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Dark state semilocalization of quantum emitters in a cavity
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We study a disordered ensemble of quantum emitters collectively coupled to a lossless cavity mode. The
latter is found to modify the localization properties of the “dark” eigenstates, which exhibit a character of being
localized on multiple noncontiguous sites. We denote such states as semilocalized and characterize them by
means of standard localization measures. We show that those states can very efficiently contribute to coherent
energy transport. Our paper underlines the important role of dark states in systems with strong light-matter

coupling.
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I. INTRODUCTION

When quantum emitters and a cavity mode coherently
exchange energy at a rate faster than their decay, hybrid light-
matter states play an important role [1-3]. Such polaritonic
states are superpositions composed of “bright” emitter modes
and cavity photons, while numerous remaining emitter states
have no photon contribution, i.e., remain “dark.” Collective
strong light-matter coupling has been intensively pursued
in atomic [4-6] and condensed-matter physics [7-12]. Very
recently, strong collective coupling has been explored as a
tool to engineer fundamental properties of matter, e.g., the
critical temperature of superconductors [13,14] or chemical
reaction rates [15-22]. Much interest is currently raised by the
possibility of modifying energy [23—-30] and charge [30-33]
transport.

For transport, disorder plays a crucial role. It is well studied
that coherent transport is inhibited due to Anderson localiza-
tion (AL) [34]. Here, an arbitrarily small disorder can lead
to a localization of eigenstates in 1D and 2D [34,35], while in
3D a metal-insulator transition driven by the disorder strength
occurs [34,36]. Here, we study the fate of this phenomenon
in a cavity. It is known that polaritonic states are largely
unaffected by disorder [37] and the impact of disorder on
polariton physics for laser-driven setups has been extensively
explored [38—42]. While for transport problems it is known
that polariton states can lead to a considerable enhancement
of energy transmission [24-30], the localization and transport
properties of dark states have remained largely unexplored. It
is clear that disorder leads to a mixing of the bright with the
dark states [43], which strongly alters the usual description of
light-matter coupling. Addressing these issues is for example

“pupillo@unistra.fr
fschachenmayer @unistra.fr

2469-9950/2020/102(14)/144202(11)

144202-1

important for applications of radiative energy transmission in
mesoscopic systems.

In this paper, we investigate a simple model for AL and
coherent energy transport with N emitters collectively cou-
pled to a cavity mode [Fig. 1(a)]. We focus on the impact
of the cavity coupling on localized eigenstates, i.e., for a
disorder strength much larger than the excitation hopping rate.
We focus on dark states and find that they exhibit several
surprising features: for any strength of light-matter interac-
tions, they acquire a squared amplitude ~1/N, on average,
for arbitrary distances. While their photon weight vanishes,
they can remain localized according to standard localization
measures, such as the inverse participation ratio (IPR) in the
thermodynamic limit. However, we find that localization is
distributed over multiple sites, which can be arbitrarily dis-
tant from one another. For large cavity coupling, they can be
considered as hybridizations of a few localized states of the
uncoupled system, and their energy lies in between those of
the bare states. This results in semi-Poissonian statistics of
energy-level spacings, which neither corresponds to a fully lo-
calized nor extended phase. We find that semilocalized states
are responsible for diffusivelike dynamics, which is at odds
with their localized nature. On average, the exponential decay
of an excitation current with N for AL can be turned into an
algebraic decay ~1/N, and can thus dominate over the ~1/N?
contribution expected from polariton states. The nonlocal na-
ture of the cavity coupling makes these effects independent of
the dimensionality.

Our results are directly relevant for setups with condensed
matter interacting with confined electromagnetic fields (both
close to a vacuum state [13-33] or laser-driven [44-55]),
in particular, for recent coherent transport setups [56,57].
Furthermore, in the past years, localization has been ex-
tensively experimentally explored with controlled disorder
in cold atom systems [58-61], even in interacting many-
body regimes (many-body localization) [62]. Specifically,
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FIG. 1. (a) An excitation can hop with rate J on a disordered
3D lattice with N sites. Local transitions are coupled to a cavity
with collective strength g. = g+/N. (b) For g. = J = 0, the N bare
levels are randomly distributed in [-W/2, W/2]. For g. > W, the
spectrum contains two polariton eigenstates (splitting ~2g.) and
N — 1 dark states lying in between the bare levels. (c) Modification
of the disorder-averaged weights of a dark eigenstate localized in
the middle of a chain (1D for convenience) with N = 100, 2000
realizations, W = 25J. In addition to exponential localization at
short distances (black line, g. = 0), a constant tail appears for g. > 0
(dashed lines: perturbative results). (d) Single disorder realization:
Three dark eigenstates are shown for g, = 50/ and W = 25J.

experiments using Dicke model realizations based on Raman-
dressed hyperfine ground states of intracavity trapped atoms,
as recently achieved [63,64], could be used to study the
semilocalized physics described here. We propose a specific
cold atom implementation of our model in Appendix E. Mod-
els of emitters interacting with a single cavity mode are also
formally similar to central spin models [65,66] that have been
very successful in modeling hyperfine interactions of quantum
dots surrounded by a bath of nuclear spins [67—69]; the effects
of disorder in central spin models have been investigated
recently in Refs. [70,71] in connection with many-body lo-
calization.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the model under consideration. In
Sec. III, we discuss the physics of the model in various
regimes and show that localized eigenstates acquire an av-
erage probability amplitude for arbitrary distances for strong
enough light-matter couplings. This semilocalization behavior
is characterized by standard localization measures such as the
return probability, the IPR (Sec. IIl A), and the level statistics
(Sec. III B). In Sec. IV, we explore the model dynamics by
computing the excitation current flowing through the system
and the time dependence of the mean-square displacement.
We provide a conclusion in Sec. V.

II. MODEL

We start by considering a 3D cubic lattice of N two-level
systems embedded in a cavity. The Hamiltonian (7 = 1) is

H = Hy + Hy, with

Hy = w.é' a—i—Z(a) + w;)6;76;” —JZ””’ (D

(i.J)

and

b = gZ(a&; +a'67). )

We restrict our discussion to a Hilbert space with a single
excitation, i.e., Zi &i+6i_ + a'a = 1. Then, there are N + 1
basis states, |i, 0), |G, 1), denoting states with an excitation
on site i, or in the cavity, respectively. Also considering the
state without excitation, |G, 0), the spin lowering and photon
annihilation operators are defined as 6,7 = |G, 0) (i, 0| and
a =G, 0) (G, 1|. In all numerical calculations, we consider
the cavity mode (frequency w,) in resonance with the average
emitter transition (w,), i.e., § = w, — w. = 0. The third term
in Hy governs hopping (rate J) between nearest-neighbor sites,
indicated by the notation (i, j). Assuming periodic bound-
arles this term is diagonalized by introducing the operators

by =) ;exp(—iq -i)6; /N VN. The second term contains on-
site disorder, with w; random variables uniformly distributed
in [-W/2,W/2]. The other term, Hj, describes the Tavis-
Cummings emitter-cavity coupling [1] with local strengths g.
This term can be written in the form

Hy = g.(ab}y + a'by) A3)

with the collective strength g. = g+/N, and couples the sym-
metric bright mode quo to cavity photons. Importantly, g
decreases with the cavity-mode volume V as g ~ 1/4/V [72]
and g, thus remains independent of N for fixed density N/V .

III. SEMILOCALIZATION

A. Semilocalized eigenstates

In the absence of disorder (W = 0), H has two polari-
ton eigenstates |Yy) = (BZ:O +a%)/v/2|G, 0) with energies
E, = £g., as well as N — 1 uncoupled dark states |y++) =
Ejﬁéo |G, 0) with vanishing photon weight, (G, 1|{/qz+) = 0.
It is obvious that finite disorder (W # 0) leads to a coupling
between the bright and the dark states since H; is nondiago-
nal in quasimomentum space. The dark eigenstates therefore
acquire a small photonic weight | (G, 1|¥q4) |> ~ 1/N (see
Appendix A), and become grey. In the following, we are
interested in the modification of the emitter part of the sys-
tem and define the normalized emitter amplitudes as aqj =
(J, Olvra) /N with Ny = 1 — [ (G, 1|¥a) I*.

For g. =0, H corresponds to a usual AL model, dis-
playing a W-dependent mobility edge that determines a
metal-insulator transition at W, ~ 16.5J (for energy states in
the middle of the band) [73—76]. While for W « W, the eigen-
states |1, ) resemble extended Bloch states, they are localized
around given sites for W > W, e.g., |aw~|2 o e~ =11/ for a
state localized on site #, with £ a W/J-dependent localization
length. In the following, we investigate the case g., W # 0,
and focus on spectral and transport properties of the An-
derson insulator for strong collective light-matter couplings
ge>W>W.
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FIG. 2. (a) Disorder-averaged return probability IT;; as a function of W/J (for the central site i of a N = 15° cube, mean emitter splitting
on resonance with cavity, 8 = 0). For strong couplings g. > W > W,, a plateau (IT;; ~ 0.4) indicates a semilocalized regime. (b)—(c) Disorder-
averaged inverse participation ratio IPR(e,) as a function of W/J and the renormalized dark state energy €, (bins of widths 0.02, ~100
realizations, white dashed line: W = W,.). (b) g. = 0 (no cavity); (c) g. = 30J (larger W/J scale), showing an extended area with IPR(e,) =~
0.4. (d) Finite-size scaling of IPR (e, ) for the parameters corresponding to the symbols in (c). Circle (W = 5J, €, = 0.5); square (W = 175/,

€, = 0.5); triangle (W = 175/, ¢, = 0.9).

The modification of AL in a cavity can be understood by
first considering the eigenstates of H for J = 0, in which case
the spatial dimensionality becomes irrelevant. In second-order
perturbation theory (see Appendix A), a trivially localized
eigenstate on site i, |i, 0), for g. = 0 acquires an amplitude
on site j # i via the cavity,

_ g
P41 = = w9 @

valid for configurations with g2 <L [(w; — wj)(w; +8)|. A
lower bound for the squared amplitude of perturbed local-
ized states is thus |bizj|* > 4g*/(N*W*), setting § = 0. In
Appendix A, we use perturbation theory to derive that the
averaged value over disorder realizations is

4g[4 — 21og(4)]

|2
NW4

|bt;éj (5)
for large N. In Fig. 1(c), we show numerically that also for
finite J < W the weights of an eigenstate localized in the
center of a 1D chain, logarithmically averaged over disorder
realizations, maintains an exponentially localized profile at
short distances, followed by a constant tail rising with g..
The tails are consistent with our perturbative result for small g
(dashed lines) and saturate for strong couplings g. > W > J.
Note that a similar behavior was reported for dissipative cou-
plings to a common reservoir [77,78].

For strong coupling (g, > W > J), two polaritonic states
[¥+) with |(G, 1|¢+)|> & 0.5 and separated by a splitting
~2g. (only slightly modified by disorder) emerge from the
band of width W. We find that the energies of the N — 1 dark
states lie in between the N bare (g. = 0) levels [Fig. 1(b)],
which can be seen as a simple consequence of the arrowhead
matrix shape of the single-excitation Hamiltonian for J = 0,
as we detail in Appendix B. The strong cavity coupling leads
to a hybridization between bare levels, close in energy, but
not necessarily in real space. For a single disorder realiza-
tion, the dark states appear strongly localized at multiple sites
[Fig. 1(d)]. We term this behavior semilocalization.

Information about the spatial localization of dark eigen-
states with energy E, is given by the IPR:

N
IPR(Ey) = Y |aail*. (6)
i=1
A finite, size-independent IPR indicates a localized eigenstate,
while an IPR scaling as 1/N — 0 indicates an extended one.
Initializing the system in the state |i, 0), the infinite-time-
averaged probability to find an excitation at site j is

T
My = Jim /O dtP (o), )

with P;j(1) = |(j, 0l¢(2))|*> and |¢(1)) = e i, 0). The IPR
is connected to the return probability IT; by ), Il; =
> o IPR(E, )J\Cf. The IPR(E, ) can thus be interpreted as the
contribution of a given eigenstate to ), IT;;.

In Fig. 2(a), we compute numerically the disorder average
of I, T1;;, for the central site of a cubic lattice (N = 15%). For
gc = 0 (dashed line), IT;; increases from O (extended phase)
to 1 (localized phase) upon increasing the disorder strength
W/J. Remarkably, we find that TI; exhibits a plateau ~0.4
for g. > W > J, which persists up to large disorder strengths
(W ~ 100J for g. = 50J).

The disorder-averaged IPR, IPR(E, ), is shown in Figs. 2(b)
and 2(c) as a function of W/J for the AL model (g. = 0) and
for g. = 30J. As we only focus on dark states (in the band
of width W), we use a dimensionless, renormalized energy
scale ¢, = (E, — W/2)/W with ¢, € [0, 1]. For each disorder
realization, we bin different levels into groups with equal
energy width and then average over realizations in each bin.
Figure 2(b) shows the emergence of localized states upon
increasing W/J, starting from the edges of the spectrum.
A strong cavity coupling [Fig. 2(c)] leads to three distinct
regimes: (i) a delocalized region [IPR(&y) ~ O for W < W],
(i) a fully localized region [TPR(e,) ~ 1 for W > g.], and
(iii) an extended area with IPR(€y) ~ 0.4 where the dark
states feature semilocalized characteristics consistent with the
return probability and the results shown in Fig. 1(c). The
persistence of semilocalized states in the vicinity of €, = 0.5
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FIG. 3. (a) Comparison of numerically computed distributions
P(sy) [symbols, parameters as in 2(c)] with analytical formulas
(lines, see text). Wigner-Dyson distribution (dark blue), Poissonian
distribution (red), semi-Poissonian distribution (light blue). Inset:
Tails of the distributions on a logarithmic scale. (b) Numerically
computed “dark state deviations” A, (see text) as a function of W/J
for g, = 30J.

(6 = 0) can be understood from the failure of perturbation
theory, even for W >> g.. The energy separation between the
two levels (io, jo) closest to €, = 0.5 is (w;, — wj,) ~ W/N.
For them, the perturbation condition g < W (wj,,j, + 8) is
violated for all W considered in Fig. 2(c), as they hybridize
via the cavity.

In Fig. 2(d), we analyze the finite size scaling of TPR (¢, )
in the three regions [for parameters corresponding to the sym-
bols in Fig. 2(c)]. We observe that the IPR of semilocalized
states does not scale with the system size. These states exhibit
the same behavior as in the fully localized region, only with
a reduced value, which is consistent with states localized on
multiple sites. In contrast, IPR(¢,) o 1 /N for extended states.

B. Level statistics

Localization properties of eigenstates are also charac-
terized by their level statistics [76]. Here, we numerically
analyze the probability distribution function P(s,) for spac-
ings between adjacent eigenenergies, Sy = €441 — €4 In
Fig. 3(a), we plot P(s,) for eigenstates corresponding to
the symbols in Fig. 2(c). While in the delocalized region
W S W) P(se) = T8« exp(—%si) follows a Wigner-Dyson
distribution, the fully localized phase is characterized by a
Poissonian, P(s,) = exp(—s,) [79]. Interestingly, we observe
that the semilocalized region features semi-Poissonian [80]
statistics, P(sy) = 4s, exp(—2s,). We have checked that this
behavior appears in the entire semilocalized region and is
independent of N. The semi-Poissonian form can be simply
understood for J = 0. Then, bare (g. = 0) levels follow a
Poisson distribution. Since for strong coupling (g, > W), dark
states lie in between the bare levels, we can model the dark
state distribution as

P(soz) = /dXdy 8<So¢ — %)exey — 4sa672su’

where we assumed the hybridized states equidistant from the
two closest bare levels. To check the validity of this assump-
tion for J # 0, we analyze numerically the disorder-averaged
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FIG. 4. (a) Excitation currents through a 1D chain as function
of N (strong coupling, g. = 30J, W = 10J, y = 0.05J, currents av-
eraged over finite times 1000 < ¢tJ < 2000, see text). Shown are the
mean (7, blue circles) and maximum/minimum currents (Iax /min, r€d
lines) of 100 disorder realizations. Dashed lines are guides to the eye
for 1/N and 1/N2. Inset: I oc e for g, = 0. (b) Disorder-averaged
mean squared displacement F/N (1D, g. =50J, W = 30J, 200
realizations, shaded area: standard error of the mean, see text).
While absence of diffusion is found for g. = 0 (¢2/N ~ 0, grey line,
expected for 1D Anderson localization), diffusive-like dynamics,
o2  t, occurs for g >W.

deviation,

Ay = N(Ea _ T Wi +2“’"“>, ®)

in Fig. 3(b), with w; and w;; the closest bare levels imme-
diately below and above E,. While in the localized phase
(triangle) the eigenenergies are found to be very close to the
bare levels, they are much closer to (w; + w;;1)/2 in the
semilocalized region (square), confirming our simple argu-
ment above.

IV. DARK STATE TRANSPORT

Finally, we discuss the role of semilocalized states on trans-
port and diffusion. We have seen that localization properties
in the semilocalized regime can be well understood for J = 0.
In this case, the dimensionality of the problem becomes ir-
relevant (see Appendix D). Therefore, for simplicity, we here
focus on transport in 1D for a chain with sitesi =1, ..., N.

We expect that, generally, the semilocalized dark state
can very efficiently contribute to transport. Since the polari-
tonic states feature homogeneous amplitudes a.; ~ 1/+/N
throughout the system, they contribute to the infinite-time
averaged transmission probability, iy ~ Y, |da1]?|aen|?
with a term ~1 /Nz. In contrast, semilocalized dark states
contribute with terms ~1/N when averaging over disorder
realizations. This stems from the fact that the probability for
an excitation to leave a site i, | — IT; ~ 0.6 is independent of
N. Therefore the infinite-time averaged transmission proba-
bility to any other site is ~(1 — I1;;)/(N — 1) ~ 0.6/(N — 1),
which explains the TI;y ~ 1/N contribution.

For a realistic transport scenario, in Fig. 4(a), we analyze
the excitation current flowing through a chain, as a function
of N, while keeping the emitter density constant. To compute
such currents, we imagine the 1D chain to be connected to two
Markovian baths at the two ends. We consider the system to
be initially in the state |G, 0), turn the bath coupling on, and

144202-4



DARK STATE SEMILOCALIZATION OF QUANTUM ...

PHYSICAL REVIEW B 102, 144202 (2020)

simulate the time-evolution. The Lindblad master equation
governing the dynamics is

p S Ao

—- =il P+ ; Ly(p), ©)

with p the density matrix and two dissipative Lindblad pro-

cesses adding/removing excitations on the first and last site.
Here,

L,(p) = —{LIL,. p} +2L,pL}. (10)

with Ly = /¥/26," and Loy = /v /26, with y a pump-
ing rate. The excitation current can be computed as [ =
Tr[&j,r 6y P1 [25]. In contrast to previous simulations of such
scenarios (e.g., in Ref. [25]), there are no additional dissi-
pative decay channels in our coherent transport model. We
therefore find that the dynamics of I exhibits persistent small
oscillations up to long times. We therefore average over the
timescale 1000 < tJ < 2000. At those late times, we still
observe a very slow decrease of the current with time for the
smaller system sizes. For N > 1000, we don’t find any signif-
icant evolution. The data in Fig. 4 is additionally averaged
over 100 disorder realizations. For g. = 0, we always find
an exponentially suppressed current, I ~ exp(—N ), while for
strong coupling (g, = 30J) the mean current decays slower,
closer to a I ~ 1/N scaling. Additionally, we also plot max-
imum (minimum) currents Iy, (Inmin) of the realizations. For
large N, I, decreases as ~1/N 2 and exhibits only small fluc-
tuations. We interpret this as an unlucky disorder realization
prohibiting efficient dark-state transport, requiring the energy
to flow through polaritonic states [25]. We note that it is not
clear whether the 1/N scaling of the finite time currents from
Fig. 4(a) can be related to the ~1/N contribution in the infinite
time averaged quantity T1;y [81].

In Fig. 4(b), we analyze the diffusion properties in the 1D
chain, after initializing the system in the state |¢p(t = 0)) =
|N/2, 0). We show the time evolution of the disorder-averaged
mean-squared displacemento? = . i — JjI?P;j(t). For g. =
0 and W = 30J, eigenstates are fully localized and diffu-
sion is suppressed, o2 ~ cst, while a diffusivelike behavior

limy_. oo 02 ot occurs in the strong coupling case (g. =
50J) up to finite size effects. Second order perturbation
theory (Schrieffer-Wolff transformation [82]) leads to an ef-
fective correlated hopping model (see Appendix C for a
detailed derivation), with on-site energy dependent amplitude,
which differs from other known disordered models, e.g., with
power-law hopping [83-87]. Diffusivelike behavior can be
qualitatively understood for J = 0: the transition probability
P;j(t) is then not correlated with distance |i — j|, so

S
J

ki

~ LT NP N =Pu (D

The escape probability can be estimated to increase linear in
time, 1 — P;(¢) o< t/N, with Fermi’s golden rule for large N
(as shown in Appendix C). We note that this behavior does not
correspond, strictly speaking, to a diffusive dynamics since

the increase of the mean-squared displacement is nonlocal and
stems from the evenly distributed growth of the probability
amplitudes a; over the whole chain [see Fig. 1(d)].

V. CONCLUSION

We have shown that AL can be strongly modified by cou-
pling the disordered ensemble to a cavity. This is manifested
by the emergence of dark states localized on multiple sites
with energy spacings following semi-Poissonian statistics. We
denote such states as semilocalized. We find that typical local-
ization quantifiers such as the IPR exhibit properties common
to ordinarily localized states (constant scaling with system
size) but at values below one, IPR(&,) ~ 0.4. Additionally, in
this semilocalized regime, the level-spacing statistics exhibits
a semi-Poissonian behavior, which neither corresponds to or-
dinary localized states (Poissonian distribution) nor extended
states (Wigner-Dyson distribution). We further analyzed the
contribution of semilocalized states to transport and found
that they are responsible for a diffusivelike behavior and an
algebraic decay of energy transmission for strong light-matter
couplings. It is an interesting prospect to investigate how
dissipation [77] affects the transport properties of such states.
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APPENDICES

In the following Appendices, we provide further details
on analytical calculations: We discuss our perturbation theory
(Appendix A), arrowhead matrix calculations (Appendix B),
and the Schrieffer-Wolff transformation for estimating dif-
fusion with Fermi’s golden rule (Appendix C). We provide
results for the return probability also in 1D systems (Appendix
D). Lastly, we describe a scheme how one could implement
our model in recent cold atom experiments (Appendix E).

APPENDIX A: PERTURBATION THEORY

We start from the Hamiltonian Hj without hopping (J =
0), and treat the light-matter coupling contribution Hj as a
perturbation. To second order, the eigenstates

8 ,
G, 1)+ ) bizjlj, 0)

i,0)® =1i,0
l£, 0) 5,00+ 5 )
J#

(AD
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acquire a finite amplitude on site j # i via the cavity:

g

(wi — wj)(w; +8)

Note that (taking 6 = 0) the individual perturbative state am-
plitudes in Eq. (A1) are valid for g < |w;(w; — w; )|, which
is satisfied in the thermodynamic limit N — oo for a fixed g,
as long as wj; is not too close to the middle of the distribution
w; = 0 and for w; and w; not accidentally in close resonance.

An analytic expression of the constant tail [Fig. 1(c) of
the main text] can be derived in the perturbative regime by
computing the disorder average of the squared amplitudes b;;
in the limit N — oo. For § = 0, we obtain

Z > Ibizif?

i JA
fW/Z p@) Y P@)
@ AV
N w/2 -w)2 (0 — ')
with the uniform density of states p(w) = N/W. Because of

the divergence for @ = ’ occurring in the second integral, we
compute the Hadamard finite part of the latter:

bizj = (J,01i,0)? =

(A2)

|bt#1 =

(A3)

p(w)

w—€ /
= lim / do/ ———
=0l Jwp (0= o)?

w/2 / 2
i
vt (-0 €
- (Ad)
T = (W2
Using this result in Eq. (A3) and considering again the finite
part (removing the divergences at ® = 0 and w = £W/2) of

the remaining integral, we obtain the result given in the main
text:

Wi 2 W p(w')
H
/ w2 (w (0— )

4g4[4 — 21og(4)] _
— NW4 (8 = g\/ﬁ).

This prediction agrees very well with numerically exact simu-
lations (see main text) for g. < W, indicating that occasional
resonances and the divergence at @ = 0 do not play an impor-
tant role for the averaged tails of the eigenstates.

1bizj? = (AS5)

APPENDIX B: ARROWHEAD HAMILTONIAN

In the single-excitation subspace, the Hamiltonian A with-
out hopping (J = 0) takes the form of an arrowhead matrix in
the basis {|i, 0), |G, 1)}

wy 0 0 g
0 wo 0
0
A= 0 (B1)
0  wy_ 0
0 0 wy | g
g g |0

A direct property of this arrowhead form is that after sorting
the bare energies w; in increasing order, i.e., w; < wy < ...

< wy, the eigenvalues of H are interlaced with those bare
energies [88]:

e <w < <w < S wyog ey Swy < €y
(B2)

In the strong coupling case, the two eigenvalues €4 at the
edges of the spectrum correspond to the polariton-state fre-
quencies ~+g., while the remaining ones €, €, ..., €y—1
correspond to the N — 1 dark state frequencies denoted as
€, in the main text. The N 4 1 eigenstates satisfying H, =
€q VW, take the form [88]

1 €g— W2

¢a =
1L N s
\/1 + N Zj=1 (€a—w;)?

, (B3)

witho =+, 1,..., N — 1. The photon weight is the squared
amplitude of the (N + 1)th component:
) 1
Pwa = |1//a,N+1| (B4)
N Z/ 1 (507w7)2

For a dark eigenstate ¥, (a =1,..., N — 1), the sum in the
denominator is dominated by the terms where w; is the closest
to €. Since the spacing between energies is of order O(1/N),
those terms are of order O(N?). With the factor 1 /N in front
of the sum, this implies that the denominator is of order O(N).
Thus, the photon weight of the dark states scales as

PW, = O(1/N). (B5)

This implies that the dark eigenstates have vanishing photon
weight in the thermodynamic limit. This is in stark contrast
with the photon weights of the two polariton eigenstates with
energies €1, which is of order O(1). Note that this argument
is generally valid, beyond the perturbative limit.

The arrowhead shape of the Hamiltonian can also help
to better understand the diffusion properties of the system.
In particular, here we show how it can be used to argue for
diffusivelike behavior of the mean-squared displacement of an
excitation, o2 « 7 in the strong coupling regime, and that this
property originates from the contribution of dark states. We
briefly sketch the argument here; a more detailed treatment
will be given in Ref. [89].

In the absence of hopping and for random bare energies
w;, there is no correlation between the position of the emitters
and their energy. Therefore, the probability that an excitation
at emitter a arrives at emitter b at time ¢ depends only on their
bare energies w, and wp, but not on the distance between them
(the dimensionality is also irrelevant). Then, upon averaging
over disorder, all pairs of indices (a, b) with a # b contribute
the same amount to the mean-squared displacement. There-
fore, the mean-squared displacement o2 is proportional to the
quantity

— 1
o) =~ . (B6)

3o e i1,

1<a#b<N
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where [e‘im]ub is the (a, b) entry of the (N + 1) x (N + 1)
matrix e ", O(r) measures the probability that the excitation
has moved at time ¢, regardless of its initial position. Using the
fact that the matrix e 177 is unitary, one can rewrite the above
sum as

N 1 N - 1 —_—
o0 =+ ;a = Pua®) + (1= eyt via )
2 N - -
-5 ; le= i), v 12, (B7)

where P,,(t) = |[e_iﬁ ! ]aa|2 is the return probability of an ex-
citation initially located on the emitter a. The second and third
terms in Eq. (B7) remain bounded as time increases, while the
first term keeps increasing and quickly becomes dominant:

1 _
00 =~ = > (1 = Pual0)). (B8)
a=1

The time-dependent escape probability, (1 — P,,(¢)), thus de-
termines the evolution of the mean-squared displacement. For
large N, we can compute the evolution in the dark-state en-
ergy range in time-dependent perturbation theory and treat the
evolution after initializing the system with an excitation on a
single site i by using Fermi’s golden rule (as shown in the
next Appendix Sec. C). Then, (1 — P, (¢)) = I',t, with a rate
I', given by Eq. (C4). This gives the linear growth:

N
o2 x 0t) ~ (%}Zr)r (BY)

a=1

In contrast, the two polaritonic states lead to o2 ~ t* at short
times (r < 1/g.) and generate small oscillations that are su-
perimposed with the general linear growth predicted from the
dark states [90].

APPENDIX C: SCHRIEFFER-WOLFF TRANSFORMATION
AND FERMI’S GOLDEN RULE

Starting with an excitation localized on site i at time t = 0,
we compute the escape probability 1 — P;(¢) to other sites
J #1 at time t. From energy conservation, one can already
expect that these processes imply w; = wj;, and therefore the
perturbative expansion Eq. (A1) does not appear to be well
suited as the third term on the right-hand side diverges. It
is instead convenient to use a Schrieffer-Wolff transforma-
tion for the Hamiltonian A = Hy + H;, which results in a
disentanglement of light and matter degrees of freedom [82].
The new Hamiltonian is written as H' = e’He>. Under the
assumption that the eigenvalues of the generator S remain
small (see below), one can expand H' as H' = H + [S, H] +
%[S’, [S,A11+ ---. The linear coupling term H; can be re-
moved from the expansion with the choice

& 8§ R
S = Xl: o a(aof —6; ah, (C1

which provides [S, Hy] = —H;. The new effective Hamilto-
nian (for J = 0) then takes the form

H' = Hy + 518, Al + O(H}), (€2)

and the condition to be satisfied if one is to keep only the first
two terms on the right-hand side of Eq. (C2) is g < |w; + §|.
Calculating the commutator [S, H;], we obtain

@

I‘T
iwi+5tt

wld'a+ ) (o +w)b; 67 +d'a
i

2 I Lo\,
- 6. G C3
+2121: w,~+8+wj+8 % 9j (€3

up to a constant term. The last term corresponds to an effective
correlated hopping between arbitrarily distant sites, while the
third term results in a renormalization of the cavity frequency
depending on the two-level emitter states. This term does
not contribute to transitions between states with one excited
emitter and zero photon, and can therefore be dropped out
of the calculation. Because of the absence of divergence for
w; = wj, the Hamiltonian Eq. (C3) is well suited to compute
the escape probability from site i using Fermi’s golden rule.
The latter reads 1 — P;(¢t) = I';t, where the escape rate is (for
constant p(w) = N/W)

w/2

I =2n / dwp(@)|(j, 0V i, 0)]*8(w — w;)

—-w/2
2 gl

T NW(w; +0)2 0

Here, V corresponds to the second term in Eq. (C3) with
matrix elements (written as function of the continuous
variable w)

Goowii, 0= £ (L L (C5)
, L,0)==|—+——.

J 2\witd  wto

Note that the two conditions 1/W <t <K N/W and 1—
P;i(t) < 1 ensuring validity of Fermi’s golden rule can be sat-
isfied simultaneously in the thermodynamic limit N — co. A
lower bound for the (normalized) mean squared displacement
can be estimated from Eq. (C4):

o2 1 li—j> 1 gt
[ — _ it 2 [ A —
NN 2; N SN Z 2 3Ww2 182

(Co)

This Fermi’s golden rule result overestimates the numerical
data plotted in Fig. 4(b) of the main text. However, those nu-
merical results can be alternatively well described analytically
using an exact formula derived directly from Eq. (B7) [89].

APPENDIX D: RETURN PROBABILITY IN 1D

In Fig. 2(a) of the main paper, we observed the appearance
of the semilocalized regime by the presence of a plateau in the
return probability, which is independent of N. Here, we verify
that this physics is indeed independent on the dimensionality,
see Fig. 5.
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FIG. 5. (a) Disorder-averaged return probability TI; as a function
of W/J (for a central site i of a N = 2000 chain, mean emitter
splitting on resonance with cavity, § = 0). For strong couplings g. >
W > W,, a plateau (IT; ~ 0.4) indicates the semilocalized regime.
(b) TI;; as a function of W/J for g. = 50 and various system sizes N,
demonstrating independence on N.

APPENDIX E: MODEL REALIZATION WITH
COLD ATOMS

Here we discuss possible experimental implementations
to observe the physics of semilocalized states with cold
atoms. Such setups have been recently used to study coher-
ent physics of the Dicke model without disorder in various
scenarios.

To avoid decay of atomic excited states, it has been pro-
posed to realize the Dicke Hamiltonian with two internal
hyperfine ground states of, e.g., alkali atoms, as effective
emitter states. This can be achieved by using a Raman laser
dressing for atoms trapped within an optical cavity, as first
suggested in Ref. [63]. Here, each atom has two long-lived
ground states |0) and |1) that are coupled to the cavity mode
(coupling strengths go and g1), and through a pair of balanced
lasers, detuned from an excited state, with respective Rabi
frequencies ¢ and 2| (detunings Ag and A;). After adia-
batically eliminating the atomic excited state, the two laser
couplings lead effectively to resonant and counter-rotating
Dicke model terms, with individually tunable Hamiltonian
contributions [63]:

N Q
b 80341
2A,

A n aiaey o 8152 i e
Z(aa;r +Cl Ui )+ 2_A0 Z(a}gi"' ~|—aO'i )

i i

(ED)

To realize our Tavis-Cumming model, one can remove
one laser, 29 =0, see Fig. 6 for a sketch of the level
scheme. This proposal has been recently experimentally re-
alized in Ref. [64], where the two hyperfine ground states
IF=1,m=1)=1|0)and |F =2,m =2) = |1) of ¥’ Rb have
been used. This particular experiment used a cavity with decay
rate k = 2w x 0.1 MHz. Atoms are trapped in an intracav-
ity optical lattice ensuring a location of the atoms at cavity
antinodes. Such schemes allow to trap and collectively couple
~103 atoms [91], and can lead to effective collective coupling
strengths of g. = gz‘fl‘ VN > k overcoming the cavity decay
rate. Reachable coupling strengths are simply a problem of
achievable atom numbers and laser powers. Note that as an
alternative to atomic ground states, long-lived excited states

0)

FIG. 6. Proposed level scheme for engineering the disorder
Tavis-Cummings model with cold atoms. The system is based on the
Raman dressing scheme from Ref. [63] that has led to experimental
observation of Dicke model physics in Ref. [64].

of alkaline earth atoms may also be used. For example, in
experiments as in Ref. [92], 'Sy and 'P; states of Stron-
tium atoms have been successfully used as effective emitter
states to engineer infinite-range spin-models (after adiabati-
cally eliminating the cavity).

Adding disorder to this setup can be readily achieved by
superimposing additional external light fields that selectively
(via the polarization) induce AC Stark shifts to one of the
ground state levels (see additional disorder laser field with
Rabi frequency 2, in Fig. 6). For example, if atoms are
trapped in a regular 3D optical lattice, this can, e.g., be
achieved with a second incommensurate lattice of different
wavelength [59,62]. In a 1D optical lattice, random positions
of atoms within “pancakes” would naturally lead to disorder.
The intensity of this additional disorder light field can be
sufficiently small, since the required disorder strengths for
typical experimental numbers of [64,91] correspond to only
W = 100Hz « g, and are thus not hampering with the Ra-
man dressing scheme. Even naturally existing disorder due to
stray fields may be beneficial to study the physics described
in our main text.

A cold atom setup as in Refs. [64,91] could be used for
observing excitation diffusion as proposed in Fig. 4(b) in
the main text, after selectively creating a population in one
of the two emitter states of some atoms. Diffusion between
pancakes in 1D optical lattices could be directly monitored
or accessed via time-dependent measurements of emitter state
populations. One could also homogeneously couple thousands
of atoms with a 3D intracavity optical lattice to study dif-
fusion on a regular lattice. This can be achieved by mode
matching the lattice lasers with a cavity field as described in
Ref. [93].

Finally, we remark that diffusivelike dynamics [see, e.g.,
Fig. 4(b) in the main text] can occur on very fast timescales,
as the mean-squared displacement is proportional to the emit-

ter number o2 oc N. With experimentally achievable emitter
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numbers, the diffusion rates could be made large enough such
that trapping does not play a crucial role during diffusion. It
may then also be practical to use (untrapped) atomic excited
states as emitter states directly. Then, models with J > 0 can

also be considered, using atomic excitation hopping models,
e.g., with Rydberg atoms as proposed in Ref. [25]. Systems
using rotational states of intracavity-trapped polar molecules
may also be an alternative [25].

[1] M. Tavis and F. W. Cummings, Exact solution for an N-
molecule-radiation-field Hamiltonian, Phys. Rev. 170, 379
(1968).

[2] H. J. Kimble, Strong interactions of single atoms and photons
in cavity QED, Phys. Scr. T76, 127 (1998).

[3] J. M. Raimond, M. Brune, and S. Haroche, Manipulating quan-
tum entanglement with atoms and photons in a cavity, Rev.
Mod. Phys. 73, 565 (2001).

[4] Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S.
Haroche, Observation of Self-Induced Rabi Oscillations in
Two-Level Atoms Excited Inside a Resonant Cavity: The
Ringing Regime of Superradiance, Phys. Rev. Lett. 51, 1175
(1983).

[5] M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble,
and H. J. Carmichael, Normal-Mode Splitting and Linewidth
Averaging for Two-State Atoms in an Optical Cavity, Phys. Rev.
Lett. 63, 240 (1989).

[6] R. J. Thompson, G. Rempe, and H. J. Kimble, Observation of
Normal-Mode Splitting for an Atom in an Optical Cavity, Phys.
Rev. Lett. 68, 1132 (1992).

[7] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Ob-
servation of the Coupled Exciton-Photon Mode Splitting in a
Semiconductor Quantum Microcavity, Phys. Rev. Lett. 69, 3314
(1992).

[8] A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, Nonequi-
librium condensates and lasers without inversion: Exciton-
polariton lasers, Phys. Rev. A 53, 4250 (1996).

[9] D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili,
S. Walker, and D. M. Whittaker, Strong exciton—photon cou-
pling in an organic semiconductor microcavity, Nature 395, 53
(1998).

[10] J. M. Fink, R. Bianchetti, M. Baur, M. Goppl, L. Steffen, S.
Filipp, P. J. Leek, A. Blais, and A. Wallraff, Dressed Collective
Qubit States and the Tavis-Cummings Model in Circuit QED,
Phys. Rev. Lett. 103, 083601 (2009).

[11] Y. Kubo, FE. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng,
A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup,
M. F. Barthe, P. Bergonzo, and D. Esteve, Strong Coupling of
a Spin Ensemble to a Superconducting Resonator, Phys. Rev.
Lett. 105, 140502 (2010).

[12] Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami,
and Y. Nakamura, Hybridizing Ferromagnetic Magnons and
Microwave Photons in the Quantum Limit, Phys. Rev. Lett. 113,
083603 (2014).

[13] M. A. Sentef, M. Ruggenthaler, and A. Rubio, Cavity
quantum-electrodynamical polaritonically enhanced electron-
phonon coupling and its influence on superconductivity, Sci.
Adv. 4, eaau6969 (2018).

[14] A. Thomas, E. Devaux, K. Nagarajan, T. Chervy, M. Seidel,
D. Hagenmiiller, S. Schiitz, J. Schachenmayer, C. Genet,
G. Pupillo, and T. W. Ebbesen, Exploring superconductivity

under strong coupling with the vacuum electromagnetic field,
arXiv:1911.01459.

[15] A. Thomas, L. Lethuillier-Karl, K. Nagarajan, R. M. A.
Vergauwe, J. George, T. Chervy, A. Shalabney, E. Devaux, C.
Genet, J. Moran, and T. W. Ebbesen, Tilting a ground-state re-
activity landscape by vibrational strong coupling, Science 363,
615 (2019).

[16] S. Kéna-Cohen and J. Yuen-Zhou, Polariton chemistry: Action
in the dark, ACS Cent. Sci. 5, 386 (2019).

[17] J. Lather, P. Bhatt, A. Thomas, T. W. Ebbesen, and J. George,
Cavity catalysis by cooperative vibrational strong coupling of
reactant and solvent molecules, Angew. Chem. Int. Ed. 58,
10635 (2019).

[18] A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J.
Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet,
J. A. Hutchison, and T. W. Ebbesen, Ground-state chemical
reactivity under vibrational coupling to the vacuum electromag-
netic field, Angew. Chem. Int. Ed. 55, 11462 (2016).

[19] J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W.
Ebbesen, Modifying chemical landscapes by coupling to vac-
uum fields, Angew. Chem. Int. Ed. 51, 1592 (2012).

[20] F. Herrera and F. C. Spano, Cavity-Controlled Chemistry in
Molecular Ensembles, Phys. Rev. Lett. 116, 238301 (2016).

[21] J. Galego, F. J. Garcia-Vidal, and J. Feist, Suppressing photo-
chemical reactions with quantized light fields, Nat. Commun.
7, 13841 (2016).

[22] J. Flick, M. Ruggenthaler, H. Appel, and A. Rubio, Atoms and
molecules in cavities, from weak to strong coupling in quantum-
electrodynamics (QED) chemistry, Proc. Natl. Acad. Sci. USA
114, 3026 (2017).

[23] D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G.
Lagoudakis, P. G. Savvidis, and D. G. Lidzey, Polariton-
mediated energy transfer between organic dyes in a strongly
coupled optical microcavity, Nat. Mater. 13, 712 (2014).

[24] J. Feist and F. J. Garcia-Vidal, Extraordinary Exciton Conduc-
tance Induced by Strong Coupling, Phys. Rev. Lett. 114, 196402
(2015).

[25] J. Schachenmayer, C. Genes, E. Tignone, and G. Pupillo,
Cavity-Enhanced Transport of Excitons, Phys. Rev. Lett. 114,
196403 (2015).

[26] X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C.
Genet, J. A. Hutchison, and T. W. Ebbesen, Energy transfer be-
tween spatially separated entangled molecules, Angew. Chem.
Int. Ed. 56, 9034 (2017).

[27] G. Lerario, D. Ballarini, A. Fieramosca, A. Cannavale, A.
Genco, F. Mangione, S. Gambino, L. Dominici, M. De Giorgi,
G. Gigli, and D. Sanvitto, High-speed flow of interacting or-
ganic polaritons, Light: Sci. Appl. 6, 16212 (2017).

[28] M. Reitz, F. Mineo, and C. Genes, Energy transfer and corre-
lations in cavity-embedded donor-acceptor configurations, Sci.
Rep. 8, 1 (2018).

144202-9


https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1238/Physica.Topical.076a00127
https://doi.org/10.1103/RevModPhys.73.565
https://doi.org/10.1103/PhysRevLett.51.1175
https://doi.org/10.1103/PhysRevLett.63.240
https://doi.org/10.1103/PhysRevLett.68.1132
https://doi.org/10.1103/PhysRevLett.69.3314
https://doi.org/10.1103/PhysRevA.53.4250
https://doi.org/10.1038/25692
https://doi.org/10.1103/PhysRevLett.103.083601
https://doi.org/10.1103/PhysRevLett.105.140502
https://doi.org/10.1103/PhysRevLett.113.083603
https://doi.org/10.1126/sciadv.aau6969
http://arxiv.org/abs/arXiv:1911.01459
https://doi.org/10.1126/science.aau7742
https://doi.org/10.1021/acscentsci.9b00219
https://doi.org/10.1002/anie.201905407
https://doi.org/10.1002/anie.201605504
https://doi.org/10.1002/anie.201107033
https://doi.org/10.1103/PhysRevLett.116.238301
https://doi.org/10.1038/ncomms13841
https://doi.org/10.1073/pnas.1615509114
https://doi.org/10.1038/nmat3950
https://doi.org/10.1103/PhysRevLett.114.196402
https://doi.org/10.1103/PhysRevLett.114.196403
https://doi.org/10.1002/anie.201703539
https://doi.org/10.1038/lsa.2016.212
https://doi.org/10.1038/s41598-017-17765-5

T. BOTZUNG et al.

PHYSICAL REVIEW B 102, 144202 (2020)

[29] M. Du, L. A. Martinez-Martinez, R. F. Ribeiro, Z. Hu, V. M.
Menon, and J. Yuen-Zhou, Theory for polariton-assisted remote
energy transfer, Chem. Sci. 9, 6659 (2018).

[30] C. Schifer, M. Ruggenthaler, H. Appel, and A. Rubio, Mod-
ification of excitation and charge transfer in cavity quantum-
electrodynamical chemistry, Proc. Natl. Acad. Sci. USA 116,
4883 (2019).

[31] E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B.
Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G.
Pupillo, P. Samori, and T. W. Ebbesen, Conductivity in organic
semiconductors hybridized with the vacuum field, Nat. Mater.
14, 1123 (2015).

[32] D. Hagenmiiller, J. Schachenmayer, S. Schiitz, C. Genes, and
G. Pupillo, Cavity-Enhanced Transport of Charge, Phys. Rev.
Lett. 119, 223601 (2017).

[33] D. Hagenmiiller, S. Schiitz, J. Schachenmayer, C. Genes, and
G. Pupillo, Cavity-assisted mesoscopic transport of fermions:
Coherent and dissipative dynamics, Phys. Rev. B 97, 205303
(2018).

[34] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod.
Phys. 80, 1355 (2008).

[35] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[36] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Scaling Theory of Localization: Absence of
Quantum Diffusion in two Dimensions, Phys. Rev. Lett. 42, 673
(1979).

[37] R. Houdré, R. P. Stanley, and M. Ilegems, Vacuum-field Rabi
splitting in the presence of inhomogeneous broadening: Res-
olution of a homogeneous linewidth in an inhomogeneously
broadened system, Phys. Rev. A 53, 2711 (1996).

[38] P.R. Eastham and P. B. Littlewood, Bose condensation of cavity
polaritons beyond the linear regime: The thermal equilibrium of
a model microcavity, Phys. Rev. B 64, 235101 (2001).

[39] M. Litinskaia, G. C. La Rocca, and V. M. Agranovich, Inhomo-
geneous broadening of polaritons in high-quality microcavities
and weak localization, Phys. Rev. B 64, 165316 (2001).

[40] F. M. Marchetti, J. Keeling, M. H. Szymanska, and P. B.
Littlewood, Thermodynamics and Excitations of Condensed
Polaritons in Disordered Microcavities, Phys. Rev. Lett. 96,
066405 (2006).

[41] F. M. Marchetti, J. Keeling, M. H. Szymanska, and P. B.
Littlewood, Absorption, photoluminescence, and resonant
Rayleigh scattering probes of condensed microcavity polari-
tons, Phys. Rev. B 76, 115326 (2007).

[42] P. Kirton, M. M. Roses, J. Keeling, and E. G. D. Torre, Introduc-
tion to the Dicke model: From equilibrium to nonequilibrium,
and vice versa, Adv. Quantum Technol. 2, 1800043 (2019).

[43] C. Gonzalez-Ballestero, J. Feist, E. Gonzalo Badia, E. Moreno,
and F. J. Garcia-Vidal, Uncoupled Dark States can Inherit Po-
laritonic Properties, Phys. Rev. Lett. 117, 156402 (2016).

[44] 1. Carusotto and C. Ciuti, Quantum fluids of light, Rev. Mod.
Phys. 85, 299 (2013).

[45] P. Tormd and W. L. Barnes, Strong coupling between surface
plasmon polaritons and emitters: a review, Rep. Prog. Phys. 78,
013901 (2014).

[46] D. Sanvitto and S. Kéna-Cohen, The road towards polaritonic
devices, Nat. Mater. 15, 1061 (2016).

[47] S. Putz, A. Angerer, D. O. Krimer, R. Glattauer, W. J. Munro,
S. Rotter, J. Schmiedmayer, and J. Majer, Spectral hole burning

and its application in microwave photonics, Nat. Photonics 11,
36 (2016).

[48] H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto,
Condensation of semiconductor microcavity exciton polaritons,
Science 298, 199 (2002).

[49] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun,
J. M. J. Keeling, F. M. Marchetti, M. H. Szymariska, R. André,
J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and
L. S. Dang, Bose-Einstein condensation of exciton polaritons,
Nature 443, 409 (20006).

[50] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West,
Bose—FEinstein condensation of microcavity polaritons in a trap,
Science 316, 1007 (2007).

[51] A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. d. Valle,
M. D. Martin, A. Lemaitre, J. Bloch, D. N. Krizhanovskii, M. S.
Skolnick, C. Tejedor, and L. Vifia, Collective fluid dynamics of
a polariton condensate in a semiconductor microcavity, Nature
457,291 (2009).

[52] A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, L
Carusotto, R. Houdré, E. Giacobino, and A. Bramati, Superflu-
idity of polaritons in semiconductor microcavities, Nat. Phys. 5,
805 (2009).

[53] J. Keeling, M. J. Bhaseen, and B. D. Simons, Collective Dy-
namics of Bose-Einstein Condensates in Optical Cavities, Phys.
Rev. Lett. 105, 043001 (2010).

[54] H. Deng, H. Haug, and Y. Yamamoto, Exciton-polariton Bose-
Einstein condensation, Rev. Mod. Phys. 82, 1489 (2010).

[55] R. T. Juggins, J. Keeling, and M. H. Szymariska, Coherently
driven microcavity-polaritons and the question of superfluidity,
Nat. Commun. 9, 4062 (2018).

[56] F. Cadiz, C. Robert, E. Courtade, M. Manca, L. Martinelli, T.
Taniguchi, K. Watanabe, T. Amand, A. C. H. Rowe, D. Paget, B.
Urbaszek, and X. Marie, Exciton diffusion in WSe, monolayers
embedded in a Van der Waals heterostructure, Appl. Phys. Lett.
112, 152106 (2018).

[57] S. S. Wang, X. J. Li, W. L. Zhang, and C. Y. Zheng, Transverse
Anderson localization of exciton-polaritons in microcavities
with single-layer WS,, IEEE J. Sel. Top. Quantum Electron.
25,1 (2019).

[58] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,
D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect,
Direct observation of Anderson localization of matter waves in
a controlled disorder, Nature 453, 891 (2008).

[59] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M.
Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Ander-
son localization of a non-interacting Bose—Einstein condensate,
Nature 453, 895 (2008).

[60] S. S. Kondov, W. R. McGehee, J. J. Zirbel, and B. DeMarco,
Three-dimensional Anderson localization of ultracold matter,
Science 334, 66 (2011).

[61] F. Jendrzejewski, A. Bernard, K. Miiller, P. Cheinet, V. Josse,
M. Piraud, L. Pezzé, L. Sanchez-Palencia, A. Aspect, and P.
Bouyer, Three-dimensional localization of ultracold atoms in
an optical disordered potential, Nat. Phys. 8, 398 (2012).

[62] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Liischen, M. H.
Fischer, R. Vosk, E. Altman, U. Schneider, and 1. Bloch, Ob-
servation of many-body localization of interacting fermions in
a quasirandom optical lattice, Science 349, 842 (2015).

[63] F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael,
Proposed realization of the Dicke-model quantum phase

144202-10


https://doi.org/10.1039/C8SC00171E
https://doi.org/10.1073/pnas.1814178116
https://doi.org/10.1038/nmat4392
https://doi.org/10.1103/PhysRevLett.119.223601
https://doi.org/10.1103/PhysRevB.97.205303
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevA.53.2711
https://doi.org/10.1103/PhysRevB.64.235101
https://doi.org/10.1103/PhysRevB.64.165316
https://doi.org/10.1103/PhysRevLett.96.066405
https://doi.org/10.1103/PhysRevB.76.115326
https://doi.org/10.1002/qute.201800043
https://doi.org/10.1103/PhysRevLett.117.156402
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1088/0034-4885/78/1/013901
https://doi.org/10.1038/nmat4668
https://doi.org/10.1038/nphoton.2016.225
https://doi.org/10.1126/science.1074464
https://doi.org/10.1038/nature05131
https://doi.org/10.1126/science.1140990
https://doi.org/10.1038/nature07640
https://doi.org/10.1038/nphys1364
https://doi.org/10.1103/PhysRevLett.105.043001
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1038/s41467-018-06436-2
https://doi.org/10.1063/1.5026478
https://doi.org/10.1109/JSTQE.2019.2921394
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07071
https://doi.org/10.1126/science.1209019
https://doi.org/10.1038/nphys2256
https://doi.org/10.1126/science.aaa7432

DARK STATE SEMILOCALIZATION OF QUANTUM ...

PHYSICAL REVIEW B 102, 144202 (2020)

transition in an optical cavity QED system, Phys. Rev. A 785,
013804 (2007).

[64] Z. Zhang, C. H. Lee, R. Kumar, K. J. Arnold, S. J. Masson,
A. L. Grimsmo, A. S. Parkins, and M. D. Barrett, Dicke-model
simulation via cavity-assisted Raman transitions, Phys. Rev. A
97, 043858 (2018).

[65] M. Gaudin, Diagonalisation d’une classe d’hamiltoniens de
spin, J. Phys. 37, 1087 (1976).

[66] J. Dukelsky, S. Pittel, and G. Sierra, Colloquium: Exactly
solvable Richardson-Gaudin models for many-body quantum
systems, Rev. Mod. Phys. 76, 643 (2004).

[67] J. Schliemann, A. Khaetskii, and D. Loss, Electron spin dynam-
ics in quantum dots and related nanostructures due to hyperfine
interaction with nuclei, J. Phys.: Condens. Matter 15, R1809
(2003).

[68] M. Bortz and J. Stolze, Exact dynamics in the inho-
mogeneous central-spin model, Phys. Rev. B 76, 014304
(2007).

[69] A. Faribault and D. Schuricht, Integrability-Based Analysis
of the Hyperfine-Interaction-Induced Decoherence in Quantum
Dots, Phys. Rev. Lett. 110, 040405 (2013).

[70] D. Hetterich, M. Serbyn, F. Dominguez, F. Pollmann, and B.
Trauzettel, Noninteracting central site model: Localization and
logarithmic entanglement growth, Phys. Rev. B 96, 104203
(2017).

[71] D. Hetterich, N. Y. Yao, M. Serbyn, F. Pollmann, and B.
Trauzettel, Detection and characterization of many-body local-
ization in central spin models, Phys. Rev. B 98, 161122(R)
(2018).

[72] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, UK, 1997).

[73] A. MacKinnon and B. Kramer, One-Parameter Scaling of Lo-
calization Length and Conductance in Disordered Systems,
Phys. Rev. Lett. 47, 1546 (1981).

[74] E. Hofstetter and M. Schreiber, Finite-size scaling and
critical exponents. A new approach and its application
to Anderson localisation, Europhys. Lett. 21, 933
(1993).

[75] B. 1. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrianides,
and H. B. Shore, Statistics of spectra of disordered systems
near the metal-insulator transition, Phys. Rev. B 47, 11487
(1993).

[76] 1. K. Zharekeshev and B. Kramer, Scaling of level statistics at
the disorder-induced metal-insulator transition, Phys. Rev. B 51,
17239 (1995).

[77] G. Celardo, A. Biella, L. Kaplan, and F. Borgonovi, Interplay
of superradiance and disorder in the Anderson Model, Fortschr.
Phys. 61, 250 (2013).

[78] A. Biella, F. Borgonovi, R. Kaiser, and G. L. Celardo, Subradi-
ant hybrid states in the open 3D Anderson-Dicke model, EPL
103, 57009 (2013).

[79] F. Haake, Quantum Signatures of Chaos (Springer-Verlag,
Berlin, 2006).

[80] E. B. Bogomolny, U. Gerland, and C. Schmit, Models of inter-
mediate spectral statistics, Phys. Rev. E 59, R1315 (1999).

[81] N. C. Chdvez, F. Mattiotti, J. A. Méndez-Bermidez, F.
Borgonovi, and G. L. Celardo, Disorder-Enhanced and
Disorder-Independent Transport with long-range hopping:
Application to molecular chains in optical cavities,
arXiv:2010.08060.

[82] G. Zhu, S. Schmidt, and J. Koch, Dispersive regime of the
Jaynes—Cummings and Rabi lattice, New J. Phys. 15, 115002
(2013).

[83] L. S. Levitov, Delocalization of Vibrational Modes Caused by
Electric Dipole Interaction, Phys. Rev. Lett. 64, 547 (1990).

[84] A.D. Mirlin, Y. V. Fyodorov, F.-M. Dittes, J. Quezada, and T. H.
Seligman, Transition from localized to extended eigenstates in
the ensemble of power-law random banded matrices, Phys. Rev.
E 54, 3221 (1996).

[85] G. L. Celardo, R. Kaiser, and F. Borgonovi, Shielding and
localization in the presence of long-range hopping, Phys. Rev.
B 94, 144206 (2016).

[86] X. Deng, B. L. Altshuler, G. V. Shlyapnikov, and L. Santos,
Quantum Levy Flights and Multifractality of Dipolar Excita-
tions in a Random System, Phys. Rev. Lett. 117, 020401 (2016).

[87] X. Deng, V. E. Kravtsov, G. V. Shlyapnikov, and L.
Santos, Duality in Power-Law Localization in Disordered One-
Dimensional Systems, Phys. Rev. Lett. 120, 110602 (2018).

[88] D. O’Leary and G. Stewart, Computing the eigenvalues and
eigenvectors of symmetric arrowhead matrices, J. Comput.
Phys. 90, 497 (1990).

[89] J. Dubail, T. Botzung, D. Hagenmiiller, G. Pupillo, and J.
Schachenmayer (unpublished).

[90] T. Botzung, Study of strongly correlated one-dimensional sys-
tems with long-range interactions, Ph.D. thesis, University of
Strasbourg, Ecole Doctorale des Sciences Chimiques, 2019.

[91] Z. Zhiqiang, C. H. Lee, R. Kumar, K. J. Arnold, S. J. Masson,
A. S. Parkins, and M. D. Barrett, Nonequilibrium phase transi-
tion in a spin-1 Dicke model, Optica 4, 424 (2017).

[92] J. A. Muniz, D. Barberena, R. J. Lewis-Swan, D. J. Young,
J. R. K. Cline, A. M. Rey, and J. K. Thompson, Exploring
dynamical phase transitions with cold atoms in an optical cavity,
Nature 580, 602 (2020).

[93] D. Wellnitz, S. Schiitz, S. Whitlock, J. Schachenmayer, and G.
Pupillo, Collective dissipative molecule formation in a cavity,
Phys. Rev. Lett. (to be published) [arXiv:2002.05601].

144202-11


https://doi.org/10.1103/PhysRevA.75.013804
https://doi.org/10.1103/PhysRevA.97.043858
https://doi.org/10.1051/jphys:0197600370100108700
https://doi.org/10.1103/RevModPhys.76.643
https://doi.org/10.1088/0953-8984/15/50/R01
https://doi.org/10.1103/PhysRevB.76.014304
https://doi.org/10.1103/PhysRevLett.110.040405
https://doi.org/10.1103/PhysRevB.96.104203
https://doi.org/10.1103/PhysRevB.98.161122
https://doi.org/10.1103/PhysRevLett.47.1546
https://doi.org/10.1209/0295-5075/21/9/010
https://doi.org/10.1103/PhysRevB.47.11487
https://doi.org/10.1103/PhysRevB.51.17239
https://doi.org/10.1002/prop.201200082
https://doi.org/10.1209/0295-5075/103/57009
https://doi.org/10.1103/PhysRevE.59.R1315
http://arxiv.org/abs/arXiv:2010.08060
https://doi.org/10.1088/1367-2630/15/11/115002
https://doi.org/10.1103/PhysRevLett.64.547
https://doi.org/10.1103/PhysRevE.54.3221
https://doi.org/10.1103/PhysRevB.94.144206
https://doi.org/10.1103/PhysRevLett.117.020401
https://doi.org/10.1103/PhysRevLett.120.110602
https://doi.org/10.1016/0021-9991(90)90177-3
https://doi.org/10.1364/OPTICA.4.000424
https://doi.org/10.1038/s41586-020-2224-x
http://arxiv.org/abs/arXiv:2002.05601

