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Quasiballistic phonon transport from first principles
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At short length scales phonon transport is ballistic: the thermal resistance of semiconductors and insulators is
quantized and length independent. At long length scales, on the other hand, transport is diffusive and resistance
arises as a result of the scattering processes experienced by phonons. In many cases of interest, however, these
two transport regimes coexist. Here we propose a first-principles approach to treat quasiballistic phonon transport
where diffusive and ballistic phonons receive separate theoretical treatments. Partitioning the overall phonon
population for a given transport length is performed examining the mean free paths obtained from the solution
of the Boltzmann transport equation and allowing only diffusive phonons to participate in anharmonic phonon-
phonon scattering processes. We present results for Si and diamond, discussing the crossover from ballistic to
diffusive transport as the length scale and/or the temperature increases and compute the relative contribution of
ballistic and diffusive phonons to the thermal conductance in each transport condition.
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I. INTRODUCTION

Heat in insulators is carried by phonons and the value of
the thermal conductivity stems from the scattering processes
that they experience. Phonons are scattered by impuri-
ties, boundaries and as a result of anharmonic processes,
i.e., phonon-phonon scattering. In the diffusive regime the
thermal resistance scales linearly with the length of the spec-
imen L because when phonons travel longer lengths they
suffer more scattering events. Conversely, if the character-
istic length is shorter than the mean free path (MFP), i.e.,
the average distance traveled by phonons between colli-
sions, the transport is ballistic: the thermal resistance is not
determined by scattering, is quantized and length indepen-
dent. Both these transport regimes are described by well-
consolidated theoretical frameworks that allow predictively
computing the thermal conductivity/conductance from first
principles [1–7].

Phonon MFPs, however, typically span a broad length
scale [8,9] and can go from a few nanometers up to a sev-
eral micrometers, e.g., up to 20 μm in Si [9,10] or 1 mm
in graphene [11], just to name a few examples. Additionally,
even within a given material, phonons exhibit a broad distri-
bution of MFPs with low-frequency phonons having typically
(much) longer MFPs. Therefore, in many situations of practi-
cal interest the heat transport regime is quasiballistic [12–19]
where the propagation of some phonons can be described
diffusively and is characterized by multiple scattering events,
whereas others travel ballistically across the device.

The diffusive-to-ballistic crossover was previously studied
by Jeong et al. [20] in Si within Landauer formalism and using
parametric phonon-scattering rates, whereas Hua and Min-
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nich [21] provided an analytical solution of the Boltzmann
transport equation (BTE) under relaxation time approximation
(RTA) for thin film transport. Vermeersch et al. [22] computed
the crossplane thin-film conductivities for a variety of semi-
conductors at room temperature using first-principles phonon
dispersions and scattering rates via a simple summation over
phonon modes; a closer comparison with these results is pro-
vided below.

In this paper we discuss how to calculate the thermal
conductivity/conductance from first principles for an arbitrary
length of the device and, thus, a varying ballistic-diffusive
phonon ratio. Our method is based on partitioning the overall
phonon population into diffusive and ballistic phonons, based
on the MFP distribution and calculating separately their con-
tribution to the thermal conductivity.

II. COMPUTATIONAL METHODS

A. Thermal conductivity from first-principles

We focus on bulk Si and diamond as case studies. We
calculate the second and third order interatomic force con-
stants (IFCs) within density-functional theory as implemented
in the VASP code [23] with the local density approximation
for the exchange-correlation energy functional and a plane-
wave cutoff of 246 eV for Si and 400 eV for diamond with
the projector augmented-wave method [24,25]. The IFCs are
calculated from finite differences, and the required displaced
supercell configurations are generated with the PHONOPY [4]
and THIRDORDER.PY [2] codes. We have used a 5 × 5 × 5 and
a 4 × 4 × 4 supercell of the primitive cell for the second- and
third-order IFCs, respectively.

The solution in the fully diffusive regime is obtained
using the first-principles IFCs to solve the linearized BTE
for phonons using an iterative method with the SHENGBTE

code [2]. Within this scheme, the lattice thermal conductivity
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FIG. 1. Thermal conductivity as a function of temperature of
Si and diamond without any restriction on the MFPs and without
boundary scattering terms. The inset: accumulated contribution (nor-
malized) to κ at room temperature as a function of the phonon MFP.
The dashed lines indicate the maximum MFP contributing to κ .

is obtained as

καβ = 1

kBT 2V N

∑
λ

f0( f0 + 1)(h̄ωλ)2vα
λ Fβ

λ , (1)

where α and β are the three coordinate directions x, y, and z;
and kB, T, V , and N are the Boltzmann constant, the temper-
ature, the volume of the unit cell, and the number of q points,
respectively. The sum runs over all the phonon modes λ,
which have wave-vector q and branch ν. f0 is the equilibrium
Bose-Einstein distribution function, h̄ is the reduced Planck
constant, and ωλ and vα

λ are the phonon frequency and phonon
group velocity, respectively. Fβ

λ is initially taken to be equal
to τλv

β

λ , where τλ is the lifetime of the phonon mode λ within
the RTA. Starting from this initial guess, the solution is then
obtained iteratively, and it takes the general form [2]
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In Eqs. (3) and (4), 
+
λλ′λ′′ and 
−

λλ′λ′′ are the three-phonon
scattering rates, whereas
λλ′ is the scattering rate from iso-
topic disorder [26], which in the present case is taken to be
the one corresponding to the natural abundance of Si and C
isotopes. This is the standard approach to calculate the thermal
conductivity from first principles within an iterative approach
and has been followed in several studies [27–35]. Our results
are shown in Fig. 1.

B. Partitioning the phonon population

In order to address the case of a finite characteristic size
L, we proceed as follows. At first we obtain the solution of
the BTE in the RTA approximation, which is the first step of
the iterative procedure described above. After that, we have
access to the phonon resolved contribution to the thermal
conductivity, and for each phonon we know the frequency, the
velocity, and the MFP, which in the framework of the iterative
solution of the BTE is defined as

�λ = Fλ

vλ

|vλ| . (5)

The phonons with MFP > L are unlikely to participate in
any anharmonic processes and are, thus, ballistic. Therefore,
when we compute the scattering rates in the following step of
the iteration process, we impose the following restrictions on
three-phonon processes:


+
λλ′λ′′ = 0, if �λ,�

′
λ > L, (6)


−
λλ′λ′′ = 0, if �λ > L (7)

besides the requirement of momentum conservation q′′ =
q′ ± q + Q, where Q is a vector of the reciprocal lattice,
that must always be satisfied; �λ is the MFP of phonon λ as
defined in Eq. (5). In this way we forbid absorption processes
of the kind λ + λ′ → λ′′, where, at least, one between the
λ and the λ′ phonons is ballistic, and emission processes
of the kind λ → λ′ + λ′′ when λ is ballistic. Note, however,
that processes that produce ballistic phonons are permitted,
i.e., absorptions can yield phonons with �λ′′ > L, and emis-
sions can yield phonons with �λ′ and/or �λ′′ > L. These
phonons will be ruled out as ballistic at the subsequent step,
but the momentum redistribution is permitted. The iterative
process continues until a converged solution of the BTE is
achieved and, at each step n, the conditions on 
+

λλ′λ′′ and

−

λλ′λ′′ are enforced, based on (�λ,�λ′ ,�λ′′ ), i.e., the values
of the MFPs, computed at step n − 1. It should be noted that

FIG. 2. Thermal conductivity as a function of the transport length
at 50, 300, and 500 K for Si (left) and diamond (right). The
thermal conductivity of Si at 50 K converges to the bulk value
of 2385 W m−1 K−1 at L ∼ 560 μm, whereas at 300 and 500 K
convergence is essentially achieved in the size range shown. For
comparison, the experimental values of the thermal conductivity of
Si at 50, 300, and 500 K are 2400, 145, and 81 W m−1 K−1 (see
Refs. [45,46]).
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FIG. 3. Diffusive and ballistic contribution to the thermal conductivity as a function of temperature for L = 100, 500 nm, and 3 μm for Si
(left) and diamond (right).

within the iterative solution the concept of relaxation time
should be handled with care and only F, which can be seen
as a generalized, vectorial mean free displacement, is well
defined [2]. It is through Fλ, then, that we define a scalar MFP
as in Eq. (5) to be used in the formalism described above.
These MFP, just like the relaxation times, can occasionally
even be negative as their sign depend on the deviation of the
distribution function from its equilibrium value for a mode
λ. Yet, low-frequency modes that carry most of the heat are
exempt from this pathological behavior (see Li et al. [2] for
an exhaustive discussion) and the approximation used here is
sound.

When the iterative solution of the BTE for a given L is
reached we know: (i) which phonons contribute to the dif-
fusive thermal conductivity κdiff, that we can compute from
Eq. (1) by running the sum over the set of diffusive phonons
[note that the κdiff is κ of Eq. (1) with the conditions on the
scattering rates of Eqs. (6) and (7), thus, is simply the solution
of the restricted BTE]; (ii) which phonons have MFP > L and
must be treated as ballistic.

The conductance of ballistic phonons is obtained from the
Landauer formula as

G(T ) = h̄

2π

∫
ωλ∈ωball

ωλT (ωλ)

(
∂ f0(ωλ, T )

∂T

)
dω. (8)

where  is the channel cross section and ωball is the set of
frequencies of ballistic phonons. In the case of homogeneous
materials, such as those discussed below, the transmission
function T (ωλ) for each phonon is equal to one and, thus,
simply counts the transport channels at a given frequency. In
a more general case, assuming periodic boundary conditions
in the directions perpendicular to the thermal flux, T (ωλ) =


(2π )2

∫
�(ωλ, q⊥)dq⊥, where �(ωλ, q⊥) is the phonon trans-

mission function calculated from first principles at a discrete
point (q⊥) of the two-dimensional transverse Brillouin zone
by means of the Caroli formula [36].

In the present case, Eq. (8) can be rewritten as a summation
over q in order to work directly with the outputs of SHENGBTE

reducing the postprocessing. By considering dω = v‖dq‖,
where v‖ and q‖ are the components of the velocity and the
q vector along the transport direction, which here we take to
be the [100] crystal axis, we obtain

G(T ) = 1

NV

∑
ωλ∈ωball

1

2πkBT 2
(h̄ωλ)2 eh̄ωλ/kBT

(eh̄ωλ/kBT − 1)2
v‖, (9)

where N and V are numbers of q points in the mesh sampling
and the volume of the unit cell, respectively.

In the process described above the temperature plays a
twofold role: (i) In the iterative solution the BTE establishes
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which phonons are ballistic as it determines their MFPs;
(ii) once we know which phonons are ballistic, it populates
them and yields the individual contribution to the thermal
conductance through Eq. (9). It should be noted that, strictly
speaking, the thermal conductivity is an ill-defined magnitude
within a ballistic picture, at variance with the thermal conduc-
tance G, which can always be defined and computed. Yet, as
is customary in the experimental literature, we will discuss an
effective thermal conductivity where a ballistic conductivity
κball = GL/, that increases linearly with L adds up to the
diffusive conductivity κdiff, which is constant.

III. RESULTS AND DISCUSSION

We applied this formalism to the case study of bulk Si and
diamond. In Fig. 2 we display our results for the thermal con-
ductivity as a function of length of these two materials at three
representative temperatures: 50, 300, and 500 K. As expected,
the higher the temperature, the more diffusive is the phonon
transport regime due to the increase in the phonon-phonon
scattering rates and the subsequent decrease inthe MFPs and,
thus, of the phonon-phonon scattering rates. Therefore, at the
relatively low temperature of 50 K Si exhibits nondiffusive
features, whose signature is a thermal conductivity that in-
creases with length up to a few micrometers. Conversely, at
higher temperatures, a constant thermal conductivity is re-
covered at shorter lengths, indicating the lack of measurable
effects of ballistic transport. Phonon MFPs in diamond are
considerably longer than in Si as shown in the inset of Fig. 1.
Therefore, ballistic effects are observed even at moderately
high temperatures and, when Si and diamond are compared
at the same temperature, the latter behave nondiffusively up
to much longer lengths. Our approach naturally gives access
to the ballistic-diffusive ratio, which is well visualized in
Fig. 3 where we plot the relative contribution of both transport
regimes to κ (T ) at some selected values of L. This is an
important result because, whereas the qualitative trends were
expected (ballistic transport becomes dominant at low T and
short L), it quantitatively accounts for such a behavior and
fully maps the ballistic-diffusive ratio in the (T, L) space.
These plots reveal that at ultrashort lengths, L = 100 nm,
ballistic effects dominate phonon transport in diamond and
are still non-negligible in Si up to room temperature. For
L = 500 nm ballistic phonons propagation is still predomi-
nant up to 200 K for diamond, whereas diffusive transport
takes over in Si already at 100 K. In micrometer samples
transport is essentially diffusive for Si throughout almost all
the temperature range considered, whereas a significant con-
tribution from ballistic phonons in diamond is still observable
at 200–250 K.

We now compare the solution obtained within the ap-
proach here proposed and the one of the standard phonon
BTE. Noteworthy, the BTE not only accounts for the fully
diffusive limit L → ∞, but it also naturally yields the thermal
conductance in the ballistic limit. The phonon lifetime τλ of
Eq. (1) results from different scattering mechanisms, each
one characterized by its own lifetime: τph-ph for anharmonic
phonon-phonon processes, τi and τb for impurity and bound-
ary scattering. The total τλ can be obtained from Matthiessen’s
rule as τ−1

λ = τ−1
ph-ph + τ−1

i + τ−1
b as in Eq. (4), although there

FIG. 4. Thermal conductivity as a function of length at 300 K
for Si and diamond after partitioning the phonon population into
diffusive and ballistic phonons (red lines) or adding an effective
boundary scattering term within the BTE (black line). Continuous
and dashed red lines correspond to different ways of calculating the
ballistic contribution: Landauer vs small grain; a detailed comparison
is shown in the insets. In the case of Si we also display (blue line) the
computed cross-plane thin-film thermal conductivity for Si at room
temperature using first-principles phonon dispersions and scattering
rates via a simple summation over phonon modes as obtained in
Ref. [22].

the contribution from τb was not explicitly accounted for. In
the limit of L → 0, τb is much smaller than τph-ph and τi and,
thus, τλ ∼ τb. Taking the expression for the boundary lifetime,
τb = L/v is easy to show that one recovers the Landauer con-
ductance from Eq. (1) (we consider here the case of specular
scattering; otherwise the expression for τb can be generalized
by introducing a specularity parameter [37]). Therefore, at the
standard BTE level, both the ballistic and the diffusive limits
are correctly reproduced. On the other hand, the diffusive-
ballistic crossover is heavily approximated: All the phonons
are considered to be diffusive, but their contribution is sup-
pressed with a suppression factor that depends on the τb/τph-ph

and τb/τi ratios. To estimate the extent of this approximation
and compare it with our solution, we have considered a bound-
ary scattering term in the unrestricted solution of the BTE.
To this end, we have added a boundary lifetime τb, through
Matthiessen’s rule to τλ of the RTA initial guess of the iterative
solution of Fβ

λ . In Fig. 4 we compare these results with those
obtained with our approach at T = 300 K. As can be seen,
the introduction of an effective boundary scattering term leads
to a considerable underestimation of the thermal conductivity
in the quasiballistic regime with respect to our results where
phonon population is partitioned into diffusive and ballistic
phonons. The difference in the value of κ is larger than 30%
at L = 100 nm for Si and L = 500 nm for diamond and then
tends to vanish in the fully diffusive limit. Yet, for Si it is
on the order of the 15–20% at L = 3 μm. Interestingly, our
results agree well with those of Ref. [22], which rely on the
phonon transmission function Tr = 2�/L/(1 + 2�/L) that
naturally captures a gradual and smooth crossover between
fully ballistic transport [Tr(� 	 L) → 1] and fully diffu-
sive transport [Tr(� 
 L) → 0] without the need to separate
phonons into distinct groups.

144305-4



QUASIBALLISTIC PHONON TRANSPORT FROM FIRST … PHYSICAL REVIEW B 102, 144305 (2020)

FIG. 5. Diffusive and ballistic contribution to the thermal conductivity as a function of temperature for L = 100, 500 nm, and 3 μm for Si
(left) and diamond (right) obtained as a weighted sum over phonon modes, using a weight factor of e−(L/�) and of 1 − e−(L/�) for ballistic and
diffusive phonons, respectively (see the text).

Provided that the phonon population is properly parti-
tioned, similar results can also be obtained from the so-called
small-grain conductivity [2] where all phonon MFPs are
taken to be equal to L, i.e., the sample size, instead of
calculating them from the anharmonic scattering rates. The
small-grain [38] thermal conductivity can be expressed as

καβ
sg = 1

kBT 2V N

∑
λ

f0( f0 + 1)(h̄ωλ)2 vα
λv

β

λ

|vλ| . (10)

Here, rather than considering all the phonons to have their
MFPs limited by L as in the standard small-grain approxima-
tion, we only sum the contribution of the phonons that we
previously determined to be ballistic,

κball,sg =
∑

λ∈λball

κsg,λ, (11)

where λball is the set of ballistic phonons. The advantage of
this approach is that both κdiff and κball are computed on the
same q-point mesh and phonons labeled as ballistic after the
self-consistent solution of the BTE that enforces the condition
of MFP < L are readily identified without the need of inter-
polations or approximations. Additionally, at variance with
the Landauer formalism, we do not need to fix a transport

direction, and we always work with the full κ tensor. The
results agree reasonably well, although at a closer look the
ballistic contribution at the small-grain level is systematically
larger than the one computed from the Landauer formula (see
the inset in Fig. 4).

We now discuss briefly the limitations of the approach here
proposed and outline a convenient generalization to circum-
vent them. In the scheme described above we have labeled
phonons as diffusive, when � < L and ballistic, when � >

L. However, the MFP is the average distance traveled by
phonons between collisions. The travel distance can be taken
to be exponentially distributed with � as mean,

p(�) = 1

�
e−(�/�). (12)

Therefore, the probability that a phonon undergoes a scatter-
ing event within a distance L is given by

P[0 � � � L] =
∫ L

0
p(�)d� = 1 − e−(L/�). (13)

Within this more nuanced framework, it is both true that
phonons with small mean free paths (� < L) have in reality
a small but nonzero chance to reach the system boundary
without scattering and that phonons with long mean free paths

144305-5



POL TORRES et al. PHYSICAL REVIEW B 102, 144305 (2020)

(� > L) can experience a scattering event before crossing the
device length. A more rigorous treatment would, therefore, be
to label the phonons stochastically: A phonon has a probabil-
ity e−(L/�) to be assigned to the ballistic set and a probability
1 − e−(L/�) to be assigned to the diffusive set. The main in-
convenient of such a randomized labeling is that each run of
the iteration scheme would result in a different conductivity,
which should then be averaged over several independent trials.
Another possibility to go beyond the sharp cutoff criterion to
label phonons consists in obtaining the converged MFPs from
the conventional iterative BTE solution, and then computing
the total conductivity as a weighted sum over phonon modes
of a ballistic contribution (weight factor e−(L/�)) and diffusive
contribution (weight factor 1 − e−(L/�)). The results obtained
with this approach and shown in Fig. 5 are qualitatively con-
sistent with those of Fig. 3 where we adopted the cruder rule to
label phonons, although we now obtained a somewhat larger
fraction of diffusive phonons. Indeed, by looking at Eq. (13),
one sees that for a phonon with MFP equal to the system size
(� = L) this probability becomes 1 − e−1 ∼ 0.63. Therefore,
for MFPs near the system size it is still more likely than not
(P > 0.5) that a scattering event will actually take place and,
thus, a larger fraction of diffusive phonons is the be expected.

IV. CONCLUSIONS

To summarize, we have presented a simple, but rigorous
approach to the calculation of thermal conductivity in the qua-
siballistic transport regime from first principles. Our method
relies on well-consolidated theoretical frameworks and nu-
merical tools. It is based on properly partitioning diffusive
and ballistic phonons and switching off certain scattering
processes. Specifically, phonons with MFPs longer than the
characteristic transport size (e.g., the device length) are for-
bidden to take part in phonon-phonon scattering processes.
Besides predicting the thermal conductivity in more realistic

conditions, the approach proposed is able to quantitatively
account for the relative contribution of diffusive and ballis-
tic phonons to κ . The characteristic size of the sample L is
implicitly assumed to be the distance between the hot and
the cold reservoirs so that the transverse dimension do not
play a role in limiting the thermal conductivity. The formal-
ism here proposed, however, can be extended to the case of
one-dimensional conductors, such as nanowires [17,39–42]
as long as it can be assumed that their vibrational properties
can be approximated with those of the bulk and that the rup-
ture of translational symmetry perpendicular is accounted for
by means of position-dependent phonon lifetimes [2,43,44].
We have presented results for Si and diamond, showing that
ballistic effects at room temperature can survive up to a few
hundreds nanometers for Si and to 5 μm for diamond. In dia-
mond, ballistic phonons dominate heat transport at ultrashort
lengths up to room temperature and in submicron samples up
to 200 K. Conversely, in Si the larger contribution always
comes from diffusive phonons unless one goes to ultrashort
lengths and very low temperatures where ballistic phonons
yield a measurable contribution to the thermal conductivity.

ACKNOWLEDGMENTS

We acknowledge financial support by the Ministerio de
Economía, Industria y Competitividad (MINECO) under
Grant No. FEDER-MAT2017-90024-P and the Severo Ochoa
Centres of Excellence Program under Grant No. SEV-2015-
0496 and by the Generalitat de Catalunya under Grant No.
2017 SGR 1506. M.L.-S. was funded through a Juan de la
Cierva fellowship. We thank the Centro de Supercomputación
de Galicia (CESGA) for the use of their computational re-
sources. P.T. acknowledges funding by the Canon Foundation
in Europe. The authors thank M. Brandbyge and L. Colombo
for critical reading of the paper and J. Carrete for useful
discussions about technical details related with the implemen-
tation of SHENGBTE.

[1] K. Esfarjani and H. T. Stokes, Phys. Rev. B 77, 144112
(2008).

[2] W. Li, J. Carrete, N. A. Katcho, and N. Mingo, Comp. Phys.
Commun. 185, 1747 (2014).

[3] A. Togo, L. Chaput, and I. Tanaka, Phys. Rev. B 91, 094306
(2015).

[4] A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).
[5] G. Fugallo and L. Colombo, Phys. Scr. 93, 043002 (2018).
[6] L. G. C. Rego and G. Kirczenow, Phys. Rev. Lett. 81, 232

(1998).
[7] W. Zhang, T. S. Fisher, and N. Mingo, Numer. Heat Trans. B

Fundam. 51, 333 (2007).
[8] A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S.

Dresselhaus, K. A. Nelson, and G. Chen, Phys. Rev. Lett. 107,
095901 (2011).

[9] T. Feng and X. Ruan, J. Nanomater. 2014, 206370 (2014).
[10] P. Torres, A. Torelló, J. Bafaluy, J. Camacho, X. Cartoixà, and

F. X. Alvarez, Phys. Rev. B 95, 165407 (2017).
[11] G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari,

and F. Mauri, Nano Lett. 14, 6109 (2014).

[12] M. E. Siemens, Q. Li, R. Yang, K. A. Nelson, E. H. Anderson,
M. M. Murnane, and H. C. Kapteyn, Nature Mater. 9, 26 (2010).

[13] A. J. Minnich, Phys. Rev. Lett. 109, 205901 (2012).
[14] T. Yamamoto, S. Konabe, J. Shiomi, and S. Maruyama, Appl.

Phys. Express 2, 095003 (2009).
[15] M.-H. Bae, Z. Li, Z. Aksamija, P. N. Martin, F. Xiong, Z.-Y.

Ong, I. Knezevic, and E. Pop, Nat. Commun. 4, 1734 (2013).
[16] D. Bagchi and P. K. Mohanty, J. Stat. Mech.: Theory Exp.

(2014) P11025.
[17] R. Anufriev, S. Gluchko, S. Volz, and M. Nomura, ACS Nano

12, 11928 (2018).
[18] A. Sood, F. Xiong, S. Chen, R. Cheaito, F. Lian, M. Asheghi,

Y. Cui, D. Donadio, K. E. Goodson, and E. Pop, Nano Lett. 19,
2434 (2019).

[19] A. E. Sachat, F. Köenemann, F. Menges, E. D. Corro, J. A.
Garrido, C. M. S. Torres, F. Alzina, and B. Gotsmann, 2D Mater.
6, 025034 (2019).

[20] C. Jeong, S. Datta, and M. Lundstrom, J. Appl. Phys. 111,
093708 (2012).

[21] C. Hua and A. J. Minnich, J. Appl. Phys. 117, 175306 (2015).

144305-6

https://doi.org/10.1103/PhysRevB.77.144112
https://doi.org/10.1016/j.cpc.2014.02.015
https://doi.org/10.1103/PhysRevB.91.094306
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1088/1402-4896/aaa6f3
https://doi.org/10.1103/PhysRevLett.81.232
https://doi.org/10.1080/10407790601144755
https://doi.org/10.1103/PhysRevLett.107.095901
https://doi.org/10.1155/2014/206370
https://doi.org/10.1103/PhysRevB.95.165407
https://doi.org/10.1021/nl502059f
https://doi.org/10.1038/nmat2568
https://doi.org/10.1103/PhysRevLett.109.205901
https://doi.org/10.1143/APEX.2.095003
https://doi.org/10.1038/ncomms2755
https://doi.org/10.1088/1742-5468/2014/11/P11025
https://doi.org/10.1021/acsnano.8b07597
https://doi.org/10.1021/acs.nanolett.8b05174
https://doi.org/10.1088/2053-1583/ab097d
https://doi.org/10.1063/1.4710993
https://doi.org/10.1063/1.4919432


QUASIBALLISTIC PHONON TRANSPORT FROM FIRST … PHYSICAL REVIEW B 102, 144305 (2020)

[22] B. Vermeersch, J. Carrete, and N. Mingo, Appl. Phys. Lett. 108,
193104 (2016).

[23] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[24] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[25] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[26] S.-i. Tamura, Phys. Rev. B 27, 858 (1983).
[27] F. Zhou, W. Nielson, Y. Xia, and V. Ozoliņš, Phys. Rev. Lett.
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