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Absence of two-body delocalization transitions in the two-dimensional Anderson-Hubbard model
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We investigate Anderson localization of two particles moving in a two-dimensional (2D) disordered lattice and
coupled by contact interactions. Based on transmission-amplitude calculations for relatively large strip-shaped
grids, we find that all pair states are localized in lattices of infinite size. In particular, we show that previous
claims of an interaction-induced mobility edge are biased by severe finite-size effects. The localization length
of a pair with zero total energy exhibits a nonmonotonic behavior as a function of the interaction strength,
characterized by an exponential enhancement in the weakly interacting regime. Our findings also suggest that the
many-body mobility edge of the 2D Anderson-Hubbard model disappears in the zero-density limit, irrespective
of the (bosonic or fermionic) quantum statistics of the particles.
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I. INTRODUCTION

It is well known that in certain disordered media wave
propagation can be completely halted due to the backscatter-
ing of the randomly distributed impurities. This phenomenon,
known as Anderson localization [1], has been reported for
different kinds of waves, such as light waves in diffusive
media [2,3] or in disordered photonic crystals [4,5], ultra-
sound [6], microwaves [7], and atomic matter waves [8,9]. Its
occurrence is ruled by the spatial dimension of the system
and by the symmetries of the model, which determine its
universality class [10]. When both spin-rotational and time-
reversal symmetries are preserved, notably in the absence of
magnetic fields and spin-orbit couplings, all wave functions
are exponentially localized in one and two dimensions. In
three and higher dimensions the system possesses both lo-
calized and extended states, separated in energy by a critical
point, dubbed the mobility edge, where the system undergoes
a metal-insulator transition [11]. Anderson transitions have
recently been detected using noninteracting atomic quantum
gases [12–14] exposed to three-dimensional (3D) speckle
potentials. Theoretical predictions for the mobility edge of
atoms have also been reported [15–22] and compared with the
experimental data.

Interactions can nevertheless significantly perturb the
single-particle picture of Anderson localization. Puzzling
metal-insulator transitions [23], discovered in high-mobility
2D electron systems in silicon, were later interpreted the-
oretically in terms of a two-parameter scaling theory of
localization, which combines disorder and strong electron-
electron interactions [24,25]. In more recent years a growing
interest has emerged around the concept of many-body
localization [26,27] (MBL), namely the generalization of
Anderson localization to disordered interacting quantum
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systems at finite particle density (for recent reviews see
Refs. [28–30]).

In analogy with the single-particle problem, MBL phases
are separated from (ergodic) thermal phases by critical points
situated at finite energy density, known as many-body mo-
bility edges. While MBL has been largely explored in
one-dimensional systems with short range interactions, both
experimentally [31,32] and theoretically [33–43], its very ex-
istence in systems with higher dimensions remains unclear. In
particular, it has been suggested [44,45] that the MBL is inher-
ently unstable against thermalization in large enough samples.
This prediction contrasts with subsequent experimental [46]
and numerical [47–50] studies of 2D systems of moderate
sizes, showing evidence of a many-body mobility edge. It
must be emphasized that thorough numerical investigations,
including a finite-size scaling analysis, are computationally
challenging beyond one dimension [51].

In the light of the above difficulties, it is interesting to
focus on the localization properties of a few interacting par-
ticles in large (ideally infinite) disordered lattices. Although
these systems may represent overly simplified examples
of MBL states, they can show similar effects, including
interaction-induced delocalization transitions with genuine
mobility edges [52,53]. In a seminal paper [54], Shepelyansky
showed that two particles moving in a one-dimensional lattice
and coupled by contact interactions can travel over a distance
much larger than the single-particle localization length, before
being localized by the disorder. This intriguing effect was
confirmed by several numerical studies [55–65], trying to
identify the explicit dependence of the pair localization length
on the interaction strength. Quantum walk dynamics of two
interacting particles moving in a disordered one-dimensional
lattice has also been explored, revealing subtle correlation
effects [66–70]. Interacting few-body systems with more than
two particles have also been studied numerically in one di-
mension, confirming the stability of the localized phase. In
particular Ref. [71] investigated a model of up to three bosonic
atoms with mutual contact interactions and subject to a
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spatially correlated disorder generated by laser speckles,
while Ref. [72] addressed the localization in the few-particle
regime of the XXZ spin chain with a random magnetic field.

The localization of two interacting particles has been
much less explored in dimensions higher then one. Based on
analytical arguments, it was suggested [73,74] that all two-
particle states are localized by the disorder in two dimensions,
whereas in three dimensions a delocalization transition for the
pair could occur even if all single-particle states are localized.
Nevertheless, subsequent numerical investigations [75–77] in
two dimensions reported evidence of an Anderson transition
for the pair, providing explicit results for the corresponding
position of the mobility edge and the value of the critical
exponent.

Using large-scale numerics, we recently investi-
gated [52,53] Anderson transitions for a system of two
interacting particles (either bosons or fermions with opposite
spins), obeying the 3D Anderson-Hubbard model. We showed
that the phase diagram in the energy-interaction-disorder
space contains multiple metallic and insulating regions,
separated by two-body mobility edges. In particular, we
observed metallic pair states for relatively strong disorder,
where all single-particle states are localized, which can be
thought of as a proxy for interaction-induced many-body
delocalization. Importantly, our numerical data for the
metal-insulator transition were found to be consistent with the
(orthogonal) universality class of the noninteracting model.
This feature is not unique to our model, since single-particle
excitations in a disordered many-body electronic system
also undergo a metal-insulator transition belonging to the
noninteracting universality class [78].

In this work we revisit the Shepelyansky problem in
two dimensions and shed light on the controversy. We find
that no mobility edge exists for a single pair in an infinite
lattice, although interactions can dramatically enhance the
pair localization length. In particular, we show that previous
claims [75–77] of 2D interaction-driven Anderson transitions
were plagued by strong finite-size effects.

The paper is organized as follows. In Sec. II we revisit the
theoretical approach based on the exact mapping of the two-
body Schrödinger equation onto an effective single-particle
problem for the center-of-mass motion. The effective model
allows us to recover the entire energy spectrum of orbitally
symmetric pair states and is therefore equivalent to the exact
diagonalization of the full Hamiltonian in the same subspace;
an explicit proof for a toy Hamiltonian is given in Sec. III.
In Sec. IV we present the finite-size scaling analysis used
to discard the existence of the 2D Anderson transition for
the pair, while in Sec. V we discuss the dependence of the
two-body localization length on the interaction strength. The
generality of the obtained results is discussed in Sec. VI while
in Sec. VII we provide a summary and an outlook.

II. EFFECTIVE SINGLE-PARTICLE MODEL FOR
THE PAIR

The Hamiltonian of the two-body system can be written
as Ĥ = Ĥ0 + Û , whose noninteracting part Ĥ0 can be decom-
posed as Ĥ sp ⊗ 1̂ + 1̂ ⊗ Ĥ sp. Here 1̂ refers to the one-particle
identity operator, while Ĥ sp denotes the single-particle

Anderson Hamiltonian:

Ĥ sp = −J
∑
〈n,m〉

|m〉〈n| +
∑

n

Vn|n〉〈n|, (1)

where J is the tunneling amplitude between nearest neighbor
sites m and n, whereas Vn represents the value of the random
potential at site n. In the following we consider a random
potential which is spatially uncorrelated 〈VnVn′ 〉 = 〈V 2

n 〉δnn′

and obeys a uniform on-site distribution, as in Anderson’s
original work [1]:

P(V ) = 1

W
�(W/2 − |V |), (2)

where �(x) is the Heaviside (unit-step) function and W is the
disorder strength. The two particles are coupled together by
contact (Hubbard) interactions described by

Û = U
∑

m

|m, m〉〈m, m|, (3)

where U represents the corresponding strength. We start
by writing the two-particle Schrödinger equation as (E −
Ĥ0)|ψ〉 = Û |ψ〉, where E is the total energy of the pair. If
U |ψ〉 = 0, then E must belong to the energy spectrum of
the noninteracting Hamiltonian Ĥ0. This occurs for instance
if the two particles correspond to fermions in the spin-triplet
state, as in this case the orbital part of the wave function is
antisymmetric and therefore 〈m, m|ψ〉 = 0.

Interactions are instead relevant for orbitally symmetric
wave functions, describing either bosons or fermions with
opposite spins in the singlet state. In this case from Eq. (3) we
find that the wave function obeys the following self-consistent
equation:

|ψ〉 =
∑

m

UĜ(E )|m, m〉〈m, m|ψ〉, (4)

where Ĝ(E ) = (EÎ − Ĥ0)−1 is the noninteracting two-particle
Green’s function. Equation (4) shows that for contact in-
teractions the wave function of the pair can be completely
determined once its diagonal amplitudes fm = 〈m, m|ψ〉 are
known. By projecting Eq. (4) over the state |n, n〉, we see that
these terms obey a closed equation [52,79,80]:∑

m

Knm fm = 1

U
fn, (5)

where Knm = 〈n, n|Ĝ(E )|m, m〉. Equation (5) is then inter-
preted as an effective single-particle problem with Hamilto-
nian matrix K and pseudoenergy λ = 1/U , corresponding to
the inverse of the interaction strength. In the following we will
address the localization properties of this effective model for
the pair. To this respect, we notice that the matrix elements of
K are unknown and must be calculated explicitly in terms of
the eigenbasis of the single-particle model Ĥ sp|φr〉 = εr |φr〉,
as

Knm =
N∑

r,s=1

φnrφ
∗
mrφnsφ

∗
ms

E − εr − εs
, (6)

where N is the total number of lattice sites in the grid and
φnr = 〈n|φr〉 are the amplitudes of the one-particle wave
functions.
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III. EQUIVALENCE WITH EXACT DIAGONALIZATION
OF THE FULL MODEL

The effective single-particle model of the pair, Eq. (5),
allows us to reconstruct the entire energy spectrum of or-
bitally symmetric states for a given interaction strength U .
At first sight this is not obvious because the matrix K is
N × N , and therefore possesses N eigenvalues, while the di-
mension of the Hilbert space of orbitally symmetric states is
N (N + 1)/2, which is much larger. The key point is that one
needs to compute the matrix K and the associated eigenvalues
λr = λr (E ), with r = 1, 2, . . . , N , for different values of the
energy E . The energy levels for fixed U are then obtained by
solving the equations λr (E ) = 1/U via standard root-finding
algorithms. Let us illustrate the above point for a toy model
with N = 2 lattice sites in the absence of disorder. In this
case the Hilbert space of symmetric states is spanned by
the three vectors |1, 1〉, |2, 2〉, and (|1, 2〉 + |2, 1〉)/

√
2. The

corresponding energy levels of the pair can be found from
the exact diagonalization of the 3 × 3 matrix of the projected
Hamiltonian:

Hed =

⎛
⎜⎝

U −√
2 0

−√
2 0 −√

2

0 −√
2 U

⎞
⎟⎠. (7)

An explicit calculation yields E = U and E = (U ±√
U 2 + 16)/2. Let us now show that we recover exactly the

same results using our effective model. The single-particle
Hamiltonian is represented by the matrix

H sp =
( 0 −1
−1 0

)
, (8)

whose eigenvalues are given by ε1 = −1 and ε2 = 1. The
associated wave vectors are |φ1〉 = (|1〉 + |2〉)/2 and |φ2〉 =
(|1〉 − |2〉)/2. From Eq. (6) we immediately find

K =
(A B

B A

)
, (9)

where A = [E/(E2 − 4) + 1/E ]/2 and B = [E/(E2 − 4) −
1/E ]/2. The corresponding eigenvalues of K are given
by λ1(E ) = A − B = 1/E and λ2(E ) = A + B = E/(E2 −
4). The condition λ1 = 1/U yields E = U , while λ2 = 1/U
admits two solutions, E = (U ± √

U 2 + 16)/2, allowing us
to recover the exact-diagonalization energy spectrum. In
Fig. 1 we plot the energy dependence of the two eigenval-
ues of K for our toy model. Intersecting the curves with the
horizontal line λ = 1/U (dashed red line) yields visually the
three sought energy levels for the orbitally symmetric states.

We stress that extracting the full energy spectrum of the
pair based on the effective model, for a fixed value of the
interaction strength U , is computationally demanding as N
becomes large. The effective model is instead very efficient,
as compared to the exact diagonalization, when we look at the
properties of the pair as a function of the interaction strength
U , for a fixed value of the total energy E . This is exactly the
situation that we will be interested in below.
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FIG. 1. Eigenvalues of the matrix K of the effective model of the
pair, Eq. (5), for a toy model of N = 2 coupled sites with no disorder,
plotted as a function of the energy E of the pair (blue data curves).
For a given interaction strength U , the entire spectrum of N (N +
1)/2 energy levels of orbitally symmetric states of the pair can be
obtained by intersecting the data curves with the horizontal line λ =
1/U , here shown for U = 1 (dashed red line). The corresponding
three energy levels are E = −1.56155, E = 1, and E = 2.56155.

IV. ABSENCE OF 2D DELOCALIZATION TRANSITIONS
FOR THE PAIR

Numerical evidence of 2D Anderson transition for two
particles obeying the Anderson-Hubbard model in two dimen-
sions was first reported [75] on the basis of transmission-
amplitude calculations [81] performed on rectangular strips
of length L = 62 and variable width up to M = 10. For a
pair with zero total energy and for interaction strength U = 1,
the delocalization transition was found to occur for W = 9.3
± 0.5. The result was also confirmed [76] from the analysis
of the energy-level statistics, although with slightly different
numbers.

The existence of a 2D mobility edge for the pair was also
reported in Ref. [77], where a decimation method was em-
ployed to compute the critical disorder strength as a function
of the interaction strength U , based on lattices of similar sizes.
For U = 1.59, a pair with zero total energy was shown to
undergo an Anderson transition at W = 9 ± 0.13.

Below we verify the existence of the 2D delocalization
transition of the pair, following the procedure developed in
Ref. [52]. In order to compare with the previous numerical
predictions, we set E = 0 and W = 9. We consider a rectan-
gular strip of dimensions L, M, with L � M, containing N =
ML lattice sites. In order to minimize finite-size effects, the
boundary conditions on the single-particle Hamiltonian H sp

are chosen periodic in the orthogonal direction (y) and open
along the transmission axis (x). We rewrite the right-hand side
(rhs) of Eq. (6) as

Knm =
∑
r=1

φnrφ
∗
mr〈n|Gsp(E − εr )|m〉, (10)

where Gsp(ε) = (εI − H sp)−1 is the Green’s function
(e.g., the resolvent) of the single-particle Anderson
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Hamiltonian (1), I being the identity matrix. Due to the
open boundary conditions along the longitudinal direction,
the Anderson Hamiltonian possesses a block tridiagonal
structure, each block corresponding to a transverse section of
the grid. This structure can be exploited to efficiently compute
the Green’s function Gsp(ε) in Eq. (10) via matrix inversion.
In this way the total number of elementary operations needed
to compute the matrix K scales as M4L3, instead of M4L4, as
naively expected from the rhs of Eq. (6).

Once we compute the matrix K of the effective model, we
use it to evaluate the logarithm of the transmission amplitude
between two transverse sections of the strip as a function of
their relative distance nx:

F (nx ) = ln
∑
my,ny

|〈1, my|Gp(λ)|nx, ny〉|2. (11)

In Eq. (11) Gp(λ) = (λI − K )−1 is the Green’s function as-
sociated with K with λ = 1/U and the sum is taken over the
sites my, ny of the two transverse sections. For each disorder
realization, we evaluate F (nx ) at regular intervals along the
bar and apply a linear fit to the data f f it (nx ) = pnx + q. For
a given value of the interaction strength, we evaluate the
(disorder-averaged) Lyapunov exponent γ = γ (M,U ) as γ =
−p/2, where p is the average of the slope. We then infer the
localization properties of the system from the behavior of the
reduced localization length, which is defined as 	 = (Mγ )−1.
In the metallic phase 	 increases as M increases, whereas in
the insulating phase the opposite trend is seen. At the critical
point, 	 becomes constant for values of M sufficiently large.
Hence the critical point U = Uc of the Anderson transition can
be identified by plotting the reduced localization length versus
U for different values of the transverse size M and looking at
their common crossing points.

In Fig. 2 we show the reduced localization length 	 as a
function of the interaction strength for increasing values of
the strip width, ranging from M = 8 to M = 20. The length
of the grid is fixed to L = 400. Notice that, since E = 0,
the reduced localization length is an even function of the
interaction strength 	(−U ) = 	(U ). We see that 	 exhibits
a nonmonotonic dependence on U , as previously found in
one [63] and in three [52] dimensions. In particular, interac-
tions favor the delocalization of the pair, the effect being more
pronounced near U = 6. We also notice from Fig. 2 that the
curves corresponding to different values of M intersect each
others around U = 1, suggesting a possible phase transition,
as previously reported in Refs. [75,77]. A closer inspection of
the data, however, reveals that the crossing points are spread
out in the interval 0.73 � U � 1.1; in particular, they drift to
stronger interactions as the system size increases, in analogy
with the three-dimensional case [52].

A key question is whether a further increase of the strip’s
width M will only cause a (possibly large) shift of the critical
point, or rather, the localized phase will ultimately take over
for any value of the interaction strength. To answer this ques-
tion, we have performed additional calculations using larger
grids, corresponding to M = 30, 40, 50. In order to guarantee
a sufficiently large aspect ratio, the length of the bar was fixed
to L = 500. The obtained results are displayed in Fig. 3. We
notice that the crossing points have completely disappeared

0.4 1 4 10
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0
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Λ

M=8 
M=10
M=12
M=16 
M=20 

FIG. 2. Reduced localization length of the pair plotted as a func-
tion of the interaction strength for increasing values of the transverse
size M = 8, 10, 12, 16, 20 of the grid. The results are obtained
by averaging over Ntr different disorder realizations, varying from
Ntr = 600 (M = 8) to Ntr = 1000 (M = 20). The disorder strength
is fixed to W = 9 and the pair has zero total energy E = 0, imply-
ing that 	(−U ) = 	(U ). The different curves cross in the interval
0.75 < U < 1.1, indicating a possible 2D delocalization transition,
as claimed in previous investigations [75,77]. The 2D Anderson tran-
sition is actually a finite-size effect, as the crossing points disappear
for larger values of M, see Fig. 3.

and the pair localizes in an infinite lattice irrespectively of the
specific value of U . This leads us to conclude that the results
of Refs. [75,77] were plagued by severe finite-size effects,
due to the limited computational resources, and no Anderson
transition can actually take place for a pair in a disordered
lattice of infinite size.
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U
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1
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Λ

M=30 
M=40
M=50

FIG. 3. Same plot as in Fig. 2 but for larger grids with transverse
sizes M = 30, 40, 50 obtained by averaging over Ntr = 3600 (M =
30), 4400 (M = 40), and Ntr = 2850 (M = 50) different disorder
realizations. Notice that all crossing points have disappeared, indi-
cating that the pair is ultimately localized by the disorder for any
value of the interaction strength.

144201-4



ABSENCE OF TWO-BODY DELOCALIZATION … PHYSICAL REVIEW B 102, 144201 (2020)

V. PAIR LOCALIZATION LENGTH

Although the pair cannot fully delocalize in two dimen-
sions, interactions can lead to a drastic enhancement of the
two-particle localization length. This quantity can be esti-
mated using the one-parameter scaling ansatz 	 = f (ξ̃ /M ),
stating that the reduced localization length depends solely on
the ratio between two quantities: the width M of the strip
and a characteristic length ξ̃ = ξ̃ (U,W, E ), which instead
depends on the model parameters and on the total energy of
the pair (but not on the system sizes L, M). This latter quantity
coincides, up to a multiplicative numerical constant a, with the
pair localization length, ξ = aξ̃ .

We test the scaling ansatz for our effective model (5)
using the numerical data for M = 30, 40, 50 displayed in
Fig. 3, corresponding to the largest system sizes. Let Uj , with
j = 1, 2, . . . , NU , be the values of the interaction strength
used to compute the reduced localization length (in our case
NU = 44). We then determine the corresponding unknown
parameters ξ̃ (U = Uj ) through a least squares procedure, fol-
lowing the procedure developed in Ref. [81]. Plotting our
data in the form ln 	(M,U ) vs ln M results in multiple data
curves, each of them containing three data points connected
by straight lines (corresponding to linear interpolation). Let
	i be one of the (3NU ) numerical values available for the
reduced localization length. The horizontal line ln 	 = ln 	i

will generally intersect some of these curves. We find it con-
venient to introduce a matrix η which keeps track of such
events: if the curve U = Uj is crossed, we set ηi j = 1 and
call ln Mi j the corresponding point; otherwise we set ηi j = 0.
The unknown parameters are then obtained by minimizing the
variance of the difference ln M − ln ξ̃ , yielding the following
set of equations (see Ref. [81] for a detailed derivation):

∑
j

[∑
i

ηi j

(
1

N2
i

− δ jk

Ni

)]
ln ξ̃ (Uj )

=
∑

j

[∑
i

ηi j

(
1

N2
i

− δ jk

Ni

)
ln Mi j

]
, (12)

where Ni = ∑
j ηi j is the total number of crossing points ob-

tained for each 	i value. Equation (12) is of the form AX = B
and can be easily solved. Notice however that the solution
is not unique because the matrix A is singular. Indeed the
correlation length ξ̃ (U ) is defined up to a multiplicative con-
stant, ξ̃ → aξ̃ , implying that ln ξ̃ is defined up to an additive
constant ln ξ̃ → ln ξ̃ + ln a.

In Fig. 4 we verify the correctness of the scaling ansatz,
by plotting the reduced localization length as a function of the
ratio ξ̃ /M, where ξ̃ is obtained from the solution of Eq. (12).
We see that our numerical data for different values of the
interaction strength and system size do collapse on a single
curve, thus confirming the scaling hypothesis. In the main
panel of Fig. 5 we plot the unnormalized localization length
of the pair as a function of the interaction strength. We see
that ξ̃ varies over more than three orders of magnitude in
the interval of U values considered. In particular, for weak
interactions the growth is approximately exponential in U , as
highlighted by the semi-logarithmic plot. Based on analytical
arguments, Imry suggested [73] that the localization length
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 Λ
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FIG. 4. Double logarithmic plot of the reduced localization
length as a function of the ratio ξ̃ /M, where ξ̃ is the unnormalized lo-
calization length obtained from the solution of Eq. (12) and M is the
width of the strip. The different symbols correspond to the data for
M = 30 (up triangles), M = 40 (circles), and M = 50 (diamonds),
shown in Fig. 3. All data approximately collapse on a single curve,
verifying the scaling ansatz 	 = f (ξ̃ /M ).

of the pair in the weakly interacting regime should obey the
relation ξ ∝ ξspeb(Uξsp )2

, where ξsp is the single-particle local-
ization length of the Anderson model and b is a numerical
factor. A possible reason of the discrepancy is that the cited
formula might apply only for relatively modest values of the
interaction strength, which were not explored in our numerics.
Further work will be needed to address this point explicitly.
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FIG. 5. Unnormalized localization length ξ̃ of the pair plotted as
a function of the interaction strength. Notice the logarithmic scale in
the y axis, showing that interactions can enhance the 2D localization
length of the pair by more than three orders of magnitude. The
inset displays the estimate of the multiplicative constant a, fixing the
absolute scale of the localization length, plotted as a function of the
interaction strength. The estimate is obtained by fitting the numerical
data in Fig. 3 corresponding to weak interactions using Eq. (13), from
which we extract aest = ξ/ξ̃ . This quantity keeps increasing as U
diminishes, signaling that the strongly localized regime is not fully
reached in our simulations.
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The constant a, allowing us to fix the absolute scale of the
localization length of the pair, is independent of the interaction
strength. Its numerical value can in principle be inferred by
fitting the data in the strongly localized regime, according to

	 = ξ

M
+ c

( ξ

M

)2

, (13)

where c is a number. In our case the most localized states
are those at weak interactions, where the reduced localization
length takes its minimum value. For each value U = Uj falling
in this region, we fit our numerical data according to Eq. (13),
yielding ξ = ξ (U ). The estimate of the multiplicative con-
stant, which is defined as aest = ξ (U )/ξ̃ (U ), is displayed in
the inset of Fig. 5. Since the estimate of a does not saturates
for small U , we conclude that, even for the weakest interac-
tions and the largest system sizes considered, the pair has not
yet entered the strongly localized regime underlying Eq. (13).
This asymptotic regime is typically achieved for 	 � 0.1,
whereas our smallest value of the reduced localization length
is 	(M = 50,U = 0.5) � 0.2929. From the inset of Fig. 5
we also see that aest increases as U diminishes, suggesting
that the result obtained for U = 0.5 actually provides a lower
bound for the multiplicative constant. This allows us to con-
clude that a � 18.2.

VI. GENERALITY OF THE OBTAINED RESULTS

In Sec. IV we have shown that all pair states with total
energy E = 0 are localized for W = 9. A natural question is
whether the localization scenario changes at nonzero energy
or at weak disorder. Let us consider the two cases separately.
Our numerical results indicate that, for any values of U,W and
system size M, the reduced localization length always takes its
maximum value for E = 0:

	(E , M,U,W ) � 	(0, M,U,W ). (14)

As an example, in Fig. 6 we plot 	 as a function of the inter-
action strength, for W = 9 and for different negative values of
the energy (results for positive energies are simply obtained
from the corresponding data at energy −E by reversing the
sign of the interaction strength U → −U ). All calculations
are performed on a strip with constant sizes M = 12 and L =
400. When combined with the finite-size scaling analysis, the
inequality (14) implies that the pair remains localized for any
nonzero energy with an even shorter localization length, thus
excluding a delocalization transition. The above inequality
expresses the general fact that the pair can better spread when
its total energy lies in the middle of the noninteracting two-
particle energy spectrum. For instance, in three dimensions,
where genuine Anderson transitions for the pair do occur, we
found [53] that metallic regions in the interaction-disorder
plane become progressively insulating as the energy of the
pair departs from zero.

We note from Fig. 6 that all data curves with |E | � 8 have
absolute minimum at U = 0. Moreover, the largest enhance-
ment of the reduced localization length takes place for weaker
interactions as |E | increases. These are specific features of
scattering states, whose energy lies inside the noninteracting
two-body energy spectrum, as already observed in one [63]
and in three [53] dimensions. In the asymptotic regime
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FIG. 6. Reduced localization length of the pair as a function of
the interaction strength for W = 9 and for different values of the total
energy going from E = 0 (top curve) to E = −12 (bottom curve).
The sizes of the strip is M = 12 and L = 400, while the number
of different disorder realizations is Ntr = 1000. The data show that
the pair state with zero total energy possesses the largest reduced
localization length, see Eq. (14), implying that for W = 9 the pair
remains localized for any nonzero total energy.

|E | � W , pairs behave as pointlike molecules and the effec-
tive model K takes the form of a single-particle Anderson
model, as discussed in Ref. [53], which again precludes the
possibility of a delocalization transition in two dimensions.

Let us now discuss whether an Anderson transition for
the pair can appear for weak disorder at fixed total energy
E = 0. The effective single-particle model K possesses both
time reversal and spin rotational symmetries, suggesting that
K belongs to the same (orthogonal) universality class of the
Anderson model Ĥ sp. In Ref. [52] we showed numerically
that, in three dimensions, the Anderson transition for a pair
with zero energy yields critical exponents in agreement with
the predictions of the orthogonal class. Since 2D Anderson
transitions are generally forbidden in the orthogonal class, one
expects that the pair is localized for any finite disorder. For this
reason, the previous claims of 2D delocalization transitions
for two particles are puzzling. Our numerics shows explicitly
that these results were biased by strong finite-size effects
and there is no evidence of violation of the conventional
localization scenario.

From the numerical point of view, the observation of the
asymptotic 2D scaling behavior for W = 9 required large
system sizes as compared to the 3D case studied in Ref. [52],
where the finite-size scaling analysis was limited to system
sizes up to M = 17. Verifying numerically the absence of
the 2D transition for weaker disorder is very challenging, be-
cause the reduced localization length will exhibit an apparent
crossing for even larger values of M as W diminishes. To
appreciate this point, we have repeated the same finite-size
scaling analysis for W = 10 and plotted the results in Fig. 7.
We see that, already for M = 22, the pair is localized for
any values of the interaction strength, whereas for W = 9 the
same asymptotic behavior is reached for larger system sizes,
between M = 30 and M = 40.
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FIG. 7. Finite-size scaling analysis for W = 10 and E = 0. The
reduced localization length is plotted as a function of the interaction
strength for different system sizes M = 8 (squares), 10 (circles),
13 (up triangles), 22 (down triangles), and 38 (right triangles). The
length of the strip is L = 400 for M � 13 and L = 500 otherwise.
Notice that the two-particle system exhibits an insulating behavior
already for M = 22. The number of different disorder realizations is
Ntr = 600 for M = 38 and Ntr = 1000 otherwise.

VII. CONCLUSION AND OUTLOOK

Based on an efficient mapping of the two-body
Schrödinger equation, we have addressed the localization
properties of two bosons or two spin-1/2 fermions in a singlet
state obeying the 2D Anderson-Hubbard model. We have
found that no interaction-induced Anderson transition occurs
for disordered lattices of infinite size in contrast with previous
numerical works, which we have shown to be biased by
finite-size effects. In this way we reconcile the numerics with
the one-parameter scaling theory of localization, predicting
the absence of one-particle Anderson transition in two
dimensions, in the presence of both time reversal and spin
rotational symmetries. Moreover, we found that the pair

localization length exhibits a nonmonotonic behavior as a
function of U , characterized by an exponential growth for
weak interactions.

We point out that the absence of the 2D mobility edge
for the two-particle system has been proven for the case of
contact interactions; similar conclusions should apply also for
short but finite-range interactions. The case of true long-range
(e.g Coulomb) interactions is conceptually different and can
lead to opposite conclusions [76,82]. From the above dis-
cussion, we also expect that the 2D delocalization transition
will appear when the two particles are exposed to spin-orbit
couplings, driving the system towards the symplectic univer-
sality class, where single-particle metal-insulator transitions
are generally allowed even in two dimensions [11].

An interesting and compelling problem is to investigate the
implications of our results for a 2D system at finite density
of particles, where many-body delocalization transitions have
instead been observed, both numerically and experimentally,
in the strongly interacting regime. We expect that, in the
zero density limit, the many-body mobility edge disappears,
irrespective of the bosonic or fermionic statistics of the two
particles. Another interesting direction is to generalize our
numerical approach to study the effect of disorder on the
transport and spectral properties of excitons in 2D semicon-
ductors [83].
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