some care. We
proceed gradually and at first introduce two new fields, the
uniform and staggered spin:

m = m1 + m2, n = m1 − m2

2
. (17)

At low energies, the uniform spin field is suppressed, m ≈ 0,
so this field represents a hard degree of freedom and we will
eventually integrate it out. The staggered field n will represent
the spin fields of both sublattices,

m1 = m
2

+ n ≈ n, m2 = m
2

− n ≈ −n. (18)

The length constraints |m1|2 = |m1|2 = 1 translate into the
following constraints on the new fields:

m · n = 0, n2 + m2

4
= 1. (19)

The energy density, measured relative to the ground state
and expressed in terms of the uniform and staggered spin
fields, reads

U = JS2

2

(
2m2

a2
− 1

4
(∇m)2 + (∇n)2

)
. (20)

The first term expresses the main effect of antiferromagnetic
exchange: it suppresses the uniform spin m. The second term
is comparatively small for slow spatial variations of m and
may therefore be neglected. In contrast, the staggered field
enters the energy through gradient terms only.

These considerations motivate the following simplified
form of the energy density:

U = m2

2χ
+ J

2
(∇n)2. (21)

Here, χ = a2/2JS2 is, up to a multiplicative constant, mag-
netic susceptibility and J = JS2 is the continuum exchange
constant.

The kinetic term in the Lagrangian originates from the
Berry phases of spins from both sublattices,

LB = S[a1(m1) · ṁ1 + a2(m2) · ṁ2], (22)

where S = S/2a2 is the spin density on one sublattice.
A judicious choice of the gauge potentials a1 and a2 yields

the following simple result [4,17]:

LB = S m · (ṅ × n). (23)

We see from it why setting m = 0 at the outset would be a bad
idea: we would lose the kinetic term of the Lagrangian. Like

FIG. 1. The two prototype triangular lattices and their lattice
parameters, the kagome lattice of corner sharing triangles (a) and the
triangular lattice (b). We show a 120◦ ordered state on both where
sites with the same spin color or orientation belong to the same spin
sublattice.

the polar angle θ in the easy-plane ferromagnet, the uniform
spin m is a hard mode. However, these hard modes mediate
the dynamics of the soft modes φ and n, respectively.

We thus arrive at the effective Lagrangian of the antiferro-
magnet for the uniform and staggered spin fields,

L = S m · (ṅ × n) − m2

2χ
− J

2
(∇n)2. (24)

As in the previous example, we use the equation of motion
for the hard mode m,

m = χS ṅ × n, (25)

to eliminate it and to thereby obtain an effective kinetic energy
for the soft mode n:

Lkin = ρ

2
(ṅ × n)2 = ρ

2
ṅ2. (26)

Here we have used the orthogonality of the unit vector n and
its derivative ṅ to simplify the expression. ρ = S2χ is the
inertia density for the staggered spin n.

The full Lagrangian of the soft mode n is

L = ρ

2
ṅ2 − J

2
(∇n)2, (27)

There are two degenerate Goldstone modes, representing
oscillations of n in the two directions orthogonal to its ground-
state orientation. Both modes disperse linearly according to
ω = vk, with the speed v = √

J /ρ = 2
√

2JSa on the square
lattice.

III. THREE-SUBLATTICE FIELD THEORY IN 2D

Antiferromagnets with a hexagonal or trigonal lattice sym-
metry often exhibit strong geometrical frustration, manifested
in their inability to form a Néel magnetic order with just two
sublattices. Well-known examples are the Heisenberg anti-
ferromagnet on a triangular lattice and on kagome (Fig. 1),
whose ground states have three magnetic sublattices. Magnets
of this class share robust common features such as the ex-
istence of three Goldstone modes, spin waves with a linear
dispersion ω ∼ vk in the long-wavelength limit k → 0. Their
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FIG. 2. On the left, we have the geometry of a single triangular
plaquette with an example 120◦ ground state. The spins carry the
same labels as the site i.e spin Si is at site ri. The normal modes
for the spin structure are on the right. The red arrow indicates the
ground state, while the blue arrows indicate the distorted state. The
green dashed boxes mark the soft modes, (α0, β).

existence is related to the spontaneous breaking of the SO(3)
spin-rotation symmetry.

Anisotropic interactions, induced by spin-orbit coupling
and dipolar interactions, explicitly break the SO(3) symme-
try and open gaps in the spin-wave spectra. However, these
anisotropies are typically weak in comparison with Heisen-
berg exchange. Therefore this symmetry exists in at least an
approximate form and the picture of three Goldstone modes
with a linear dispersion is a good starting point.

A. Lattice and spin geometry

The magnetic unit cell has three sites forming an equilat-
eral triangle (Fig. 2). In our convention, the sublattice index
i = 1, 2, 3 increases as we go around the unit cell counter-
clockwise.

The spins S1, S2, and S3 interact with one another via
antiferromagnetic Heisenberg exchange of equal strength so
that the net spin of the cell vanishes in the ground state,

S1 + S2 + S3 = 0. (28)

In the exchange approximation, spin and lattice rotations are
decoupled and we may consider spatial symmetries sepa-
rately. The point group of the magnetic unit cell is the dihedral
group D3, the group of the equilateral triangle. Spatial rota-
tions through the angle +2π/3 about the c axis produce a
cyclic exchange of the spin variables:⎛

⎜⎝
S′

1

S′
2

S′
3

⎞
⎟⎠ =

⎛
⎜⎝

0 0 1

1 0 0

0 1 0

⎞
⎟⎠

⎛
⎜⎝

S1

S2

S3

⎞
⎟⎠. (29)

Note that the spins Si are permuted but there is no rotation in
spin space. A π rotation about the b axis exchanges spins 1
and 2: ⎛

⎜⎝
S′

1

S′
2

S′
3

⎞
⎟⎠ =

⎛
⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

S1

S2

S3

⎞
⎟⎠. (30)

We shall make use of the point group later, when we classify
the normal modes by its irreducible representations.

The ground-state condition (28) indicates that the three
spins are coplanar. The spin plane can be arbitrary in a model
with exchange interactions only, which respect the global
SO(3) spin-rotation symmetry. Weak anisotropic interactions
break this symmetry and favor some special planes. The most
common easy plane is the ab plane of a hexagonal or trigonal
lattice perpendicular to the sixfold or threefold rotation axis c
as is the case in Mn3Ge [18], Mn3Sn [19]. In some cases, spins
do orient perpendicular to the ab plane as in NaYbO2 [20]. We
shall assume that ab is the easy plane in what follows.

The spin reference frame is defined by three orthogonal
unit vectors {ξ̂, η̂, ζ̂} chosen as follows. ξ̂ is parallel to −S3, η̂

points along S2 − S1, and ζ̂ = ξ̂ × η̂, Fig. 2.
With the spins in the easy ab plane, there remain two de-

grees of freedom to change their orientations, one discrete and
the other continuous. The discrete degree of freedom, vorticity
q = ±1, specifies how the spins rotate as we go around the
triangle. The spatial rotation taking site 1 to site 2 is by the
angle 2π/3 about the c axis. The spin rotation taking S1 into
S2 is by the angle 2π/3 about ζ̂, or by 2qπ/3 about ĉ = qζ̂.
The ground states with q = +1 and −1 and may be called
“vortex” and “antivortex” states, respectively. The remaining
continuous degree of freedom is a rotation within the easy
plane.

Cartesian spin components in the reference frame are con-
veniently expressed in terms of the polar and azimuthal angles
θ and φ:

Sξ = S sin θ cos φ, Sη = S sin θ sin φ, Sζ = S cos θ. (31)

1. Normal modes

It is convenient to express the three pairs of spherical
angles in terms of six normal modes α0, αx, αy, β0, βx, and
βy, see Fig. 2(b):

⎛
⎜⎝

φ1

φ2

φ3

⎞
⎟⎠ = q

⎛
⎜⎜⎜⎝

2π
3

4π
3

0

⎞
⎟⎟⎟⎠ − qR

⎛
⎜⎜⎜⎝

αx

αy

α0

⎞
⎟⎟⎟⎠,

⎛
⎜⎝

θ1

θ2

θ3

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

π
2

π
2

π
2

⎞
⎟⎟⎟⎠ + R

⎛
⎜⎜⎜⎝

βx

βy

β0

⎞
⎟⎟⎟⎠, (32)

where R is the orthogonal matrix.

R =

⎛
⎜⎜⎜⎝

1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3

⎞
⎟⎟⎟⎠. (33)

Under spatial transformations of the point group D3, the
modes α0 and β0 stay unchanged. We therefore call them
scalar modes. Modes αx and αy form a doublet transforming
as 2 components of a vector. Under the +2π/3 rotation (29),

(
α′

x

α′
y

)
=

(
− 1

2 −
√

3
2√

3
2 − 1

2

)(
αx

αy

)
. (34)
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Under the π rotation (30),(
α′

x

α′
y

)
=

(−1 0

0 1

)(
αx

αy

)
. (35)

The same applies to the modes (βx, βy) which also form a
doublet.

Thus we can separate the normal modes into two scalars
(singlets) α0 and β0 and two vectors (doublets) α = (αx, αy)
and β = (βx, βy).

2. Canonical pairs

Modes αx, αy, and β0 are proportional to the net spin on a
triangle in directions ξ̂, η̂, and ζ̂, respectively, Fig. 2(b). The
other three modes, βx, βy, and α0, quantify spin rotations about
directions −ξ̂, −η̂, and ζ̂. The angle of rotation about the ζ̂

axis is α0/
√

3 ≡ φ0.
One may think of −βx, −βy, and α0 as of global rotation

angles and of αx, αy, and β0 as of the corresponding compo-
nents of angular momentum, along the lines of Mineev [9].
This also means that {−βx, αx}, {−βy, αy}, and {α0, β0} are
canonical pairs.

3. Hard and soft modes

By creating a net spin on a triangle, modes αx, αy, and
β0 increase its exchange energy J (S1 + S2 + S3)2/2. These
modes are therefore hard. The remaining modes βx, βy, and
α0 are soft.

The addition of anisotropies harden the soft modes [18]
by introducing finite corrections to their energies at k = 0.
The β doublet is lifted from zero energy by a combination of
the DM interaction and an easy-plane anisotropy, separating
it from the α0 mode. Further, a local easy-axis anisotropy
characterized by (δ) gaps the α0 singlet (∼

√
δ3/J) and splits

the β doublet (∼δ/J) making the two modes nondegenerate at
the � point, see Eq. (74), Eq. (75), and details in Appendix B.

However, since in most situations {δ, D}/J 
 1, for exam-
ple in Mn3Ge see Table I, we can safely drop this soft mode
hardening effect in our theory. This assumption allows us to
integrate out the hard modes α, and β0 to obtain a theory in
terms of soft modes only.

B. Field theory for the soft modes

Here we outline the spin wave field theory for the generic
hexagonal antiferromagnet. The kinematic term, like in the
case of the two sublattice antiferromagnet Eq. (22), originates
from the local Berry phase Eq. (8). For a spin confined to the
xy plane θ � π/2, and hence (cos θ − 1) φ̇ � (π/2 − θi ) φ̇i

for each sublattice i = 1, 2, 3. For the triangle, this leads to a
dynamical term, expressed in terms of the normal modes:

LB = S
3∑

n=1

(π/2 − θn)φ̇n = S (α̇0β0 − α · β̇), (36)

where S is the spin density on a single sublattice. From this
form of the Lagrangian we can see that Sβ0 serves as the
canonical momentum for α0, whereas −Sα is the momentum
conjugate to β, as anticipated in Sec. III A 2.

It is convenient to rewrite the energy of nearest-neighbor
exchange interactions (15) in terms of the net spin of a mag-
netic unit cell,

U = J

2
(S1 + S2 + S3)2 − 3JS2

2
. (37)

From this we obtain the energy density to the zeroth order in
the spatial gradients, which includes only the hard modes,

U = A
2

(
α · α + 2β2

0

)
. (38)

Here, A is a lattice-dependent constant proportional to JS2.
The Lagrangian density now reads

L = S (α̇0β0 − α · β̇) − A
2

(
α · α + 2β2

0

)
. (39)

The equations of motion for the hard modes,

Sβ̇ = −Aα, Sα̇0 = 2Aβ0, (40)

can be used to integrate them out and in the process to generate
a kinetic energy for the soft modes:

Lkin = ρα

2
α̇2

0 + ρβ

2
β̇ · β̇. (41)

Here, ρα = S2/2A and ρβ = S2/A are inertia densities for
the soft modes α0 and β.

Exchange energy of the soft modes vanishes at the zeroth
order in the gradient expansion because uniform α0 and β

represent global spin rotations. The lowest nonvanishing con-
tributions to the exchange energy come at the second order in
the gradient expansion. The form of these second-order terms
is strongly constrained by the hexagonal or trigonal symmetry
of the lattice. We discuss it next for the singlet α0 and the
doublet β.

1. Singlet

The singlet mode α0 has a simple theory. Its Lagrangian
density consists of a kinetic energy with mass density ρα and
a potential energy quadratic in the gradients of α0:

L = ρα

2
α̇2

0 − κ

2
∂iα0 ∂iα0. (42)

The stiffness κ is determined by exchange interactions. Sum-
mation is assumed over doubly repeated Cartesian indices
i = x, y. As often happens in highly symmetric solids, the ef-
fective Lagrangian (42) obeys not just the discrete symmetries
of the point group D3 but also the full rotational symmetry
SO(2). Spin waves have a linear dispersion ω = vk with the
speed v = √

κ/ρα .

2. Doublet

The continuum theory for the doublet is more involved as
the doublet field β itself transforms like a vector under spatial
rotations in xy space. The Lagrangian of this field has the
following form:

L = ρβ

2
β̇2

i − Ci jkl

2
βi jβkl − C̃i jkl

2
β̃i j β̃kl . (43)
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Here we have introduced symmetrized and antisymmetrized
gradients,

βi j ≡ 1
2 (∂iβ j + ∂ jβi ), β̃i j ≡ 1

2 (∂iβ j − ∂ jβi ). (44)

The inertia density ρβ is generally different from its coun-
terpart ρα for the singlet mode. The stiffness coefficients,
determined by the exchange interactions, are fourth-rank
tensors with the following symmetry properties: Ci jkl is sym-
metric and C̃i jkl is antisymmetric under the exchanges i ↔ j
and k ↔ l; both tensors are symmetric under the exchange
(i j) ↔ (kl ).

The structure of the Lagrangian (43) is highly reminiscent
of the theory of elasticity in two dimensions. Here βi identifies
with the lattice displacement, βi j with strain, and β̃i j with
rotation of the lattice. In a solid, rotations do not increase
the elastic energy, so C̃i jkl = 0 for lattice vibrations. For spin
waves, C̃i jkl �= 0 in general.

As with the elastic constants, the highly symmetric
hexagonal environment drastically reduces the number of in-
dependent potential coefficients. Both fourth-rank tensors can
be expressed in SO(2)-invariant forms:

Ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk ),

C̃i jkl = μ̃εi jεkl = μ̃(δikδ jl − δilδ jk ). (45)

Here, δi j is the Kronecker delta and εi j is the antisymmetric
Levi-Civita symbol, εxy = −εyx = +1. The Lamé parameters
λ and μ determine the bulk modulus λ + μ (in 2 dimensions)
and the shear modulus μ. To continue the analogy with a solid,
we will refer to μ̃ as the rotation modulus. The explicit form
of the Lagrangian for the β modes is

L= ρβ

2
β̇2

i − λ

2
∂iβi ∂ jβ j − μ + μ̃

2
∂iβ j∂iβ j − μ − μ̃

2
∂iβ j∂ jβi.

(46)
Spin waves for the β modes with longitudinal and trans-

verse polarizations have the propagation speeds

v|| =
√

λ + 2μ

ρβ

, v⊥ =
√

μ + μ̄

ρβ

. (47)

3. Sixfold symmetric gradient

The continuum spin-wave Lagrangians (42) and (46) ex-
hibit full SO(2) rotational invariance. In a hexagonal solid,
this symmetry is only approximate and is explicitly broken
if we include terms of higher orders in the gradients. These
higher order terms are constrained by the D3 point-group
symmetry.

The D3 symmetry allowed terms can be constructed from
the soft modes as follows. Take three unit vectors n1, n2,
and n3 making angles of 120◦ with one another. For arbitrary
vectors a, b, and c, the sum

3∑
i=1

(a · ni )(b · ni )(c · ni ) (48)

is invariant under 120◦ rotations. Furthermore, the square of
this quantity is invariant under 60◦ rotations.

For the scalar α0 mode, the only vector available is the
gradient operator ∇ (or the wave vector k), so we take a =

b = c = ∇. A quantity invariant under 60◦ rotations is

L6 = −σα

8

[(
∂3

x − 3∂x∂
2
y

)
α0

]2
. (49)

Adding this term to the Lagrangian of the α0 mode alters the
magnon dispersion, warping the cone ω = vk as follows:

ω2 = v2k2 + σα

ρα

k6 cos2 3φ, (50)

where φ is the angle at which the magnon propagates in
the xy plane, k = (k cos φ, k sin φ). The warping is strongly
suppressed near the center of the Brillouin zone.

For the β mode, which transforms as a vector under rota-
tions in the xy plane, we have two in plane vectors available
for our construction, ∇ and β. The relevant invariant is

L6 = −σβ

2

[(
∂2

x − ∂2
y

)
βx − 2∂x∂yβy

]2
. (51)

For nondegenerate longitudinal and transverse modes
(v|| �= v⊥), the magnon dispersions are warped as follows:

ω2 = v2
||k

2 + σβ

ρβ

k4 cos2 3φ,

ω2 = v2
⊥k2 + σβ

ρβ

k4 sin2 3φ. (52)

The warping for the β modes comes at a lower order in the
gradient expansion and is therefore more pronounced than for
the α0 mode. Note that if either of the velocities (v||, v⊥) are
zero this makes the sixfold pattern very prominent for that
mode.

IV. FAMILIAR EXAMPLES

Let us now explicitly construct the field theory for the
cases of the nearest-neighbor triangular antiferromagnet and
the kagome antiferromagnet, see Fig. 1. The difference be-
tween the two is the coordination number of each site. For the
triangular lattice each site has a coordination number of six
while for the kagome the coordination number is four. This
affects the spin density and the gradient expansions which
have to be calculated separately for each type of lattice.

For any individual lattice system we start with the kinetic
energy derived in Eq. (41). The inertia for the soft modes ρα

and ρβ need to be determined for each lattice. For the soft
mode contribution to the potential energy density U we do
a gradient expansion of the exchange interaction in the soft
fields with the amplitudes of the hard modes set to zero. This
is combined with the kinetic energy density to form the full
Lagrangian density L = Lkin − Ug(∇α0,∇βx,∇βy).

A. Triangular antiferromagnet

In the nearest-neighbor Heisenberg model on the
triangular lattice [8,10], the magnetic unit cell has the area
A = (3

√
3/2)a2 where a is the nearest-neighbor distance, see

Fig 1(b). The spin density is then: S = 2S/(3
√

3a2) and the
energy density parameter A = (

√
3JS2)/a2 This results in

the inertia:

ρβ = S2

A = 4

27
√

3 Ja2
= 2ρα. (53)
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FIG. 3. Dispersion E (k) in meV of the three Goldstone modes for hexagonal antiferromagnets with nearest-neighbor exchange J =
10 meV. (a) Triangular lattice with nearest-neighbor exchange only. (b) Kagome lattice with nearest-neighbor exchange only. (c) Kagome
lattice with ferromagnetic next-nearest-neighbor exchange Jnnn = −0.5 meV.

In addition gradient expansion in the soft modes yields the
energy density:

Ug = JS2

4
√

3
[(∇α0)2 + (∇βx )2 + (∇βy)2], (54)

One can identify the constants κ = JS2/(2
√

3) for the α0

singlet and for the β doublet λ = 0, and μ = μ̃ = JS2/(4
√

3).
The α0 mode has the speed v = 3

√
3

2 JSa. The β modes are
degenerate and have speeds v|| = v⊥ = v/

√
2, see Eq. (47)

and Fig. 3(c). The degeneracy is associated with the special
values of the Lamé coefficients, λ = 0 and μ = μ̃, and reflects
a higher, SO(2) × SO(2) symmetry of the Lagrangian,

L = 1
2ρββ̇iβ̇i − μ∂iβ j ∂iβ j, (55)

where one SO(2) rotates spatial coordinates and the other
transforms components of the β doublet.

B. Kagome antiferromagnet

For the nearest-neighbor kagome antiferromagnet [11], the
magnetic unit cell area in A = (2

√
3)a2. The spin density is

given by S = S/(2
√

3a2), see Fig. 1(b). This gives the energy
density parameter A = (

√
3JS2)/(2a2). From this, we can

extract the inertia for the two modes:

ρβ = S2

A = 1

6
√

3Ja2
= 2ρα. (56)

The soft mode expansion of the exchange interaction yields
the following energy density:

Ug = JS2

8
√

3
[(∇α0)2 + 2(∇ · β)2]. (57)

The constants for the kagome lattice are hence κ = JS2/4
√

3
for the α0 singlet and for the β doublet λ = JS2/2

√
3, and

μ = μ̃ = 0.
The α0 mode and the longitudinal part of the β mode

have the speed vα = v|| = √
3JSa, whereas the transverse β

mode has v⊥ = 0, where a is the nearest-neighbor distance,
see Fig. 3(a) [11]. The zero transverse speed is associated
with the vanishing shear and rotation moduli, μ = μ̃ = 0 in
the dual elasticity theory. In this sense, the nearest-neighbor

kagome antiferromagnet resembles a fluid. Adding exchange
interactions beyond nearest neighbors generates a finite shear
stiffness and a nonzero speed for the transverse β mode. It also
lifts the degeneracy of the α0 and longitudinal β modes. See
Fig. 3(c).

The zero mode that persists throughout the Brillouin zone
in the nearest-neighbor kagome antiferromagnet with 120◦
order does not rise out of a spontaneously broken symmetry.
This zero mode is due to an accidental degeneracy. It is possi-
ble to rotate any two spins in each triangle about the other spin
as the axis of rotation, along a row, at no energy cost. These
modes have been seen in experiment [21]. If we look at the
zero mode shown there it is exactly the β⊥ mode for a spin
wave propagating in the y direction.

This fluid-like behavior in an antiferromagnet has a direct
analogy to the continuum elasticity theory of the kagome
lattice with nearest-neighbor interactions, which is critical
according to the Maxwell criteria for stability [22,23]. This
mechanical system is unstable to distortions with zero modes
comprised of twisted triangles along certain directions. These
zero gain a sound velocity by an addition of elastic coupling
between further neighbors [24].

Similarly, for the spin system the addition of further neigh-
bor exchanges, lifts the degeneracy between the α0 and the
longitudinal β mode and generates a finite velocity for the
transverse β mode [11], see Fig. 3(b).

V. STACKED KAGOME

We shall now look into the spin waves for Mn3Ge. This is
a layered kagome system where the two layers are displaced
relative to each other such that the up triangles of one layer
coincide with the down triangles of the layers above and below
it. The kagome spin lattice in each plane is comprised of three
spin sublattices and have the 120◦ antivortex magnetic order.
Like the planar kagome system the magnetic order here is
defined within a single triangle and does not vary along the
c axis. The dominant energy scale is the nearest neighbor, in
the kagome plane, antiferromagnetic exchange of strength J2.

Inelastic neutron scattering data, shown in Fig. 4 of
Ref. [18], reveal spin waves with high propagation speeds
and no evidence of zero modes, which indicates the presence
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FIG. 4. Heisenberg exchange interactions in Mn3Ge, shown as
dashed lines: intralayer exchange J2 and interlayer exchanges J1, J3,
and J4.

of further-neighbor exchange interactions. The nearest addi-
tional interaction that produces this dispersion for the stacked
kagome is an interlayer interaction.

In addition, the system has a DM interaction with a D = Dẑ
vector that points out of the ab plane. This locks the spins
into an antivortex order and minimizes spin canting out of the
kagome planes. There is a small on-site easy-axis anisotropy
which cants the spins in plane, out of the 120◦ order, charac-
terized by δ [19,25,26] see Appendix C. This energy scale is
three orders of magnitude smaller than any exchange energy
scale δ 
 (J2, J4). This is evident from our fits to spin wave
dispersion data in [18], see Table I.

Thus, we have on our hands a stacked kagome antiferro-
magnet, where the ordered state hosts the same Goldstone
modes as the single layered trigonal lattice antiferromagnets.
We apply our theory to this system, extracting analytical ex-
pressions for the long wavelength spin-wave velocities and
the gaps in the Goldstone modes at k = 0. We use these
expressions to fit inelastic neutron scattering data and extract
the parameters for the spin Hamiltonian [18]:

HJDδ =
∑
<i, j>

Ji j Si · S j +
∑
<i, j>

Di j · (Si × S j ) −
∑

i

δ(n̂i · Si )
2.

(58)

Here JDδ stands for a model containing Heisenberg ex-
changes, collectively J , a DM interaction D and local
anisotropy δ. The local anisotropy rises from an easy axis

TABLE I. Microscopic parameters of the spin Hamiltonian re-
fined in our work for Mn3Ge. A positive (negative) sign for the
exchange parameters corresponds to AFM (FM) interactions. Note
that J1 and J4 are inter-plane interactions (see Fig. 4), while J2, D
and δ are intra-plane interactions.

J1S2 J2S2 J4S2 DS2 δS2

Refined value (meV) 0(6) 34(7) −17(5) 0.02(1) � 0.01

at each Mn site i = 1, 2, 3. The axis is directed towards the
nearest Ge site, represented by the unit vectors n̂i [18,19].

The bilayer unit forms a David’s star motif consisting of
an up triangle in the lower (blue) layer and a down triangle
of the upper (red) layer, the central plaquette in Fig. 4(a). An
effective description of the system requires two sets of modes:
(αA

0 ,αA, βA
0 ,βA) for the A layer and (αB

0 ,αB, βB
0 ,βB) for the

B layer. The theory is better expressed in terms of symmetric
and antisymmetric combinations of the two sets:

ζ = ζ A + ζ B

√
2

, ζ̄ = ζ A − ζ B

√
2

, (59)

where ζ stands for any of the α or β modes. We shall derive
the field theory for the stacked kagome system in terms of
these twelve modes.

A. Kinetic term and inertia

The net Berry phase, Eq. (36) for each layer, can be ex-
pressed in terms of the symmetric and antisymmetric modes:

LB = S (α̇0β0 − α · β̇ + ˙̄α0β̄0 − ᾱ · ˙̄β). (60)

Here, S = S/V where V = (4
√

3)a2c is the volume of the
magnetic unit cell, c is the AB layer separation. For the
potential energy we have to consider three types of ex-
change interactions, see Fig. 4. The dominant exchange is
the intralayer nearest-neighbor antiferromagnetic exchange of
strength J2. To reproduce the isotropic dispersion seen in [18]
we add interlayer couplings J1 and J4. The index i in Ji labels
the ith nearest neighbor.

Fits to the spin-wave data reveal the values of J1 and J3 to
be much smaller than J2 and J4. In fact, to the first order the
spin-wave dispersion depends on the sum J1 + J3. We retain
only one of these couplings, J1, and set J3 = 0. A nonzero J1

gives rise to some interesting features such as an anisotropic
dispersion of spin waves at small k. J4 is the nearest exchange
that produces an isotropic dispersion for the flat β⊥ band.

As before, we can convert the Berry phase into a kinetic en-
ergy by integrating out the hard modes. In this case, there are
six such modes. For the examples, we worked out in Sec. IV,
the fields we retained were the ones that were soft under
exchange. We perform the same exercise here but with a bit
more scrutiny. The energy density U obtained from expansion
of three exchange interactions:

U = C1
(
α2 + 2β2

0

) + C2ᾱ
2 + C3β̄

2
0 + C4

(
β̄

2 + ᾱ2
0

) + Ug,

(61)

where Ug contains the gradients of the modes. The constants
Cn are

C1 =
(√

3

8
J2 +

√
3

8
J1

)
S2

ca2
,

C2 =
(√

3

8
J2 + J1

8
√

3
− J4√

3

)
S2

ca2
,

C3 =
(√

3

4
J2 − J1

4
√

3
− J4√

3

)
S2

ca2
,

C4 =
(

J1

2
√

3
− J4√

3

)
S2

ca2
. (62)
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In the presence of the interlayer exchanges J1 and J4, all the
antisymmetric modes pick up zeroth order in gradient energy
contributions. Three gapless modes (Goldstones) remain: the
symmetric modes (α0,β).

The interlayer couplings can cause instabilities (negative
gap energies) in the 120◦ order if we have a ferromagnetic
(antiferromagnetic) exchange between sites of the oppo-
site (same) sublattice. Here, for instance, if sgn(J1) < 0 or
sgn(J4) > 0, then we have the unstable situation C4 < 0. For
the experiment [18], the fits require an antiferromagnetic J1

and a ferromagnetic J4. This provides positive energies at the
zeroth order in gradients to all the antisymmetric modes and
there are no instabilities. The full theory with all twelve modes
is

L = LB − U , (63)

where U is defined in Eq. (61). From this, we can integrate
out six modes (β0, β̄0,α, ᾱ) using their equations of motion.
These modes are hard at the level of a single triangle and
hence their gradients are not considered in Ug. This results
in a theory:

L = ρα

2
α̇2

0 + ρβ

2
β̇

2 + ρᾱ

2
˙̄α2

0 + ρβ̄

2
˙̄β2 − C4

(
β̄

2 + ᾱ2
0

) − Ug.

(64)

The inertia for the α0 and β modes is generated by integrating
out the hard β0 and α modes, respectively:

ρβ = S2

2C1
= 1

12
√

3(J1 + J2)a2c
= 2ρα. (65)

Similarly the inertias for the antisymmetric modes are

ρβ̄ = S2

2C2
, ρᾱ = S2

2C3
. (66)

These modes are not critical to our study as they are hard in
Mn3Ge, see C4 in Eq. (64). This allows us the freedom to drop
the space-time gradients of all the antisymmetric fields. The
resulting kinetic energy we work with is

Lkin � ρα

2
α̇2

0 + ρβ

2
β̇

2
. (67)

We now calculate the interaction energy density generated
by the gradient expansion of the Heisenberg exchanges in the

remaining modes (α0,β) and (ᾱ0, β̄). Though the antisym-
metric modes are hard in this problem (due to J4) we do not
set their amplitudes to zero in the gradient expansion. This
is done to retain terms linear in their gradients. We proceed
one exchange interaction at a time, highlighting the features
in each case.

B. Intralayer interactions

Heisenberg antiferromagnetic exchange between nearest-
neighbor sites confined to a single kagome plane, J2 [see
Fig. 4(a)] reproduces the kagome lattice example worked out
earlier. This is the dominant exchange term in this compound.
The energy density is

Ug = S2

16
√

3 c
J2

(∇α2
0 +∇ᾱ2

0

)+ S2

8
√

3 c
J2[(∇ · β)2+(∇ · β̄)2],

(68)

where ∇ ≡ (∂x, ∂y) includes in-plane gradients only. In the
absence of interlayer coupling, the symmetric and antisym-
metric fields are degenerate. This implies that the inertia for
the symmetric and antisymmetric modes is the same, ρα = ρᾱ

and ρβ = ρβ̄ .

For the α0 modes we have, κ = J2S2/(8
√

3c), and hence
vα0 = √

3J2Sa. For the β modes from elasticity theory, we can
read off the elasticity moduli: λ = J2S2/(4

√
3c), μ = μ̃ = 0

and hence the velocities:

vβ|| =
√

3J2Sa, vβ⊥ = 0. (69)

The “solid” has zero shear modulus and hence has a flat mode
in the direction perpendicular to a propagating elastic wave.
Since ρβ = 2ρα the two dispersive modes propagate at the
same speed vα = vβ||

C. Interlayer interactions

To reproduce the dispersion observed in the experiment
[18], we need to find exchange interactions that endow the flat
β⊥ mode with an isotropic dispersion. The nearest interaction
that does the job is J4, shown in Fig. 4. As indicated before,
we retain the small J1 coupling and show that although it is in-
effective in producing an isotropic quadratic dispersion for β⊥
it has some interesting features. The gradient contribution to
the potential energy density U from the interlayer exchanges
is

Ug = J1 − 2J4

2
√

3

S2

a2c

(
β̄

2 + ᾱ2
0

) − J1 + J4

6

S2

ac
[β̄x(∂yβx + ∂xβy) + β̄y(∂xβx − ∂yβy)]

+ J1 − 8J4

48
√

3

S2

c
[(∂xα0)2 + (∂yα0)2] − J4

8
√

3

S2

c
(∂xβx + ∂yβy)2 + J1 − 5J4

24
√

3

S2

c
(∂yβx − ∂xβy)2, (70)

where we have dropped the gradients of the hard antisymmet-
ric modes ᾱ0 and β̄.

1. Lifshitz invariants

Interlayer interactions generate terms that go beyond the
simple elasticity theory. These include antisymmetric Lifshitz
invariants β̄i∂ jβk − βk∂ j β̄i. When the hard field β̄ is integrated

out, these terms give rise to a sixfold anisotropy of the spin-
wave dispersion near k = 0. See Appendix A for details.

2. xy-plane velocities

In the perturbative regime, where we can integrate out
the antisymmetric modes (ᾱ0, β̄) from Eq. (70), we list the
velocities of all the gapless modes in the presence of both
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FIG. 5. This figure shows how a 120◦ symmetric term converts
to a 60◦ term for the central David’s star motif in Mn3X . Here
we choose the three unit vectors e1, e2, e3 along highly symmetric
directions for purposes of illustration. It is clear that after a π

3 rotation
the blue and red (up and down) fields are interchanged and the unit
vector axes are reversed. Note that the cyclic permutation of labels
caused by the rotation is absorbed into the summation over the labels
in Eq. (48).

in-plane and out-of-plane interactions:

vα0 = aS
√

(J1 + J2)(3J2 − 8J4 + J1),

vβ|| = aS
√

(J1 + J2)(6J2 − 5J4 − 2J1 − 9J14)/2,

vβ⊥ = 3aS
√

(J1 + J2)(−J4 − J14)/2, (71)

where J14 = J1J4/(J1 − 2J4).
Note that the transverse mode β⊥ acquires a nonzero speed

vβ⊥ only if J4 �= 0. The interaction J1 alone (or, equivalently,
J3) also lifts the β⊥ mode from zero frequency but does so in
a rather anisotropic manner, with the frequency staying zero
along certain directions. See Fig. 6(a).

3. Out-of-plane velocities

The out of plane dispersions for the α0 mode and β mode
are given by

ραω2
α0

= ρβω2
β =

(
J1

4
√

3
− J4

2
√

3

)
c

a2
k2

z , (72)

FIG. 6. Color plots for the calculated dispersions of the β dou-
blet with an antiferromagnetic (J2, J1) with J1 = 2.5 J2, and J4 = 0.
(a) The dispersion for the β⊥ mode. (b) The dispersion for the β||
mode.

with ρα as given by Eq. (65) and c is the interlayer separation.
The out-of-plane spin-wave velocities are

vz
α0

=
√

2vz
β = cS

√
6(J1 + J2)(J1 − 2J4). (73)

4. Energy gaps

The anisotropy terms in Eq. (58) are a DM interaction,
characterized by the DM vector D = Dẑ and an easy-axis
anisotropy, of strength δ, where the local easy axis at an Mn
site point towards the nearest Ge site [18,19]. The easy axis
breaks the O(2) symmetry in the xy plane and as a result lifts
the α0 mode to a finite energy.

Eα = 3S

√
2δ3

J1 + J2
. (74)

The soft β doublet are sensitive to both the DM interaction
and local anisotropy. To the lowest order in D/J and δ/J , the
doublet acquires an energy gap

Eβ = S
√

3(J1 + J2)(2
√

3D + δ). (75)

At a higher order in the local anisotropy, the doublet is split:

�Eβ

Eβ

= δ

6(J1 + J2)

4
√

3D − δ

2
√

3D + δ
. (76)

The velocity and the gap expressions were used to fit the
inelastic neutron data and extract the parameters of the model
in Eq. (58), shown in Table I. The details and particulars of
the fitting are discussed in Ref. [18].

VI. DISCUSSION

We have presented a field theory for spin waves in a hexag-
onal antiferromagnet with three magnetic sublattices and local
D3 symmetry in terms of their normal modes. The zero net
spin condition imposed on each triangular plaquette leads to
a spin wave theory which has three Goldstone modes each
with a different velocity, in the generic case. The theory de-
composes into a field theory for a singlet α0 and a doublet β.
The theory for the doublet maps to a continuum theory for
elasticity with the spin wave velocities as “sound” velocities.

We use the familiar settings of the Heisenberg antiferro-
magnet on the triangular and kagome lattice to demonstrate
the features of the field theory. In this case, the two examples
are slight outliers because of their highly symmetric lattice
environment.

The triangular lattice has the β modes as degenerate, and
in the kagome we have a degeneracy between the α0 singlet
and one of the β modes while the other one is zero throughout
the Brillouin Zone, see Fig. 3. We show that the flat mode of
the kagome can be anticipated from the elasticity analogy: the
mechanical kagome lattice (phonons) with nearest-neighbor
interaction has zero shear and this property is manifest in our
spin wave analog as the flat mode.

Although the spin wave analyses around the 120◦ ground
state of both the triangular Heisenberg antiferromagnet and
the kagome antiferromagnet are well documented [8,10] their
description in terms of three sub lattice field theory is absent
from the literature to the best of our knowledge. Additionally,
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in the case of a local D3 symmetric environment we provide
a generic construction scheme for sixfold symmetric terms.
This is particularly useful in presence of local anisotropies
which break the O(2) symmetry in the plane but keep the
sixfold symmetry intact.

We use this theory to describe the spin wave spectrum
of Mn3Ge, which has two in-equivalent kagome layers. The
analytical expressions for the spin waves and the gaps are used
to extract the parameters of the Mn3Ge Hamiltonian.

The study of the normal modes and their natures reveal
effective ways of coupling to the magnetic order. External
probes like magnetic fields couple to the spins locally, or
the net spin of the plaquette and engender terms which are
D3 symmetric. These couplings are expressed in the basis
of the normal modes, which represent the spin degrees of
freedom. Given that the normal modes are D3 symmetric by
construction and decouple into a pair of singlets and a pair of
doublets we can limit the terms that can be produced based on
symmetry properties alone.

For instance, for an external magnetic field, the Zeeman
coupling is between two time reversal odd vectors: the mag-
netic field Bext and a net spin per plaquette. The only vectors
available at the linear order in fields, which are also time
reversal odd are, Bext, and α. Hence the Zeeman term will
be of the form Bext · (Rα) where R is a 2d rotation matrix,
which accounts for the global O(2) freedom of the spins in
the xy plane, see Appendix C for details.

Since the magnetism in these materials is intricately linked
to the conduction bands of the electrons, through an s-d cou-
pling [27], certain features like the location of the Weyl points
and, the magnitude of the anomalous Hall response [19,27]
can be manipulated through the local magnetic order. This is
a promising avenue of future work in these materials.

The emergent elasticity theory is also interesting from a
more general point of view than just the present scenario,
allowing a comparison of this case with other emergent elas-
ticity theories like in skyrmion crystals [28]. It also leaves
open avenues of investigation along the lines of the duality
theory developed in Refs. [29,30], especially since in Mn3Ge
the noncollinear ground state allows a spin-phonon coupling,
which might make a melting transition particularly interest-
ing.

A detailed study of the soft modes, as provided here,
is of use in spintronics where they can couple to external
perturbations [31]. In the effective theory for a two sublat-
tice antiferromagnet presented in Ref. [32], it was noted that
space-time dependent external perturbations introduce gauge
fields which can be used to interact with and drive solitons. A
similar construction can be envisioned for the three-sublattice
case where the solitons in question can be domain walls be-
tween the sixfold ground states [33].
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APPENDIX A: MODIFICATIONS TO ELASTICITY FROM
INTERLAYER INTERACTIONS

The interlayer exchanges are shown in Fig. 4 and their
gradient expanded forms are shown in Eq. (70). The interac-
tions expressed using the symmetric vector field β and the
antisymmetric vector field β̄ contain the following terms. (1)
A mass term for the field β̄. (2) Direct quadratic interactions:
∂iβ̄ · ∂ j β̄ and ∂iβ · ∂ jβ (“elasticity” theory). (3) Crossed inter-
action terms between β and β̄ which are linear in derivatives
β̄i∂ jβk . The cross terms have to follow the inversion symmetry
criteria for the exchanges.

Let us take a closer look at the linear term produced by J1

and J4:

Ulinear ∝ β̄x(∂yβx + ∂xβy) + β̄y(∂xβx − ∂yβy). (A1)

We motivated a generic construction of a six-fold term in
Eq. (48). In that construction if we take the vectors a =
(−β̄y, β̄x ), b = ∇, and c = (βx, βy) we generate the cross
term in Eq. (A1).

In Sec. III, we noted that such a term has a 120◦ symmetry.
For the case of the interlayer coupling this turns into a 60◦
symmetry. This happens because in Eq. (A1), a 60◦ degree
rotation interchanges the three unit vectors ei with a flipped
sign and flips the primed and unprimed fields, which leads to
β̄ → −β̄ and β → β. The two flips of sign cancel to produce
a 60◦ symmetry, see Fig. 5.

This sixfold symmetry is explicit in the dispersions. Keep-
ing only two antiferromangetic interactions J1 and J2 with
k = k(cos φk, sin φk ) the two β modes have the following
dispersions to the lowest orders in k:

ωβ|| = Sak
√

(3J2 − J1)(J1 + J2),

ωβ⊥ = J1 + J2

2
Sa2k2| cos 3φk|. (A2)

The transverse mode acquires a nonzero frequency, with the
exception of six directions, for which cos 3φk = 0. See Fig. 6.
In contrast and as apparent in Eq. (71), J4 has quadratic con-
tributions to both the gapless β modes resulting in an isotropic
dispersion of the former flat mode.

APPENDIX B: GAPPING THE GOLDSTONES

The Goldstone modes are gapped by anisotropies normally
present in the kagome magnets Mn3X of these two of them:
the easy plane anisotropy, characterized by K, the DM interac-
tion, characterized by the vectors Di j keep the U(1) symmetry
in the xy plane intact. As a result they do not gap the α0 mode
and do not split the degeneracy of the β doublet. The easy
plane anisotropy is not included in our model Hamiltonian
(58), this is done to reduce the number of free parameters in
the model. The DM interaction itself provides an easy plane
anisotropy which suffices to lift the β manifold to a finite
energy. The local easy-axis anisotropy, characterized by δ, is
directed from an Mn site towards the nearest Ge site (at the
center of the hexagon) [18]. This interaction breaks the U(1)
symmetry of the 120◦ ground state and gaps the α0 mode and
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splits the β doublet. The interactions are given by

Ueasy plane = K
3∑

n=1

(Sn · ez )2,

UDM = 1

2

3∑
m=1

3∑
n=1

Dmn · (Sm × Sn),

Ueasy-axis = −δ

3∑
n=1

(Sn · en)2, (B1)

where the DM vectors Dmn = −Dnm = ±Dez are normal to
the easy plane and favor one of the two possible vorticities of
spins on a triangle. In both Mn3Sn and Mn3Ge, the antivortex
q = −1 states are preferred: as we move counterclockwise
around a triangle, the spins rotate clockwise.

In the antivortex states, the local anisotropy Ueasy axis is
frustrated: the three magnetization Si cannot all point along
the respective easy directions. As a compromise, only one of
the three sublattices is fully happy, resulting in six possible
ground states for each compound. We can express the inter-
actions in Eq. (B1) in terms of the symmetric normal modes
(α0,α, β0,β). The antisymmetric modes are hardened by a
strong J4.

Ueasy plane = KS2

2
√

3a2c
(β2

0 + β2),

UDM = DS2

4a2c
(3α2 + 2β2),

Ueasy-axis = δS2

2a2c
(αx cos 2φ0 − αy sin 2φ0)

+ δS2

4
√

3a2c
(β2

0 + β2)

− δS2

8
√

3a2c

[(
2α2

x − 2α2
y + β2

x − β2
y + 2

√
2β0βy

)
× cos 2φ0+(4αxαy+2βxβy+2

√
2β0βx ) sin 2φ0

]
.

(B2)

Here, φ0 = α0/
√

3 is the global rotation angle in the easy
plane ab. Minimization of the total energy with respect to the
three hard modes β0 and α is again used to eliminate them in
favor of the soft modes α0 and β. This procedure yields the
energy gaps, Eqs. (74) and (75).

APPENDIX C: NET SPIN IN THE GROUND STATE

Here we look into a derivation of the Landau functional
from which the size of the ferromagnetic moment resulting
from spin canting due to δ can be obtained. Consider a single
kagome layer with coplanar spins arranged in 120◦ order
in an anticlockwise sense, and an in plane magnetic field.
The energy terms we have to consider are: nearest-neighbor
exchange J , easy-axis anisotropy δ, and a Zeeman term.

In each of the six allowed antivortex ground states, the two
spins that are not along the local easy-axis try to align along
the easy-axis giving rise to a small ferromagnetic moment.
This can be expressed in terms of the hard modes α.

mx = −
√

3

2
S(αx cos φ0 − αy sin φ0),

my = +
√

3

2
S(αx sin φ0 + αy cos φ0). (C1)

Note that in Ref. [18] the ground state is at α0 → 0 in each
triangle. Now the size of the moment depends on the values
of the doublet α in the ground state. To get that we start by
writing down the energy density in terms of all six modes:

Uexchange = 3J

2
S2 α2,

UZeeman =
√

3

2
γ hS[αx cos(φ0 + ψh) − αy sin(φ0 + ψh)],

Ueasy-axis =
√

3

2
S2δ(αx cos 2φ0 − αy sin 2φ0). (C2)

Here we have used the magnetic field H = h(cos ψh, sin ψh)
and γ is the gyromagnetic ratio. We can minimize the total
energy Utotal = Uexchange + UZeeman + Ueasy-axis and solve for α.
Plugging the solutions for α back into Eq. (C1), we obtain the
induced moments as:

mx = Sδ

2J
cos φ0 + γ h

2J
cos ψh,

my = Sδ

2J
sin φ0 + γ h

2J
sin ψh. (C3)

There is an extra induced net spin from the anisotropy δ,
above the paramagnetic component. This also explains why
the induced ground state ferromagnetic moment is small in
Mn3Ge, since the coefficient δ/J 
 1. For φ0 = 0, we have
m = ( Sδ

2J , 0) as the ground state in Ref. [18] suggests.
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