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One of the hallmarks of quantum statistics, tightly entwined with the concept of topological phases of matter,
is the prediction of anyons. Although anyons are predicted to be realized in certain fractional quantum Hall
systems, they have not yet been unambiguously detected in experiment. Here we introduce a simple quantum
impurity model, where bosonic or fermionic impurities turn into anyons as a consequence of their interaction with
the surrounding many-particle bath. A cloud of phonons dresses each impurity in such a way that it effectively
attaches fluxes or vortices to it and thereby converts it into an Abelian anyon. The corresponding quantum
impurity model, first, provides a different approach to the numerical solution of the many-anyon problem, along
with a concrete perspective of anyons as emergent quasiparticles built from composite bosons or fermions. More
importantly, the model paves the way toward realizing anyons using impurities in crystal lattices as well as
ultracold gases. In particular, we consider two heavy electrons interacting with a two-dimensional lattice crystal
in a magnetic field, and show that when the impurity-bath system is rotated at the cyclotron frequency, impurities
behave as anyons as a consequence of the angular momentum exchange between the impurities and the bath. A
possible experimental realization is proposed by identifying the statistics parameter in terms of the mean-square
distance of the impurities and the magnetization of the impurity-bath system, both of which are accessible to
experiment. Another proposed application is impurities immersed in a two-dimensional weakly interacting Bose
gas.
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I. INTRODUCTION

A topological classification of interacting quantum states
is crucial in the context of current research on topological
states of matter [1–4]. The discovery of such states in the
fractional quantum Hall effect (FQHE) [5] has revolutionized
our understanding of the quantum properties of matter, and
hence they are becoming landmarks for the current as well as
future research directions in physics. One of the most impor-
tant characterizations of topological states of matter is in terms
of the underlying fractionalized excitations. As proposed by
Laughlin [6], the excitations in the FQHE are fractionally
charged quasiparticles, which were later demonstrated to be
anyons with fractional statistics [7]. Since then, anyons have
received a significant amount of attention, also because of
their potential role in quantum computation [8–11]. Exper-
imental evidence of anyons, on the other hand, is not yet
conclusive and currently contested, despite that two recent
works have reported encouraging results in that direction
[12,13].

Anyons are a type of quasiparticle whose quantum statis-
tics interpolates between bosons and fermions. They occur
only in lower-dimensional systems, i.e., mainly in two di-
mensions and to some extent in one dimension, although the
latter will not be our focus here. The possibility of anyons in
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two dimensions may be traced to the algebraic triviality of
the rotation group SO(2) and the topological nontriviality of
a two-dimensional (2D) configuration space with a point re-
moved. Indeed, the symmetrization postulate which had been
taken for granted during the first half of a century of quantum
mechanics was called into question for such geometries in
the 1960s–1980s [14–23]. As elaborated for the first time by
Leinaas and Myrheim [18], this leads to the possibility that
when two identical particles are exchanged in two dimensions,
the statistics parameter α can assume any intermediate value
between 0 (bosons) and 1 (fermions):

ψA(r, ϕ + π ) = eiπα ψA(r, ϕ), (1)

where ψA(r, ϕ) is the two-body wave function in relative
coordinates (r, ϕ). As a consequence, anyons have a pe-
culiar property: when they are interchanged twice in the
same way, the wave function does not return to the original.
Namely, under a 2π rotation, the relative wave function is
not single valued, ψA(r, ϕ + 2π ) = e2iπα ψA(r, ϕ). Neverthe-
less, if ψA(r, ϕ) is an eigenstate of some Hamiltonian Ĥ ,
one may introduce a single-valued wave function ψ (r, ϕ) =
exp[−iαϕ]ψA(r, ϕ), which is governed by the Hamiltonian

e−iαϕ Ĥ (∂/∂ϕ) eiαϕ = Ĥ (∂/∂ϕ + iα), (2)

where the statistics parameter now emerges as a gauge field.
This establishes a connection between the statistics and gauge
fields, and further implies that the orbital angular momen-
tum of two particles in relative coordinates, which is given
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by −i∂/∂ϕ + α, is nonintegral [18,20]. Such a configuration
can be obtained with a magnetic field which substitutes the
role of the statistics gauge field. This concept of anyons was
discussed by Wilczek [20,21], who realized them as a flux-
tube-charged-particle composite, a charged particle “orbiting
around” a magnetic flux απ .

The picture of flux-tube-charged-particle composites pro-
vides a formal description of anyons. From the practical point
of view, however, it does not give much insight concerning a
physical realization. Indeed, there has been a recent upsurge
in interest concerning the realization of anyons as emergent
quasiparticles in experimentally feasible systems, in particular
from the perspective of deriving robust, testable predictions
such as density signatures [24–30]. Also, the emergence of
anyons in a FQHE setting by means of attachment of flux
via Laughlin quasiholes was recently revisited and elabo-
rated on in Ref. [31]. Here our main motivation is to define
a physical Hamiltonian for a bipartite system such that the
statistics gauge field emerges as a consequence of the interac-
tion between the two subsystems [32,33]. In particular, due to
its experimental feasibility, we consider a quantum impurity
model.

The presence of individual quantum particles, called im-
purities, is almost inevitable in many quantum settings.
In several situations, ranging from crystals to helium nan-
odroplets to neutron stars, impurities are coupled to a complex
many-body environment [34–38]. Their interaction with a
surrounding quantum-mechanical medium is the focus of
quantum impurity problems. Impurities do not only appear to
be good descriptions of experimental reality, but also provide
intricate examples of quantum critical phenomena [39,40]. In
general, quasiparticles formed by impurities are considered as
an elementary building block of complex many-body systems.
A well-known example is the polaron, which has been in-
troduced as a quasiparticle consisting of an electron dressed
by lattice excitations in a crystal [34–36]. Over the years,
with the help of recent advances in ultracold atomic physics,
which enable a high degree of control over experimental
parameters such as interactions and impurity concentration,
quantum impurities have been investigated in several differ-
ent experimental and theoretical studies [37,41–50]. In recent
works [29,33], it has been demonstrated that the many-particle
environment manifests itself as an external gauge field with
respect to the impurities. It has been also shown in Ref. [29]
that the angular momentum of a quantum planar rotor be-
comes fractional when it interacts with a 2D many-particle
environment. This configuration resembles a two-anyon prob-
lem in relative coordinates when the relative distance between
impurities is fixed.

In this paper, we consider identical impurities immersed in
a many-particle bath and show that they turn into anyons in the
introduced model as a consequence of their interaction with
the surrounding bath. Particularly, we treat the impurities as
a slow/heavy and the surrounding bath as a fast/light system,
and demonstrate that the latter manifests itself as a statistics
gauge field with respect to the impurities. Excitations of the
surrounding bath, a cloud of phonons, attach vortices to each
impurity so that the quasiparticle formed from the impurity
dressed by phonons becomes an anyon. The main contribu-
tions of the paper can be summarized as follows:

(1) The introduced impurity model provides a different
perspective of anyons as emergent quasiparticles built from
composite bosons or fermions and a coherent state of quan-
tized vortices. Such a perspective is not only conceptually
helpful but also opens up different and simple numerical ap-
proaches to investigate the spectra of many anyons.

(2) The model further paves the way toward realizing
anyons in terms of impurities in standard condensed matter
systems such as crystal lattices and ultracold gases. This offers
a significant practical advantage over the strongly correlated
materials which to date typically have been investigated to
realize anyons.

(3) The statistics parameter of the emerging anyons is
identified as the phonon angular momentum, which allows
us to measure the statistics parameter in terms of the mean-
square distance of the impurities and the magnetization of the
impurity-bath system.

The paper is organized as follows. In Sec. II we present
the basic machinery for anyons and give a brief review of
the regular ideal anyon Hamiltonian. Afterward, in Sec. III,
based on the emergent gauge picture, we derive the Hamil-
tonian of a quantum impurity model whose adiabatic limit
corresponds to anyons. We present a transparent model where
the impurities couple only to a single phonon mode. Then, we
exemplify the model by investigating two- and three-impurity
problems and their exact numerical spectra. In Sec. IV we
present an approach to the numerical solution of the many-
anyon problem and provide a perspective of anyons in terms
of composite bosons or fermions. We discuss a possible ex-
perimental realization of the model in Sec. V by considering
heavy impurities interacting with collective excitations of a
bath within the Fröhlich-Bogoliubov model. We conclude the
paper in Sec. VI with a discussion of our results and ques-
tions for future work. The Appendix provides some further
technical details. Throughout the paper we use natural units
(h̄ ≡ M ≡ 1), unless otherwise stated.

II. ANYON HAMILTONIAN

In general, one can derive the statistics gauge field within
Chern-Simons theory [51–54]. The action of a system of
nonrelativistic charged particles with mass M coupled to the
Abelian Chern-Simons gauge fieldAμ is given by

S = M

2

∫
dt

N∑
q=1

ẋ2
q +

∫
d3yAμ jμ

+ κ

2

∫
d3y εμνρAμ∂νAρ. (3)

Here jμ(y) = ∑N
q=1 ẏμδ(2)(y − xq) is a pointlike source, κ =

1/(2πα) the level parameter, which assumes any number,1

1We note that in Chern-Simons theory, the flux is given by � = 1/κ

so that the statistics parameter reads as α = �/(2π ), whereas in the
flux-tube-charged-particle composite picture, i.e., in Maxwell theory,
the statistics parameter is given by α = 2ξ/(2π ) with ξ being the
flux of the each composite. In other words, the statistics phase is
half of the flux in the former case, whereas in the latter case it is
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and εμνρ the (2 + 1)-dimensional Levi-Civita symbol. The let-
ters μ, ν, ρ indicate the (2 + 1)-dimensional Lorentz indices,
i.e., μ = 0 denotes the time component, whereas μ = 1, 2 are
the space components. By solving the zeroth component of
the equations of motion, δS/δA0 = 0 and defining A = αA,
one obtains the statistics gauge field:

Ai
q = ∂

∂xi
q

N∑
p′>p

�p′ p =
N∑

p( �=q)=1

εi j
(
x j

p − x j
q
)

|xp − xq|2 , (4)

where
∑

q>p denotes the summation over both of the par-
ticle indices q and p with the condition q > p, �qp =
tan−1 [x2

qp/x1
qp] is the relative polar angle between particles

q and p, xi
qp = xi

q − xi
p, and we define εi j = ε0i j with ε12 =

1. The Hamiltonian for N ideal noninteracting anyons with
statistics parameter α can be written as

ĤN-anyon = −1

2

N∑
q=1

[∇q + iαAq]2. (5)

Without loss of generality, we consider the Hamiltonian
ĤN-anyon to act on bosonic states, i.e., the Hilbert space H =
L2

sym(R2N ) of square-integrable functions on R2N which are
symmetric with respect to exchange. Later we also consider
fermionic states by changing α to α − 1 and acting on anti-
symmetric functions L2

asym(R2N ).

A. Regular anyon Hamiltonian

The eigenvalue problem for the Hamiltonian (5) has been
solved analytically only for the two-anyon case [18,21,55]
(see also Refs. [56,57] for a system of two anyons in
the presence of the Coulomb potential), while for three or
more particles only part of the spectrum is known exactly.
The three- and four-anyon spectra have been investigated
by means of numerical diagonalization techniques [58–61],
and a subspace of exact eigenstates is also known analyt-
ically for arbitrary N [62–66]. Rigorous upper and lower
bounds on the exact ground-state energy were established
in Refs. [67–72]. Another approach has been to first reg-
ularize the Hamiltonian (5) by making the fluxes extended
[73–76], and in this situation an exact average-field theory and
a corresponding Thomas-Fermi theory may be derived in the
almost-bosonic limit α ∼ N−1 → 0 [30,77–80]. Also, singu-
lar or point-interacting anyons may be considered [81–85], as
well as anyons regularized by a strong magnetic field [86]. See
Refs. [23,52,65,66] for reviews.

For ideal pointlike anyons, however, the form of the Hamil-
tonian (5) leads to some singularity problems when the anyon
spectrum is investigated from the bosonic end. For exam-
ple, let us consider two anyons confined additionally in a

equivalent to the flux. This can be intuitively understood as follows.
Interchanging two particles in Chern-Simons theory gives only the
phase from the charges moving around the fluxes, but no contribution
from the fluxes moving around the charges, whereas in Maxwell
theory interchanging two composites gives the sum of these two
phases [52].

harmonic-oscillator potential. The Hamiltonian in relative co-
ordinates is given by

Ĥ2-anyon = − 1

2r2

( ∂

∂ϕ
+ iα

)2

− 1

2r

∂

∂r

(
r

∂

∂r

)
+ r2

2
. (6)

We observe that this form of the Hamiltonian allows neither a
perturbative treatment of the problem nor the use of diagonal-
ization techniques with respect to the free operator. Namely,
the matrix element 〈l, m|r−2|l, m〉, where the state |l, m〉 is
the eigenstate of the harmonic oscillator in polar coordinates
with the principal and magnetic quantum numbers l and m,
respectively, is logarithmic divergent for the m = 0 states. For
the three-anyon case, on the other hand, the problem occurs
for all the zeroth-order bosonic eigenstates [87]. This is a
well-known problem, which necessitates a certain (arguably
somewhat ambiguous) scheme to select regular solutions cor-
responding to free anyons; see, for instance, Refs. [87–90]
[indeed free anyons must be regular, which in technical terms
corresponds to selecting the Friedrichs extension away from
two-particle diagonals as the preferred self-adjoint realization
of Eq. (5) [70].]

This problem can be overcome with the similarity trans-
formation ˆ̃H2-anyon = r−αĤ2-anyonrα , which is a self-adjoint
Hamiltonian in the L2 space weighted by the measure r2α+1dr.
In the transformed Hamiltonian the divergent term van-
ishes [54]. In fact, this transformation corresponds to a
“real gauge transformation” leading to an imaginary vec-
tor potential. In other words, it leads to the replacement of
∂/∂r → ∂/∂r + α/r in the Hamiltonian (6). If we further
combine this transformation with the one given in Eq. (2),
the regular (singular-free) two-anyon Hamiltonian can be ob-
tained directly from the bosonic (α = 0) Hamiltonian via the
transformation

ˆ̃H2-anyon = exp[−iα(ϕ − i ln r)]Ĥ2-boson exp[iα(ϕ − i ln r)].
(7)

We can generalize this and obtain the regular N-anyon Hamil-
tonian as

ˆ̃HN-anyon =
(

N∏
q>p

z−α
qp

)
ĤN-boson

(
N∏

q>p

zα
qp

)

= −1

2

N∑
q=1

[∇q + iαÃq]2 (8)

with the complex gauge field

Ãq = ∇q

N∑
p′>p

(�p′ p − i ln rp′ p), (9)

where we define ĤN-boson = −∑N
q=1 ∇2

q/2, zqp = x1
qp +

ix2
qp = ei(�qp−i ln rqp), and rqp = |xq − xp|. In the gauge field

(9) the second term identifies the imaginary vector potential
that eliminates the singularities arising due to the first term.
This can be observed with the disappearance of the Ã

2
q term

in the Hamiltonian, i.e., Ã
2
q = A2

q − A2
q = 0 because of the

Cauchy-Riemann equations [note that the terms in (9) are each
other’s harmonic conjugates]. The N-anyon Hamiltonian in
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this gauge can be written as

ˆ̃HN-anyon = −1

2

N∑
q=1

(
∇2

q + 2iα
N∑

p( �=q)=1

εi jx j
pq + ixi

pq

r2
pq

∂

∂xi
q

)
.

(10)
The above Hamiltonian is again self-adjoint in a weighted
space (with the weight

∏
q>p r2α

qp multiplying the usual mea-
sure), and it may serve as a model Hamiltonian for the
calculation of the corresponding anyon spectra. Therefore, in
the rest of the paper we will also consider this computation-
ally convenient regular Hamiltonian ˆ̃HN-anyon, even though the
main emphasis will be placed on the physical one ĤN-anyon.

III. IMPURITY MODEL

We start by considering impurities immersed in a weakly
interacting bath. Within the Fröhlich-Bogoliubov theory
[36,91,92], a general Hamiltonian of an impurity problem is
given by

Ĥqim = −
N∑

q=1

∇2
q

2
+

�∑
l=1

ωl b̂†
l b̂l

+
�∑

l=1

λl (x)
(
e−iβl (x)b̂†

l + eiβl (x)b̂l
)
. (11)

Here, the first term corresponds to the kinetic energy of the
identical impurities, which are considered to be either bosons
or fermions. The second term is the kinetic energy of the
many-particle bath, whose collective excitations are given
with a gapped dispersion relation ωl . In what follows, we will
refer these excitations simply as “phonons” regardless of its
actual meaning. � is the total number of phonon modes. The
creation and annihilation operators associated to each phonon
mode, b̂†

l and b̂l , obey the commutation relation [b̂l , b̂†
l ′ ] = δll ′ .

The final term describes the interaction between the impurities
and the many-particle bath. While we assume that λl (x) is a
real function, βl (x) will at this stage be allowed to be complex
for a later purpose. Both functions may depend on all the
variables x = {x1, . . . , xN }.

As we discuss in more detail in Sec. V on specific appli-
cations, we consider heavy impurities. This, together with a
gapped dispersion relation, allows us to treat the bosonic or
fermionic impurities as the slow system and the rest of the
Hamiltonian as the fast one:

Ĥfast(x) =
∑

l

ωl b̂†
l b̂l +

∑
l

λl (x)
(
e−iβl (x)b̂†

l + eiβl (x)b̂l
)
,

(12)
where the coordinates of impurities x are regarded as parame-
ters. We note that even if βl is complex, Ĥfast(x) is self-adjoint
in the ŵ = exp [−2

∑
l Im[βl ]b̂

†
l b̂l ]-weighted Fock space.

The eigenstates and eigenvalues of the Hamiltonian (12) can
be found by applying the following two transformations:

Ŝ = exp

[
−i
∑

l

βl b̂†
l b̂l

]
, Û = exp

[
−
∑

l

λl

ωl
(b̂†

l − b̂l )

]
,

(13)

where the transformation Ŝ is, in general, a similarity trans-
formation, as βl might be complex, whereas Û is unitary.
Therefore, the eigenstates can be written as Ŝ|ψn〉 with |ψn〉 =
Û |n〉. Here the states |n〉 symbolically represent normalized
phonon states with the collective index n. Namely, |0〉 is the
vacuum state of the bath, |1〉 ≡ b̂†

l |0〉 a one-phonon state, and
so on. (Later, in simplified models, where we consider a single
phonon mode, the states |n〉 correspond to the usual harmonic-
oscillator eigenstates.) The eigenvalues, on the other hand,
are given by εn = ∑n

i=1 ωli + ε0 with the ground-state energy
ε0 = −∑l λ2

l /ωl .
Let us assume that there exists a large energy gap between

the vacuum state |0〉 and the excited states b̂†
l |0〉, i.e., we

consider the limit ωl → ∞, which corresponds to a physi-
cal realization of heavy impurities interacting with gapped
excitations of a bath (see Sec. V). In this adiabatic limit the
lowest-energy spectrum of the Hamiltonian (11) is given by
the Schrödinger equation

(
−1

2

N∑
q=1

[∇q + iGq]2 + W (x)

)
χE

0 (x) = E χE
0 (x), (14)

where

Gq = −i〈ψ0|Ŝ−1∇qŜ|ψ0〉 = −
∑

l

(λl (x)/ωl )2∇qβl (x)

(15)
is the emergent gauge field and W (x) the emergent scalar
potential. The corresponding lowest-energy eigenstates of the
Hamiltonian (11) are, then, given by

|�E (x)〉 = χE
0 ŜÛ |0〉 (16)

(see Appendix A 1 for details). If we are able to match the
emergent gauge field (15) with the statistics gauge field, the
aforementioned adiabatic solution of the full problem de-
scribed by the Hamiltonian (11) corresponds to the problem
of N anyons interacting with the potential W (x). Although our
essential focus is the statistics gauge field given by Eq. (4),
i.e., the matching of Gq = αAq, we also consider the other
choice (9) within a toy model for computational purposes. We
emphasize that the condition ωl → ∞ does not necessarily
cancel out the emergent gauge field Gq, as we demonstrate in
particular examples below.

At first sight, it looks like we have made the N-anyon
problem more complicated, as we consider in Eq. (11) bosonic
or fermionic particles in a many-particle bath, instead of par-
ticles interacting with the statistics gauge field. However, the
corresponding quantum impurity setup, first, lays the ground-
work for realizing anyons in experiment (an experimental
realization will be proposed in Sec. V). Furthermore, as will
be discussed next, this formulation reveals insights into the
structure of the anyon Hamiltonians (5) and (10), and on how
anyons may emerge from composite bosons (fermions): the
topological bound state of a boson (fermion) and an even
number of quantized vortices (cf. e.g. [93]). Finally, it intro-
duces different techniques for numerical investigation of the
N-anyon problem.
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A. Emergent interacting anyons

By using the definition of the statistics gauge field (4)
as well as imposing adiabaticity in the problem leading to
Eqs. (14) and (15), we can identify the parameters of the
many-particle bath that turn the impurities into anyons. In or-
der to present features of the introduced model in a transparent
way, we consider for simplicity the following l-independent
expressions:

βl (x) = β(x) = −s
N∑

q>p

�qp, (17)

constant λl = λ, and ωl = ω. Here s is an integer such that
β(xq) has the correct periodicity under the continuous ex-
change of particles and the Hamiltonian (11) commutes with
the permutation operators. Without loss of generality it can
be set to its lowest possible nontrivial value s = 2. The minus
sign in (17) is chosen simply to eventually make our emergent
anyons positively oriented.

We now introduce a unitary transformation â†
l =∑

l ′ vll ′ b̂
†
l ′ , with

∑
l ′′ vl ′l ′′v

∗
ll ′′ = δl ′l , such that â†

1 =∑�
l=1 b̂†

l /
√

� and consider the choice of ω = √
�, which

simplifies the Hamiltonian. Then, the impurity Hamiltonian
(11) can be written as

Ĥqim = −1

2

N∑
q=1

∇2
q + ω(â†â + λ2) + λω(F â† + F−1 â)

(18)
with

F =
N∏

q>p

(
zqp

|zqp|
)2

. (19)

For later convenience we use the notation F−1, instead of
F ∗, even though they are equivalent in this particular case.
In Eq. (18) we have neglected the term

∑�
l�2 ω â†

l âl as the
impurities couple only to a single phonon mode, and omit
the subindex â†

1 → â†. We further subtracted the ground-state
energy of the phonon part of the Hamiltonian −ωλ2. Then,
defining

α = 2λ2, (20)

and keeping the coupling λ fixed in the limit of ω → ∞,
the lowest-energy spectrum of the quantum impurity problem
(18) is governed by Eq. (14) with the gauge field Gq = αAq

and scalar potential W = α
∑N

q=1 A2
q.

The emergence of the anyon Hamiltonian can also be
obtained without going to the gauge picture, by direct diag-
onalization of the Hamiltonian (18). Namely, if we apply the
corresponding Ŝ and Û transformations,

Ŝ = F â†â, Û = exp[−
√

α/2(â† − â)], (21)

the transformed Hamiltonian can be written as

Ĥ ′
qim = Û −1Ŝ−1ĤqimŜÛ = ω â†â

− 1

2

N∑
q=1

[
∇q + 2iAq(x)

(
â† −

√
α

2

)(
â −

√
α

2

)]2

.

(22)

If we diagonalize the Hamiltonian in the basis of
the eigenstates of the free operators, the transition
between different phonon states for any bosonic
(respectively fermionic) eigenstate |�〉 of the free
N-particle Hamiltonian is quantified by the matrix element
〈〈n|Ĥ ′

qim|m〉〉
�
/〈〈m|Ĥ ′

qim|m〉 − 〈n|Ĥ ′
qim|n〉〉

�
with n �= m. In

particular, the transition matrix element between the vacuum
state and the one-phonon state is

√
α/2

〈∑
q

(
2i[∇q, Aq]+ − (1 + α)A2

q

)〉
�

2ω − 〈∑
q

(
2i[∇q, Aq]+ − (1 + 2α)A2

q

)〉
�

, (23)

where [, ]+ is the anticommutator. Then, in the limit of ω →
∞ the transition matrix element becomes negligible (we refer
to Appendix A 3 for more details), and hence, the vacuum
expectation value

〈0|Ĥ ′
qim|0〉 = −1

2

N∑
q=1

[∇q + iαAq(x)]2 + W (x) (24)

decouples from the rest of the spectrum. This is basically
the statement of the adiabatic theorem. As a result, the en-
ergy levels belonging to the vacuum sector governed by
Eq. (24) describe interacting anyons in the potential W (x) =
α
∑N

q=1 A2
q(x). We note, however, that for ideal pointlike

anyons the expectation values 〈A2
q〉� in Eq. (23) are divergent

for certain bosonic eigenstates of the free Hamiltonian, as
we discussed in Sec. II A, and therefore the adiabatic the-
orem breaks down. In order to avoid these singularities the
corresponding spectrum can be calculated instead from the
fermionic end by changing α to α − 1 and L2

sym(R2N ) to
L2

asym(R2N ) for the impurities.
Let us investigate the form of the Hamiltonian (18) and

the emergence of anyons in more detail. In this simplified
model the interaction between the impurities and phonon field
is described by the factor F . The Ŝ transformation attaches
two flux or vortex units to bosonic (fermionic) impurities to
convert them into composite bosons (fermions). [In fact, in
this particular case (19) we call it a flux rather than a vortex,
as it is just a phase factor.] Then, a cloud of phonons, which
manifests itself through a coherent state, dresses each impurity
and forms a quasiparticle governed in the limit of ω → ∞ by
the anyon Hamiltonian (24). The corresponding coherent state
of phonons is given by

|ψ0〉 = Û |0〉 = e−α/4
∞∑

n=0

(−√
α/2)n

√
n!

|n〉, (25)

which involves infinitely many phonons, weighted according
to α. In this adiabatic limit, the states in the Fock space
decouple from each other, and each resulting energy level is
filled by anyons with the statistics parameter 2n + α, where
n corresponds to the energy levels of the Fock space sec-
tor. Specifically, if the impurities are initially bosons, in the
vacuum state, n = 0, they turn into interacting anyons with
statistics parameter α and spectrum described by Eq. (24).
In the excited states, n �= 0, on the other hand, the impurities
become composite bosons with 2n units of flux and interact-
ing with the statistics gauge field αAq as well as the scalar
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potential α(1 + 2n)
∑

q A2
q. See Appendix A 3 for more de-

tails concerning the diagonalization of Eq. (22).
Below we focus only on the vacuum state and present two

simple examples. For an easier comparison with the results
existing in the literature, we investigate impurities confined
additionally in a harmonic-oscillator potential and allow for
fermionic impurities with the coupling α − 1 = sλ2 in order
to deal with the singular interaction. Furthermore, since the in-
teraction term depends only on relative coordinates, we factor
out the center-of-mass problem, and make a transformation
to relative coordinates. In general, the relative coordinates
for an N-body problem are given by Jacobi coordinates:
R = ∑N

i=1 zi/
√

N and um = (
∑m

i=1 zi − mzm+1)/
√

m(m + 1),
where m runs from 1 to N − 1.

1. Two anyons

As a first example, we consider the simplest case: the
two-impurity problem. The Hamiltonian in Jacobi coordinates
with the notation u1 = r exp(iϕ), which is simply usual rela-
tive coordinates for a two-body problem, becomes

Ĥ2-imp = −∇2

2
+ r2

2
+ ω

(
â†â + α − 1

2

)

+ω

√
α − 1

2
[e2iϕ â† + e−2iϕ â], (26)

where α � 1. This two-impurity problem can be solved
numerically by diagonalizing the Hamiltonian with the eigen-
states of the free Hamiltonian, the first line of Eq. (26). These
eigenstates are the phonon states |n〉 times the antisymmetric
impurity states. The latter are the usual harmonic-oscillator
wave functions:

�lm =
√

2(l!)

(l + |m| + 1)!
e−r2/2rmLm

l (r2) exp(imϕ)/
√

2π,

(27)
where Lm

l (r2) are associated Laguerre polynomials. The
corresponding eigenvalues are given by 2l + |m| + 1. The an-
tisymmetric impurity states in Jacobi coordinates follow from
the parity of the angular quantum number of the impurities
m: while even m refers to bosons, the odd ones correspond
to fermions. Due to the finite number of impurity states con-
sidered in numerics, there is an intricate relation between
the number of impurity wave functions, maximum number
of phonons, and actual value of ω in order to achieve con-
vergence. The converged result of the anyonic spectra for the
Hamiltonian (26) is obtained with ω � 20, up to 5 number of
phonons, and several hundred impurity states in the fermionic
basis, which is shown in Fig. 1 (top). In fact, this result can
also be found analytically. Namely, it follows from Eq. (24)
that the lowest levels are described by the Hamiltonian

〈0|Ĥ ′
2-imp|0〉 = − 1

2r2

[( ∂

∂ϕ
+ i(α − 1)

)2

− 2(α − 1)

]

− 1

2r

∂

∂r

(
r

∂

∂r

)
+ r2

2
. (28)

Then, the corresponding eigenvalues directly fol-
low from the harmonic-oscillator ones by replacing
|m| with

√
[m + (α − 1)]2 + 2(α − 1) to yield 2l +

FIG. 1. Calculations of the two-anyon (top) and three-anyon
(bottom) spectra for the interacting anyon model in an external
harmonic-oscillator potential (18). The energies are given in units
of the harmonic frequency. The spectra have been calculated from
the fermionic end, i.e., the coupling is chosen as α − 1 = sλ2 such
that α = 1 corresponds to free fermions. The applied parameters are
lmax = 10, mmax = 21, and ω = 23 with up to five phonons for the
two-anyon case. For the three-anyon case we consider all the anti-
symmetric impurity wave functions (30) restricted by the condition
Enmaxmmax � 26 and limit the maximum number of phonons to 10 with
ω = 54. For clarity, we do not display all the curves in the second
plot.

√
[m + (α − 1)]2 + 2(α − 1) + 1, which agrees with the

numerical result shown in Fig. 1 (top).

2. Three anyons

As a next example, we study the three-impurity problem. In
Jacobi coordinates, with the notation u1 = η = ηx + iηy and
u2 = ξ = ξx + iξy, the Hamiltonian is given by

ˆ̃H3-imp = −1

2

(∇2
η + ∇2

ξ

)+ 1

2
(η2 + ξ2) + ω

(
â†â + α − 1

2

)

+ω

√
α − 1

2

(
η3 − 3ηξ 2

|η3 − 3ηξ 2|
)2

â† + H.c. (29)

with α � 1, η2 = η2
x + η2

y , and ξ2 = ξ 2
x + ξ 2

y . In contrast
to the two-impurity problem, the implementation of the
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permutation symmetry for the impurity states in Jacobi coor-
dinates is not trivial due to the relations P23η = (η + √

3ξ )/2
and P23ξ = (

√
3η − ξ )/2. Accordingly, by following the con-

vention introduced by Kilpatrick and Larsen [94], we use
hyperspherical coordinates (ρ, θ, φ,ψ ),

η = ρe−iψ (cos θ cos φ + i sin θ sin φ) ,

ξ = ρe−iψ (cos θ sin φ − i sin θ cos φ),

where the symmetrization of the wave function is straight-
forward. Namely, the bosonic (+) or fermionic (−) wave
functions are given by

�±
nmνμ =

√
2(n!)

(m + n + 1)!
e−ρ2/2ρmLm+1

n (ρ2)Y ±
mνμ(θ, φ,ψ ),

(30)
where Y ±

mνμ(θ, φ,ψ ) are the hyperspherical harmonics;
see Appendix A 2. The wave functions are normalized
over the volume dV = ρ3dρ cos(2θ )dθ dφ dψ for ρ ∈
[0,∞) , θ ∈ [−π/4, π/4] , φ ∈ [−π/2, π/2] , ψ ∈ [0, 2π ].
Here, n = 0, 1, 2, . . . is the radial quantum number
and m = 0, 1, 2, . . . is one of the angular momentum
numbers such that the corresponding spectrum reads as
Enm = (2n + m + 2). The other two angular quantum
numbers (ν, μ) have the same parity as m and they are
restricted by |ν|, |μ| � m and ν = 3q with a non-negative
integer q; see also Ref. [95]. In Fig. 1 (bottom), we show
the corresponding spectra. In the diagonalization procedure
over 1000 fermionic impurity states are considered and the
maximum number of phonons is limited to 10 with ω ≈ 50
resulting in converged spectra in the regime considered.

B. A toy model for free anyons

Equation (24), which describes the lowest levels of the
impurity problem (18) in the limit of ω → ∞, can also serve
as a new platform for studying the original N-anyon problem
without the presence of the interaction potential W , i.e., free
anyons. Namely, instead of Eq. (17), if we define

βl (x) = β(x) = −s
N∑

q>p

(�qp − i ln rqp) (31)

with the same ω and λ as in the previous case, the emergent
gauge field is given by Eq. (9). In this case the corresponding
impurity Hamiltonian analogous to Eq. (18) can be written as

ˆ̃Hqim = −1

2

N∑
q=1

∇2
q + ω(â†â + λ2) + λω(F̃ â† + F̃−1 â)

(32)
with

F̃ =
N∏

q>p

z2
qp. (33)

We note that as F̃−1 �= F̃ ∗, the Hamiltonian (32) is not Hermi-
tian in this case. Nevertheless, its non-Hermiticity is harmless
for our purposes, and indeed the fast part of the Hamiltonian is
self-adjoint in a Fock space weighted by |F̃ |2â†â. This allows
us to rewrite the Hamiltonian in the gauge picture so that the

lowest-energy levels of the Hamiltonian (32) become real in
the limit of ω → ∞. Namely, if we diagonalize the Hamilto-
nian, the energy levels belonging to the vacuum state in this
limit are given by Eq. (24) with the replacement Aq → Ãq.

Moreover, as Ã
2
q = 0, the emergent scalar potential W (x) van-

ishes and hence Eq. (24) for this case simply corresponds to
the free N-anyon Hamiltonian defined in the regular gauge
(10):

〈0| ˆ̃H ′
qim|0〉 = −1

2

N∑
q=1

[∇q + iαÃq(x)]2. (34)

Therefore, the Hamiltonian (32) describes free anyons in the
limit of ω → ∞. The mechanism of how anyons emerge out
of the impurity-bath coupling in this particular model is very
similar to the previous interacting case. The only difference
is the form of composite bosons and fermions. In contrast to
the factor F , in the Hamiltonian (32) the attachment of flux
or vorticity is performed by F̃ . As the latter includes also a
length, we will call the multiplication by F̃ vortex attachment.
Therefore, in this toy model, impurities are dressed by vortices
by means of phonons.

Similar to the previous interacting anyon case, the corre-
sponding two- and three-impurity problems in this toy model
can be solved by diagonalizing the Hamiltonian (32) with the
eigenstates of the free Hamiltonian by considering the impu-
rities confined additionally in a harmonic-oscillator potential.
Instead of following this approach, below we present different
computational techniques for the numerical solution, along
with a concrete perspective of anyons in relation to composite
bosons or fermions.

IV. A DIFFERENT PERSPECTIVE ON ANYONS

The simplified impurity model given in Eq. (32) or (18)
also provides some useful analytical insights for the N-anyon
problem. Here we focus solely on the Hamiltonian (32) cor-
responding to free anyons. Nevertheless, the interacting case,
Eq. (18), follows straightforwardly. The Hamiltonian (32) can
be diagonalized in the Fock space with the displacement oper-
ator T̂ = exp [−√

α(F̃ â† − F̃−1 â)/
√

2]. Then, the N-anyon
spectrum, which emerges in the limit of ω → ∞, is given by
the Hamiltonian

H̃N-anyon = 〈0|T̂ −1 ˆ̃HqimT̂ |0〉 =
∞∑

n=0

e−α/2

n!

(α

2

)n ˆ̃H (2n)
N-comp,

(35)
where we made use of the coherent state (25) (see Appendix
A 3 for details). Here the Hamiltonian

ˆ̃H (2n)
N-comp = F̃−nĤN-bosonF̃ n = −1

2

N∑
q=1

[∇q + i2nÃq]2 (36)

describes N composite bosons (fermions): the topological
bound state of a boson (fermion) and an even number of quan-
tized vortices. This formula shows concretely how anyons
emerge from composite bosons or, put differently, it de-
picts how a fractional vortex manifests itself through integer
vortices. A similar expression can also be obtained for the
interacting anyon model (18) by removing tildes from F̃ and
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F̃−1 in the displacement operator. In this case, the expression
(35) describes the interacting anyon model.

First of all, Eq. (35) naturally simplifies to HN-boson for
α → 0 and, in general, it can be given by a power series

ˆ̃HN-anyon =
∞∑

n=0

1

n!

(α

2

)n
Kn (37)

with

Kn =
n∑

j=0

(
n

j

)
(−1)n− j ˆ̃H (2 j)

N-comp . (38)

One sees from Eq. (24) or (34) that Kn = 0 for all n � 3.
Furthermore, for the free-anyon model K2 also vanishes as
a result of the fact that Ã

2
q = 0. Therefore, the power-series

expansion (37) simply yields

ˆ̃HN-anyon = ˆ̃H (0)
N-comp + α

2

( ˆ̃H (2)
N-comp − ˆ̃H (0)

N-comp

)
. (39)

It is straightforward to show that the above simple expression
is equivalent to the N-anyon Hamiltonian (10). In this form we
are quite justified to term this process as “statistics transmuta-
tion” from bosons at α = 0 and 2 to intermediate or fractional
values of α. As we discuss below, Eq. (39) admits power-
ful numerical techniques for studying various many-anyon
problems.

A. Numerical techniques for free anyons

Although the resulting formula (39) looks almost trivial,
we would like to emphasize that it is derived within the in-
troduced quantum impurity model by the nontrivial algebraic
properties of the coherent state (25). This, first, shows the
consistency of our approach, and further provides a different
approach to the numerical solution of the N-anyon problem.
Specifically, the Hamiltonian (39) also reads as

ˆ̃HN-anyon = HN-boson + α

2
(F̃−1HN-bosonF̃ − HN-boson). (40)

The above Hamiltonian can be further written in terms of
the impurity basis states |�m〉, which are the (anti)symmetric
eigenstates of the free N-particle Hamiltonian ĤN-boson, as

EN-anyon = EN-boson + α

2
(Z̃

−1
EN-bosonZ̃ − EN-boson), (41)

where we define the elements of the matrices (EN-boson)nm =
〈�n|ĤN-boson|�m〉, and

(Z̃ )nm = 〈�n|F̃ |�m〉, (Z̃
−1

)nm = 〈�n|F̃−1|�m〉. (42)

We note that the inverse matrix Z̃
−1

is deduced from the rela-
tion (Z̃Z̃

−1
)nm = ∑

k〈�n|F̃ |�k〉〈�k|F̃−1|�m〉 = δnm, where
we use the fact that the (anti)symmetrizer

∑
k |�k〉〈�k| = S

commutes with the interaction term F̃ , and S|�k〉 = |�k〉 for
all (anti)symmetric states.

We underline that all the diagonalization techniques that
we are aware of in the literature are based on the diagonaliza-
tion of the matrix whose entries are given by the interaction
term 〈�n|[∇q, Ãq]+|�m〉. However, Eq. (41) is based on the
matrix Z , which is much easier to construct in comparison to
the former. Thus, the matrix equation (41) could be of use as a

powerful technique in calculating the N-anyon spectrum. This
will be illustrated below in particular examples.

1. Examples

We again consider our impurities confined additionally in
a harmonic-oscillator potential. Moreover, since in this toy
model there are no singular terms in the corresponding tran-
sition matrix element (23), i.e., Ã

2
q = 0, we consider bosonic

impurities. We first consider the two-impurity problem. The
Hamiltonian in relative coordinates is given by

ˆ̃H2-imp = −∇2

2
+ r2

2
+ ω

(
â†â + α

2

)

+ω

√
α

2
[(

√
2reiϕ )2â† + (

√
2reiϕ )−2â]. (43)

The corresponding matrix Z̃ can be constructed from the
matrix elements 〈�lm|(√2reiϕ )2|�l ′m′ 〉 and the matrix Z̃

−1

from the elements 〈�lm|(√2reiϕ )−2|�l ′m′ 〉, where �lm are
the harmonic-oscillator wave functions (27). We note that as
the phase factor excludes the m = m′ = 0 states leading to
singularities, the latter matrix elements are finite. The corre-
sponding spectra are presented in Fig. 2 (top), which agrees
with the well-known result 2l + |m + α| + 1 of the two-anyon
spectrum. In the numerics the Hilbert space dimension is
limited to several hundred (≈300) impurity basis states.

Next, we study the three-impurity problem, which reflects
the full many-body character of anyons. In Jacobi coordinates
the Hamiltonian for the three-impurity problem is given by

ˆ̃H3-imp = 1

2

(
P2

η + P2
ξ

)+ 1

2
(η2 + ξ2) + ω

(
â†â + α

2

)

+ω

√
α

2

(1

2
(η3 − 3ηξ 2)2â† + 2(η3 − 3ηξ 2)−2â

)
.

(44)

In this particular example, instead of constructing the matrices
Z̃ and Z̃

−1
separately, we first constructed the matrix Z̃

−1
by

using the symmetric impurity wave functions (30). Afterward,
we take its pseudoinverse and define Z̃ . Although the other
way around is also possible, we find the former way more
convenient for numerical reasons as Z̃

−1
is a more stable

matrix. Similar to the two-impurity case, all the entries of Z̃
−1

are finite due to the presence of the phase factor in the interac-
tion term; see Appendix A 2 for the calculation of the matrix
elements in hyperspherical coordinates. In Fig. 2 (bottom), we
show the corresponding spectra, which agree with the known
three-anyon spectra [58,59]. We found that one can access the
spectrum for the interval 0 � α � 1 by considering less than
1000 impurity wave functions. Moreover, in contrast to the
diagonalization of the corresponding anyon Hamiltonian (10),
the calculation of the matrix Z̃

−1
is quite straightforward; see

Appendix A 2. This appears to us as a very promising way for
numerical investigation of various many-anyon problems.

B. Emergence of anyons from composite bosons

In addition to the numerical approach discussed above,
Eq. (35) provides a natural geometric interpretation of this
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FIG. 2. Calculations of the two-anyon (top) and three-anyon
(bottom) spectra for the original harmonic-oscillator anyon problem
without the scalar potential W (32). The energies are given in units
of the harmonic frequency. The spectra are here calculated from the
bosonic end by using Eq. (41). The applied parameters are lmax = 10,
mmax = 20 for the two-anyon case. For the three-anyon case we
consider all the symmetric impurity wave functions (30) restricted
by the condition Enmaxmmax � 26.

statistics transmutation of impurities in terms of vector
bundles. Note that in general we may consider the N-
anyon Hamiltonian (5) [respectively (10)] and its domain of
functions as defining a complex line bundle (i.e., a rank-one
Hermitian vector bundle) over the configuration space of N
identical particles in the plane. In the cases considered here
there are no further magnetic interactions than the statistical
one, and this then defines a locally flat line bundle which is
characterized solely by the statistics parameter α ∈ R. Using
the trivial bosonic bundle α = 0 as reference, the other possi-
ble bundles are geometrically defined by the holonomy of the
connection along loops in the configuration space, i.e., the ex-
change phase which comes in units of eiπα . We note that α and
α + 2 are unitarily equivalent by a gauge transformation when
the free Hamiltonian is considered, however, upon introducing
interactions or further regularity conditions into the domain of
the kinetic energy operator it makes sense to consider these as
different bundles. A family of such bundles α = 2n, n ∈ Z,
may be characterized geometrically by the minimal winding
number n of the phase as two particles are simply exchanged,

or the winding number 2n as one particle continuously en-
circles another one. This is the same as the number of unit
fluxes attached to each particle, and the permutation symmetry
enforces the same number to each particle. We may thus talk
about an even-integer family of bosonic bundles having the
physical interpretation as composite bosons with 2n quanta of
flux attached to each boson [cf. Eq. (36)]. Note that multiplica-
tion by F of Eq. (19) (respectively F ∗) changes these winding
numbers, and indeed these are the gauge transformations that
unitarily transform one such bundle into the other.2

Thus, our starting point in the statistics transmutation was
the geometrically trivial bundle H of regular bosonic states
on the plane R2 on which the free Hamiltonian −∑q ∇2

q/2
is acting (i.e., our considered states are all exchange sym-
metric and have finite expectation values with respect to
this Hamiltonian). However, by coupling this Hamiltonian to
the phonon Fock space in the form (32), we are effectively
considering a semi-infinite ladder {HF̃ n|n〉}, n = 0, 1, 2, . . .,
of even-integer bundles of composite bosons. The factor F̃ n

ensures that the winding number of the phase under simple
exchange increases by n, and equivalently that the vorticity
attached to each particle is 2n. In Eq. (32) we have introduced
the possibility of hopping from one such bundle, winding
number, or vorticity, to the next higher one by means of the
interaction term F̃ â† and hence the symmetric (thus staying
within the family of bosonic bundles) attachment of a minimal
number of vortices to each particle [cf. the arguments leading
to Eq. (17)], as well as the corresponding hopping to the next
lower bundle using the term F̃−1â and thus the detachment
of a minimal number of vortices. We then have the interpre-
tation of Eq. (32) that we are introducing an energy gap ω

between each level of the bundles [which in this context may
be interpreted or defined as the energy cost of creating the
corresponding number N (N − 1) of vortices], and enabling
the hopping between consecutive bundles on the ladder by a
nonzero amplitude λω. In the simultaneous limit of both large
energy gap ω and large hopping amplitude, while keeping
their ratio λ fixed, what then emerges according to Eq. (34)
is the fractional bundle labeled by the fraction of vorticity per
particle α = 2λ2. The phonon state (25) attaches a Poisson-
distributed sequence of weights on each integer bundle on
the ladder, resulting in the superposition (35) of bundles.
Furthermore, according to the alternative form (39), it may
be equivalently understood as a linear (modulo weights) de-
formation between the two lowest bosonic bundles at α = 0,

2In order to uniquely label the bundles and identify them as com-
posite bosons, one needs to select some subbundle where the exact
winding comes out algebraically (and not just via the phase which
is periodic over the even integers), such as some subspace of holo-
morphic functions or some finite range of allowed angular momenta.
Note in particular that the spaceHF̃ n contains also functions on the
form |F̃ |2n for which the winding is zero, however, by further restrict-
ing H it is possible to ensure zero overlap between such function
spaces and thus the one-to-one labeling by n via the holomorphic
factor F̃ n. This happens, for example, when one switches on a strong
external magnetic field, and indeed the bosonic Laughlin factor F̃
represents the smallest symmetric attachment of an integer number
of vortices to every particle.
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respectively α = 2. When λ = 1 or α = 2 one effectively
achieves a complete transmutation into the next integer level
by means of the unitary equivalence of (|F̃ |/F̃ )Ĥ (F̃/|F̃ |) =
F ∗ĤF to Ĥ . We anticipate that this geometric perspective on
the statistics transmutation could be extended, for instance,
to the setting of higher-rank vector bundles and non-Abelian
anyons.

V. EXPERIMENTAL REALIZATION

We now investigate a possible experimental configuration
of the quantum impurity model (11). Let us consider N iden-
tical impurities, say bosons, with mass M, immersed into a
weakly interacting many-particle bath, whose collective exci-
tations are given by phonons with a gapped dispersion ω(k).
This creates the necessary energy gap between the phonon
states in the limit of M → ∞, which allows us to consider
the problem in the adiabatic limit. Furthermore, we consider
impurities confined to two dimensions and leave out the direct
interaction between impurities, as the latter is irrelevant for
our discussion. In analogy to the Fröhlich-Bogoliubov theory,
the Hamiltonian of such a model is given by

Ĥexpt = − 1

2M

N∑
q=1

∇2
q +

∑
k

ω(k) b̂†
kb̂k

+
∑

k

(V (k, x)b̂†
k + V ∗(k, x)b̂k) (45)

with
∑

k = ∫
d2k/(2π )2. Here b̂†

k and b̂k are the creation
and annihilation operators for a phonon with the wave vector
k and frequency ω(k). They obey the commutation rela-
tion [b̂k, b̂†

k′] = (2π )2δ(k − k′). The last term in Eq. (45)
describes the impurity-phonon interaction with the coupling
V (k, x), which depends on the coordinates of impurities x =
{x1, . . . , xN }.

As a first step, we decompose the creation and annihilation
operators in polar coordinates,

b̂†
k =

√
2π

k

∞∑
μ=−∞

iμe−iμϕk b̂†
kμ

, (46)

with [b̂kμ, b̂†
k′μ′] = δ(k − k′)δμμ′ . The Hamiltonian (45) is

given by

Ĥexpt = − 1

2M

N∑
q=1

∇2
q +

∑
k,μ

ω(k) b̂†
kμ

b̂kμ

+
∑
k,μ

λμ(k, x)
[
e−iβμ(k,x)b̂†

kμ
+ eiβμ(k,x)b̂kμ

]
, (47)

where
∑

k = ∫∞
0 dk, and

Vμ(k, x) =
√

k

(2π )3

∫
dϕkV (k, x)iμ exp(−iμϕk ), (48)

which has been further decomposed into Vμ(k, x) =
λμ(k, x) exp[−iβμ(k, x)]. The Hamiltonian (47) is of the form
of the general model Hamiltonian (11). As a result, according

to Eq. (15), the emergent gauge field can be written as

Gq = −
∑
k,μ

(λμ(k, x)/ω(k))2∇qβμ(k, x). (49)

If the bosonic impurities interact with the phonons in such
a way that the emergent gauge field (49) matches with the
statistics gauge field (4), they turn into anyons in the limit of
M → ∞. The eventual experimental realization of the model,
therefore, reduces to the feasibility of such an impurity-
phonon interaction. In general, the gauge field (49) is nonzero
when the integral

∑
k (λμ(k, x)/ω(k))2∇qβμ(k, x) is not an

odd function under μ, which is a manifestation of breaking
time-reversal symmetry. This can be achieved by applying a
magnetic field or rotation to the system. In principle, such
an interaction is feasible with the state-of-art techniques in
ultracold atomic physics, for instance, in a rotating Bose gas.
Below we present a simple and intuitive realization within a
well-known problem: the Fröhlich polaron.

A. Fröhlich polarons as anyons

Let us consider two electrons confined in a plane in-
teracting with longitudinal optical phonons ω(k) = ω0. The
corresponding Fröhlich Hamiltonian for two impurities is
given by Eq. (45) with the following coupling [36]:

V (k, x1, x2) = V (k)(e−ik·x1 + e−ik·x2 ), (50)

where V (k) is the Fourier component of the impurity-phonon
interaction in real space. We further apply a magnetic field
to the impurities along the z direction. Then, the Fröhlich
Hamiltonian is given by

ĤF = − (∇1 − ia1)2

2M
− (∇2 − ia2)2

2M

+
∑

k

ω0 b̂†
kb̂k +

∑
k

V (k)(e−ik·x1 + e−ik·x2 )b̂†
k + H.c.,

(51)

where ai = B(−yi, xi )/2 is the gauge field generating the
magnetic field. Moreover, we rotate the impurity-bath system
in the x-y plane at the cyclotron frequency � = B/(2M ). The
experimental setup is depicted in Fig. 3. The rotation of the
system allows us to factor out the center-of-mass coordinates
in the limit of M → ∞. The Hamiltonian (51) can be written
in the rotating coordinate system as

ĤFR = e−it�Ĵz

(
ĤF − i

∂

∂t

)
eit�Ĵz + i

∂

∂t

= 1

2M

(− ∇2
1 − ∇2

2 + M2�2
(
x2

1 + x2
2

))+ ��̂z

+
∑

k

ω0 b̂†
kb̂k +

∑
k

V (k)(e−ik·x1 + e−ik·x2 )b̂†
k + H.c.

(52)

Here, Ĵz = L̂1 z + L̂2 z + �̂z is the total angular momentum
of the impurity-bath system along the z direction, with L̂i z

being the angular momentum of the ith impurity and �̂z

the collective angular momentum operator of the bath. Next,
we introduce relative and center-of-mass coordinates r and
R, respectively, and then apply the unitary Lee-Low-Pines
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FIG. 3. Experimental proposal where the Fröhlich polarons turn
into anyons. Heavy electrons with mass M immersed in a 2D material
are subjected to the magnetic field B. If the electron-bath system
is rotated at the cyclotron frequency � = B/(2M ), the polarons
become anyons. The setup can also be extended to a 2D Bose gas.

(LLP) transformation [96] T̂LLP = exp [−iR̂ ·∑k k b̂†
kb̂k/

√
2].

We decompose the creation and annihilation operators in polar
coordinates, where the angular momentum operator simply
reads as �̂z = ∑

k,μ μ b̂†
kμ

b̂kμ. The transformed Hamiltonian
can be rewritten as

Ĥ ′
FR = − 1

2M
∇2

r + 1

2
M�2r2 +

∑
k,μ

ωμb̂†
kμ

b̂kμ

+
∑
k,μ

λμ(k, r)[e−iμϕ b̂†
kμ

+ eiμϕ b̂kμ] + ĥR. (53)

Here, ωμ = ω0 + μ� is the effective phonon dispersion re-
lation, where the second term arises as a consequence of the
rotation. The impurity-bath coupling strength is given by

λμ(k, r) =
√

k/(2π )V (k)Jμ(kr/
√

2)[1 + (−1)μ], (54)

which follows from the Jacobi-Anger expansion exp[ik · x] =∑
μ iμJμ(kr) exp[iμ(ϕ − ϕk )], with Jμ(kr) being the Bessel

function of the first kind. The last term in Eq. (53),

ĥR = 1

2M

(
∇R − i

∑
k

k b̂†
kb̂k/

√
2

)2

+ 1

2
M�2R2, (55)

is the Hamiltonian for the center-of-mass motion that couples
to the many-particle bath. We note that the coupling term∑

k ∇R · k b̂†
kb̂k/M is negligible in the limit of M → ∞, as the

momentum operator scales as
√

M. Therefore, the center-of-
mass coordinate decouples in the transformed Hamiltonian. In
a similar way, the contribution of the term (

∑
k k b̂†

kb̂k)2/M to
the fast Hamiltonian is also negligible in the limit of M → ∞.
Consequently, ĥR will be omitted hereafter.

In realistic situations the maximum number of phonons
nmax interacting with impurities is finite. Furthermore, because
of the finite size of the first Brillouin zone, we consider a
natural cutoff for the phonon wave vector kmax. This puts an
upper limit for the μ summation as well as for the k integral.
The limitation on the k integral can affect the small-distance
behavior of the impurities. Nevertheless, as the repulsive
Coulomb interaction between two electrons prevents us from
considering small distances, we will ignore this cutoff. The

cutoff for the μ summation, on the other hand, is essential in
order to have a spectrum bounded from below. Namely, the
ground-state energy of the fast Hamiltonian can be written as

εgs = min{0, nmax(ω0 − �μmax)}

−
∫ ∞

0
dk

μmax∑
μ=−μmax

λμ(k, r)2

ωμ

, (56)

and we consider the case (ω0 − �μmax) > 0, where the
ground state is given by the vacuum state ŜÛ |0〉.

It follows from Eq. (49) that the corresponding emergent
gauge field for the ground state of the Hamiltonian (53) is
given by

G = α(r)

r
eϕ (57)

with

α(r) = −
μmax∑

μ=−μmax

[1 + (−1)μ]2μ

(ω0 + μ�)2

×
∫ ∞

0

dk k

2π
(V (k)Jμ(kr/

√
2))2. (58)

In general, the emergent gauge field does not necessarily
correspond to a statistics gauge field, as the r dependence of
α(r) relies on the form of V (k). Now we will have a closer
look at the derivation of the Fröhlich Hamiltonian, where V (k)
emerges as the Fourier component of the interaction between
the impurity and surrounding many-particle bath in real space.

In the regular Fröhlich polaron, impurities are considered
to be confined to two dimensions, but interact with a three-
dimensional bath, and V (k) emerges as a consequence of the
interaction between the electron and the polarization field
[97], which leads to V (k) = √√

2πγF /k with γF being the
Fröhlich coupling constant for the electron confined in two
dimensions. This form of the coupling describes surface po-
larons [97–100]. In this case, the statistics parameter (58)
scales as 1/r. Nevertheless, if we apply a strong magnetic
field, of the order of � ∼ ω0, the relative wave function of
the impurities is localized in r space, and hence the relative
motion of two impurities is described by only the relative an-
gle. In this case, we can omit the r dependency of the statistics
parameter, or consider a limited range, where α(r) is approx-
imately constant. We note, however, that for such a strong
magnetic field (ω0 − �μmax) < 0, and hence the ground state
will not be the vacuum state after the corresponding Ŝ and Û
transformations. The emergence of anyons in such a scenario
is similar to the model investigated in Ref. [29], where the rel-
ative distance between impurities was assumed to be constant.

1. 2D phonon bath

Instead of a three-dimensional (3D) bath, we now consider
a quasi-2D bath. Namely, we consider impurities confined to
two dimensions, and also interacting with a 2D bath. The latter
can be achieved by assuming that the confinement of a 3D
bath in the z direction is so strong that we can ignore the
excitations in that direction, or we can consider a bath in the
form of a single layer of atoms in a two-dimensional lattice,
such as graphene. In this case, the polarization field behaves
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FIG. 4. The relative statistics parameter (59) as a function of
the dimensionless cyclotron frequency �/ω0 for the impurities im-
mersed in a 2D ionic crystal. We note that the effective scalar
potential depends also on the statistics parameter. The applied pa-
rameters are γ = 100 ω2

0 and μmax = 50. For typical parameters of
optical phonons (ω0 ≈ 1012 Hz) the cyclotron frequency is at the
order of MHz.

like a 1/r field, instead of the 1/r2 behavior of a 3D bath. This
follows from the fact that in two-dimensional materials the
Coulomb law scales as ln r, which has already been observed
and investigated in several experimental works [101–103].
Then, the Fourier component is given by V (k) =

√
πγ /k2

with some constant γ , which we call the 2D Fröhlich coupling
constant. As a result of this, the emergent gauge field yields
G = eϕα/r with the statistics parameter

α = 4γω0�

μmax∑
μ=0,even

μ
(
ω2

0 − μ2�2)−2
, (59)

where we use the relation
∫∞

0 dk Jμ(kr)2/k = 1/(2|μ|) for
μ �= 0. We note that Eq. (59) reads as the relative statistics
parameter for electrons. The absolute one is given by Eq. (59)
minus one. Thus, the impurities, say electrons, immersed in a
2D many-particle bath in a magnetic field behave like anyons
in the limit of M → ∞, when the impurity-bath system is
rotated at the cyclotron frequency. The adiabaticity condi-
tion (23) can be written as 〈[∇q, Aq]+〉/ω0 ∝ �/ω0 � 1 for
the vacuum state, where we use the relations 〈[∇q, Aq]+〉 ∝
〈∂Ĥ2-anyon/∂α〉 = ∂E2-anyon/∂α ∝ �. Therefore, the limit of
M → ∞ reads as M � B/ω0 in an experimental configu-
ration. The absolute statistics parameter [(59) minus one in
the fermionic case] emerges as a function of the dispersion,
cyclotron frequency, and the 2D Fröhlich coupling constant.
In Fig. 4 we show the statistics parameter as a function of the
dimensionless cyclotron frequency �/ω0.

The origin of the emergent anyons can be intuitively under-
stood in terms of the relative angular momentum of impurities
immersed in a bath. By using Eq. (15) and bearing in mind that
the Ŝ transformation (13) can be written as

Ŝ = exp

(
−iϕ

∑
k,μ

μ b̂†
kμ

b̂kμ

)
= exp(−iϕ�̂z ), (60)

the emergent gauge field is given by G =
−〈0|Û −1�̂zÛ |0〉 eϕ/r. In other words, the statistics parameter
is simply given by the expectation value of the angular
momentum of the many-particle bath in the coherent state

α = −〈�̂z〉coherent state, (61)

which can assume any number, as the coherent state is not an
eigenstate of the angular momentum operator. Therefore, the
relative angular momentum of the impurities is shifted by α

and hence becomes nonintegral.
This result is consistent with the conservation of the angu-

lar momentum of the impurity-bath system. The total angular
momentum of the impurity-bath system, which consists of the
relative angular momentum of the impurities and collective
angular momentum of the bath, assumes an integer value.
However, this does not necessarily imply that each of them,
separately, assumes an integer value. On the contrary, as we
show in Eq. (61), the relative angular momentum of the impu-
rities is possibly nonintegral, and so is the collective angular
momentum of the bath, in such a way that their sum is integer.
Namely, the expectation value of the total angular momentum
can be written as

〈Ĵz〉�E = 〈L̂z〉�E + 〈�̂z〉�E , (62)

where |�E 〉 is the total eigenstate of the impurity-bath sys-
tem and L̂z the relative angular momentum of the impurities.
Then, it follows from Eq. (16) that in the limit of M → ∞
the first term is given by 〈L̂z〉�E = m − 〈�̂z〉coherent state, with
m being an integer. The second term in Eq. (62), on the
other hand, reads as 〈�̂z〉�E = 〈�̂z〉coherent state so that the total
angular momentum is integer at the end. This is the man-
ifestation of anyons analogous to the picture of Wilczek’s
flux-tube-charged-particle composite. In this picture frac-
tional values of the angular momentum stems from the fact
that the photon field manifests itself as a classical field via
the magnetic flux, even though the total angular momentum
of the electron-photon system assumes a half-integer value,
when the angular momentum of the magnetic flux is taken into
account [104,105]. Thereby, anyons can here be interpreted as
impurities “orbiting around” a “magnetic flux” created by the
many-particle bath through the coherent state.

Moreover, the manifestation of the statistics parameter in
terms of the angular momentum of the many-particle bath, i.e.,
Eq. (61), implies that the statistics parameter can be measured
in experiment by detecting the phonon angular momentum.
Recent works show that this is feasible; see, for instance,
Refs. [106,107]. The relation (61) allows us also to propose
a method to measure the statistics parameter. Namely, if we
take the derivative of the Hamiltonian (53) with respect to the
cyclotron frequency �, we obtain ∂Ĥ ′

FR/∂� = Br2/2 + �̂z. If
we further use the Hellman-Feynman theorem in the limit of
M → ∞, where the total state, which is given by Eq. (16), is
separable, the statistics parameter is given by

α = B

2
〈r2〉0 − ∂E0

∂�
. (63)

Here we take the expectation value of r2 with respect to the
ground state of the impurities such that E0 is the anyonic
ground-state energy. We further note that there arises also the
term 〈∂ ĥR/∂�〉 = B〈R2〉/2 in Eq. (63). Nevertheless, as the
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center-of-mass coordinate decouples from the Hamiltonian
Ĥ ′

FR, the expectation value simply assumes an integer number:
〈∂ ĥR/∂�〉 = nRx + nRy + 1 with nRx (y) being the energy level
in the center-of-mass dimension x (y). Consequently, we ne-
glect its contribution to the statistics parameter. In Eq. (63) the
second term defines the magnetization of the systemM, i.e.,
∂E ′

FR/∂� = −2MM, which is routinely measured in torque
magnetometry setups to probe the 3D and 2D Fermi surfaces
of different types of materials [108–112]. The first term, on
the other hand, can be measured with a standard time-of-flight
measurement [113]. We note that the relation (63) is remi-
niscent of the recently proposed method to observe anyonic
statistics in the FQHE [28], where the statistics parameter
is defined in terms of the mean-square radius of the density
distribution of atoms. Here, anyons can be observed in a much
simpler condensed matter system by measuring the magneti-
zation of the impurity-bath system and mean-square distance
of the impurities.

2. 2D weakly interacting Bose gas

The proposed setup can be extended to different many-
particle environments such as a two-dimensional weakly
interacting Bose gas or a film of liquid helium. The Fröhlich-
Bogoliubov regime of these impurity problems is governed
by the Hamiltonian (45); see Refs. [114–117] for the details
on the validity of the Fröhlich-Bogoliubov theory. In such
environments, however, the dispersion of the corresponding
excitations ω(k) is, in general, gapless. Nevertheless, realistic
circumstances, such as finite size of the BEC, impose a natural
low-momentum cutoff kmin for the dispersion. This allows
us to investigate these impurity problems within the adia-
batic theorem as well. Furthermore, if the condition ω(kmin) −
μmax� > 0 holds true, then the ground state of the fast Hamil-
tonian is given by the vacuum state after the corresponding
Ŝ and Û transformations. This condition is satisfied for small
values of the cyclotron frequency. Moreover, the cyclotron fre-
quency should be less than the transverse trapping frequency.
Otherwise, the atom density in the gas drops down and the
healing length can become arbitrarily large, and the problem
cannot be described within the Fröhlich-Bogoliubov theory.
Under these conditions, Eq. (58) remains valid by replacing
ω0 with the dispersion ω(k):

α(r) = −
μmax∑

μ=−μmax

[1 + (−1)μ]2μ

×
∫ ∞

kmin

dk k

2π

(V (k)Jμ(kr/
√

2))2

[ω(k) + μ�]2
. (64)

For instance, let us consider the impurities inside a two-
dimensional Bose gas. The latter can be considered a weakly
interacting gas if the condition n0a2

B � 1 is satisfied, where n0

is the density of the Bose gas and aB the boson-boson scatter-
ing length parametrizing the contact boson-boson interaction.
The Bogoliubov dispersion is given by

ω(k) = ck
√

1 + k2ξ 2/2. (65)

Here c = √
gBBn0/mB and ξ = (2mBgBBn0)−1/2 are the speed

of sound and the healing length of a weakly interacting Bose

FIG. 5. The relative statistics parameter of Eq. (64) as a function
of the dimensionless distance r

√
n0 for impurities immersed in a 2D

Bose gas. The long-distance behavior of the emergent gauge field
corresponds to the statistics gauge field. The applied Bogoliubov
parameters are β1 = 1000, β2 = 1

30 , ξ = 0.1, B = 1, μmax = 10, and
kmin = 2k0. The latter is found by solving the equation ω(k0) −
μmax� = 0. For densities n0 > 100 the parameter

√
n0ξ > 1, which

is accessible in the current experiments (see for instance Ref. [118]).

gas, respectively. mB is the boson mass and gBB is the boson-
boson coupling constant given by gBB = 4π/[mB ln(1/n0a2

B)].
The coupling, on the other hand, is

V (k) = √
n0(2π )−1gIB

(
ξ 2k2

2 + ξ 2k2

)1/4

(66)

with gIB being the impurity-boson coupling constant. We
further define two dimensionless numbers β1 = g2

IBn0/(πc2)
and β2 = mB/M, which characterize the Bogoliubov-Fröhlich
Hamiltonian in 2D; see Ref. [114] for details. In Fig. 5 we
present α(r) as a function of the dimensionless distance r

√
n0

in a parameter regime where the Fröhlich-Bogoliubov theory
is applicable. Apart from small distances, α(r) is approxi-
mately constant and, hence, the emergent gauge field behaves
as the statistics gauge field. We finally note that the same
formalism can also be extended beyond the Fröhlich model,
where two-phonon scattering processes as well as additional
phonon-phonon interactions should be included [115]. In this
case, one can also investigate impurities strongly interacting
with the bath.

Regarding the preparation of the system in order to observe
the anyonic behavior of impurities in a 2D Bose gas, we first
note that the impurity-bath interaction for a 2D Bose gas has
not been achieved yet. Nevertheless, its realization is not out
of reach as the sound propagation was already measured ex-
perimentally in a 2D Bose fluid [118]. Rotation of the system,
on the other hand, was already demonstrated for a cold atomic
BEC [119]. Furthermore, the adiabaticity condition � � ω0

allows us to measure the statistics parameter by a time-of-
flight measurement after sudden release of trapping potential
and a rf spectroscopic measurement of impurity state, respec-
tively, which have been already performed (see Ref. [113] for
the time-of-flight measurement and Refs. [42,120] for the rf
spectroscopy of impurity states in 3D BEC systems). Finally,
the anyonic behavior of impurities can also potentially be

144109-13



E. YAKABOYLU et al. PHYSICAL REVIEW B 102, 144109 (2020)

observed by direct interference measurements [121]. This is
also feasible by imaging of the interference pattern of the
impurity atoms after sudden release of the trapping potential.

VI. DISCUSSIONS

In this paper, we have introduced a quantum impurity
model where the surrounding many-particle bath manifests
itself as the statistics gauge field with respect to the impuri-
ties, and the lowest-energy spectra correspond to the anyonic
spectra. In terms of the quasiparticle picture, anyons can here
be identified as impurities which are first converted into com-
posite bosons (fermions) and then dressed by a coherent state
of phonons weighted according to the statistics parameter. Its
magnitude in turn depends on the ratio between the phonon
energy gap and the hopping amplitude in the adiabatic limit.

The introduced model reveals powerful numerical tech-
niques for studying the N-anyon problem. Specifically, the
analytical form of Eq. (39) or (41) provides simple routes
to obtaining the N-anyon spectrum. The direct approach is
to calculate the matrices Z̃ and Z̃

−1
separately by explicitly

evaluating interaction integrals in the impurity basis using
Eq. (42). One can also calculate Z̃ algebraically by writing
the harmonic-oscillator Hamiltonian in terms of the ladder
operators. Afterward, the inverse matrix Z̃

−1
can be evaluated

from the pseudoinverse of Z . The general procedure of the
evaluation of Z̃ and Z̃

−1
numerically for more than three

impurities will be the subject of future work. Moreover, some
common techniques used in quantum impurity problems, such
as the diagrammatic Monte Carlo (DiagMC) and density ma-
trix renormalization group (DMRG) technique, can be applied
to the introduced impurity model for numerical studies of the
N-anyon problem.

As an experimental proposal, we considered heavy elec-
trons interacting with the excitations of a two-dimensional
ionic crystal subject to a magnetic field. If the impurity-bath
system is rotated at the cyclotron frequency, the impurities
behave as anyons. We showed that the statistics parameter
manifests itself through the expectation value of the angular
momentum of the many-particle bath in the coherent state.
This makes it possible to measure the statistics parameter
in experiment in terms of the mean-square distance of the
impurities and the magnetization of the impurity-bath system.
Furthermore, it has been shown that the proposed setup is
applicable to other bosonic baths, such as a two-dimensional
Bose gas. In this case, the long-distance behavior of the
emergent gauge field resembles the statistics gauge field. A
possible experimental measurement of the statistics parameter
might be more feasible in such an environment due to recent
advances in ultracold atomic physics.

To summarize, we have undertaken the first step toward
realizing anyons by using quantum impurities. This descrip-
tion of anyons promises to shed light on the field of fractional
statistics and related branches of physics, such as the FQHE.
The formalism developed in this paper is based on the
consideration of a nondegenerate ground state of the fast
Hamiltonian, which corresponds to a U(1) gauge field in
the adiabatic limit, and hence Abelian anyons. If we further
consider an impurity problem that exhibits some degeneracy
in the ground state, then the emergent gauge field in the

adiabatic limit could very well correspond to a non-Abelian
gauge field. This would allow us to extend the model to realize
non-Abelian anyons in terms of quantum impurities. In the
context of impurity problems, this can potentially be achieved
by considering internal degrees of freedom of phonons. Such
an approach could then allow us to use quantum impurities as
a platform for topological quantum computation.
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APPENDIX

1. Derivation of the emergent gauge field

In general, we consider a free N-boson system coupled to
another system. The corresponding total Hamiltonian can be
written as

Ĥtot = −1

2

N∑
q=1

∇2
q + Ĥfast(x), (A1)

with x = {x1, . . . , xN } being the coordinates of bosons. Here
the first term is the kinetic energy of bosons. Since it is often
more convenient to study anyons in curvilinear coordinates,
like polar coordinates as we discuss, we give the Laplacian in
curvilinear coordinates in terms of the inverse metric tensor
gi j

q , with gq = det gi j
q ,

∇2
q = 1√

gq

∑
i, j

∂

∂xi
q

(√
gqgi j

q

∂

∂x j
q

)
. (A2)

The second term in Eq. (A1) describes the Hamiltonian of
the system that couples to bosons, and we assume that in
general it is self-adjoint in a weighted space. The coordinates
of bosons x are regarded as parameters in the Hamiltonian
Ĥfast(x), whose eigenvalue equation is given by

Ĥfast(x)Ŝ|ψn(x)〉 = εn(x)Ŝ|ψn(x)〉, (A3)

where Ŝ = Ŝ(x) is a similarity transformation such that
Ŝ−1ĤfastŜ is Hermitian, and 〈ψn(x)|ψm(x)〉 = δn,m. Note
that the identity operator in the weighted Hilbert space,
where the Hamiltonian Ĥfast is defined, is given by
Ŝ
∑

n |ψn(x)〉〈ψn(x)|Ŝ−1 = Î .
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The total quantum state, which is defined via the eigenvalue
equation Ĥtot |�E (x)〉 = E |�E (x)〉, can be expanded as

|�E (x)〉 =
∑

n

χE
n (x)Ŝ|ψn(x)〉, (A4)

where χE
n (x) = 〈ψn(x)|Ŝ−1|�E (x)〉. Then, the eigenvalue

equation can be written as∑
m

H eff
nmχE

m (x) = E χE
n (x), (A5)

with the effective Hamiltonian

H eff
nm = −1

2

N∑
q=1

∑
l

1√
gq

∑
i, j

[
δnl

∂

∂xi
q

+ 〈ψn|Ŝ−1 ∂

∂xi
q

Ŝ|ψl〉
]

×√
gqgi j

q

[
δlm

∂

∂x j
q

+ 〈ψl |Ŝ−1 ∂

∂x j
q

Ŝ|ψm〉
]

+ εnδnm,

(A6)

where 〈ψn|Ŝ−1∂/∂xi
qŜ|ψm〉 is the emergent gauge field. We

note that Eq. (A5) with the Hamiltonian (A6) is still exact.
Now we assume that the spectrum of the Hamiltonian Ĥfast(x)
is discrete and nondegenerate at least in the nth level, and that
the energy splittings between level n and the other levels m �=
n are so large that 〈

H eff
nm

〉
〈
H eff

mm

〉− 〈
H eff

nn

〉 � 1. (A7)

Then, in this adiabatic limit the Schrödinger equation (A5)
simply reads as(

−1

2

N∑
q=1

1√
gq

[
∂

∂xi
q

+ 〈ψn|Ŝ−1 ∂

∂xi
q

Ŝ|ψn〉
]√

gqgi j
q

×
[

∂

∂x j
q

+ 〈ψn|Ŝ−1 ∂

∂x j
q

Ŝ|ψn〉
]

+ W (x)

)
χE

n (x)

= E χE
n (x), (A8)

where

W (x)

= εn(x)− 1

2

N∑
q=1

∑
l �=n

〈ψn|Ŝ−1 ∂

∂xi
q

Ŝ|ψl〉gi j
q 〈ψl |Ŝ−1 ∂

∂x j
q

Ŝ|ψn〉

(A9)

is the emergent scalar potential.

2. Three-impurity matrix element in hyperspherical coordinates

For the three-impurity problem the matrix elements of Z̃
−1

in hyperspherical coordinates are given by

〈�±
nmνμ|2ρ−6e6iψ [A(θ ) cos(3φ)+ iB(θ ) sin(3φ)]−2|�±

n′m′ν ′μ′ 〉,
(A10)

where A(θ ) = cos(θ )[2 − cos(2θ )], B(θ ) = sin(θ )[2 +
cos(2θ )] with −π/4 � θ � π/4. The ρ and ψ integrals can
be evaluated analytically. The latter integral, similar to the

two-impurity problem, excludes the diverging ρ integrals.
The φ integral, on the other hand, can be written as

Iw =
∫ π/2

−π/2

dφ eiwφ

[A(θ ) cos(3φ) + iB(θ ) sin(3φ)]2
, (A11)

with w = 6 × integer. Here, we used the hyperspherical har-
monics [94,95], which are given by

Y ±
mνμ(θ, φ,ψ ) =

[(
1√
2

− 1

)
δν0 + 1

]

× 1

2π
(〈m, ν, μ〉 ± (−1)μ+m̃〈m,−ν, μ〉),

(A12)

where

〈m, ν, μ〉 =
√

m̃!(m̃+ α+ β )!(m + 1)

2α+β (m̃ + α)!(m̃ + β )!
�

αβ
m̃ [sin(2θ )]eiνφeiμψ,

(A13)

�
αβ
m̃ (x) = (1 − x)α/2(1 + x)β/2Pαβ

m̃ (x), (A14)

with the Jacobi polynomials Pαβ
m̃ (x) and the following num-

bers:

m̃ = m− max(|μ|, |ν|)
2

, α = |ν+ μ|
2

, and β = |ν − μ|
2

.

(A15)

The integral (A11) can be transformed into a rational func-
tion of a complex variable by the substitution of z = exp(2iφ):

Iw = − 2i

(A + B)2

∮
C

dz z2+w/2

(z3 + κ )2
, (A16)

where the contour C is the unit circle, and κ = (A − B)/(A +
B). This contour integral can be further written as

Iw = 2i

(A + B)2

∂

∂κ

∮
C

dz z2+w/2

(z3 + κ )
, (A17)

where the latter contour integral can be straightforwardly
determined by using the residue theorem. For w � 0 the
integral is given by

Iw = −4π (eiπw/2 + 2 cos(πw/6))

3(A + B)2

∂

∂κ
(H (1 − κ )κw/6),

(A18)
which yields

Iw = 2πeiπw/2

3

(
δ(θ ) − wH (θ )

(A + B)2

(A − B

A + B

) w
6 −1)

, (A19)

with H (θ ) being the step function. The w < 0 case, on the
other hand, can be easily obtained by changing w → −w and
θ → −θ in Eq. (A19). Finally, the remaining θ - ntegral can
be calculated numerically.

3. Diagonalization of the impurity Hamiltonian

In this section we elaborate on why we expect to see
that the spectrum of the full Hamiltonian operator converges
to that of the lowest sector of the Fock space. Namely, we
find that any eigenstate with low energy will have vanishing
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components outside the lowest sector in the adiabatic limit
ω → ∞. However, a few technical assumptions enter because
the various components of the full operator depend on the
particle number.

Starting with an impurity-bath coupled Hamiltonian of the
form (18),

Hω := H0 + ω â†â + λω(Fâ† + F−1â) + λ2ω,

where ω � 0 and λ ∈ R are parameters, and

H0 :=
N∑

j=1

[− ∇2
x j

+ V (x)
]

acts in some N-body Hilbert space H , let us define for arbi-
trary coupling γ ∈ R a deformed N-body operator

Hγ F
0 :=

N∑
j=1

[−(∇x j + γ F j )
2 + V (x)]. (A20)

For generality we allow for a potential V (which may depend
on all the variables and thus also include interactions), and
also for F to be any function of x1, . . . , xN such that

F j := ∇x j log F = F−1∇x j F

in (A20) is well defined, say smooth, at least for noncoincident
x j (we may then take an appropriate dense domain inH).

Using Ŝ = F n̂, n̂ = â†â, and Û = e−λ(â†−â) in the expan-
sion

eXYe−X = Y + [X,Y ] + 1

2!
[X, [X,Y ]]

+ 1

3!
[X, [X, [X,Y ]]] + · · ·

we obtain the transformations

Ŝ−1∇x j Ŝ = ∇x j + F j n̂, Ŝ−1â(†)Ŝ = F (−1)â(†),

Û −1â(†)Û = â(†) − λ,

and thus Hω is similar to

H ′
ω := Û −1Ŝ−1HωŜÛ = H ′

0 + ωn̂,

H ′
0 =

N∑
j=1

[− ∇2
x j

+ V (x) − (∇x j · F j + 2F j · ∇x j

)
Û −1n̂Û

− F2
j Û −1n̂2Û

]
.

We compute for arbitrary n = 0, 1, 2, . . .

Û −1n̂Û |n〉 = [n̂ − λ(â† + â) + λ2]|n〉
= (n + λ2)|n〉 − λ

√
n + 1|n + 1〉 − λ

√
n|n − 1〉,

Û −1n̂2Û |n〉 = (n̂2 − λn̂(â† + â) − λ(â† + â)n̂ + 4λ2n̂ + λ2[(â†)2 + â2] − 2λ3(â† + â) + λ2 + λ4)|n〉
= (n2 + 4λ2n + λ2 + λ4)|n〉 − λ(2n + 1 + 2λ2)

√
n + 1|n + 1〉 + λ2

√
n + 2

√
n + 1|n + 2〉

− λ(2n − 1 + 2λ2)
√

n|n − 1〉 + μ2√n
√

n − 1|n − 2〉,
and thus obtain the nontrivial operator matrix elements

〈n|H ′
ω|n〉 =

N∑
j=1

[− ∇2
x j

+ V (x) + ωn − (∇x j · F j + 2F j · ∇x j )(n + λ2) − F2
j [(n + λ2)2 + λ2(1 + 2n)]

]

= H (n+λ2 )F
0 + ωn − λ2(1 + 2n)F2,

〈n + 1|H ′
ω|n〉 =

N∑
j=1

[− (∇x j · F j + 2F j · ∇x j )(−λ
√

n + 1) − F2
j [−λ(2n + 1 + 2λ2)

√
n + 1]

]

= λ
√

n + 1
[
H0 − HF

0 + 2(n + λ2)F2
]
,

〈n − 1|H ′
ω|n〉 =

N∑
j=1

[− (∇x j · F j + 2F j · ∇x j )(−λ
√

n) − F2
j [−λ(2n − 1 + 2λ2)

√
n]
]

= λ
√

n
[
H0 − HF

0 + 2(n − 1 + λ2)F2
]
,

〈n + 2|H ′
ω|n〉 =

N∑
j=1

[− F2
jλ

2
√

n + 2
√

n + 1
] = −λ2

√
n + 2

√
n + 1 F2,

〈n − 2|H ′
ω|n〉 =

N∑
j=1

[− F2
jλ

2√n
√

n − 1
] = −λ2√n

√
n − 1 F2.
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Hence, we have a symmetric pentadiagonal matrix of operators

[〈k|H ′
ω|n〉]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hλ2F
0 − λ2F2 λ

(
H0 − HF

0 + 2λ2F2
) −λ2

√
2F2 0 0 . . .

λ
(
H0 − HF

0 + 2λ2F2
)

H (1+λ2 )F
0 + ω − 3λ2F2 λ

√
2
[
H0 − HF

0 + 2(1 + λ2)F2
] −λ2

√
6F2 0 . . .

−λ2
√

2F2 λ
√

2
[
H0 − HF

0 + 2(1 + λ2)F2
]

H (2+λ2 )F
0 + 2ω − 5λ2F2 . . .

0 −λ2
√

6F2 λ
√

3
[
H0 − HF

0 + 2(2 + λ2)F2
]

. . .

0 0 −λ22
√

3F2 . . .

0 0 0
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that for the choice (33), F j = 2iÃ j , so F2 = 0 and these expressions simplify significantly, while with the choice
(19), F j = 2iA j , −F2 = 4A2 � 0, and HF

0 = H2iA
0 = F ∗H0F is unitary equivalent to H0. Furthermore, one has the unitary

equivalence of HiαA
0 to Hi(α+2n)A

0 for any integer n as well as the diamagnetic inequality 〈HiαA
0 〉� � 〈H0〉|�| for any α ∈ R and

� ∈ H [70], while Hiγ Ã
0 = |F̃ |−γ /2Hiγ A

0 |F̃ |γ /2, also implying isospectrality for Hi(α+2n)Ã
0 . Hence, if H0 � −C and we consider

a truncated subspace of N-body states �n ∈ H for which Re 〈±Hγ F
0 〉�n � C and 0 � 〈−F2〉�n � C independent of n and ω,

then for any normalized |�〉 = ∑∞
n=0 �n|n〉 with finite expectation 〈n̂3/2〉� (in the case F2 = 0 it is sufficient that 〈n̂〉� � C),

Re 〈�|H ′
ω|�〉

�
∞∑

n=0

(
(nω − C)‖�n‖2 − 2|λ|√n + 1

∣∣〈�n|[H0 − HF
0 + 2(n + λ2)F2]|�n+1〉

∣∣− 2λ2
√

n + 1
√

n + 2|〈�n|F2|�n+2〉|
)

� −2C(1 + |λ| +
√

2λ2)‖�0‖2 +
∞∑

n=1

(nω − C − 8|λ|√n + 1(1 + n + λ2)C − 4λ2
√

n + 1
√

n + 2C)‖�n‖2,

by the Cauchy-Schwarz inequality. Keeping N and λ fixed, and demanding that 〈H ′
ω〉� stays bounded while ω−1〈n̂3/2〉� → 0 as

ω → ∞, thus requires that 1 − ‖�0‖2 = ∑∞
n=1 ‖�n‖2 � 〈n̂〉� → 0 by the above inequality.

Therefore, in the limit as ω → ∞, the lowest part (as quantified by C) of the spectrum of H ′
ω, and equivalently Hω, is described

by that of

Hλ2F
0 − λ2F2 = 〈0|H ′

ω|0〉 = 〈0|Û ∗Ŝ−1H0ŜÛ |0〉 = e−λ2
∞∑

n=0

λ2n

n!
F−nH0F n, (A21)

where in the last identity we used the coherent state (25).
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