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We consider the spin- 1
2 isotropic XY chain in an external magnetic field directed along the z axis with

periodically varying g factors. To reveal the effects of regularly alternating g factors, we calculate various static
and dynamic equilibrium quantities in the ground state and at finite temperatures. We demonstrate that because of
the regularly alternating g factors the saturation field may disappear and the field dependence of the susceptibility
in the ground state has additional logarithmic singularity at zero field. Moreover, the zero-field susceptibility has
a logarithmic singularity as T → 0. Furthermore, the dynamic structure factors exhibit much more structure in
the “wave vector–frequency” plane that can be traced out to modifications of the two-fermion excitation continua
which exclusively determine Szz(κ, ω) and dominate the properties of Sxx (κ, ω). We discuss what changes can
be observed in dynamic experiments on the corresponding substances.
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I. INTRODUCTION

The magnetic moment of an electron is related to its an-
gular momentum by the g factor. The magnetic moment of a
free electron is associated with its spin angular moment only
and the magnitude of the electron g factor (or more precisely
the electron spin g factor) is ≈2.002 319 [1]. In atoms, both
orbital angular momentum and spin angular momentum of
the electron contribute to the magnetic moment of an atomic
electron and the spin g factor has to be replaced by the Landé
g factor. Furthermore, in crystalline solids, the Landé g factor
(or in what follows simply the g factor) may be, in principle,
site dependent.

From the solid-state-physics side, one can mention a
number of spin-chain compounds with regularly alternat-
ing g-factor values [2–10]. Thus, one-dimensional copper
iridium oxide Sr3CuIrO6 which contains both 3d (Cu2+)
and 5d (Ir4+) magnetic ions can be well described by an
effective spin- 1

2 ferromagnetic Heisenberg model with an
Ising-like exchange anisotropy (� ≈ 2.5) [2,3]. Moreover,
the Cu sites carry the Cu spin s = 1

2 with g factor ≈2
and the Ir sites carry the Ir isospin s = 1

2 with g factor
≈ − 3 [3,4]. Another instance is a one-dimensional molecu-
lar magnet [{CoII(�)CoII(�)}(ox)2(phen)2]n [5]. Magnetic
properties of this compound can be explained using a
one-dimensional Ising-chain model with two different ex-
change couplings and two different g factors, 2.5 and 2.1.
The next example of a single-chain molecular magnet is a
coordination polymer compound [{(CuL)2Dy}{Mo(CN)8}] ·
2CH3CN · H2O, in which L2− is N,N-propylenebis(3-

methoxysalicylideneiminato). The magnetic unit cell in this
compound contains four magnetic ions with three differ-
ent values of the g factors. The presence of the highly
anisotropic Dy3+ ion makes possible an exact solution for
the corresponding spin-chain model [6]. One more exam-
ple is the spin- 1

2 chain antiferromagnet CuCl2 · 2[(CD3)2SO]
[7]. There are results of very recent studies of another het-
erotrimetallic coordination-polymer single-chain magnet with
large difference between the g factors of the magnetic ions
in the magnetic unit cell, [CuII MnII (L1)][FeIII (bpb)(CN)2] ·
ClO4 · H2O [8]. In this system, a staggered g tensor and/or
Dzyaloshinskii-Moriya interactions lead to a staggered field
along the x direction upon application of a uniform field
along the z direction. As a result, a spin- 1

2 antiferromagnetic
Heisenberg chain with an alternating g factor emerges (see
also Ref. [9] discussing the quasi-one-dimensional spin- 1

2 an-
tiferromagnet Cu benzoate). Finally, one may also mention
a two-sublattice one-dimensional system Ni2(EDTA)(H2O)4 ·
2H2O, the magnetic behavior of which was discussed in terms
of a spin-1 g1-g2 antiferromagnetic Heisenberg (or Ising)
chain with g1/g2 about 1.1 [10].

From the theoretical side, since the g factor enters many
standard lattice models of crystalline solids, it is quite nat-
ural to address a question about the consequences of a
regular nonuniformity of the g factor for the observable
magnetic properties. There are several exact calculations for
the spin-chain systems aimed at exploring the essential ef-
fects of nonuniform g factors. Spin- 1

2 XY chains provide an
excellent playground for such analysis because they corre-
spond to noninteracting fermions [11,12]. Prior work, which
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is closely related to our study, concerns the two-sublattice
[13,14] and the inhomogeneous periodic (i.e., with several
sites in a cell which periodically repeats) [15] spin- 1

2 XX
chain in a z-aligned field with various interaction constant
and g-factor values. The reported results refer to the magneti-
zation, susceptibility, and equal-time two-spin zz correlation
functions [13,14], as well as to some dynamic quantities
related to correlations of the average cell operators [15].
The continued-fraction method was also used to figure out
the magnetothermal properties of the general inhomogeneous
isotropic XX chain including the case of a random Lorentzian
transverse field [16]. The same program has been performed
also for the quantum Ising chain [17]. In the most recent
papers, the detailed analysis of the ground-state properties for
general boundary conditions for the quantum Ising chain with
the period-2 modulated transverse field have been done [18].
Free-fermion models in which the period-2 alternation of the
nearest-neighbor interactions is accompanied by multiple spin
exchange were considered in Refs. [19–21]. XX chains are
the extreme limit of the Heisenberg chains with an XY-like
exchange anisotropy. The opposite limiting case is the Ising
chains. Recently, a spin- 1

2 Ising chain with period-2 regularly
alternating g factors has been studied in the context of unusual
properties of Sr3CuIrO6 [3,4]. Moreover, this material, as was
mentioned above, features not only alternating g factors of
magnetic ions along the chain, but also the negative sign of
one of them. Negative g factors (for the pseudospin operators)
are interesting by themselves as they are the result of strong
interplay between the ligand field and spin-orbit interaction
[22–24]. Very recently it has been shown that even in the
simplest case of the ferromagnetic Ising model with g fac-
tors of different sign on bipartite lattice, the frustration takes
place and there are configurations containing ordered and
disordered sublattices at the same time [4,25]. Rigorous re-
sults for finite quantum spin clusters and an Ising-Heisenberg
chain with different g factors have been obtained recently in
Ref. [26].

In the present paper we report results of the systematic
study of the spin- 1

2 XX chain in a transverse field with reg-
ularly alternating g factors including the case when g factors
have different sings. We pay special attention to manifestation
of regularly alternating g factors in the transverse magne-
tization, the static zz susceptibility, as well as in the two
dynamic structure factors Szz(κ, ω) and Sxx(κ, ω). Syy(κ, ω)
behaves identically to Sxx(κ, ω) due to the symmetry of the
model. Dynamic quantities are accessible experimentally and
therefore understanding of the effects generated by nonuni-
form g factors may be useful for interpreting experimental
data. The recent development of the exact and numerical
calculations of the spin dynamic structure factors for the
integrable one-dimensional quantum spin systems are really
impressive [27]. However, the spin-chain model examined
in what follows, although corresponding to noninteracting
fermions, may be of interest for the full Heisenberg ex-
change interaction case too: Since the seminal papers by
Müller et al. [28] we know that many dynamic features of
the spin- 1

2 Heisenberg chain can be analyzed starting from the
free-fermion limit.

It might be worthwhile to list here the main findings of the
present paper.

(i) We have performed a detailed study of the dy-
namic properties. We calculated the dynamic structure factors
Szz(κ, ω) and Sxx(κ, ω) and inspected how they change in the
external magnetic field for different period-2 alternations of g
factors.

(ii) In the case when both g factors are of the same sign,
the correspondence between the boundaries of the zz and xx
structure factors is still present.

(iii) On the contrary, if g1g2 � 0, a large enough magnetic
field leads to the highly intense modes in the xx structure
factor.

(iv) Analyzing the absorption intensity Iα (ω, h), we found
that in the Voigt configuration (α = z), the model with uni-
form g factors does not have any response. In the case when g2

differs from g1, we obtain the nonzero contribution to the ab-
sorption intensity. For sufficiently large frequencies ω > 2|J|
(where J denotes the exchange coupling) the van Hove singu-
larity arises at the magnetic field h = √

ω2 − 4J2/|g1 − g2|.
(v) In the Faraday configuration (α = x), the situation is

a bit different. The absorption spectra can be observed in the
uniform case. It shows a broad maximum at some resonance
field. The alternation of g factors leads to the doubling of this
resonance line.

(vi) Although in our study we focus on the exactly solv-
able XX chain, we know that such analysis of dynamics is
useful for understanding a more realistic case of the Heisen-
berg chains. Many qualitative features (e.g., doubling of the
resonance line) of the absorption profiles can be found also in
case of the Heisenberg XXZ model with alternating g factors.

The rest of the paper is organized as follows. We begin
with introducing the model to be studied and the free-fermion
representation of the model which emerges after applying the
Jordan-Wigner transformation, Sec. II. After that we discuss
the magnetization and the susceptibility in the ground state
(Sec. III) and some finite-temperature quantities (Sec. IV).
In Sec. V we examine the dynamic structure factors of the
model. We report the results for Szz(κ, ω) obtained mainly
analytically and for Sxx(κ, ω) obtained mainly numerically.
We conclude the paper with a summary, Sec. VI.

II. THE MODEL AND ITS FREE-FERMION
REPRESENTATION

In the present study, we consider the spin- 1
2 isotropic XY

chain in a transverse (i.e., aligned along the z axis) magnetic
field. The peculiarity of the model is the regularly alternating g
factor which acquires periodically two values, g1 and g2. The
Hamiltonian of the model reads

H =
N
2∑

l=1

[
J
(
sx

2l−1sx
2l + sy

2l−1sy
2l + sx

2l s
x
2l+1 + sy

2l s
y
2l+1

)
− g1μBHsz

2l−1 − g2μBHsz
2l

]
. (2.1)

Here J is the exchange interaction (we may put |J| = 1 with-
out loss of generality), μB is the Bohr magneton, H is the
value of the magnetic field measured, e.g., in teslas (then
with μB ≈ 0.67171 K/T the field h = μBH is measured in
kelvins), and g1μBH = g1h, g2μBH = g2h. Furthermore, N is
the number of lattice sites which is assumed to be even, and
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periodic boundary conditions are imposed for convenience.
After introducing

g± = g1 ± g2

2
, (2.2)

we can rewrite Eq. (2.1) in a more compact form

H =
N∑

l=1

[
J
(
sx

l sx
l+1 + sy

l sy
l+1

)− hls
z
l

]
,

hl = [g+ − (−1)l g−]h. (2.3)

This is the Hamiltonian of the spin- 1
2 isotropic XY chain in a

regularly alternating (with period 2) transverse magnetic field.
The defined model is exactly solvable by making use of

the famous Jordan-Wigner fermionization [11,12] (see also
Refs. [29,30]). In terms of the Jordan-Wigner fermions the
spin Hamiltonian (2.3) becomes

H =
N∑

l=1

[
J

2
(c†

l cl+1 + c†
l+1cl ) − hl

(
c†

l cl − 1

2

)]
. (2.4)

Again periodic boundary conditions are implied in Eq. (2.4)
[31]. After the Fourier transformation

cl = 1√
N

∑
κ

e−iκl cκ ,

κ = 2π j

N
, j = −N

2
,−N

2
+ 1, . . . ,

N

2
− 1, (2.5)

Eq. (2.4) can be cast into

H =
∑

−π�κ<π

[(J cos κ − g+h)c†
κcκ + g−hc†

κcκ±π ]

+ g+h

2
N. (2.6)

Next, we perform the Bogolyubov transformation,

cκ = uκακ − vκακ+π ,

cκ+π = vκακ + uκακ+π (−π/2 � κ < π/2),

uκ = 1√
2

√√√√1 + |J cos κ|√
J2 cos2 κ + g2−h2

,

vκ = sgn(g−hJ cos κ )√
2

√√√√1 − |J cos κ|√
J2 cos2 κ + g2−h2

, (2.7)

leading to

H =
∑

−π�κ<π

�κ

(
α†

κακ − 1

2

)
,

�κ = −g+h + sgn(J cos κ )
√

J2 cos2 κ + g2−h2. (2.8)

Hence, we have arrived at the free-fermion representation
(2.8) of the initial spin model (2.1). Within this representation
many calculations for the thermodynamically large system
can be performed rigorously analytically or with very high ac-
curacy numerically. From Eq. (2.8) it is immediately evident
that nonzero magnetic field develops a gap in the excitation
spectrum splitting it into two branches. In the limiting case

of large g factors (or field h) the system becomes close to
the two-level model with only two possible eigenenergies on
each site, −g1h and −g2h. The position of the Fermi level
is important for the understanding of the ground state and
thermodynamics of the model given in the next section.

Although the isotropic XY interactions may occur in some
spin- 1

2 chain compounds (see, e.g., Ref. [34]), they can be
viewed as a limiting case of more common XXZ interactions.
Consider the spin- 1

2 XXZ chain in a z-directed magnetic field.
The Hamiltonian of such model contains in addition to the one
given in Eqs. (2.1) or (2.2) the interaction of the z components
of neighboring spins with the strength J�, where � is the
anisotropy parameter. As a result, in terms of the Jordan-
Wigner fermions the spin Hamiltonian becomes

H =
N∑

l=1

[
J

2
(c†

l cl+1 + c†
l+1cl ) + J�c†

l cl c
†
l+1cl+1

− (hl + J�)c†
l cl + hl

2
+ J�

4

]
. (2.9)

One way to proceed is to apply a mean-field-like approxima-
tion for the four-fermion term [35,36]:

c†
l cl c

†
l+1cl+1 → (

1
2+m

)
(c†

l cl+c†
l+1cl+1)−( 1

2+m
)2

− t (c†
l cl+1 + c†

l+1cl ) + t2

− sc†
l c†

l+1 − s∗clcl+1 + |s|2, (2.10)

where the parameters m ≡ 〈c†
l cl〉 − 1/2, t ≡ 〈c†

l cl+1〉, and
s ≡ 〈clcl+1〉 have to be determined self-consistently. It should
be noted that the Jordan-Wigner fermionization approach was
successfully used for examining the static and dynamic prop-
erties away from the free-fermion point [37–41].

III. ZERO-TEMPERATURE PROPERTIES

Let us first present the ground-state (T = 0) properties
of the system. Although some particular results have been
already obtained in Refs. [13–15], we provide here the
ground-state analysis for consistency. Particularly, we fo-
cus on calculating the ground-state energy e0 = 〈H〉/N , the
transverse magnetization m = −∂e0/∂h, the sublattice av-
erage z component of spin, 〈sz

1〉 = −2 ∂e0/∂ (g1h), 〈sz
2〉 =

−2 ∂e0/∂ (g2h), and the static zz susceptibility χzz = ∂m/∂h.
For the model at hand, one has to differ the magnetization and
the average of the z component of the spin operator, i.e., the
magnetic moment and the angular moment at site. It is obvious
that

m = 1
2

(
g1
〈
sz

1

〉+ g2
〈
sz

2

〉)
. (3.1)

In what follows we distinguish two cases: g1g2 > 0 and
g1g2 < 0.

The case g1g2 > 0. There are two values of the Fermi
momenta κF defined as the solutions of the equation �κ = 0:

κF = ±κ0, if 0 < Jg+h < |Jg+|hs,

κF = ±(π − κ0), if − |Jg+|hs < Jg+h < 0, (3.2)

κ0 = arccos |h/hs| (0 < κ0 < π/2),
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where the saturation field hs is given by hs = |J|/√g1g2 > 0.
It is worth noting that the saturation field exists if the fully
polarized state |↑ . . . ↑〉, which is obviously the eigenstate of
the Hamiltonian (2.1), becomes the ground state as the field h
exceeds a certain finite value. This is the case for g1g2 > 0
but not for g1g2 < 0. Here we may consider two separate
ranges of the magnetic field h. The first one, when |h| > hs,
corresponds to the saturated phase with all spins aligned in
the field direction. There is no solution for κF and, thus, the
ground-state energy as well as the averages of spins have
simple expressions:

e0 = −1

2
|g+h|, m = sgn(h)

g+
2

,

〈
sz

1

〉 = 〈
sz

2

〉 = sgn(h)

2
, χzz = 0. (3.3)

More interesting is the second range, −hs < h < hs, when

e0 = −|g+h|
(

1

2
−κ0

π

)
− 1

π

√
J2 + g2−h2E(κ0, κ),

m = g+sgn(h)

(
1

2
− κ0

π

)
+ g2

−h

π

√
J2 + g2−h2

F(κ0, κ),

〈
sz

1

〉 = sgn(h)

(
1

2
− κ0

π

)
+ g−h

π

√
J2 + g2−h2

F(κ0, κ),

〈
sz

2

〉 = sgn(h)

(
1

2
− κ0

π

)
− g−h

π

√
J2 + g2−h2

F(κ0, κ),

χzz = g+κ
2

π
√

h2
s −h2

+ g2
−

π

√
J2+g2−h2

[F(κ0, κ)−E(κ0, κ)]. (3.4)

Here κ = |J|/
√

J2 + g2−h2 and we have also introduced the
elliptic integrals of the first and second kind given by the
following standard expressions [42]:

F(κ0, κ) =
∫ κ0

0

dθ√
1 − κ

2 sin2 θ
,

K(κ) = F

(
π

2
, κ

)
,

E(κ0, κ) =
∫ κ0

0
dθ
√

1 − κ
2 sin2 θ,

E(κ) = E

(
π

2
, κ

)
. (3.5)

As can be seen from the reported formulas, the susceptibil-
ity diverges at h = ±hs showing the square-root singularity

χzz ≈ g2
+ − g2

−
πg+

1√
h2

s − h2
, h → |hs|. (3.6)

If g1 
= g2 an additional weak divergence of χzz occurs at
h = 0:

χzz ≈ g+
πhs

+ g2
−
π

(
ln

2hs

h
− 1

)
, |h| → 0. (3.7)

This was noticed for the first time apparently in Ref. [13].

The case g1g2 < 0. In this case the equation for the Fermi
momenta �κ = 0 does not have real solutions, which means
that the Fermi level lays in the forbidden band between two
branches of the spectrum. Since the odd and even spins are
directed oppositely in a field, there is also no saturation field;
i.e., the magnetization never attains its saturation value cor-
responding to 〈sz

1〉 = −〈sz
2〉 = ±1/2. The ground-state energy

is given by the following formula:

e0 = − 1

π

√
J2 + g2−h2E(κ). (3.8)

After straightforward differentiation we get

m = g2
−h

π

√
J2 + g2−h2

K(κ),

〈
sz

1

〉 = −〈sz
2

〉 = g−h

π

√
J2 + g2−h2

K(κ),

χzz = g2
−

π

√
J2 + g2−h2

[K(κ) − E(κ)] (3.9)

for the magnetization, the sublattice average z component of
spin, and the susceptibility, respectively. These formulas can
be simplified in the strong-field and weak-field limits. We
obtain

m ≈ g2
−h

2
√

J2 + g2−h2
,

χzz ≈ g2
−J2

4(J2 + g2−h2)
3
2

, (3.10)

as |h| → ∞, and

m ≈ g2
−h

π

√
J2 + g2−h2

ln
4
√

J2 + g2−h2

|g−h| ,

χzz ≈ g2
−

π

√
J2 + g2−h2

⎛⎝ln
4
√

J2 + g2−h2

|g−h| − 1

⎞⎠, (3.11)

as |h| → 0. While Eq. (3.10) demonstrates explicitly that the
saturation is never achieved for any finite h, Eq. (3.11) demon-
strates a nonanalyticity of the ground-state energy which
manifests itself as a logarithmic peculiarity of the magneti-
zation and the susceptibility in vanishing field.

In Fig. 1 we show the ground-state magnetization and
susceptibility. In all numerical investigations, without loss
of generality, we assume first that g2 = g1 = 1 and then g2

starts to decrease. These plots illustrate the analytical re-
sults reported above including the asymptotic behavior of the
susceptibility. It is worthwhile to stress that the logarithmic
singularity of the susceptibility χzz can be detected not only
in the case g1g2 < 0, when it is quite natural to expect it,
but also in the opposite case g1g2 > 0; see Eq. (3.7). This is
the consequence of another peculiar property shown in Fig. 2
where the total magnetization and spin moment is confronted
with the average spin moments of each sublattices. We can see
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FIG. 1. Ground-state magnetization (upper panel) and suscep-
tibility (lower panel) vs field h. |J| = 1, g1 = 1, g2 = 1 (solid),
g2 = 0.5 (long-dashed), g2 = 0 (short-dashed), g2 = −0.5 (dashed-
dotted), g2 = −1 (dotted).

that even for positive g2 (see Fig. 2 for g2 = 0.1) the average
spin moment at small fields started to evolve in the direction
opposite to the field feeling the competition between the ap-
plied magnetic field and quantum interaction with stronger
magnetized neighboring spins.

Let us denote by h0 (h0 > 0) the value of the field at which
〈sz

2〉 = 0 if |g2| < |g1| (or 〈sz
1〉 = 0 if |g1| < |g2|); h0 exists in

the case g1g2 > 0 only. After using approximate formulas for
the elliptic integrals one can show that h0 ≈ 2hs e−2α , where

FIG. 2. Ground-state values of 〈sz
1〉 (dotted), 〈sz

2〉 (dashed),
(〈sz

1〉 + 〈sz
2〉)/2 (dot-dashed), and m (solid) vs field h. |J| = 1, g1 =

1, g2 = 0.1.

α = √
g1g2/|g1 − g2|. If g2 (or g1) approaches zero we can

again use approximate formulas for the elliptic integrals to
conclude that h0 ≈ hs/

√
2. Both limiting cases can be com-

bined into the following approximate expression,

h0 ≈ 2e−2α

1 + (2
√

2 − 1)e−3α
hs, (3.12)

which yields the correct value of h0 for the whole region
g1g2 > 0 with the accuracy of less than 1.5%.

IV. FINITE-TEMPERATURE PROPERTIES

Finite-temperature quantities can be easily calculated from
the free energy per site

f (T, h) = − T

2π

∫ π

−π

dκ ln

(
2 cosh

�κ

2T

)
(4.1)

with �κ given in Eq. (2.8). For example, for the specific heat
one finds

c(T, h) = 1

2π

∫ π

−π

dκ

(
�κ

2T

)2

cosh−2 �κ

2T
. (4.2)

Furthermore, for the finite-temperature magnetization and
susceptibility one finds

m(T, h) = 1

4π

∫ π

−π

dκ
∂�κ

∂h
tanh

�κ

2T
(4.3)

and

χzz(T, h)

= 1

4π

∫ π

−π

dκ

[
∂2�κ

∂h2
tanh

�κ

2T
+ 1

2T

(
∂�κ

∂h

)2

cosh−2 �κ

2T

]
,

(4.4)

respectively. Here, the derivatives ∂�κ/∂h and ∂2�κ/∂h2 are
given by the following formulas:

∂�κ

∂h
= −g+ + sgn(J cos κ )g2

−h√
J2 cos2 κ + g2−h2

,

∂2�κ

∂h2
= sgn(J cos κ )g2

−J2 cos2 κ

(J2 cos2 κ + g2−h2)3/2 . (4.5)

In Fig. 3 we demonstrate the temperature behavior of the
specific heat (4.2) for several regimes: (1) gapless zero-field
and finite-field regimes (0 < |h| < hs) (solid black and dashed
brown), (2) two cases when |h| = hs or g2 = 0 (dashed-dotted
blue), and (3) two gapped regimes when |h| > hs, g1g2 > 0 or
when g1g2 < 0 at h 
= 0 (dotted green).

The gapless regime features the universal linear-
temperature dependence of the specific heat:

c(T ) � πc
3vF

T, T → 0. (4.6)

Here, in our case the central charge c = 1 and the Fermi
velocity for the case of zero field coincides with those for
the XX chain, vF = |J|, whereas for the case of the gap-
less finite-field regime (0 < |h| < hs, g1g2 > 0) it is vF =
J2
√

1 − h2/h2
s /(hs|g+|). When the magnetic field reaches the

saturation value |h| = hs (g1g2 > 0) the Fermi level touches
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FIG. 3. Temperature dependence of the specific heat for |J| = 1
at h = 0 (solid black); h = 0.5, g1 = 1, g2 = 0.5 (dashed brown);
h = 0.5, g1 = 1, g2 = 0 (dashed-dotted blue); and h = 0.5, g1 =
1, g2 = −0.5 (dotted green). The inset shows the same plots in log-
log scale. The linear, square-root, and exponential behavior of the
specific heat are clearly visible here. Thin red lines represent the
asymptotic forms from Eqs. (4.6), (4.7), and (4.8).

the bottom points of the upper part of the spectrum (van Hove
singularity). The low-temperature behavior of the specific heat
in this case is given by the square-root temperature depen-
dence,

c(T ) � 3(
√

2 − 1)ζ
(

3
2

)√|g+h|
8
√

π |J|
√

T , (4.7)

where ζ (x) is the standard zeta function. The same expression
is valid for the case g2 = 0 for arbitrary nonzero values of
the magnetic field. Finally, two gapped regimes are possible:
(i) |h| > hs, g1g2 > 0 and (ii) g1g2 < 0 at any h 
= 0. The spe-
cific heat has universal exponential low-temperature behavior,
given by

c(T ) � �2

√
2πr

e− �
T

T
3
2

, (4.8)

where for the |h| > hs regime r = |J|κ/2, � =
|g+h| −

√
J2 + g2−h2, whereas for the g1g2 < 0 regime

r = J2/(2|g−h|), � = |g2h| (� = |g1h|) if |g2| < |g1|
(|g2| > |g1|).

Let us also consider the low-temperature behavior of the
magnetic susceptibility at zero field. We have the universal
formula with logarithmic singularity given by

χzz(T ) � 1

π |J|
[

g2
+ − g2

−

(
ln

πT

4|J| − C
)]

, (4.9)

where C � 0.577 215 6 is the Euler-Mascheroni constant. As
is seen from this expression, the logarithmic divergence at
T → 0 is a consequence of the nonuniformity of the g factors
and it disappears when g− = 0. This is illustrated in Fig. 4.

FIG. 4. Low-temperature behavior of the zero-field susceptibil-
ity for |J| = 1, g1 = 1, and g2 = 1 (solid black), g2 = 0.5 (dashed
brown), g2 = 0 (dashed-dotted blue), and g2 = −0.5 (dotted green).
The inset shows the same plots in log-log scale. Thin red lines
represent the asymptotic form from Eq. (4.9).

V. DYNAMIC PROPERTIES

In this section, we study dynamic quantities of the model.
Dynamic properties of quantum spin-chain compounds are
observable in the neutron scattering [43] and electron spin
resonance (ESR) [44] experiments.

We start with the dynamic structure factor related to the
inelastic neutron scattering cross section [43,45]:

Sαα (κ, ω) = 1

N

N∑
j=1

N∑
n=1

exp (iκn)

×
∫ ∞

−∞
dt exp (iωt )g jg j+n

〈
sα

j (t )sα
j+n

〉
c, (5.1)

where 〈sα
j (t )sα

j+n〉c = 〈sα
j (t )sα

j+n〉 − 〈sα
j 〉〈sα

j+n〉 and sα
j (t ) =

exp(iHt )sα
j exp(−iHt ). The inclusion of the g factors in

Eq. (5.1) here implies that we have the dynamic structure
factors of the magnetic moments. In general, g factors may
also depend on the probing field direction α. But if we imply
that the ratio between g1 and g2 is preserved for any direction
α, Eq. (5.1) will acquire a scaling factor. In the case of site-
independent g factors Eq. (5.1) coincides with the definition
of Refs. [46–48]. For the chain with site-dependent g factors
with period 2 the dynamic structure factor has the following
general structure:

Sαα (κ, ω) = g2
+S0

αα (κ, ω) + g2
−S0

αα (κ + π,ω)

− g−g+
[
S

0
αα (κ, ω) + S

0
αα (κ + π,ω)

]
, (5.2)

where the uniform spin structure factor S0
αα (κ, ω) and the

staggered spin structure factor S
0
αα (κ, ω) are defined in the

standard way:

S0
αα (κ, ω) = 1

N

N∑
j=1

N∑
n=1

exp (iκn)

×
∫ ∞

−∞
dt exp (iωt )

〈
sα

j (t )sα
j+n

〉
c,
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S
0
αα (κ, ω) = 1

N

N∑
j=1

N∑
n=1

exp (iκn)

×
∫ ∞

−∞
dt exp (iωt )(−1) j

〈
sα

j (t )sα
j+n

〉
c
. (5.3)

Furthermore, we consider the Szz(κ, ω) and Sxx(κ, ω) struc-
ture factors separately. In the former case one faces a problem
of two-fermion excitations only and all calculations can be
performed analytically. The latter case corresponds to the
many-fermion excitation problem and requires, in general,
the calculation of Pfaffians. We perform these calculations
numerically [30,46–48] carefully controlling the accuracy of
computations. As in previous studies on the dynamics of spin-
1
2 XY chains, both structure factors exhibit some similarities.
In what follows, we discuss the changes in these quantities
caused by regular alternation of g factors.

The dynamic structure factors allow us to calculate the
energy absorption intensities Iα (ω, h), α = z, x observed in
the ESR experiments. Following the procedure given in Ap-
pendix A of Ref. [49], we can get for the linearly polarized
electromagnetic wave

Iα (ω, h) ∝ ωχ ′′
αα (0, ω),

(5.4)

χ ′′
αα (0, ω) = 1 − exp(−βω)

2
Sαα (0, ω),

where χ ′′
αα (0, ω) is the imaginary part of the αα dynamic

susceptibility and Sαα (0, ω) is the corresponding dynamic
structure factor at κ = 0 defined in Eq. (5.1). In the ESR
experiment two configurations are distinguished [44]: (i) the
Voigt configuration, when the magnetic polarization of the
electromagnetic wave is collinear with the constant field, and
(ii) the Faraday configuration, when the magnetic polarization
of the electromagnetic wave is perpendicular to the constant
field. In our model, the z [x] polarized electromagnetic wave
corresponds to the Voigt [Faraday] configuration; i.e., the ab-
sorption intensity is Iz(ω, h) [Ix(ω, h)]. Again, as discussed
in what follows, the regularly alternating g factors change
dramatically the ESR absorption intensity.

A. zz dynamics

One can work out the closed-form expression for the dy-
namic structure factor Szz(κ, ω). It is given by the following
expression:

Szz(κ, ω) =
∫ π

−π

dκ1B+(κ; κ1)C(κ; κ1)δ(ω−D(κ; κ1))

+
∫ π

−π

dκ1B−(κ; κ1)C(κ+π ; κ1)

× δ(ω−D(κ+π ; κ1)),

B±(κ; κ1) = [
g±
(
uκ1 uκ1+κ ± vκ1vκ1+κ

)
∓ g∓

(
uκ1vκ1+κ ± vκ1 uκ1+κ

)]2
,

C(κ; κ1) = nκ1

(
1 − nκ1+κ

)
,

D(κ; κ1) = �κ1+κ − �κ1 , (5.5)

FIG. 5. Toward the dynamic structure factor Szz(κ, ω). |J| = 1,
g1 = 1, g2 = 0.5, h = 0.5. (a) Number of roots of two equations
(5.6). (b) Szz(κ, ω) at T = ∞. (c) The same as in panel (a) but
taking into account the Fermi-Dirac functions at T = 0. (d) Szz(κ, ω)
at T = 0. Green and red lines are the boundaries (A1) and (A2)
correspondingly.

where nκ = 1/(e�κ/T + 1) is the Fermi-Dirac function for the
spinless fermions (2.8). Hence, Szz(κ, ω) is governed exclu-
sively by two-fermion excitation continua.
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FIG. 6. Szz(κ, ω) vs ω at κ = 0, κ = π/4, κ = π/2, κ = 3π/4, and κ = π . |J| = 1, g1 = 1, g2 = 0.5, h = 0.5, T = 0 (left), cf. Fig. 5(d),
and T → ∞ (right), cf. Fig. 5(b). Green and red lines are the boundaries (A1) and (A2) correspondingly.

Let us discuss this two-fermion quantity in more detail. For
fixed κ and ω, one has to solve the equations

ω − D(κ; κr ) = 0, ω − D(κ + π ; κ ′
r ) = 0, (5.6)

i.e., to find all roots κr , κ ′
r . Then Eq. (5.5) can be written down

as follows:

Szz(κ, ω) =
∑
κr

B+(κ; κr )C(κ; κr )

A(κ; κr )

+
∑
κ ′

r

B−(κ; κ ′
r )C(κ+π ; κ ′

r )

A(κ+π ; κ ′
r )

, (5.7)

where

A(κ; κ1) =
∣∣∣∣∂D(κ; κ1)

∂κ1

∣∣∣∣
= J2

∣∣∣∣∣∣ | cos(κ1+κ )| sin(κ1+κ )√
J2 cos2(κ1+κ )+g2−h2

− | cos κ1| sin κ1√
J2 cos2 κ1+g2−h2

∣∣∣∣∣∣.
(5.8)

In Fig. 5(a) we show (for a representative set of parameters)
the regions in the κ-ω plane where Eqs. (5.6) have four roots
(black), two roots (gray) or no roots (white). In other words,
we plot Szz(κ, ω) (5.7) assuming A(κ; κ1) = A(κ + π ; κ1) = 1
as well as B±(κ; κ1) = 1 and C(κ; κ1) = C(κ + π ; κ1) = 1.
Clearly, the dynamic structure factor Szz(κ, ω) is identically
zero within the white regions in the κ-ω plane [Eqs. (5.6) have
no roots]. Furthermore, any two-fermion quantity has some
structure coming from the factors 1/A(κ; κ1) and 1/A(κ +
π ; κ1). This is nicely seen in the infinite-temperature limit
when C(κ; κ1) = C(κ + π ; κ1) = 1/4 shown in Fig. 5(b).
Next, deviating from the infinite-temperature limit we have to
examine the effect of the Fermi-Dirac functions in Eq. (5.7)
which may suppress the dynamic structure factor Szz(κ, ω)
even in the gray or black regions, especially at T = 0. In
Fig. 5(c) we show the effect of the ground-state Fermi-
Dirac distributions for the same set of parameters [we plot
Szz(κ, ω) (5.7) assuming A(κ; κ1) = A(κ + π ; κ1) = 1 and

B±(κ; κ1)=1]. In addition to the two- and four-root regions,
the regions with one and three roots, surviving after the ther-
modynamic averaging, come into play [compare Figs. 5(c)
and 5(a)]. Moreover, some previously allowed regions be-
come white at T = 0 signalizing the action of the Fermi-Dirac
functions in the ground state. The final gray-scale plot of the
zz dynamic structure factor (5.7) at T = 0 is presented in
Fig. 5(d). The frequency profiles for the chosen set of param-
eters are also plotted in Fig. 6 complementing the gray-scale
plot in Figs. 5(b) and 5(d). It is clearly seen that the zz dynamic
structure factor at T → ∞ shows the van Hove divergence at
the edges of the two-fermion continua which is typical for the
XX chains (see Refs. [30,47,48] for a review). Szz(κ, ω) in
the ground state [Fig. 5(d)] demonstrates even richer behavior
due to the steplike form of the Fermi-Dirac functions [see
Figs. 5(c), 5(d) and Fig. 6(a)]. The analytical formulas for
the boundaries of the two-fermion continua are given in the
Appendix.

We can understand the reported findings taking into ac-
count that the dynamic structure factor Szz(κ, ω) is governed
by two-fermion continua. The general effect of alternating g
factors can be understood from Figs. 7, 8, and 9, where some
results for Szz(κ, ω) for different fields h and values of g2

at T = 0 are collected. The decreasing of g2 from 1 to −1
at fixed value of magnetic field h and g1 = 1 leads to redis-
tribution of the intensity of the zz dynamic structure factor
from the boundary to the center of the Brillouin zone. For
g2 ∈ (0, 1), there are two regions with Szz(κ, ω) 
= 0 (top and
bottom) which are disconnected; see Figs. 7(b), 8(b) and 9(b).
The distances between these top and bottom regions increase
with decreasing g2 and with increasing h. For g2 ∈ [−1, 0],
the increasing of the magnetic field h leads to redistribution
of the intensity of the zz dynamic structure factor to higher
frequencies.

Let us consider the effect of changes in the g factors and
h in more detail. At zero field, the zz structure factor is ex-
tremely simple [see Eqs. (5.2) and (5.3)] and can be presented
as a sum of two contributions for the uniform model shifted
by π along the wave-vector axis [i.e., Eq. (5.2) in the case of
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FIG. 7. The density plot of the dynamic structure factor Szz(κ, ω)
at T = 0: |J| = 1, g1 = 1, g2 = 1 (a), g2 = 0.5 (b), g2 = 0 (c), g2 =
−1 (d), h = 0.1.

zero staggered spin structure factor S
0
zz(κ, ω)]. It is definitely

also the case of a small field (see Fig. 7 for h = 0.1). It is
clearly seen that at small h, the deviation of g2 from g1 = 1
induces a tiny strip of new two-fermion continuum at lower

FIG. 8. The density plot of the dynamic structure factor Szz(κ, ω)
at T = 0: |J| = 1, g1 = 1, g2 = 1 (a), g2 = 0.5 (b), g2 = 0 (c), g2 =
−1 (d), h = 0.5.

frequencies. The intensity of this low-energy two-fermion
continuum wanes with decreasing g2. Surprisingly, Szz(κ, ω)
for g2 � 0 does not show any trace of the low-energy con-
tinuum anymore [see Figs. 7(c), 7(d)]: The zz structure factor
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FIG. 9. The density plot of the dynamic structure factor Szz(κ, ω)
at T = 0: |J| = 1, g1 = 1, g2 = 1, h = 0.9 (a), g2 = 0.5, h = 1.4 (b),
g2 = 0, h = 1 (c), g2 = −1, h = 1 (d).

shows one two-fermion continuum only. In contrast to h = 0,
at small fields, two opposite cases g2 = 1 and g2 = −1 are not
identical [compare Fig. 7(a) and Fig. 7(d)].

FIG. 10. The density plot of the dynamic structure factor
Szz(κ, ω) at T → ∞: |J| = 1, g1 = 1, h = 0.5, g2 = 0 (a), g2 = −1
(b).

At higher fields, the magnetic structure factor cannot be
approximated by the sum of uniform spin structure factors
S0

zz(κ, ω) anymore. Even for a moderate alternation of g fac-
tors [g1 = 1, g2 = 0.5 in Fig. 8(b)] we observe the appearance
of another two-fermion continuum at lower frequencies. It
can be treated as a splitting of the initial continuum inherent
in the uniform model [see Fig. 8(a)] into two parts, which
is a signal of the two-band structure of the fermion excita-
tion spectrum (2.8). It should be noted that the two-fermion
continuum at lower frequencies induced by small deviation
of g2 (from g1 = 1) is not a tiny strip anymore as it was at
small fields (h = 0.1). At higher fields as well as at small
ones, the zz structure factor for g2 � 0 shows just one two-
fermion continuum only [Figs. 8(c), 8(d)]. This picture keeps
the tendency with increasing field as shown in Fig. 9. In the
two top panels we present results at magnetic fields close to hs

whereas for g1g2 � 0 we put h = 1 [Figs. 9(c), 9(d)], because
at g1g2 � 0 the saturation field does not exist. The fact that in
Fig. 9(b) both the low-energy and high-energy two-fermion
continua are tiny strips is caused by the field being very
close to hs.

We also examine the temperature effect on the zz struc-
ture factor for nonpositive g2 � 0. The results for T → ∞ in
Fig. 10 show an additional two-fermion continuum for low
frequencies. In the case of zero temperature this continuum
was hidden owing to the Fermi-Dirac functions; compare
Fig. 10 to Fig. 8.
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FIG. 11. Field profiles of the absorption intensity Iz(ω, h) at different frequencies ω for |J| = 1, g1 = 1, g2 = 0.5 (a), g2 = −0.5 (b), and
temperatures T = 1 (solid black curves) and T = 0 (dashed red curves). The dashed-dot-dot violet (dashed green) curve indicates the intensity
at h = 0 and T = 0 (T = 1). The solid and short-dashed blue curves show the boundaries given in Eq. (5.10) while the dashed-dot green curve
in panel (a), given by h = ω/(2|g+|), denotes the upper boundary of Iz(ω, h) at T = 0 (see the discussion in the text).

In the case κ = 0, Eq. (5.5) can be transformed to the
following form:

Szz(0, ω) = δ(ω)
∫ π

−π

dκ1
(
g+−2g−uκ1vκ1

)2
nκ1

(
1−nκ1

)
+

g2
−
√

ω2−4g2−h2

ω

√
4J2+4g2−h2−ω2

∑
κr

nκr

(
1−nκr+π

)
, (5.9)

where κr are solutions of the equation ω = �κr+π − �κr . The
latter equation has solutions only in the restricted region

2|g−h| � ω < 2
√

J2 + g2−h2. (5.10)

We can use Eqs. (5.9) and (5.4) to get explicit expressions
for the absorption intensity Iz(ω, h):

Iz(ω, h)

∝
g2

−
√

ω2 − 4g2−h2√
4J2 + 4g2−h2 − ω2

× 1 − exp(−βω){
1 + exp

[
β
(
g+h − ω

2

)]}{
1 + exp

[−β
(
g+h + ω

2

)]} .
(5.11)

In the ground state we arrive at the following formula:

Iz(ω, h) ∝
g2

−
√

ω2 − 4g2−h2√
4J2 + 4g2−h2 − ω2

, (5.12)

where in the case of g1g2 > 0 the Fermi-Dirac functions
shrink further the condition of allowed ω [see Eq. (5.10)] to
the following one: 2|g+h| < ω < 2

√
J2 + g2

−h2.

It is evident from Eq. (5.11) that there is no energy ab-
sorption in the case of the uniform g factors (g1 = g2 = 1),
since the total magnetization commutes with the Hamiltonian.
The alternation of g factors destroys this property and leads
immediately to nonzero absorption intensity Iz(ω, h). From
Eqs. (5.12) and (5.11) one can deduce the shape of the ab-
sorption line. The field profiles of the absorption intensity
for alternating g factors are shown in Fig. 11. The absorption
intensity curve Iz(ω, h) for any frequency ends continuously
at h = ω/(2|g−|) for both T = 0, g1g2 < 0 and T > 0 cases.
This is clearly seen in Figs. 11(a) and 11(b), the short-dashed
blue line. If the frequency exceeds 2|J|, we observe also a van
Hove singularity at h = √

ω2 − 4J2/(2|g−|) [see Figs. 11(a)
and 11(b), the solid blue line]. In the ground state for g1g2 >

0 this singularity disappears at ω = 2|J|/
√

1 − (g−/g+)2. If
ω < 2|J|/

√
1 − (g−/g+)2 for zero temperature and g1g2 >

0, the absorption intensity curve Iz(ω, h) ends abruptly at
h = ω/(2|g+|) [see Fig. 11(a), dashed-dot green line], and at
ω > 2|J|/

√
1 − (g−/g+)2 this ground-state absorption inten-

sity vanishes, Iz(ω, h) = 0.

B. xx dynamics

We pass to another dynamic structure factor, namely,
the xx structure factor Sxx(κ, ω). We perform the computa-
tion of the xx time correlation functions numerically using
the previously elaborated method [30,46,47]. In what fol-
lows, we consider the finite chain of N = 400 spins with
open boundary conditions. To avoid the boundary effect,
we have to adapt Eq. (5.1). Thus, we choose a “central”
spin at the site j = 61, 81 (depending on the adopted pa-
rameters) and then calculate the time correlation functions
〈sx

j (t )sx
j+n〉 as well as 〈sx

j+1(t )sx
j+n+1〉 for n � 0. Finally, we

present the Fourier transform in Eq. (5.1) in the following
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symmetrized form:

Sxx(κ, ω) = 1

2
Re
∫ ∞

0
dte−εt eiωt

⎧⎨⎩g2
1

⎡⎣〈sx
j (t )sx

j

〉+ 2

N
2∑

n=1

cos(2nκ )
〈
sx

j (t )sx
j+2n

〉⎤⎦+ 2g1g2

N
2∑

n=1

cos[(2n − 1)κ]
〈
sx

j (t )sx
j+2n−1

〉

+ g2
2

⎡⎣〈sx
j+1(t )sx

j+1

〉+2

N
2∑

n=1

cos(2nκ )
〈
sx

j+1(t )sx
j+1+2n

〉⎤⎦+2g1g2

N
2∑

n=1

cos[(2n−1)κ]
〈
sx

j+1(t )sx
j+1+2n−1

〉⎫⎬⎭. (5.13)

In numerical calculations we restrict the sum over n up to
10 . . . 50 depending on the correlation length.

The results of the numerical calculation for Sxx(κ, ω) at
sufficiently low temperature T = 0.1 are shown in Figs. 12–
15. In contrast to the zz structure factor, Sxx(κ, ω) is not
governed exclusively by the continuum of two-fermion exci-
tations. However, the deeper inspection of Figs. 12–15 reveals
some resemblance between the zz and xx structure factors.
Although there are no singular parts visible in Sxx(κ, ω) as
well as abrupt boundaries for the regions with nonzero val-
ues, the dominating contribution in the case of positive g2 is
circumscribed by the boundaries of the two-fermion continua
outlined in the Appendix. The same feature was demonstrated
earlier for the uniform and dimerized XX chains [47,48]. We
can deduce from relation (5.2) and Fig. 12 that the staggered
spin structure factor (5.3) is minor at small fields. Thus, one
can observe how the intensity of the structure factor Sxx(κ, ω)
is redistributed between two basic continua of the uniform
chain [see Fig. 12(a)] shifted by π with respect to each other
when g2 decreases from 1 up to negative values. One can
still recognize the similar feature even at intermediate field
h = 0.5 in the case of g2 > 0 in Fig. 13(b) where the combi-
nation of two continua of S0

xx(κ, ω) and S0
xx(κ + π,ω) creates

an intricate intensity picture.
Interestingly, the structure factor Sxx(κ, ω) for nonpositive

g2 � 0 is concentrated mainly along the lines

λ±
κ =

√
J2 sin2 κ + g2−h2 ± g+h. (5.14)

Although the exact xx correlation functions and the exact xx
structure factor are not known for g1g2 < 0, one can adapt
the procedure of Refs. [48,50] for the case of the uniform and
dimerized chains above the saturation field. We need to make
the crucial assumption that the action of the Jordan-Wigner
phase factors on the ground state is equivalent to its action on
the ideal antiferromagnetic state. Then, the problem is reduced
to calculation of the pair correlation functions for spinless
fermions with the final result

Sxx(κ, ω)

≈ π

4
{[g2

++g2
−+4g+g−sgn(h)uκ+π/2|vκ+π/2|]δ(ω−λ+

κ )

+ [g2
++g2

−−4g+g−sgn(h)uκ+π/2|vκ+π/2|]δ(ω−λ−
κ )}.

(5.15)

Equation (5.15) although approximate, agrees with numerics
shown in Figs. 13 and 14 for negative g2 (dashed and dashed-
dot lines).

If g2 ∈ (0, 1] for magnetic fields close to hs, the many-
fermion continua shrink [see Figs. 14(a) and 14(b)] and above

the saturation fields they reduce to the one-fermion excitation
spectrum shifted by π along the κ axis with the reversed sign
[i.e., −�κ+π ; dashed line in Figs. 14(a), 14(b)] and if g2 ∈
(0, 1), also by the one-fermion excitation spectrum multiplied
by −1 [i.e., −�κ ; dashed-dot line in Fig. 14(b)],

Sxx(κ, ω) = π

2
[(g+uκ−g−vκ )2δ(ω−�κ )

+ (g+vκ+g−uκ )2δ(ω−�κ+π )], if h < −hs,

Sxx(κ, ω) = π

2
[(g+vκ−g−uκ )2δ(ω+�κ )

+ (g+uκ+g−vκ )2δ(ω+�κ+π )], if h > hs.

(5.16)

In the case of g2 � 0, in Figs. 14(c) and 14(d) we observe for
higher field an even more pronounced mode along the lines
given in Eq. (5.14).

In Fig. 15 we show the frequency profiles of the struc-
ture factor for several values of κ = 0, π/4, π/2, 3π/4, π .
It is clearly seen there that the nonuniform g factor leads
to a many-peak structure in the frequency dependencies of
Sxx(κ, ω) at the low temperature T = 0.1; see Fig. 15(a). In
contrast, the infinite temperature smears out the fine struc-
ture of Sxx(κ, ω) transforming the frequency profiles into
κ-independent Gaussian ridges; see Fig. 15(b). Such a form
can be obtained using the exact results for the time correlation
functions of dimerized chain [51]. Those correlation functions
vanish if the sites are different, which leads to a κ-independent
structure factor Sxx(κ, ω). Utilizing the result of Ref. [51], we
get the following explicit formula for Sxx(κ, ω) at T → ∞:

Sxx(κ, ω) = 1

8

∫ ∞

−∞
dteiωt Re

{
g2

1Zo(t ) + g2
2Ze(t )

}
,

Ze(t ) = θ3(z, q)

θ3(z0, q)

θ2(z′, q)

θ2(z′
0, q)

exp

[
ig+ht−

(
1− E(κ̃)

K(κ̃)

)
J2
+t2

]
,

Zo(t ) = exp (i2g+ht )Z∗
e (t ),

J± = 1

2
(
√

J2 + g2−h2 ± |g−h|),

κ̃ = J−
J+

= J2

(
√

J2 + g2−h2 + |g−h|)2
,

q = exp

(
−πK(

√
1 − κ̃

2)

K(κ̃)

)
, (5.17)
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FIG. 12. The density plot of the dynamic structure factor
Sxx (κ, ω). J = −1, g1 = 1, g2 = 1 (a), g2 = 0.5 (b), g2 = 0 (c),
g2 = −1 (d), h = 0.1 at low temperature T = 0.1.

FIG. 13. The density plot of the dynamic structure factor
Sxx (κ, ω). J = −1, g1 = 1, g2 = 1 (a), g2 = 0.5 (b), g2 = 0 (c), g2 =
−1 (d), h = 0.5 at low temperature T = 0.1. Dashed and dashed-dot
curves follow Eq. (5.14).
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FIG. 14. The density plot of the dynamic structure factor
Sxx (κ, ω). J = −1, g1 = 1, g2 = 1, h = 0.9 (a), g2 = 0.5, h = 1.4
(b), g2 = 0, h = 1 (c), g2 = −1, h = 1 (d) at low temperature T =
0.1. Dashed and dashed-dot curves in panels (a) and (b) correspond
to −�κ+π and −�κ . Dashed and dashed-dot curves in panels (c),
(d) follow Eq. (5.14).

where θ2(z′, q), θ3(z, q) are the Jacobi theta functions (see [51]
and references therein) with

z = π (J+t + iv0)

2K(κ̃)
, z′ = π (J+t − iv0)

2K(κ̃)
,

(5.18)

z0 = iπv0

2K(κ̃)
, z′

0 = − iπv0

2K(κ̃)
,

and the parameter v0 is defined by the following relation:

dc(iv0, κ̃) = J

2J+
, (5.19)

where dc(iv0, κ̃) = dn(v0, 1 − κ̃
2) is the elliptic delta ampli-

tude function for imaginary argument.
In the case of strong magnetic field h and nonuniform g

factors g− 
= 0 we have κ̃ � 1. Expanding the correlation
functions for small κ̃, we get the xx structure factor in the
explicit Gaussian form:

Sxx(κ, ω) ≈
√

2π

4|J|
[
A−
(
e
− (ω+ω− )2

2J2− + e
− (ω−ω− )2

2J2−
)

+ A+
(
e
− (ω+ω+ )2

2J2− + e
− (ω−ω+ )2

2J2−
)]

,

ω± = J+ ± g+h,

A± = (g2
+ + g2

−)
J+
|J| ± g+g−

√
4J2+
J2

− 1. (5.20)

From Eq. (5.20) it is clear that the intensity of the xx structure
factor in the infinite-temperature limit is concentrated near
two Gaussian peaks at ω = ω±.

In Fig. 16 we present the absorption intensity Ix(ω, h) as
a function of the magnetic field. In contrast to the Iz(ω, h)
case, here the field profiles do not exhibit any singularities. A
prominent feature of the absorption profiles Ix(ω, h) is a two-
peak structure for the case of different nonzero g factors. The
cases g2 = 0.5 and g2 = −0.5 demonstrate additional satellite
peaks [Figs. 16(b), 16(d)]. For the uniform chain (g1 = g2) we
can see one peak which moves with increasing of frequency to
a higher value of magnetic field [Fig. 16(a)]. Qualitatively the
same picture is seen for g2 = 0 in Fig. 16(c), where the peak
is less steeper in comparison to the case in Fig. 16(a).

VI. SUMMARY

To summarize, we have studied the effect of the alternation
of g factors on the static and dynamic properties of the spin- 1

2
XX chain in a transverse field. The crucial point is that the
conservation of the total magnetization is lost in this case. This
evokes nontrivial changes in the thermodynamic and dynamic
behavior of the model.

While the logarithmic peculiarities of the magnetization
and the susceptibility at T = 0 were obtained earlier [13], we
found peculiarities in the low-temperature thermodynamics.
In particular, we have shown that the specific heat can change
its behavior from the linear dependence in the spin-liquid
phase to the

√
T dependence at the saturation field, and finally

transformed to the exponential law (4.8). The susceptibility at
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FIG. 15. Sxx (κ, ω) vs ω at κ = 0, κ = π/4, κ = π/2, κ = 3π/4, and κ = π . J = −1, g1 = 1, g2 = 0.5, h = 0.5, T = 0.1 (a), cf. Fig. 13,
and T → ∞ (b).

zero magnetic field displays the logarithmic divergence with
temperature as it follows in Eq. (4.9).

We have performed a detailed study of the dynamic prop-
erties. We calculated the dynamic structure factors Szz(κ, ω)
and Sxx(κ, ω) and inspected how they change in the external
magnetic field for different period-2 alternations of g factors.
In the case when both g factors are of the same sign, the corre-
spondence between the boundaries of the zz and xx structure
factors is still present as was observed previously [47,48].
On the contrary, if g1g2 � 0, a large enough magnetic field
leads to the highly intense modes in the xx structure factor. In
addition, we calculated the absorption intensity Iα (ω, h) for
the different configuration of ESR experiments. In the Voigt
configuration (α = z), the model with uniform g factors does
not have any response. In the case when g2 differs from g1,
we obtain the nonzero contribution to the absorption intensity.
For sufficiently large frequencies ω > 2|J| the van Hove
singularity arises at h = √

ω2 − 4J2/(2|g−|). In the Faraday
configuration (α = x), the situation is a bit different. The ab-

sorption spectra can be observed in the uniform case. It shows
a broad maximum at some resonance field. The alternation of
g factors leads to the doubling of this resonance line. Although
in our study we focus on the exactly solvable XX chain, from
Ref. [28] we know that such analysis of dynamics is useful for
understanding a more realistic case of the Heisenberg chains.
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FIG. 16. Field profiles of the absorption intensity Ix (ω, h) at different frequencies ω for J = −1, g1 = 1, g2 = 1 (a), g2 = 0.5 (b), g2 = 0
(c), and g2 = −0.5 (d) at T = 1.
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APPENDIX: BOUNDARIES OF THE TWO-FERMION
EXCITATION CONTINUA

Let us present the expressions for the lines in the (κ, ω)
plane, which restrict the regions for different numbers of
solutions of Eqs. (5.6) as shown in Fig. 5(a), green lines. We
have

ω1,2(κ ) =
√

2(J2 + 2g2−h2 ± J2 cos κ ),

ω3,4(κ ) = | sin κ|(
√

J2 + g2−h2 ± |g−h|),

ω5,6(κ ) =
√

J2 sin2 κ + g2−h2 ± |g−h|. (A1)

Let us also present the expressions in the case |h| < hs,
g1g2 > 0 for the characteristic lines, which bounded nonzero
values of the Fermi-Dirac functions at T = 0 [see also
Fig. 5(c), red lines]. We have

ω7,8(κ ) = |g+h+
√

J2 cos2 (κ0 ± κ )+g2−h2|,

ω9,10(κ ) = |g+h−
√

J2 cos2 (κ0 ± κ )+g2−h2|. (A2)

Here κ0 is defined in Eq. (3.2).
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