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Two-dimensional transport model of spin-polarized tunneling
in a topological-insulator/tunnel-barrier/ferromagnetic-metal heterostructure
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Spin-polarized electrons injected from a ferromagnet (FM) onto the surface of a topological insulator (TI) tend
to produce a charge current transverse to the direction of the spin polarization because of the spin-momentum
helical locking of the TI surface states. The charge current can be measured as an open-circuit voltage that
will change in sign if the magnetization direction of the FM is reversed. Here, we model the two-dimensional
transport on the TI surface coupled to a FM through a tunnel barrier (TB). The transport equations are solved
analytically for two different boundary conditions on the TI surface, and the effectiveness of the TI-TB-FM
junction for determining such voltage change upon FM magnetization reversal has been derived for different
device dimensions. Such measurement can be used to study the spin-momentum helical locking of the TI surface
states as well as for reading the FM magnetization direction in memory and logic devices based on TI-TB-FM
heterostructures.
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I. INTRODUCTION

The spin-momentum locked helical two-dimensional (2D)
surface states of a three-dimensional (3D) topological insu-
lator (TI) have opened up many possibilities for spintronics
applications due to efficient manipulation of the spin and the
charge degree of freedom of electrons by controlling one with
the other [1–5]. The charge current carried by the helical 2D
surface states of a 3D TI produces a spin polarization on the
surface with the spin orientation perpendicular to the current
flow [6–13]. The current-induced spin polarization on the TI
surface can be measured with a ferromagnet (FM) [14–28]
as well as be utilized for switching the FM magnetization
direction [29–34]. Alternatively, a spin-polarized current from
the FM onto the TI surface will tend to produce a charge
current transverse to the direction of the spin polarization,
which is known as the inverse Edelstein effect [35–44]. The
inverse Edelstein effect can be observed as an open-circuit
voltage in ferromagnetic resonance [45–54] or spin-polarized
tunneling [38,55] experiments.

Figure 1(a) shows the schematic of such a spin-polarized
tunneling experimental set-up used in the literature [38,55]
in which FM-tunnel barrier (TB) heterostructures on the TI
surface were used. As shown in Fig. 1(a), a current was
passed from the FM to the TI surface through the TB and
a voltage drop was measured on the TI surface transverse
to the FM magnetization direction. Because of the nonzero
density-of-state polarization in the FM, the current is spin-
polarized with the polarization direction aligned to that of the
FM magnetization direction, and the spin-polarized electrons
tend to produce a charge current on the TI surface transverse to
the FM magnetization direction. The voltage drop between the
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two ends of the TI surface, as shown in Fig. 1(a), was observed
to change in sign with the reversal of the FM magnetization
direction. Such a measurement setup was used to study the
helical spin-momentum locking of the TI surface states. The
measurement set-up shown in Fig. 1(a) also can be used for
reading the FM magnetization direction in which the write
path and the read path will be different.

In the literature, transport on the TI surface coupled to a
FM has been modeled previously, but those models are only
one-dimensional (1D) [6–13,38–42]. The geometry of the
setup shown in Fig. 1(a) demands a 2D transport analysis on
the TI surface. Although we previously derived the 2D trans-
port equations on the TI surface coupled to a FM through TB,
to analyze such experiments we solved the transport equations
using a quasi-1D approximation in which we assumed that the
component of the current density on the TI surface along the
transverse direction (the direction in which the open-circuit
voltage drop is measured) is zero in the entire region under
the FM [43,44]. However, in our prior work, the potential and
the component of the current density along the other direction
were allowed to vary on the TI surface in both directions. In
this article, we solve the full 2D transport equations on the
TI surface coupled to the FM with different type of boundary
conditions (Neumann and Dirichlet) imposed on the TI sur-
face without the above-mentioned assumption and show con-
ditions for which our previous approximate results are valid.
This paper provides a mathematically rigorous justification
of the a priori assumptions previously made and the con-
ditions for which such assumptions can be used in practice.
Furthermore, the exact analytical solutions provided here for
the two-dimensional transport problem for different device pa-
rameters can be used to model and fitting experimental results.

To model the spin-polarized tunneling in a TI-TB-FM
heterostructure shown in Fig. 1(a), we consider the trans-
port in the rectangular region TI surface underneath the FM
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FIG. 1. (a) A schematic of the spin-polarized tunneling experi-
mental set-up for the detection of the inverse Edelstein effect from
the topological insulator surface states consisting of topological
insulator (TI) - tunnel barrier (TB) - ferromagnetic metal (FM) het-
erostructure. (b) The transport is modeled in the rectangular region
on the TI surface shown by a red dotted line, the total current Ic is
flowing out of the boundary y = Ly and electrochemical potential
drop �μ is measured between the boundary x = 0 and x = Lx at
some y = L′

y.

shown by a dotted line in Fig. 1(b), and the boundary con-
ditions are imposed on that rectangular region. We model
the voltage measured between two ends on the TI surface,
as shown in Fig. 1(a), by the electrochemical potential dif-
ference �μ between the two ends x = 0 and x = Lx on the
TI surface shown in Fig. 1(b). The total current injected
out of the TI surface is Ic, as shown in Fig. 1(b). As net
current only can flow out of the TI surface along the y =
Ly edge of the rectangle in the inverted T-structure shown
in Fig. 1(b), we consider simplified boundary conditions in
the rectangular region shown in Fig. 1(b). Open boundary
conditions are assumed on the three sides of the rectangular
region, which are jx(x = 0, y) = 0 ∀ y, jx(x = Lx, y) = 0 ∀ y
and jy(x, y = 0) = 0 ∀ x. We solve the transport equations as-
suming two different cases for the boundary condition on the
fourth boundary y = Ly of the rectangle. First, we assume the
Neumann boundary condition that a uniform surface current
density is extracted out of the TI surface across the y = Ly

boundary, i.e., jy(x, y = Ly) = Ic/Lx ∀ x. Next, we assume the
Dirichlet boundary condition that a uniform electrochemical
potential is applied to that boundary on the TI surface such
that there is a fixed electrochemical potential difference μ0

between the FM electrochemical potential μc and the y = Ly

boundary, i.e., μ(x, y = Ly) = μc − μ0 ∀ x. In the case of the
Dirichlet boundary condition, the total current out of that
fourth boundary is given by Ic = ∫

dx jy(x, y = Ly). Under

these assumptions, we have neglected any complicated current
path outside the rectangular region on the TI surface. In our
model, the underlying physics of the spin-polarized tunneling
measurement on the TI surface remains the same, and the
results derived here should not differ much from that with the
actual boundary conditions in the experiment.

II. THEORETICAL MODELING

A. The transport equations

We model diffusive transport on the TI surface by consid-
ering spin-independent impurity scattering on the TI surface
and by considering spin-conserving momentum-randomizing
tunneling of electrons back and forth between the TI and
the FM which serve to reduce mobility on the TI surface in
addition to providing charge injection into the TI from the FM.
In steady state, the modified continuity equation for the charge
density on the TI surface is given by [8,43]

∇R · J = −γ N+n + γ Nn+ + γ N−
vF

J · (m̂ × ẑ), (1)

where n is the charge density and J is the charge current
density on the TI surface, the n± are the charge and spin
densities in the FM, respectively, defined as n± = n↑ ± n↓
where the n↑,↓ are the density of the spin up and spin down
electrons in the FM, N is the density of states of the TI surface
states at the Fermi energy, N± = N↑ ± N↓ where N↑,↓ is the
density of spin up and spin down states in the FM at the Fermi
energy, vF is the Fermi velocity of the TI surface states, m̂
is the FM magnetization direction, and γ is proportional to
the tunneling rate of electrons between the FM spin states and
the TI surface states. In steady state, the modified diffusion
equation for the charge current density on the TI surface is
given by [8,43]

J = 1

(1 + ξ )

[
−D∇Rn + γ vFτtr

2
(N−n − Nn−)(m̂ × ẑ)

]
. (2)

Here, τtr is the transport relaxation time on the pristine TI
surface without any tunneling from the FM, D = v2

Fτtr/2 is
the diffusion constant on the pristine TI surface without any
tunneling. The dimensionless parameter ξ = γ N+τtr denotes
the normalized tunneling rate of electrons between the TI and
the FM (normalized to the transport relaxation rate of elec-
trons on the TI surface), where γ N+ is the effective interface
tunneling rate between the TI and the FM.

We define the electrochemical potential μ on the TI surface
by n = e2Nμ, and the electrochemical potential μ↑,↓ for the
majority and minority electrons in the FM as μ↑,↓ by n↑,↓ =
e2N↑,↓μ↑,↓. For the device geometry shown in Fig. 1(a), for
a spatially constant charge electrochemical potential μc ap-
plied in the FM, the electrochemical potentials for both the
majority and minority electrons in the FM become μc, i.e.,
μ↑ = μ↓ = μc. Then, from Eqs. (1) and (2), we obtain the
following equation for the electrochemical potential μ on the
TI surface,

∂2
x μ + ∂2

y μ − 2b0my∂xμ + 2b0mx∂yμ

+ [
b2

0

(
m2

x + m2
y

) − c2
0

]
(μ − μc) = 0, (3)
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where b0 = ξη/ltr, η = N−
N+

is the density of state polarization
of the FM, ltr = vFτtr is the transport relaxation length on the
pristine TI surface, and c0 = √

2ξ (1 + ξ )/ltr. On the pristine
TI surface, the transport relaxation time τtr is related to the
scattering time τp by τtr = 2τp, due to the requirements of
spin conservation which prevent direct backscattering, and the
mean free path lm is given by lm = vFτp. The current density J
on the TI surface can be written as J = jxx̂ + jyŷ, where the
x and y components of the current density are given by

jx = −σ ′[∂xμ − b0my(μ − μc)], (4a)

jy = −σ ′[∂yμ + b0mx(μ − μc)]. (4b)

Here, σ ′ = σ/(1 + ξ ) is the modified conductivity of the
TI surface due to tunneling from the FM, and σ = e2ND is
the conductivity of the pristine TI surface without tunneling.
The conductivity of the TI surface underneath the FM is mod-
ified because the spin conserving but otherwise momentum
randomizing tunneling back and forth between the TI and
the FM provides momentum relaxing scattering apart from
the scattering from impurities on the TI surface and from the
TI-FM interface imperfections. In our previous work [43], the
derivations of Eqs. (1)–(4) are provided in detail.

B. A solution method for the transport equations

To solve Eq. (3), we make the following substitution:
μ(x, y) = μc + μ̃(x, y)eb0(myx−mxy). Since μc is spatially con-
stant, i.e., ∂xμc = 0 = ∂yμc, from Eq. (3), we obtain

∂2
x μ̃ + ∂2

y μ̃ − c2
0μ̃ = 0. (5)

After the same substitution, from Eq. (4), we obtain

jx = −σ ′eb0(myx−mxy)∂xμ̃, (6a)

jy = −σ ′eb0(myx−mxy)∂yμ̃. (6b)

Equation (5) is the modified Helmholtz equation, which
is a second-order homogeneous elliptic partial differential
equation. We solve Eq. (5) by the technique of separation
of variables and series solution with appropriate boundary
conditions on the boundary of the TI surface of rectangular
shape [0, Lx] × [0, Ly], as shown in Fig 1(b).

After separation of variables, i.e., setting μ̃(x, y) =
μ̃X (x)μ̃Y (y) in Eq. (5), we obtain

d2
x μ̃X

μ̃X
+ d2

y μ̃Y

μ̃Y
= c2

0. (7)

From Eq. (7), we have d2
x μ̃X = c2

X μ̃X and d2
y μ̃Y = c2

Y μ̃Y ,
where cX , cY can have real and imaginary parts and sat-
isfy the constraint c2

X + c2
Y = c2

0. We obtain the general
solutions as μ̃X (x) = A1ecX x + A2e−cX x if cX �= 0, μ̃X (x) =
A1 + A2x if cX = 0, and μ̃Y (y) = B1ecY y + B2e−cY y if cY �= 0,
μ̃Y (y) = B1 + B2y if cY = 0. Then, from Eq. (6), we have
jx(x, y) = −σ ′e(x, y)cX (A1ecX x − A2e−cX x )μ̃Y (y) if cX �= 0,
jx(x, y) = −σ ′e(x, y)A2μ̃Y (y) if cX = 0, and jy(x, y) =
−σ ′e(x, y)cY (B1ecY y − B2e−cY y)μ̃X (x) if cY �= 0, jy(x, y) =
−σ ′e(x, y)B2μ̃X (x) if cY = 0, where e(x, y) = eb0(myx−mxy).

To solve the electrochemical potential μ on the TI surface
in our previous work [43,44], we assumed that jx = 0 on the
TI surface under the FM region in the device geometry shown
in Fig. 1(b). However, jx(x, y) = 0 ∀ x, y is a strict condition
on the current distribution inside the rectangular region on
the TI surface. Instead, the current distribution inside the
rectangular region should be determined by the other two
boundary conditions imposed on the boundaries y = 0 and
y = Ly. Furthermore, we assumed jy(x, y = 0) = 0 ∀ x on the
boundary y = 0, and for the boundary y = Ly we took the total
current injected out of that boundary as Ic, i.e.,

∫
dx jy(x, y =

Ly) = Ic. However, the condition
∫

dx jy(x, y = Ly) = Ic is
not a boundary condition of the differential equation, Eq. (3).
Nevertheless, this condition is physically relevant and was
used to obtain the solution of μ(x, y) with the approxima-
tion jx = 0 inside the rectangle. In this work, we solve the
two-dimensional transport equation, i.e., Eq. (3) or (5), ex-
actly for two different boundary conditions assumed on the
boundary y = Ly of the rectangular region shown in Fig. 1(b)
without assuming that the x-component of the current den-
sity, jx, is zero inside the entire rectangular region, although
we have taken jx = 0 on the boundary x = 0 and x = Lx

along with jy = 0 on the boundary y = 0. We will discuss
the condition for which the prior result is an approxima-
tion of the exact results obtained here within these boundary
conditions.

We are looking for a nontrivial solution for μ̃(x, y) given
the boundary condition jx(x = 0, y) = 0 = jx(x = Lx, y). If
cX = 0, from the boundary conditions we obtain μ̃X (x) to
be constant. If cX �= 0, then the boundary condition jx(x =
0, y) = 0, ∀ y implies cX (A1 − A2) = 0, and the bound-
ary condition jx(x = Lx, y) = 0, ∀ y implies cX A1(ecX Lx −
e−cX Lx ) = 0, which implies cX cannot have real part and must
be purely imaginary. We take cX = ιcn and cn must sat-

isfy sin(cnLx ) = 0, which gives cn = nπ/Lx, cY =
√

c2
0 + c2

n,
where n is a nonzero integer (positive or negative). So,
μ̃X (x) will be given by μ̃X (x) = Ãn cos(nπ/Lx ), and we
can also include the cX = 0 case (i.e., cn = 0 for n = 0
and μ̃X (x) = Ã0). From the boundary condition jy(x, y =
0) = 0 ∀ x, we obtain that μ̃Y (y) must be given by μ̃Y (y) =
B̃n cosh(

√
c2

0 + n2π2/L2
x y). Then, the general solution for

μ̃(x, y) is given by the series

μ̃(x, y) =
∞∑

n=0

D̃n cos
(nπx

Lx

)
cosh

(√
c2

0 + n2π2

L2
x

y

)
. (8)

Here, D̃0 = Ã0B̃0, and D̃n = ÃnB̃n + Ã−nB̃−n for positive inte-
ger n �= 0 [the contributions for positive and negative integers
are already added in individual term in Eq. (8)].

In the rest of the article, we only consider FM magne-
tization in the y direction (mx = 0, my = ±1), as shown in
Fig. 1(a). Then, μ(x, y) on the TI surface is given by

μ = μc + eb0myx
∞∑

n=0

D̃n cos
(nπx

Lx

)
cosh

(√
c2

0 + n2π2

L2
x

y

)
.

(9)
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From Eqs. (6b) and (8), for mx = 0, we have

jx(x, y) = σ ′eb0myx
∞∑

n=0

D̃n

(nπ

Lx

)
sin

(nπx

Lx

)

× cosh

(√
c2

0 + n2π2

L2
x

y

)
, (10)

jy(x, y) = −σ ′eb0myx
∞∑

n=0

D̃n

√
c2

0 + n2π2

L2
x

× cos
(nπx

Lx

)
sinh

(√
c2

0 + n2π2

L2
x

)
. (11)

The unknown coefficients D̃n will be determined from the
boundary condition for either jy (Neumann condition) or μ

(Dirichlet condition) on the boundary y = Ly.

III. RESULTS AND DISCUSSIONS

A. Solution for the Neumann boundary condition

First, we solve the transport problem for the Neumann
boundary condition of uniform current density on the bound-
ary y = Ly of the rectangular region on the TI surface
shown in Fig. 1(b), i.e., jy(x, y = Ly) = Ic/Lx ∀ x ∈ [0, Lx].
Using Eq. (11) in the boundary condition jy(x, y = Ly) =
Ic/Lx ∀ x ∈ [0, Lx], we obtain

∞∑
n=0

Ẽn cos

(
nπx

Lx

)
= −

(
Ic

σ ′Lx

)
e−b0myx, (12)

where

Ẽn = D̃n

√
c2

0 + n2π2

L2
x

sinh

(√
c2

0 + n2π2

L2
x

Ly

)
. (13)

The left side of Eq. (12) is a Fourier series representation of
the function given on the right side of Eq. (12) in the interval
x ∈ [0, Lx]. The coefficient Ẽ0 is given by

Ẽ0 = −
(

Ic

σ ′Lx

)
1

Lx

∫ Lx

0
dx e−b0myx

= −
(

Ic

σ ′Lx

)
(1 − e−b0myLx )

b0myLx
, (14)

and, for n �= 0, the coefficients Ẽn are given by

Ẽn = −
(

Ic

σ ′Lx

)
2

Lx

∫ Lx

0
dx e−b0myx cos

(nπx

Lx

)

= −
(

Ic

σ ′Lx

)
2b0myLx[1 − (−1)ne−b0myLx ](

b2
0m2

yL2
x + n2π2

) . (15)

The coefficients D̃n’s are obtained from Eqs. (13)–(15), and
the solutions of μ(x, y) and jy(x, y) are given by Eqs. (9)–(11)
since all the D̃n’s are known. As shown in Fig. 1(b), the
electrochemical potential difference �μ(L′

y) is measured
between the two ends x = 0 and x = Lx on the TI surface
at y = L′

y(0 < L′
y < Ly) given my = ±1, where �μ(L′

y) =
μ(x = 0, y = L′

y) − μ(x = Lx, y = L′
y). The formula for

�μ(L′
y) is given in Appendix A, see Eq. (A1). As seen from

Eq. (A1), the potential difference �μ(L′
y) depends on the

charge current Ic and magnetization direction my of the FM,
and �μ(L′

y) changes sign if either the charge current direction
or the FM magnetization direction is reversed.

If b0Lx = ξηLx/ltr < 1, Ly > Lx and (Ly − L′
y) > Lx, all

the terms in Eq. (A1) for n � 1 can be neglected compared
to the first term, and sinh2(b0Lx/2) ≈ b2

0L2
x/4 can be used in

the first term. Then, from Eq. (A1), we obtain

�μ(L′
y) = Ic

σ

ηmy

2

ltr
Ly

(d0Ly/ltr ) cosh(d0L′
y/ltr )

sinh(d0Ly/ltr )
, (16)

where d0 = c0ltr = √
2ξ (1 + ξ ). Equation (16) is what we

obtained in our prior work with the approximation jx = 0
inside the rectangle [43,44]. The Eq. (16) is an approximate
solution when Lx is comparable to ltr (since typically ξ and
η are smaller than 1, the condition b0Lx = ξηLx/ltr < 1 will
be satisfied), Ly is large compared to Lx, and L′

y is closer to
the boundary y = 0 than the boundary y = Ly. In our previous
work, we defined a dimensionless parameter χ from �μ by

�μ = χ
Ic

σ

ηmy

2

ltr
Ly

. (17)

FIG. 2. Variation of χ with ξ calculated for the Neumann bound-
ary condition is compared with the approximate result (dotted line):
(a)–(c) for different Lx/ltr = 5, 10, 15, 20, 30, and (a) Ly/ltr = 20,
L′

y = Ly/2, (b) Ly/ltr = 20, L′
y = 3Ly/4, (c) Ly/ltr = 10, L′

y = Ly/2,
and (d) for different Lx/ltr = 5, 10, 20, Ly/ltr = 10, and L′

y = 3Ly/4.
The variation of χ with ξ for the approximate result is independent
of Lx , but depends on Ly and L′

y. [(e)–(f)] Results for different L′
y/Ly

= 1/2, 2/3, 3/4, Lx/ltr = 5 and (e) Ly/ltr = 20, (f) Ly/ltr = 10. All
results are calculated for η = 0.5.
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For the approximation jx = 0 inside the rectangle, from
Eqs. (16) and (17), we obtained

χ = (d0Ly/ltr ) cosh(d0L′
y/ltr )/ sinh(d0Ly/ltr ), (18)

which is independent of the length Lx. In the general case
here, we similarly define χ ≡ �G/�G0, where the change
of conductance �G = �μ/Ic is obtained from Eq. (A1), and

�G0 = 1

σ

ηmy

2

ltr
Ly

. (19)

We note that in the limit ξ → 0 for the Neumann boundary
condition, �G(ξ → 0) = �G0 from Eq. (A1). The dimen-
sionless parameter χ can be viewed as the effectiveness of
the device in the detection of the inverse Edelstein effect from
the TI surface states. The variations of χ with ξ obtained from
the solution of the Neumann boundary condition are shown in
Figs. 2–5 for different values of Lx/ltr, Ly/ltr, L′

y and η.
In Figs. 2(a)–2(d), we show the variation of χ with ξ for

different values of Lx/ltr and a given Ly/ltr, L′
y/Ly, and η. The

approximate solutions also are plotted in the same figures for
comparison. The variation of χ with ξ for the approximate
result, i.e., Eq. (18), is independent of Lx but depends on Ly

and L′
y. As seen from Figs. 2(a)–2(d), a given Ly/ltr, L′

y, η and
ξ , the value of χ from the solution of the Neumann boundary
condition decreases with increasing Lx/ltr and deviates from
the approximate result with increasing Lx/ltr. It is evident
from Figs. 2(a)–2(d) that the validity of the approximate
result holds for b0Lx < 1, Ly > Lx and (Ly − L′

y) > Lx. In
Figs. 2(e)–2(f), the variation of χ with ξ is shown for different
values of L′

y/Ly and a given Lx/ltr, Ly/ltr and η. Similarly, it is
seen from Figs. 2(e)–2(f) that the value of χ for the Neumann
boundary condition deviates more from the approximate one

FIG. 3. Variation of χ with ξ for different L′
y/Ly = 0.9, 0.75,

0.5, 0.25, 0, and (a) Lx/ltr = Ly/ltr = 20, (b) Lx/ltr = Ly/ltr = 10,
(c) Lx/ltr = 20, Ly/ltr = 10, and (d) Lx/ltr = 10, Ly/ltr = 20. All
results are calculated for η = 0.5.

FIG. 4. Variation of χ with ξ for different Ly/ltr = 5, 10, 20, 30,
40, and (a) Lx/ltr = 20, L′

y = 0, (b) Lx/ltr = 10, L′
y = 0, (c) Lx/ltr =

20, L′
y/ltr = 5, (d) Lx/ltr = 10, L′

y/ltr = 5, (e) Lx/ltr = 20, L′
y = 0.9Ly,

and (f) Lx/ltr = 10, L′
y = 0.9Ly. The results for Ly = L′

y = 5ltr are not
shown for (c) and (d). Since the results are plotted for different Ly’s
in (e) and (f) keeping L′

y = 0.9Ly the same, the value of L′
y also varies

with Ly in (e) and (f). All results are calculated for η = 0.5.

when the conditions b0Lx < 1, Ly > Lx and (Ly − L′
y) > Lx

are not satisfied.
In Figs. 3(a)–3(d), we show the variation of χ with ξ for

different values of L′
y/Ly and a given Lx/ltr, Ly/ltr and η. As

seen from Figs. 3(a)–3(d), a given Lx/ltr, Ly/ltr, η and ξ , the
value of χ increases with increasing L′

y/Ly. In Figs. 4(a)–4(d),
the variation of χ with ξ are shown for different values of
Ly/ltr and a given Lx/ltr, L′

y/ltr, η. It is clear from Figs. 4(a)–
4(d) that a given Lx/ltr, L′

y/ltr, η and ξ , the value of χ decreases
with increasing Ly/ltr. The experimental quantity of interest
is �G which is given by �G = χ�G0. Since �G0 given in
Eq. (19) is inversely proportional to Ly/ltr, the value of �G
decreases further with increasing Ly/ltr. In Figs. 4(e)–4(f),
the variation of χ with ξ are shown for different values of
Ly/ltr keeping L′

y/Ly the same and a given Lx/ltr, η. However,
the change of behavior of χ with ξ is not monotonic with
increasing Ly/ltr as compared to Figs. 4(a)–4(d), since the
value of L′

y/ltr [the value where �G is calculated as shown
in Fig. 1(b)] also changes with Ly/ltr. In Figs. 5(a)–5(d), we
show the variation of χ with ξ for different values of η and
a given Lx/ltr, Ly/ltr and L′

y/Ly. Although the value of χ

slightly decreases with decreasing η, the value of �G will
almost proportionally decrease with decreasing η because �G
is proportional to �G0 which is proportional to η [Eq. (19)].
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FIG. 5. Variation of χ with ξ for different η = 0.99, 0.50, 0.01
and L′

y/Ly = 0.9, 0.75, and (a) Lx/ltr = Ly/ltr = 20, (b) Lx/ltr = Ly/ltr

= 10, (c) Lx/ltr = 20, Ly/ltr = 10, and (d) Lx/ltr = 10, Ly/ltr = 20.
The results for η = 0.5 are shown by dotted lines.

B. Solution for the dirichlet boundary condition

We next solve the transport problem for the Dirich-
let boundary condition of uniform electrochemical potential
μc − μ0 applied on the boundary y = Ly of the rectangular
region on the TI surface shown in Fig. 1(b), i.e., μ(x, y =
Ly) − μc = −μ0 ∀ x ∈ [0, Lx]. Inserting Eq. (9) in the condi-
tion μ(x, y = Ly) − μc = −μ0 ∀ x ∈ [0, Lx], we obtain

∞∑
n=0

F̃n cos
(nπx

Lx

)
= −μ0e−b0myx, (20)

where

F̃n = D̃n cosh

(√
c2

0 + n2π2

L2
x

Ly

)
. (21)

The left side of Eq. (20) is a Fourier series representation of
the function given on the right side of Eq. (20) in the interval
x ∈ [0, Lx]. The coefficients F̃n’s are obtained similarly as Ẽn’s
in Eq. (14) and (15). The coefficient F̃0 is given by

F̃0 = −μ0
1

Lx

∫ Lx

0
dx e−b0myx = −μ0

(1 − e−b0myLx )

b0myLx
, (22)

and, for n �= 0, the coefficients F̃n are given by

F̃n = −μ0
2

Lx

∫ Lx

0
dx e−b0myx cos

(nπx

Lx

)

= −μ0
2b0myLx[1 − (−1)ne−b0myLx ](

b2
0m2

yL2
x + n2π2

) . (23)

The coefficients D̃n’s are obtained from Eqs. (21)–(23), and
the solutions of μ(x, y) and jy(x, y) are given by Eqs. (9)–
(11) since all the D̃n’s are known. We calculate the potential
difference �μ(L′

y), and the total current Ic on the TI surface
on the boundary y = Ly using Ic = ∫

dx jy(x, y = Ly). The
formula for Ic is given in Appendix B, see Eq. (B1). From
Eq. (B1), we observe that the total current Ic is the same for

both the magnetization directions my = ±1 of the FM and is
proportional to μ0. However, the potential difference �μ(L′

y),
which is given in Appendix B, see Eq. (B2), depends on the
FM magnetization direction my as well as on μ0, and �μ(L′

y)
reverses sign if the sign of either μ0 or the FM magnetization
direction my is reversed.

If b0Lx = ξηLx/ltr < 1, Ly > Lx and (Ly − L′
y) > Lx, the

terms in the summation for n � 1 can be neglected compared
to the first terms in both Eqs. (B1) and (B2), and we obtain

Ic ≈ 4σ ′μ0
sinh2(b0Lx/2)

b2
0L2

x

c0Lx tanh(c0Ly),

�μ(L′
y) ≈ 4myμ0 sinh2(b0Lx/2)

1

b0Lx

cosh(c0L′
y)

cosh(c0Ly)
. (24)

From Eqs. (17) and (24), we reobtain Eq. (18) which was
obtained with the approximation jx = 0 inside the rectan-
gle, previously [43,44]. In the general case, χ is calculated
from χ = �G/�G0, where �G = �μ/Ic is obtained from
Eqs. (B1) and (B2) and �G0 is given in Eq.(19). From
Eqs. (B1) and (B2), we observe that both Ic and �μ becomes
zero as ξ → 0, but �G(ξ → 0) remains finite. We calculate
�G(ξ → 0) from Eqs. (B1) and (B2) using L’Hospital’s rule
and obtain

�G(ξ → 0)

= �G0

⎡
⎢⎢⎢⎣1 − 8

π2

∞∑
n = 2k − 1

k = 1

1

n2

cosh(nπL′
y/Lx )

cosh(nπLy/Lx )

⎤
⎥⎥⎥⎦. (25)

From Eq. (25), we observe that �G(ξ → 0) � �G0 for the
Dirichlet boundary condition.

In Figs. 6(a)–6(d), we show the variation of χ with ξ

for different values of Lx/ltr and a given Ly/ltr, L′
y/Ly, and

η. The approximate solutions also are plotted in the same
figures for comparison. The variation of χ with ξ for the
approximate result, i.e., Eq. (18), is independent of Lx but
depends on Ly and L′

y. As seen from Figs. 6(a)–6(d), a given
Ly/ltr, L′

y, η and ξ , the value of χ from the solution of
the Neumann boundary condition decreases with increasing
Lx/ltr and deviates from the approximate result with increas-
ing Lx/ltr. It is evident from Figs. 6(a)–6(d) that the validity
of the approximate result holds for b0Lx < 1, Ly > Lx and
(Ly − L′

y) > Lx. In Figs. 6(e)–6(f), the variation of χ with ξ

is shown for different values of L′
y/Ly and a given Lx/ltr, Ly/ltr

and η. In Figs. 6(e)–6(f), we also have plotted the result from
the solution of Neumann boundary condition (solid line) for
comparison along with the approximate result and the result
from the Dirichlet boundary condition. It can be seen from
Figs. 6(e)–6(f) that the value of χ for the Dirichlet boundary
condition deviates more from the approximate one when the
conditions b0Lx < 1, Ly > Lx and (Ly − L′

y) > Lx are not sat-
isfied. Also, we observe from Figs. 6(e)–6(f) that the value
of χ for the Dirichlet boundary condition is less than that for
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FIG. 6. Variation of χ with ξ calculated for the Dirichlet bound-
ary condition is compared with the approximate result (dotted line):
(a)-(c) for different Lx/ltr = 5, 10, 15, 20, 30, and (a) Ly/ltr = 20,
L′

y = Ly/2, (b) Ly/ltr = 20, L′
y = 3Ly/4, (c) Ly/ltr = 10, L′

y = Ly/2,
and (d) for different Lx/ltr = 5, 10, 20, Ly/ltr = 10, and L′

y = 3Ly/4.
[(e)–(f)] Results for different L′

y/Ly = 1/2, 2/3, 3/4, Lx/ltr = 5 and
(e) Ly/ltr = 20, (f) Ly/ltr = 10. The results for the Neumann boundary
condition [Figs. 2(e)–(f)] also are shown in (e)–(f) by solid lines. All
results are calculated for η = 0.5.

the Neumann boundary condition given all other parameters
remain the same.

We observe that χ (ξ → 0) = �G(ξ → 0)/�G0, which is
obtained from Eq. (25), depends on the values of Lx, Ly, and
L′

y for the Dirichlet case and complicates the comparison for
the behavior of χ vs ξ for different parameter values [as in
Fig. 6(f) in which the graphs cross each other]. To make the
comparison easier, we have defined χD = �G/�G(ξ → 0)
and show χD as a function of ξ in Figs. 7–9 for different values
of Lx/ltr, Ly/ltr, L′

y, and η.
In Figs. 7(a)–7(d), we show the variation of χD with ξ

for different values of L′
y/Ly and a given Lx/ltr, Ly/ltr and

η. As seen from Figs. 7(a)–7(d), for a given Lx/ltr, Ly/ltr,
η and ξ , the value of χD increases with increasing L′

y/Ly.
In Figs. 8(a)–8(d), the variation of χD with ξ is shown for
different values of Ly/ltr and a given Lx/ltr, L′

y/ltr, η. It is clear
from Figs. 8(a)–8(d) that a given Lx/ltr, L′

y/ltr, η and ξ , the
value of χD decreases with increasing Ly/ltr. We also have
plotted χ instead of χD in Figs. 8(e) and 8(f) for the same
parameter values as in Fig. 7(a) and Fig. 8(a), respectively.
In Fig. 8(e), we show the variation of χ with ξ for different
values of L′

y/Ly and a given Lx/ltr, Ly/ltr and η. In Fig. 8(f), the
variation of χ with ξ are shown for different values of Ly/ltr
and a given Lx/ltr, L′

y and η. However, the change of behavior

FIG. 7. Variation of χD with ξ for different L′
y/Ly = 0.9, 0.85,

0.75, 0.5, 0, and (a) Lx/ltr = Ly/ltr = 20, (b) Lx/ltr = Ly/ltr = 10,
(c) Lx/ltr = 20, Ly/ltr = 10, and (d) Lx/ltr = 10, Ly/ltr = 20. All
results are calculated for η = 0.5.

FIG. 8. Variation of χD with ξ for different Ly/ltr = 5, 10, 20,
30, 40, and (a) Lx/ltr = 20, L′

y = 0, (b) Lx/ltr = 10, L′
y = 0, (c) Lx/ltr

= 20, L′
y/ltr = 5, and (d) Lx/ltr = 10, L′

y/ltr = 5. The results for
Ly = L′

y = 5ltr are not shown for (c) and (d). For a comparison of χD

to χ , variation of χ with ξ is shown in (e) for different L′
y/Ly = 0.9,

0.85, 0.75, 0.5, 0 given Lx/ltr = Ly/ltr = 20 compared to Fig. 7(a),
and in (f) for different Ly/ltr = 5, 10, 20, 30, 40 given Lx/ltr = 20,
L′

y = 0 compared to (a) in this figure. All results are calculated for
η = 0.5.
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FIG. 9. Variation of χD with ξ for different η = 0.99, 0.50, 0.01
and L′

y/Ly = 0.9, 0.75, and (a) Lx/ltr = Ly/ltr = 20, (b) Lx/ltr =
Ly/ltr = 10, (c) Lx/ltr = 20, Ly/ltr = 10, and (d) Lx/ltr = 10, Ly/ltr =
20. The results for η = 0.5 are shown by dotted lines.

of χ with ξ is not monotonic compared to Figs. 7(a) or 8(a).
This behavior is because the value of χ (ξ → 0) [Eq. (25)]
decreases with increasing L′

y a given Lx and Ly as seen in
Fig. 8(e), or decreases with increasing Ly a given Lx and L′

y
as seen in Fig. 8(f). In Figs. 9(a)–9(d), the variation of χD

with ξ are shown for different values of η and a given Lx/ltr,
Ly/ltr, and L′

y/Ly. Although the value of χD slightly decreases
with decreasing η, the value of �G will almost proportionally
decrease with decreasing η, because �G is proportional to
�G(ξ → 0) which is proportional to �G0 [Eq. (25)], which
is proportional to η [Eq. (19)].

In TI based memory and logic devices in which the FM bit
can be switched by passing a charge current on the TI surface
in the x-direction as shown in Fig. 1, the FM bit is needed
to have the shape anisotropy Ly > Lx[12,29]. The easy axis of
the FM bit with Ly > Lx (and the thickness of the FM bit being
much smaller than both Lx, Ly) will be along the y direction,
which will be orthogonal to the direction of charge current
flow on the TI surface, and hence, the easy axis of the FM
will be parallel to the direction of the charge current-induced
spin polarization vector on the TI surface. The measurement

set-up, as shown in Fig. 1, can be used to read the FM bit with
a different read current path than the write current path and
without the need of an additional magnetic tunnel junction
structure. In these situations with Ly > Lx, although the ap-
proximate formula for the detected voltage given by Eq. (16)
will be valid, a detailed calculation of the two-dimensional
transport problem is necessary to model and fitting experi-
mental results. The exact results obtained here quantify the
deviations from the prior approximate result which is captured
in the variations of the effective parameter χ [Eq. (17)] with
different device parameters.

IV. CONCLUSION

In conclusion, we have analyzed the two-dimensional
transport on the surface of a topological insulator coupled
to a ferromagnet through a tunnel barrier. We have solved
the transport equations analytically for two different sets of
boundary conditions on the topological insulator surface for
the case in which a current is passed from the ferromagnet
onto the surface of the topological insulator. The transverse
open circuit voltage is calculated which changes in sign upon
reversing the ferromagnet magnetization direction. We also
calculate the effectiveness of the topological insulator-tunnel
barrier-ferromagnet structure in detecting the voltage change
upon ferromagnet magnetization reversal, and calculate its
behavior with tunneling strength for different dimensions of
the device. We show the validity of our approximate result
in practical situations such as in TI based memory and logic
devices in which the measurement set-up can be used to read
and write the FM bit with different read and write paths.
A complete analysis of the two-dimensional transport prob-
lem presented here will help one to quantify the deviations
from the approximate result depending on various device
parameters.
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APPENDIX A: THE FORMULA FOR �μ FOR THE NEUMANN BOUNDARY CONDITION

�μ(L′
y) = 4myIc

σ ′

⎡
⎢⎢⎢⎣ sinh2(b0Lx/2)

b2
0L2

x

b0Lx

c0Lx

cosh(c0L′
y)

sinh(c0Ly)
+ 2

∞∑
n = 2k
k = 1

sinh2(b0Lx/2)(
b2

0L2
x + n2π2

) b0Lx√
c2

0L2
x + n2π2

cosh
(√

c2
0L2

x + n2π2L′
y/Lx

)
sinh

(√
c2

0L2
x + n2π2Ly/Lx

)

− 2
∞∑

n = 2k − 1
k = 1

cosh2(b0Lx/2)(
b2

0L2
x + n2π2

) b0Lx√
c2

0L2
x + n2π2

cosh
(√

c2
0L2

x + n2π2L′
y/Lx

)
sinh

(√
c2

0L2
x + n2π2Ly/Lx

)
⎤
⎥⎥⎥⎦. (A1)
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APPENDIX B: THE FORMULA FOR IC AND �μ FOR THE DIRICHLET BOUNDARY CONDITION

Ic = 4σ ′μ0

⎡
⎢⎢⎢⎣ sinh2(myb0Lx/2)

m2
yb2

0L2
x

c0Lx tanh(c0Ly) + 2
∞∑

n = 2k
k = 1

sinh2(myb0Lx/2)

×
(

myb0Lx

m2
yb2

0L2
x + n2π2

)2√
c2

0L2
x + n2π2 tanh

(√
c2

0L2
x + n2π2Ly/Lx

)

− 2
∞∑

n = 2k − 1
k = 1

cosh2(myb0Lx/2)

(
myb0Lx

m2
yb2

0L2
x + n2π2

)2√
c2

0L2
x + n2π2 tanh

(√
c2

0L2
x + n2π2Ly/Lx

)
⎤
⎥⎥⎥⎦, (B1)

�μ(L′
y) = 4myμ0

⎡
⎢⎢⎢⎣sinh2(b0Lx/2)

1

b0Lx

cosh(c0L′
y)

cosh(c0Ly)
+ 2

∞∑
n = 2k
k = 1

sinh2(b0Lx/2)
b0Lx

(b2
0L2

x + n2π2)

cosh
(√

c2
0L2

x + n2π2L′
y/Lx

)
cosh

(√
c2

0L2
x + n2π2Ly/Lx

)

− 2
∞∑

n = 2k − 1
k = 1

cosh2(b0Lx/2)
b0Lx

(b2
0L2

x + n2π2)

cosh
(√

c2
0L2

x + n2π2L′
y/Lx

)
cosh

(√
c2

0L2
x + n2π2Ly/Lx

)
⎤
⎥⎥⎥⎦. (B2)
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