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Determination of the energy of the interface Dzyaloshinskii-Moriya interaction (DMI) along with a definition
of the basic magnetic characteristics in ferromagnetic/nonmagnetic multilayered systems are both required for
the construction of a magnetic skyrmion recording medium. A method for estimating the energy of the effective
DMI, which compares the periods of micromagnetically simulated and experimentally measured demagnetized
domain structures, is widely used for investigations of heavy metal/ferromagnetic superlattices. In the present
paper, the applicability of this method was tested on a series of symmetric epitaxial [Co/Pd(111)]5 superlattices
with Co layers of varying thickness. We examined the problem of ambiguous determination of the DMI energy,
which is related to the dependence of the periodicity of the domain structure, experimentally measured in a
sample on the direction of a demagnetizing field. The Co thickness dependencies of the effective and surface
DMI constants, obtained using in-plane and out-of-plane demagnetized structures and fixed micromagnetic
parameters, were qualitatively and quantitatively different. Having analyzed the Co thickness dependencies of
the DMI energies in the entire series of samples, we found that the DMI energies obtained using in-plane rather
than out-of-plane demagnetized domain structures are more acceptable. Of greatest importance for the accurate
determination of the DMI energy in an investigated system is the knowledge of the exchange interaction constant.
The applicability of the method in the case of variable micromagnetic parameters and the reliability of the results
obtained from the samples with different magnetic parameters are discussed.
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I. INTRODUCTION

The Dzyaloshinskii-Moriya interaction (DMI) became one
of the most intriguing phenomena in modern nanomagnetism.
The necessary conditions for the existence of DMI in mate-
rials are strong spin-orbit coupling and a lack of inversion
symmetry [1,2]. These requirements may be fulfilled in the in-
terfaces between ferromagnetic (FM) and nonmagnetic (NM)
layers. Hence, interface DMI may be stabilized in ultrathin
NM/FM/NM structures [3,4]. It was reported that the DMI is
rather strong at the interfaces between FM and heavy metals
(HMs) due to strong spin-orbit coupling in HMs [5]. Ad-
ditive DMI may be obtained in the HM1/FM/HM2 systems
with an appropriate choice of HM layers [6,7]. Strong in-
terface DMI with perpendicular magnetic anisotropy (PMA)
stabilize homochiral Néel domain walls (DWs) [8] and Néel
skyrmions [9] which may be efficiently displaced by current
pulses due to the spin-orbit torque (SOT) effect [10]. Dif-
ferent concepts of racetrack memories based on DWs and
skyrmions have already been introduced [11,12]. An impor-
tant step towards working racetrack memory was switching
researchers’ attention to multilayered structures or superlat-
tices [HM1/FM/HM2]N [6,7]. On the one hand, PMA and
DMI are conserved in such magnetic superlattices due to a
large number of interfaces. On the other hand, the overall
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thickness of the structures may be sufficiently increased which
makes the skyrmions thermally stable. Moreover, growing
dipolar interaction demagnetizes the structures and facilitates
the formation of skyrmions.

Construction of the chiral magnetic systems with the re-
quired characteristics implies knowledge of the energy of
the DMI. Different methods and approaches are used for the
measurement of DMI energy. The first method is Brillouin
light spectroscopy which directly determines the effective
DMI energy by measuring the frequency difference between
negative (Stokes) and positive (anti-Stokes) spin-wave fre-
quencies in Damon-Eshbach geometry [3,4,13]. This method
is quite reliable, but the measurements are time-consuming. It
is worth noting that light falling at nonzero angles to a metal
surface only penetrates depths comparable with a skin depth
for light in metals (several tenths of nanometers) [14]. The
thickness of superlattices may be larger, hence the information
given by Brillouin light spectroscopy may only refer to the
top layers of the structures. The second method is based on
the asymmetrical propagation of chiral Néel DWs under the
influence of in-plane (IP) and out-of-plane (OOP) magnetic
fields [15,16]. Later, it was shown that the definition of the
effective DMI energy by this method in a creep regime is
not straightforward, and one needs to take into account the
antisymmetric contribution [17,18] or work in a flow regime
with extremely high velocities [19]. This method is suited for
systems with large energies of PMA and isolated domains, but
it does not work in systems with labyrinth domain structures.
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There are also various other schemes for measuring DMI: DW
propagation via the SOT effect in the presence of IP magnetic
fields [20], magnetic droplet nucleation [21], and investigating
the microstructure of DWs in combination with micromag-
netic modeling [22]. These methods either have insufficient
accuracy or are not applicable in the case of a spin spiral
magnetic state.

Under these circumstances, a method based on the com-
parison of the periods of experimentally measured labyrinth
structures with micromagnetically simulated ones seems to
be straightforward [6,10]. It only needs knowledge of macro-
scopic magnetic parameters, which can be measured or
found in the literature, and demagnetized domain structures,
which may be obtained by various experimental schemes.
Moreover, a two-dimensional (2D) [23] and an explicit three-
dimensional (3D) [24] analytical model for calculating DMI
have been introduced. The 2D analytical model did not take
into account the possible z dependence of the layers’ mag-
netic structure. It was shown that dipolar interlayer interaction
in multilayered structures may lead to the existence of hy-
brid chiral DWs [25,26]. The competition between interlayer
dipolar and DMI interactions leads to flux-closured DWs con-
figurations which have a completely different energy when
compared with the energies of DWs with a fixed internal
magnetic structure. Therefore, using the 3D analytical model,
in which each layer of the multilayered structure is described
by its wall angle ψi, is preferable.

In spite of the relative simplicity of the periodicity analysis
method, there are some problems of its implementation. The
main problem is related with the choice of an experimental
demagnetization procedure. The period of a demagnetized
structure quite strongly depends on the direction of the de-
magnetizing field. Generally, the periodicity of the OOP
demagnetized structures is larger than IP demagnetized ones
by a factor of 1.2–1.5 [25,27]. Such uncertainty introduces
a significant spreading of the results. In some papers IP de-
magnetized structures were used [25,28] while in other papers
OOP demagnetized structures were considered [6,7,29–31].
Therefore, one needs to determine which experimentally de-
magnetized state is the ground state. The first problem gives
rise to the second one which is related with the applicability
of the method to the structures which do not self-demagnetize
and may stay in a metastable monodomain state with the
magnetization aligned parallel to the easy axis. In most of
the papers using micromagnetic simulations to obtain an equi-
librium magnetic state, a random initial magnetic state was
used [6,7,28,30]. Relaxation from the random magnetic state
leads to the existence of a large number of skyrmions in the
relaxed magnetic structure which often does not coincide with
experimental labyrinth magnetic state and hence may not be
the ground state. The effect of the uncertainty of the magnetic
parameters on the result should be taken into account.

In the present paper, we consider the aforementioned prob-
lems by testing the domain-period method for determining the
energy of DMI in [Co(dCo)/Pd]5 superlattices with Co layers
of different thicknesses. The existence of strong DMI in the
symmetric [Co/Pd]5 system may be explained by an unequal
lattice distortion in the bottom Pd/Co and top Co/Pd inter-
faces, which breaks the symmetry of the system. Moreover,
strong DMI was experimentally measured in polycrystalline

[Co/Pd]N superlattices [32]. A comprehensive analysis of the
investigated system allows us to obtain reliable results which
are compared with our previous investigation of DMI in the
[Co/Pd]N superlattices with different numbers of Co/Pd bi-
layers [33].

II. EXPERIMENTAL DETAILS AND METHODS

The superlattices were grown in a molecular-beam epitaxy
chamber with a base pressure of 3×10−10 Torr. Si(111) wafers
misoriented towards [112] by 0.1° were used as substrates.
Wafers were cut into 4 mm × 13 mm pieces, cleaned by ace-
tone, isopropyl, and deionized water in an ultrasonic bath,
then dried and loaded in the vacuum chamber. After indi-
rect heating at a temperature of 500 °C, the substrates were
flash-heated several times by direct current at 1200 °C by and
then cooled down to near room temperature. The rates of
growth for Cu, Co, and Pd were 0.9, 0.22, and 0.2 nm/min,
respectively. The rates of deposition were monitored by a
quartz crystal microbalance. The temperature of the substrates
was varied from 75 °C during the deposition of the Cu buffer
layer, to 110 °C during the deposition of the top Co and Pd
layers. Changes in the temperature of the samples during the
deposition of different materials were caused by the different
radiative heating of the samples from the effusion cells. Epi-
taxial [Co(dCo nm)/Pd(2 nm)]5 superlattices were grown on a
Si(111)/Cu(2 nm)/Pd(3 nm) surface. A Cu(2 nm) buffer layer
was formed on a Si(111) substrate to prevent the intermixing
of Pd and Si and to initiate epitaxial growth of fcc Pd(111).
The thickness of the cap Pd layer was 3 nm, which is sufficient
to prevent oxidization of the structure. We chose the number
of Co/Pd bilayers to be equal to 5 to consider maximum
variety of magnetic configurations of the investigated super-
lattices: from the samples stable in monodomain state with
rectangular OOP hysteresis loops to the self-demagnetizing
samples. The thickness of the Co layers dCo was varied be-
tween 0.6 and 5 nm. In the following text, a superlattice with
a given thickness of Co, for example, 1.2 nm, will be denoted
as Co(1.2).

The growth processes and roughness were investigated
in situ using a scanning tunneling microscope (STM) manu-
factured by Omicron. The lattice period of the metal layers
during growth and their structure were analyzed using re-
flection high-energy electron diffraction (RHEED), made
by Staib Instruments. RHEED measurements were done si-
multaneously with the deposition of the samples. Magnetic
characterization of the samples was carried out using a vi-
brating sample magnetometer (VSM), with magnetic fields up
to 27 kOe, manufactured by Lakeshore. The magnetic struc-
ture was measured by a magnetic-force microscope (MFM)
developed by NT-MDT. MFM images were obtained in the
switched-off feedback loop mode using MFM-HM tips man-
ufactured by NT-MDT. The typical distance between the
sample surface and magnetic tip was 50 nm.

Micromagnetic simulations were carried out using MU-
MAX3 software [34]. We used both accurate and single z-cell
effective models. All the layers were set explicitly in the
accurate model, except in the Co(1.4) samples where the
thickness of the Pd layers was taken as 2.1 nm in order to
fit the simulation grid. The effective model implies that all
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the magnetic parameters of each FM layer are averaged in a
certain way over the whole FM + NM period [10]. Therefore,
one micromagnetic cell corresponds to one FM/NM bilayer,
and N cells are needed to model the [FM/NM]N multilayered
structure in the z direction. In this case economy of the time of
calculations in not significant, because usually the thickness
of a FM layer is less than the thickness of a NM layer, and
the number of magnetic cells remains the same as in the case
of the accurate model. To go further, one may combine all
repetitions and describe the entire [FM/NM]N structure by one
cell in the z direction. The size of the cell in the z direction
has to be the size of the cell for one FM/NM period multiplied
by the number of FM/NM bilayers. Using the single z-cell
effective model significantly speeds up the calculations. The
lateral sizes of the simulation areas were 2 μm × 2 μm for
the calculation of the domain structures [6 μm × 6 μm and
4 μm × 4 μm in the case of Co(0.8) and Co(1) superlattices,
respectively] and 1 μm × 1 μm [2 μm × 2 μm in the case of
Co(0.8) and Co(1) superlattices] for the calculation of the hys-
teresis loops. The lateral cell size was 2 nm × 2 nm. The cell
size in the accurate model in the direction of the normal to the
surface was varied to fit the simulation grid defined by thick-
ness of the layers, but never exceeded the thickness of the Co
layers. Two-dimensional periodic boundary conditions with
ten repetitions in lateral directions were used in the modeling.
The total energy of the system was minimized by the steepest
descent method, with the built-in function MINIMIZE(). The
RELAX() function was used in the calculations from the initial

random magnetic state. The stopping criterion for energy min-
imization, MINIMIZERSTOP, was set to 5×10−5. The saturation
magnetization and energies of PMA were determined from
the experiment. The basic considered value of the exchange
constant was 25 pJ/m because using this value in the previous
paper [33] led to the best coincidence between the simulations
and the experiment. The variation of the results depending on
the small deviation of the micromagnetic parameters from the
basic values is also considered. Periodicities of the domains
in the ground state were also calculated analytically using 2D
[23] and 3D [24] models.

III. RESULTS AND DISCUSSION

A. Structural characterization

Epitaxial growth in this system is confirmed by RHEED.
RHEED streaks are observed in all samples during the growth
of [Co(dCo)/Pd(2 nm)]5 structures. The RHEED pattern of
the Si(111)/Cu(2 nm)/Pd(3 nm)/Co(1 nm) surface is shown
in Fig. 1(a), as an example. The structure and growth pro-
cesses of the crystalline [Co(dCo)/Pd(2 nm)]5 superlattices
are similar to those for [Co/Pd(111)]N superlattices, which
were thoroughly described in our previous paper [33]. In this
section we focus on strain relaxation in the Co layers which
depends on the Co thickness. The bulk lattice parameters
of fcc-Pd and fcc-Co are 0.389 and 0.355 nm, respectively.
Hence, Co is largely (9.6%) strained when deposited on the Pd
surface. The growth of Co on the Pd(111) surface is incoherent

FIG. 1. (a) RHEED pattern of the Si(111)/Cu(2 nm)/Pd(3 nm)/Co(1 nm) surface. (b) Lattice parameter in the first three material layers of
the different [Co(dCo)/Pd(2 nm)]5 structures. (c) Distribution of the lattice parameters in the Co(0.8) and Co(1.6) superlattices. (d) Average
strains in the bottom Pd/Co and top Co/Pd interfaces, as functions of the Co thickness; aCo0 is the bulk lattice parameter of fcc-Co.

144411-3



A. G. KOZLOV et al. PHYSICAL REVIEW B 102, 144411 (2020)

from the beginning and is accompanied by the incorporation
of misfit dislocations [35]. The strains in Co gradually relax
but the degree of strains in the top Co atomic layers depends
on the thickness of the Co that has already been grown. The
thickness dependencies of the lattice parameters of the first
three material layers, except for the Cu buffer layer in the
[Co(dCo)/Pd(2 nm)]5 samples, are shown in Fig. 1(b). The
parts of the curves where the lattice parameter decreases cor-
respond to the Co growth. The lattice parameter restores to
the Pd bulk value after the deposition of a Pd layer on top of a
Co layer, if the thickness of the Co layer is 1.6 nm or less. If
the first Co layer is thicker, then 2 nm of deposited Pd is not
enough to restore the lattice parameter to the Pd bulk value,
like it is in the case of the Co(2.4) superlattice in Fig. 1(b).
Strains in the bottom Pd/Co interfaces of the second and upper
Co layers decrease and begin to depend on the Co thickness,
if it is thicker than 1.6 nm. We focused on the Co thickness
interval less than 1.6 nm because the effective PMA is positive
in this thickness interval. Distribution of the strains in all the
layers in the Co(0.8) and Co(1.6) superlattices is indicated in
Fig. 1(c). Since there is no explicit dependence of the lattice
parameters of the interface layers on the layer number and
standard deviation is small, we use average values of strains
for the interface layers of a given superlattice independently
of the number of a layer. The dependencies of the average
strains in the bottom Pd/Co and top Co/Pd interfaces on the
Co thickness are shown in Fig. 1(d). Asymmetry of strains
between the bottom and top interface Co layers increases with
increasing Co thickness.

It should be noted that we did not detect any mean-
ingful differences in the roughness on the top of the
[Co(dCo)/Pd(2 nm)]5 structures in the Co thickness interval
of 0.6–1.6 nm. This may be related to the fact that Co tends
to smooth the surface of the underlying Pd layer in the initial
stages of the growth [36]. Hence, if the thickness of the Co
layers is not quite large then the growth of Co on Pd does not
lead to an increase in the roughness.

B. Magnetic properties and magnetization reversal

Magnetization reversal processes in the [Co(dCo)/
Pd(2 nm)]5 multilayers strongly depend on the Co thickness.
The OOP and IP hysteresis loops of the samples with a
dCo less than 1.6 nm are outlined in Figs. 2(a) and 2(b),
respectively. The PMA decreases with an increase of the
Co thickness, hence saturation fields in the IP hysteresis
loops decrease. An increase in the Co thickness also leads
to an increase of the magnetostatic energy of the system.
These two factors result in the self-demagnetization of
superlattices with thick Co layers. Magnetization reversal
processes in the OOP directed magnetic fields change with
increasing Co thickness. At low Co thickness (dCo < 0.6 nm),
when the energy of PMA is very large, the hysteresis loops
are rectangular and magnetization reversal occurs by the
switching of the magnetization in the entire sample. An
increase in dCo leads to the emergence of “tails” in the OOP
hysteresis loops in the regions of loops near saturation. These
“tails” are related to the existence of domains which are

FIG. 2. (a) OOP and (b) IP hysteresis loops of crystalline [Co(dCo)/Pd(2 nm)]5 superlattices. The dependencies of (c) magnetic moment
per unit of area, and (d) Keff×dCo on the Co thickness in the [Co(dCo)/Pd(2 nm)]5 superlattices.
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quite stable in large magnetic fields and needed additional
energy to be removed. These “tails” extend with increasing
Co thickness (dCo = 0.6–0.8 nm), however, normalized
remanent magnetization still remains equal to unity. This
particular thickness interval is interesting for practical
applications because isolated domains stabilized in large
negative magnetic fields remain almost unchanged after
switching off the magnetic field. Further increases in the Co
thickness make it possible to nucleate negatively magnetized
domains, even in positive magnetic fields. Nucleated domains
develop into a labyrinth domain structure in the remanent
state. Negatively magnetized domains grow in size in
negative magnetic fields, the labyrinth structure transforms
into isolated stripe domains, then into bubble domains in
the fields near negative saturation (dCo = 1–1.6 nm). In
this Co thickness interval the isolated magnetic domains
develop to the labyrinth state in the remanent state, which
is not favorable for racetrack memory devices, however,
could be used to stabilize skyrmion lattices [37]. A more
detailed description of the magnetization reversal processes
of self-demagnetizing superlattices may be found in the paper
of Davies et al. [38].

The dependence of the magnetic moment, normalized to
the unity of an area, on the Co thickness measured in the
[Co(dCo)/Pd(2 nm)]5 multilayers is shown in Fig. 2(c). It is
well known that Pd interface layers are magnetically polar-
ized in the vicinity of the Co layers [39]. Therefore, the net
magnetic moment per unity of an area may be described as

m

S
= 5Ms,CodCo + 10Ms,PddPdpol, (1)

where m is a magnetic moment of the sample, S is an area of
the film, Ms, Co, and Ms, Pd are the saturation magnetizations
of Co and polarized Pd, respectively; dCo, and dPd pol are
the thicknesses of the deposited Co layers and the polarized
interface Pd layers, respectively. The formula takes into ac-
count five Co layers and ten polarized Pd interface layers.
Interception of the linear fitting of m(tCo)/S dependence with
the y axis gives a positive sum magnetic moment per unit area,
10Ms, PddPd pol = 7.5×10−4 A, induced in all the Pd interface
layers. Using the value of the saturation magnetization of Pd,
Ms, Pd = 0.31×106 A/m [40], the effective thickness of each
of the polarized Pd interface layers is calculated as dPd pol =
0.24 nm, which agrees well with the result from our previous
paper, 0.2 nm. The latter value is used in this paper. The slope
of the m(dCo)/S dependence in the [Co(dCo)/Pd(2 nm)]5 mul-
tilayers gives a value of saturation magnetization of Ms Co =
1.43×106 A/m, which is close to the bulk value for Co. If
one neglects the Pd polarized layers with low magnetization
and assumes that all the magnetic material is concentrated in
the Co layer, then the value of the saturation magnetization in
the [Co(dCo)/Pd(2 nm)]5 superlattices is a function of the Co
thickness:

Ms = Ms,CodCo + 2Ms,Pd dPdpol

dCo
. (2)

These values of saturation magnetization were used in
the calculation of the effective energy of PMA, Keff . All the
magnetic parameters are listed in Table I. The dependence of
the Keff×dCo(dCo) is outlined in Fig. 2(d). Using the approach

TABLE I. Parameters of the epitaxial [Co(dCo)/Pd(2 nm)]5

superlattices.

dCo A Ms μ0Heff Keff λOOP λIP

(nm) (pJ/m) (kA/m3) (T) MJ/m3 (nm)

0.6 25 1626 1.89 1.5
0.8 1575 1 0.79 820 ± 100 600 ± 50
1 1544 0.63 0.49 500 ± 40 335 ± 25
1.2 1523 0.39 0.29 248 ± 14 205 ± 10
1.4 1508 0.14 0.1 176 ± 8 141 ± 5
1.6 1497 −0.03 −0.02 150 ± 7 128 ± 3

proposed in our previous paper [36], we calculated the mag-
netoelastic and interface contributions to the surface energy of
PMA in this system. Fitting the experimental data gives the in-
terface magnetic anisotropy contribution Ks = 1.1 mJ/m2 and
magnetoelastic surface and volume contribution, Ks, MEA =
0.81 mJ/m2 and Kv, MEA = 0.16 MJ/m3, respectively. These
values agree well with our results reported for single-layered
Pd(2.25 nm)/Co(dCo)/Pd(2.25 nm) films.

C. MFM measurements of the demagnetized domain structures

The period of the magnetic structures was determined by
the averaging of 20–30 random distances between the cen-
ters of adjacent labyrinth domains on the experimental MFM
image. The periodicity and anisotropy of the demagnetized
labyrinth domain structure depend on the direction of an al-
ternating demagnetizing field with a decreasing amplitude. If
the magnetic field is oriented OOP, then the magnetic structure
is isotropic. If the magnetic field is oriented IP, then magnetic
stripes orient towards the field axis and the period is less than
in the previous case. The OOP and IP demagnetized domain
structures of [Co(dCo)/Pd(2 nm)]5 superlattices are shown in
Figs. 3(a) and 3(b), respectively.

Regular domain patterns are observed when the Co thick-
ness in the [Co(dCo)/Pd(2 nm)]5 superlattices is 1 nm and
larger. The size of the stripe domains decreases with an in-
crease of the Co thickness (Fig. 4). This phenomenon may
be explained solely by the decreasing energy of PMA and
the increasing magnetostatic energy of the system. Similar
domain structures were observed in systems in which the DMI
was supposed to be absent [26]. However, an addition of DMI
in such systems lowers the energy of DWs [23] and hence
leads to a decrease of domain sizes when compared with the
case when the energy of effective DMI is zero.

D. Micromagnetic simulations

Micromagnetic simulations were carried out to estimate
the energy of effective DMI in this system. Experimentally
measured periodicities of the labyrinth domains are com-
pared with periodicities of simulated magnetic structures with
different effective DMI energies. Since the period of exper-
imental domain structures depends on the direction of the
demagnetizing field, two effective energies of DMI may be
obtained: the first one if the simulated structures are com-
pared with IP demagnetized images, and the second one if the
simulated structures are compared with OOP demagnetized
images. They will be referred to in the text as IP and OOP
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FIG. 3. MFM images of (a) OOP and (b) IP demagnetized domain structures of the [Co(dCo)/Pd(2 nm)]5 superlattices. Note that scale is
halved reduced in the case of dCo = 1.4 and 1.6 nm.

effective DMI energies (Deff IP and Deff OOP), respectively. In
micromagnetic simulations, we used a monodomain magnetic
structure with two bubble domains as an initial state. The
diameter of the bubbles was 100 nm [500 nm in the case of
Co(0.8) samples]. The magnetic configuration was calculated
in the remanent state by the evolution of isolated bubbles
into the labyrinth domain state. In this case, the simulated
magnetic structures are isotropic and match the OOP demag-
netized experimental images well [Fig. 5(a)]. Therefore, it is
natural to compare the OOP demagnetized structures with the
simulated ones in the present case. In most of the papers a
random initial state is used for the micromagnetic modeling
of the labyrinth domain structures [7,23,30]. Relaxation of the
random state in the zero magnetic field leads to the presence
of domains with wide spread in width and a large number of
skyrmions in relaxed states, which does not coincide with the
experimental images [Fig. 5(b)]. A measurement of the period
of labyrinth domains after the relaxation of the random mag-

FIG. 4. Periods of the IP and OOP demagnetized stripe
domain structures as functions of the Co thickness in the
[Co(dCo)/Pd(2 nm)]5 superlattices [open symbols denote periods of
irregular domain patterns of Co(0.8) samples].

netic state is possible only using a 2D fast Fourier transform
(FFT) which gives reliable results only in the case of relatively
large magnetic images. Labyrinth domain states relaxed from
bubbles demonstrate uniform domain width and require less
magnetic area in the simulations for the precise analysis.

We do not focus on the sign of the evaluated effective
DMI energies, because the periodicities of the labyrinth
domain structures obtained by micromagnetic modeling do
not depend on the sign of Deff . Based on the behavior of
the domains under the influence of IP and OOP magnetic
fields [15,16] we may conclude that the DMI induces
predominantly right-handed chirality in the Néel DWs in
the [Co(0.6 nm)/Pd(2 nm)]5 superlattices. If we suppose that
chirality does not change with increasing Co thickness in the
[Co(dCo)/Pd(2 nm)]5 superlattices and use the DMI energy
expression as in [34], a negative sign of the effective energies
derived in the [Co(dCo)/Pd(2 nm)]5 superlattices should be
considered.

The dependencies of the periods of simulated domain
structures on the effective energy of the DMI for dCo = 0.8, 1,
1.2, 1.4, and 1.6 nm in the [Co(dCo)/Pd(2 nm)]5 superlattices
are shown in Figs. 5(c)–5(g), respectively. A comparison of
the results obtained using the accurate and single z-cell effec-
tive models is also shown. The results obtained by singe z-cell
and N-z-cell models are quite similar in the whole range of
considered DMI energies. We found an excellent coincidence
between the results of micromagnetic simulations and curves
calculated by means of 2D [23] and 3D [24] analytical models
which corroborates the reliability of the obtained results. The
periods of labyrinth structures obtained by effective simula-
tions (2D model) are sufficiently larger than periods obtained
by means of accurate simulations (3D model) if the effective
DMI constant is less than some critical value which depends
on the Co thickness. This fact may be explained by the grow-
ing influence of magnetostatic energy in the case of thicker Co
films. Effective models do not correctly take into account the
magnetostatic interaction between the layers. Dipolar interac-
tion may strongly influence both the size of the domains and

144411-6



DOMAIN-PERIOD METHOD FOR DETERMINATION OF … PHYSICAL REVIEW B 102, 144411 (2020)

FIG. 5. Simulated magnetic structures of the Co(1) superlattice with Deff = 2 mJ/m2 using (a) two bubbles, (b) random magnetization
in the initial state. Comparison of the simulated periods of labyrinth domain structures with the experimentally obtained ones for the
[Co(dCo)/Pd(2 nm)]5 superlattices with dCo equal to (c) 0.8, (d) 1, (e), 1.2, (f) 1.4, and (g) 1.6 nm. Blue and red squares denote micromagnetic
simulation results using effective and accurate models, respectively. Blue and red solid lines are calculated analytically using 2D [23] and 3D
[24] models, respectively.

internal DWs structure. It was shown that dipolar interaction
leads to hybrid chiral DWs with a Bloch-like structure in the
center, even in the systems with nonzero DMI [24–26]. When
DMI becomes stronger, the Bloch regions are pushed out to
the surface of the films and the DWs become homochiral. The
domain structure of the homochiral DWs becomes uniform
throughout all the layers of the structure. Therefore, the results
of the effective and accurate modeling converge to a single
curve at large DMI energies. Based on the aforementioned
results we claim that the accurate model has to be used in the
micromagnetic modeling of the systems with the relation of
the thicknesses of NM and FM layers less than 2.5, or a careful
comparison of the results obtained by effective and accurate
models needs to be carried out. The IP and OOP effective
DMI energies of the samples with dCo = 0.8–1.6 nm, using
the results from the micromagnetic simulations based on the
accurate model, are listed in Table II.

E. Discussion

A net surface DMI energy Ds, may be derived by means
of the value of effective DMI energy using the following

formula:

DS = Deff dCo. (3)

The effective and surface DMI energies estimated by
the comparison of the periodicities of magnetic structures
obtained by accurate modeling and MFM are outlined in
Figs. 6(a) and 6(b), respectively. The error values are deter-
mined using the uttermost points of the intersections of the
analytically calculated solid curves with experimental peri-
odicity bars in Fig. 5. In a simple phenomenological model,
taking into account that DMI is of an interface origin in this
system, the surface DMI energy is considered to be a constant.
Thus, the dependencies of the IP effective and surface DMI
energies on the Co thickness are more reasonable than for
the respective OOP energies. The |DS OOP| values strongly
decrease with increasing of the Co thickness, which could
not be explained by the phenomenological model. The only
explanation of this may be that the net surface DMI energy
is not a constant but it depends on the Co thickness. Let us
suppose that nonzero net DMI in this system is proportional
to the asymmetry of the strains between the bottom Pd/Co and
top Co/Pd interfaces. While the strains in the bottom Pd/Co
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TABLE II. Effective DMI energies obtained in this paper and in other systems with the same Co thickness.

dCo |Deff IP| |Deff OOP| |Deff |
(nm) (mJ/m2) System (mJ/m2)

0.8 1.67 ± 0.4 1.15 ± 0.4 [Co/Ir(1 nm)/Pt(1 nm)]5 [26] 1.64
1 2.55 ± 0.2 1.5 ± 0.25 Pt(2 nm)/Co/IrMn(2.4) [43] 1.22
1.2 2.1 ± 0.2 1.2 ± 0.4 Pt/Co/AlOx [4] 1.15
1.4 2 ± 0.2 Pt/Co/AlOx [44] �0.46
1.6 1.4 ± 0.35 Pt/Co/AlOx [4] 0.7

interfaces are the same for all of the samples, the top Co/Pd in-
terfaces undergo different strains. The difference between the
strains in the bottom Pd/Co and top Co/Pd interfaces increases
with increasing Co thickness. Therefore, the net surface DMI
should increase with an increase of the Co thickness, which is
not observed in both the cases of IP and especially OOP DMI
energies.

To increase the reliability of the results we decided to
compare the results of our previous investigation [33] with
the current results. In the previous paper, we investigated
the dependence of the effective DMI energy on the number
of Co/Pd bilayers N = 1–20 in the [Co(0.8 nm)/Pd(2 nm)]N

superlattices using the single z-cell effective model in mi-
cromagnetic simulations. The present series of the samples
intersects with the N series at dCo = 0.8 nm (N5 sample in
the N series). Hence, the effective DMI energies of Co(0.8)
and N5 samples determined by the domain-period method
|Deff OOP| = 2.9 ± 0.15 and |Deff IP| = 3.2 ± 0.1 mJ/m2 must
be the same. We reran the micromagnetic simulations of the
labyrinth domain structures for the N10 and N20 samples
using the accurate model instead of the effective model. Also,
we used the latest value of Deff = 0.6 ± 0.1 mJ/m2 for the
N1 samples. The values of effective DMI energies determined
by the domain-period method for Co(0.8) samples does not
fit to the Deff (N) dependencies completely (Fig. 7). A sudden
maximum of effective DMI in the N5 samples is improba-
ble. Moreover, we simulated OOP hysteresis loops for N5
samples with different DMI constants (see the Appendix for
details) and found the best coincidence with the experimental
OOP loops if Deff lies in the interval from 0.4 to 1.6 mJ/m2

which is sufficiently less than the DMI energies determined by
the periodicity analysis. Then we fitted the three point plots
Deff (N = 1, 10, 20) using the exponential function y = y0 +
AeR0x, and found the values of Deff IP = 1.67 ± 0.5 mJ/m2

and Deff OOP = 1.14 ± 0.5 mJ/m2 for N5 or Co(0.8) samples,
which agree quite well with the results of the hysteresis loops
analysis.

Substitution of the effective DMI energies obtained for N
series of samples to the Deff (dCo) dependencies in Fig. 6(a)
leads to a decrease of effective DMI in the Co(0.8) super-
lattices, while effective DMI of the interface origin should
increase with decreasing thickness of the magnetic layer.
However, a decrease of the surface DMI energy in the low
FM layer thickness regime is frequently observed in various
systems [4,41,42]. This may be explained by structural inho-
mogeneity or by the degradation of the top FM/NM interface.

Magnetic hysteresis loops for the samples of the Co series
are shown in the Appendix. The comparison of the simulated
and experimental hysteresis loops allows us to estimate DMI
energies, however, errors of determined values are large. The
results are also indicated in Fig. 6. It is worthwhile to note
that DMI energies obtained by the hysteresis loops analysis
Deff loops and DS loops match better with the OOP DMI energies.

One may notice that the λ(Deff ) dependencies analyti-
cally calculated for the Co(1.4) and Co(1.6) samples do not
intersect with the bands of experimentally obtained OOP de-
magnetized periods in Figs. 5(f) and 5(g). OOP DMI energies
at dCo = 1.4 and 1.6 nm in Fig. 6 are set to zero values but
strictly speaking the method does not work at these points,
thus these points are marked as red crosses. The λ(Deff )

FIG. 6. The absolute values of (a) effective, and (b) surface DMI energies depending on the Co thickness in the crystalline
[Co(dCo)/Pd(2 nm)]5 superlattices. Solid lines are B-spline interpolation curves. Open points are determined based on the results of the previous
paper [33]. Red crosses indicate the points where the domain-period method doesn’t work.

144411-8



DOMAIN-PERIOD METHOD FOR DETERMINATION OF … PHYSICAL REVIEW B 102, 144411 (2020)

FIG. 7. The absolute values of effective DMI energies de-
pending on the number of Co/Pd bilayers in the crystalline
[Co(0.8 nm)/Pd(2 nm)]N superlattices. Solid lines denote exponen-
tial fitting of the obtained Deff (N = 1, 10, 20) dependencies. Dashed
lines are the B-spline interpolated curves based on all points. Points
on the graph are obtained by means of the domain-period method
except the N1 point.

dependencies must at least reach the experimental range of
values at the point of Deff = 0, otherwise micromagnetic
parameters must be reconsidered. Another point that needs
discussing is the absolute values of obtained DMI energies.
IP effective DMI energies in the investigated superlattices
are rather large when compared with reported data for other
systems with the same thickness of Co layers, as indicated
in Table II. The values for the IP effective DMI energies at
large Co thicknesses near the spin reorientation transition of
the magnetization to the plane of the structures are especially
doubtful. The values for the OOP effective DMI energies seem
more reasonable, taking into account that the investigated sys-
tem is symmetric by the composition. However, the problem
of determination of the OOP effective DMI energies in the
Co(1.4) and Co(1.6) samples requires solution.

Two parameters are quite flexible in the domain-period
method: the exchange constant and the saturation mag-
netization. Values of the exchange constant used for the
investigation of polycrystalline Co belong to the interval 10–
16 pJ/m [6,29,30], while the experimentally measured values
of the exchange constant of crystalline Co are 25–36 pJ/m
[40,43,44]. A good compromise would be to use the exchange
constant in the range 20–30 pJ/m. The saturation magneti-
zation was determined including Pd polarized layers in the
magnetic layers. In this case, the saturation magnetization
is variable and depends on the Co thickness. However, it is
arguable, because the saturation magnetization of Pd is nearly
4.5 times less than the saturation magnetization of Co. There-
fore, it is quite reasonable to neglect magnetically polarized
Pd layers and use the bulk value of the saturation magnetiza-
tion of Co, Ms = 1420 kA/m3. In this case, the energy of the
PMA must be recalculated as well. Taking into account the
excellent coincidence of the results of accurate micromagnetic
simulations and analytical calculations by the 3D model [24] it
was decided to use analytical calculations due to significantly
speeding up the research.

The IP effective and surface DMI energies analytically
calculated by the 3D model for different exchange constants
and bulk value of the saturation magnetization are shown in
Figs. 8(a) and 8(b), respectively. Dependencies |Deff IP(dCo)|
and |DS IP(dCo)| calculated for A = 25 pJ/m and variable Ms

are added for comparison. We did not consider dCo = 0.8 nm
due to controversial results from Co and N series of samples.
Using bulk Co magnetization and fixed exchange constant
A = 25 pJ/m in the analytical model results in increasing the
numerical values of the |Deff IP(dCo)| and |DS IP(dCo)| curves
compared to calculations obtained for variable Ms. Slope of
the curves and numerical values may be also adjusted by
variation of the exchange constant. Therefore, we find that
results calculated for A = 25 pJ/m and variable Ms are nearly
equal to the results calculated for A = 23 pJ/m and Ms =
1420 kA/m3. Decreasing the exchange constant to the values
of 20 pJ/m leads to a sudden drop of the DS IP in the Co(1.6)
superlattices to zero which is highly improbable. Suppose that
different strains in the top Co/Pd interface are the origin of the
Co thickness dependence of the surface DMI energy. Strains
in the top Co/Pd interface decrease linearly with increasing
the Co thickness beginning from 1 nm. Therefore, it is rea-
sonable to expect the smooth Co thickness dependence of the
surface DMI energy in the interval of Co thicknesses from 1 to
1.6 nm. The behavior of the |Deff IP(dCo)| and |DS IP(dCo)|
curves depending on the value of the exchange energy is sim-
ilar, both in the case of the variable Ms and in the case of the
constant Ms [Figs. 8(c) and 8(d)]. Using exchange constants
larger than 25 pJ/m leads to larger Deff IP and DS IP values
which do not match literature data. Using lower exchange
constants lead to a drop of the DS IP in the Co(1.6) superlattices
as in the case with Ms = 1420 kA/m3.

The OOP effective and surface DMI energies calculated for
constant and variable Ms and different exchange constants are
indicated in Figs. 8(e)–8(h). More or less adequate behavior
of the DS OOP without sudden drops but still largely dependent
on the Co thickness is obtained for A = 30 pJ/m and Ms =
1420 kA/m3. In other cases, surface DMI constant decreases
to zero in the superlattices with large Co thickness.

Analysis of the calculated results obtained for different val-
ues of the exchange constant and the saturation magnetization
indicate that the Co thickness dependencies of the IP effective
and surface DMI energies in the [Co(1–1.6 nm)/Pd(2 nm)]5

structures are more acceptable and stable to small deviations
of micromagnetic parameters. The OOP effective and surface
DMI energies are reasonable only for Ms = 1420 kA/m3 and
the limit value of A = 30 pJ/m.

The ordering of the experimental demagnetized images
depends on the direction of the demagnetizing field. It is
natural to expect lower periodicity in the ordered stripe do-
main state because with the same total length of the domain
walls, as in the disordered labyrinth magnetic pattern, density
of the ordered domains will be larger. Therefore, one might
expect different periods of the equilibrium ordered stripe and
disordered labyrinth micromagnetic patterns. We checked this
assumption by calculating the total energy density of ten or-
dered stripes depending on the period size with different DMI
energies for Co(1.4) sample using micromagnetic parameters
A = 25 pJ/m and Ms = 1508 kA/m3. The periodicity of the
domains was changed by choosing the appropriate size of
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FIG. 8. The dependencies of |Deff IP(dCo)| and |DS IP(dCo)| calculated for (a), (b) constant Ms, (c), (d) variable Ms, respectively. The
dependencies of |Deff OOP(dCo)| and |DS OOP(dCo)| calculated for (e), (f) constant Ms, (g), (h) variable Ms, respectively. The exchange constant
A is varied in each case. Points denote results of analytical calculations by 3D model [24]. Solid lines are B-spline interpolations.

a simulation area like it was carried out in [29]. A ground
state with a certain period for given magnetic parameters was
determined in the point of minimal total energy density [see
the inset in Fig. 9(a)]. The striking result is a coincidence of
λ(Deff ) dependencies obtained by micromagnetic modeling of
labyrinth (developed from two bubbles) and ordered (artifi-
cially defined) stripe domain structures [Fig. 9(a)]. Similar
result was also obtained by Lemesh et al. while testing a
2D analytical model via micromagnetic simulations of or-
dered stripe and labyrinth domain configurations obtained
after relaxation from a random magnetic state [23]. It is
worthwhile to note that equilibrium periodicities calculated

as a result of simulations from the random initial magnetic
state are slightly lower than periodicities of ordered magnetic
states. The periods of regular labyrinth domain structures
calculated for Co(1.4) superlattices defined by the FFT are
slightly larger than periods defined by statistical profile
analysis.

Total-energy densities of equilibrium states of Co(1.4)
superlattices obtained from different initial magnetic config-
urations are outlined in Fig. 9(b). The ordered stripe magnetic
state has the lowest total-energy density over the entire con-
sidered DMI energy range. While the total-energy density
of the isotropic labyrinth state is larger than the total-energy
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FIG. 9. (a) Periods of magnetic structures of Co(1.4) superlattices simulated from different initial configurations and determined by FFT
or statistical profile analysis. The dependence of the total-energy density of the ordered magnetic state on the period for |D| = 2.5 mJ/m2 is
indicated in the inset. (b) Total-energy densities as functions of the absolute values of effective DMI energies calculated from different initial
magnetic configurations. 2 μm × 2 μm equilibrium magnetic configurations calculated for |D| = 2.5 mJ/m2 are shown in the inset.

density of the ordered stripe state by nearly 4 kJ/m3, the total-
energy density of the magnetic state minimized from a random
magnetic structure is larger than the total-energy density of
the ordered stripe on the average by 30 kJ/m3. Therefore,
magnetic configurations obtained after the relaxation of the
random magnetic states are far from ground states in this
case. Nevertheless, the obtained periodicity does not depend
significantly on the initial magnetic configuration [see the
inset in Fig. 9(b)].

In spite of the micromagnetic modeling results, the periods
of the ordered IP and labyrinth OOP demagnetized struc-
tures differ significantly. Therefore, it is necessary to establish
which state of the two above is closer to the ground state.
The difference in periods may be related with a pinning of
domain walls on defects and different evolution of magnetic
structures during the magnetization reversal in differently
oriented magnetic fields. Since the previously considered
magnetic states were simulated without any magnetic fields
we calculated magnetic structures of Co(1.4) superlattices in
magnetic fields of IP and OOP orientations with a decaying
magnitude from saturation field to zero. Two circular mag-
netic defects with a diameter of 100 nm and fixed opposite
OOP magnetization were included in the simulation. The fol-
lowing micromagnetic parameters were used: A = 25 pJ/m,
Ms = 1508 kA/m3, Deff = 0.5 mJ/m2. A remanent magnetic
state developed after the gradual demagnetization in the OOP
magnetic field demonstrated a period of 159 ± 6 nm, the same
as in the magnetic patterns obtained after the relaxations of
two bubbles in zero magnetic field. Changes in the magnetic
structure of self-demagnetizing samples occurring with a de-
crease in the perpendicular magnetic field are well described
in the literature [38] and corroborated by the results of our
simulations. Bubbles or skyrmions nucleated in high magnetic
fields grow into stripes, the density of which increases with
decreasing magnetic field. Therefore, the periodicity of the
isotropic labyrinth structure decreases with decreasing mag-
netic field. The period of experimental OOP demagnetized
structures may be larger than the period in the ground state if a
sample is not completely demagnetized due to pinning of the
domain walls on defects. The OOP demagnetized experimen-

tal domain structures are isotropic with equal areas of dark
and bright domains except in the Co(0.8) superlattice. Hence,
we may conclude that defects have a minor effect on the
period of the OOP demagnetized [Co(1–1.6 nm)/Pd(2 nm)]5

structures.
The magnetic structure of Co(1.4) superlattices simulated

in decaying IP magnetic fields from the magnetic saturation
state demonstrated nucleation of ordered stripes with the pe-
riod of 110 ± 2 nm in the magnetic field μ0H = 300 mT. With
decreasing the magnetic field, the density of stripes gradually
increased by annihilation of isolated magnetic stripes and
straightening of branched domains. The period of the stripe
domain structure was equal to 153 ± 2 nm in zero magnetic
field. This value is slightly lower than the period of the ar-
tificially defined stripes with minimal total-energy density.
However, defects in the experimental structures may prevent
annihilation of domain walls during the IP demagnetization
procedure and lead to lower periodicities of IP demagnetized
structures than in the ground state. Careful examination of the
experimentally obtained IP demagnetized domain structures
of [Co/Pd]5 superlattices indicates the presence of a large
number of defects such as branching, twisting, and breaking
of the stripes. An ordering of the stripes and a decrease of
the number of defects is observed with an increase in the
Co thickness of [Co/Pd]5 superlattices. A relative difference
between the periods of OOP and IP demagnetized structures
calculated by the formula (λOOP − λIP )/λIP decreased from
0.49 to 0.17 with increasing Co thickness from 1 to 1.6 nm,
which correlates with decreasing of the number of defects.
Hence, it is reasonable to suggest that evolution of the stripe
domain structure with a decrease of the IP magnetic field from
the high dense state to the low dense state is more sensitive to
the defects than development of the stripe domain structure
from isolated stripes in OOP magnetic fields.

IV. CONCLUSIONS

The structural and magnetic properties of epitaxial
[Co(dCo)/Pd(2 nm)]5 superlattices were investigated with re-
gard to their dependence on the Co thickness. The asymmetry
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FIG. 10. Experimental and simulated with different values of the effective DMI energies OOP magnetic hysteresis loops of (a) Co(0.8) or
N5, (b) Co(1), (c) Co(1.2), and (d) Co(1.4) superlattices.

of the strains between the lower Pd/Co and upper Co/Pd in-
terfaces increases with an increase in the Co thickness. IP and
OOP demagnetized structures were experimentally measured
in epitaxial [Co(dCo)/Pd(2 nm)]5 superlattices. The effective
and surface energies of the DMI in this system were deter-
mined by the comparison of the periods of simulated domain
structures and stripe domain structures, experimentally mea-
sured after the demagnetization of the samples in IP and OOP
magnetic fields.

The results of the present work indicate that it is appro-
priate to use accurate micromagnetic simulations with all

the layers defined, or the 3D analytical model [24] for the
systems with a relation of the thicknesses of NM and FM
layers less than 2.5. Using a random magnetization as an
initial magnetic state in micromagnetic simulations leads to
labyrinth structures with higher total-energy densities and
slightly lower periods than for the ground states. The method
gives controversial results with the samples which do not
self-demagnetize and demonstrate an Mr/Ms = 1 in the OOP
hysteresis loops (Co 0.8 sample in this paper). The stripe
domain structures of such samples after a forced demag-
netization are irregular and the periods of these structures
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could not be precisely determined by the analysis of 2D FFT
spectra.

Analysis of the Co thickness dependencies of the DMI
energies reveals that using experimentally obtained IP de-
magnetized structures rather than OOP demagnetized domain
structures in the domain-period method gives more solid re-
sults. The dependencies of the IP effective and surface DMI
energies on the Co thickness in the [Co(dCo)/Pd(2 nm)]5

superlattices are smoother and without unexpected abrupt
changes, as compared to the dependencies of the OOP DMI
energies. The values of the exchange constants used in the
calculations of the IP DMI energies are more reasonable when
compared to the exchange constants taken from the simula-
tions of the OOP DMI energies.

The quantitative results obtained by the considered method
strongly depend on the choice of the exchange constant.
In the present work, relatively small deviations of the ex-
change constant, from 23 to 28 pJ/m, lead to a change in the
qualitative behavior of the DS IP as a function of the Co thick-
ness. The difference between IP and OOP DMI energies may
be almost eliminated by an appropriate choice of the exchange
constant value. We conclude that the domain-period method
used with a fixed exchange constant may give qualitatively
reliable results for quite different samples, such as samples
with different stacking sequences of the layers or different
heavy metal layers adjacent to the Co layers. However, a
precise experimental determination of the exchange constant
is needed for a correct definition of the behavior of DMI
energies regarding their dependence on the thickness of the
Co layers in the investigated structures.

Nevertheless, the results of the applied method in-
dicated the presence of strong interfacial DMI in the
[Co(dCo)/Pd(2 nm)]5 superlattices. The appropriate choice of
Co thickness provides the opportunity to tune the energy of
effective DMI and control the magnetic structures in the epi-
taxial [Co(dCo)/Pd(2 nm)]5 superlattices. Taking into account
the opportunity of controlling the energy of effective DMI
in this system by varying the number of Co/Pd bilayers it
may be concluded that the epitaxial [Co/Pd]N multilayered
structure is a system with flexible magnetic parameters, which
is promising as a medium for skyrmion memory engineering.
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APPENDIX: METHOD FOR THE ESTIMATION OF
THE ENERGIES OF DZYALOSHINSKII-MORIYA

INTERACTION BY ANALYSIS OF HYSTERESIS LOOPS

The approach for estimating the effective energy of DMI by
comparing experimental and modeled hysteresis loops gives
results with a large error. Therefore, such a method cannot
be used as the main result, but may give complementary
results. As the criteria of coincidence, we analyzed the tilt-
ing of the hysteresis loops in the near-zero magnetic fields
and the values of the normalized remanent magnetization.
Hysteresis loops simulated for the Co(0.8) superlattices are
shown in Fig. 10(a). The coercive force of the experimental
and simulated loops is different due to structural defects that
are not taken into account in the simulations. The hysteresis
loops simulated with Deff < 0.4 and >1.6 mJ/m2 definitely
do not fit with the experimental one. The simulated hys-
teresis loop with Deff = 0.3 mJ/m2 is more rectangular than
experimental one, and the normalized remanent magnetiza-
tion of the hysteresis loop in the case of Deff = 1.7 mJ/m2

is less than 1. However, the effective DMI energies that are
in the fairly broad range of 0.4–1.6 mJ/m2 give identical
hysteresis loops in the simulations, which fit the experimen-
tal ones quite well. Simulations for the Co(1) superlattices
shown in Fig. 10(b) give effective DMI values of Deff loops =
1.5 ± 1 mJ/m2 with a large error. The most accurate val-
ues of the effective DMI energy are obtained in the Co(1.2)
samples, Deff loops = 1.7 ± 0.4 mJ/m2, as shown in Fig. 10(c).
However, hysteresis loops of the Co(1.4) [Fig. 10(d)]
and especially Co(1.6) superlattices weakly depend on the
effective DMI constant. Thus, we considered Deff loops =
0.75 ± 0.75 mJ/m2 for the Co(1.4) superlattices and excluded
the hysteresis loops of the Co(1.6) samples from the consider-
ation.
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