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Quantum Monte Carlo determination of the principal Hugoniot of deuterium
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We present coupled electron-ion Monte Carlo results for the principal Hugoniot of deuterium together with
an accurate study of the initial reference state of shock-wave experiments. We discuss the influence of nuclear
quantum effects, thermal electronic excitations, and the convergence of the potential energy surface by wave-
function optimization within variational Monte Carlo and projection quantum Monte Carlo methods. Compared
to a previous study, our calculations also include low pressure-temperature (P, T ) conditions resulting in close
agreement with experimental data, while our revised results at higher (P, T ) conditions still predict a more
compressible Hugoniot than experimentally observed.
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The determination of the hydrogen phase diagram across a
large range of temperature and pressures, an important topic
in planetary science, is a challenging problem mainly relying
on static or dynamic compression experiments or theoretical
computations [1]. Static compression experiments performed
in diamond anvil cells are used to probe the properties of solid
hydrogen at low temperature and of fluid hydrogen just above
the melting conditions, while the fluid phase in a wider range
of thermodynamic conditions is investigated using dynamical
compression by shock waves, e.g., applying a short duration,
high intensity force to a hydrogen or deuterium sample using
a gas gun [2], converging explosive shock [3], pulsed power
[4,5], laser [6–8], or magnetically driven platforms [9]. Given
an initial reference state, the densities and pressures of the
final state of the shock (the Hugoniot) are determined by
the Rankine-Hugoniot relation, directly following from basic
conservation laws in fluid dynamics [10]. A review of experi-
mental techniques is presented in Ref. [11].

The deuterium Hugoniot can be predicted from first-
principles simulations based either on density functional
theory (DFT) or quantum Monte Carlo (QMC) techniques.
DFT predictions appear to have good agreement with ex-
periments [5], which surprisingly is seemingly independent
of the exchange-correlation (XC) approximation employed,
while coupled electron Monte Carlo (CEIMC) results based
on QMC techniques find a more compressible Hugoniot than
obtained from experiments [12]. An analysis of error prop-
agation in the Hugoniot for several first-principles methods,
including QMC and DFT [13], showed that the insensitivity of
DFT to different XC functionals results from important error
cancellation, whereas QMC inaccuracies may get amplified in
the Hugoniot predictions. In particular, the fixed-node error of
the electronic QMC energies was suggested as the possible
origin of the observed deviation of the CEIMC predictions
from experiments.

In this paper, we report QMC results for the principal
Hugoniot, obtained by ground-state variational Monte Carlo
and reptation quantum Monte Carlo, within the fixed-node
or fixed-phase approximation. Nuclear motion is simulated
by CEIMC. Selected nuclear configurations from CEIMC
trajectories are used to study the convergence of electronic
ground-state calculations. For each configuration, the con-
verged energy and pressure are then averaged for determining
the Hugoniot. Within this protocol, we studied systems at
different densities for T � 8000 K, where electronic thermal
effects are negligible, and compare our computed Hugoniot to
experimental data and DFT results. Particular care is given to
the analysis of the cryogenic fluid reference state, which plays
a fundamental role in the determination of the Hugoniot curve.
Since we expect the fixed-node error to be less pronounced in
the molecular phase at low compression, we mainly focus on
the low-compression–low-temperature part of the Hugoniot.

This paper is organized as follows: In Sec. I we review the
Hugoniot-Rankine relation, reviewing the current consensus
for theoretical and experimental results; in Sec. II we describe
the computational methods, and the protocol followed in this
study, presenting our results in Sec. III. We start with the
results for the reference state, reporting several estimates of
reference energies. Then, we present our results under low
compression including several small corrections such as elec-
tronic thermal effect and nuclear quantum effects. Section IV
reports our conclusions. In the Appendices we report a struc-
tural analysis along the Hugoniot and some details on the
reptation Monte Carlo (RMC) calculations.

I. HUGONIOT-RANKINE RELATION

The equation of state of a material can be determined in
shock experiments. A shock is applied to a system in an initial
state at a pressure P0 and temperature T0 with energy per atom
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e0, and volume per atom v0. Depending on the strength of
the shock, the system can reach final states with e, P, and v

determined by the Hugoniot-Rankine relation

H (v, T ) = e(v, T ) − e0 + 1
2 (v − v0)[P(v, T ) + P0] = 0. (1)

In order to compare with the most precise shock experiments
[5,14] we set our initial conditions to be those appropriate for
liquid deuterium at T = 22 K, P0 = 1.24 × 10−4 GPa and
v0 = 135.15a3

0, a0 being the Bohr radius. In the following,
we will express our volumes in terms of the Wigner-Seitz

radius rs a0 = 3

√
3

4π
v, with the initial volume corresponding

to r0
s = 3.183 53. We stress that a precise determination of the

properties of the initial reference state is needed to define the
Hugoniot; see Eq. (1). Inaccuracy of the reference energy e0

will change the Hugoniot, especially at lower temperatures.
A detailed description of the procedure that we used to deter-
mine the reference point can be found below in Sec. III A.

II. METHODS

In this study we employed first-principles simulations
methods based on density functional theory (DFT) and on
quantum Monte Carlo (QMC) electronic energy determina-
tion within the Born-Oppenheimer approximation [1]. The
nuclear configuration space is sampled using a Metropo-
lis Monte Carlo algorithm. Nuclei are either represented by
point particles in the classical (high-temperature) limit or
by path integrals for quantum particles, assumed here to be
distinguishable [15]. When employing the QMC electronic
solution, this method is called coupled electron-ion Monte
Carlo (CEIMC) while when employing the DFT electronic
solution we will call it Born-Oppenheimer Monte Carlo
(DFT-BOMC) for similarity with the commonly used Born-
Oppenheimer molecular dynamics (BOMD) approach. Both
electronic solutions are implemented in our CEIMC code,
BOPIMC.

CEIMC can exploit electronic QMC energies from both
variational Monte Carlo (VMC) or reptation Monte Carlo
(RMC). Both, VMC and RMC, are based on the variational
principle of quantum mechanics: for any given Hamiltonian,
the exact ground state will have the lowest energy; it is thus
possible to estimate the ground-state wave function by defin-
ing a trial wave function �T (p; r) with a suitable functional
form, which depends on a set of M variational parameters p =
{p1, p2, . . . , pM}; r = {r1, r2, . . . , rN } are the N electronic
coordinates. Within VMC, these variational parameters are
numerically optimized by minimizing a linear combination of
the trial energy ET , defined as

ET = 〈Eloc(r)〉p =
∫

dr|�T (p; r)|2Eloc(r)∫
dr|�T (p; r)|2 ; (2)

here 〈. . . 〉p stands for the mean value of a quantity over the
normalized probability distribution |�(p; r)|2 and the local
energy is

Eloc(r) = Ĥ�T (p; r)

�T (p; r)
, (3)

and its variance.

RMC [16] is a projection technique: it consists in repeat-
edly applying the imaginary-time evolution operator U (τ ) =
exp(−τ Ĥ) to a trial wave function, preoptimized via VMC,
which has the effect of filtering out components coming from
excited states. As with other projection methods RMC is in
principle exact for τ → 0, but for fermions it suffers from
the sign problem. To circumvent the sign problem and the
associated exponentially increasing cost for exact fermion
calculations, the fixed-node or fixed-phase approximation is
used. The resulting energy is the lowest energy consistent with
the nodes or phase of the assumed trial function, hence, below
the VMC energy but above the ground-state energy.

When using either VMC or RMC, an accurate trial wave
function is important. In our computations we used backflow
Slater-Jastrow wave functions of the form

�T (r; R) = J (r; R) · Det↑(φi(q j ))Det↓(φi(q j )). (4)

Here, R represents the set of nuclear coordinates, J (r; R)
is a general Jastrow term, symmetrical under electron ex-
changes, which introduces electron correlations, including
one- (electron-nucleus), two- (electron-electron), and three-
particle terms. The other terms in Eq. (4) are Slater
determinants (one for each spin component), which ensure
that the overall electronic trial wave function has the cor-
rect fermionic antisymmetry. The single-particle states {φi}
are determined from a DFT computation, performed using
the QUANTUM ESPRESSO software [17,18]. Instead of contain-
ing bare electronic coordinates r, the orbitals in the Slater
determinants contain backflow transformed coordinates {qi},
obtained using analytical backflow transformations plus an
empirical Gaussian correction [19–22]. The use of backflow
coordinates introduces corrections to the nodal surface defined
by the DFT orbitals in the Slater determinants, which lead
to a significant improvement of the accuracy of the QMC
estimates, of the order of a few mHa/atom [21].

In CEIMC nuclear sampling is performed by a generalized
Metropolis scheme [23]. From a given nuclear configuration,
a different configuration is proposed by an a priori transition
probability easy to sample and an acceptance test is performed
to accept or reject the move. Since the energy difference
between those configurations is obtained by QMC, we need
in principle to perform a new trial function optimization and
a subsequent VMC or RMC energy calculation at each at-
tempted configuration before accepting or rejecting the move.
However, this is not feasible to sample configuration space.

In our protocol, as described in detail in the Supplemental
Material of Ref. [24], we usually apply several shortcuts,
specific to hydrogen, to reduce drastically the computational
demands. First, we rely on an accurate trial wave function
for hydrogen comprising an analytic function free of varia-
tional parameters [21]. This form is already rather accurate,
in particular for a metallic system [22]. To this form we add
empirical terms for both the Jastrow (both one, two, and three
body) and the backflow which introduce up to 13 variational
parameters. It is important to include these terms since they
lower the energy by about 1 mHa/atom and reduce the vari-
ance by 40% for states of hydrogen around the dissociation
transition. Rather than performing the parameter optimiza-
tion for each proposed nuclear configuration at each density,
we select a number of statistically independent nuclear
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configurations (few tens), generated with an unoptimized trial
function. We then optimize the variational parameters for each
configuration. We then use the average values for subsequent
generation of the nuclear trajectory. This procedure takes into
account the variation of the parameters with density but the
variational parameters are not tailored for the specific con-
figuration. The bias in the energy is less than the statistical
precision of the CEIMC method [24]. Because CEIMC is
based on sampling the Boltzmann distribution, any bias intro-
duced by inaccurate solutions of the electronic problem can be
corrected for by reweighting the nuclear configurations [25].
A third shortcut is that we do not perform RMC calculations of
the electronic energy to advance the nuclear sampling but we
run with VMC energy and we estimate the improvement from
VMC to RMC on a selected subset of nuclear configurations.
As reported in the Appendices, corrections are negligibly
small, within the statistical accuracy of our results, justifying
our approach a posteriori.

One further limitation of our methods is the assumption of
ground-state electrons. From previous works on the deuterium
Hugoniot by BOMD [5] it is known that electronic thermal
effects can be relevant at higher temperatures/compressions.
In order to assess the relevance of those effects, we performed
a DFT-BOMC study of the deuterium Hugoniot employing the
van der Waals density functional (vdW-DF1) XC approxima-
tion within ground state DFT to be compared with the results
of Ref. [5] where, among others, the same XC approxima-
tion, but with thermal electrons based on Mermin functional
approach, has been employed. As discussed below, we infer
that along the Hugoniot line, electronic thermal effects make a
small corrections to the equation of state (EOS): the pressure
difference at ∼10 000 K is �6% and becomes negligible at
lower compressions and temperatures. We therefore expect
similar small effects within a QMC framework and negligi-
ble bias due to thermal electronic effects in CEIMC below
10 000 K. By performing excited-state VMC calculations for
selected fixed nuclear configurations at the highest tempera-
ture as described in Sec. III C we explicitly confirm the minor
role of electronic temperature effects.

In most of our calculations we model nuclei as classical
point particles. A noticeable exception is at the reference point
(initial state) where nuclear quantum effects are so large to
ensure a liquid rather than a crystalline state. To establish
the physical properties of the reference state, we employ
three different models of increasing accuracy to be discussed
in Sec. III A. Nuclear quantum effects for states along the
Hugoniot are small because of the high temperature. At the
lowest temperature considered (2000 K) nuclear quantum cor-
rections on the Hugoniot are significant since the variation
of the Hugoniot function with density is small. In this case
we estimate nuclear quantum effects (NQE) by running DFT-
BOMC with quantum nuclei represented by path integrals (see
Sec. III D).

III. RESULTS

A. Reference point

When determining the Hugoniot curve described in Eq. (1)
it is important to have a reliable estimate of the properties

of the reference state. In this work we assumed a density
of ρ0 = 0.167 g/cm3, corresponding to an atomic volume of
v0 = 135.15 a3

0 or r0
s = 3.183 53, as in the experiments [5,14].

This corresponds to liquid deuterium at a pressure of 124 KPa
at a temperature of 22 K.

There is an ambiguity in determining the energy of the
reference point in an approximate computational method. One
might expect that numerical errors in the energy difference
e(v, T ) − e(v0, T0) would cancel in determining the H func-
tion of Eq. (1). Note that the individual energies are about 0.5
Ha/atom but we need an accuracy in the difference of roughly
10−4 Ha/atom. However at high pressure (up to fivefold com-
pression) there is a large change in the state of the molecules,
and it is unlikely there would be a full cancellation of errors
in an approximate method.

At low pressures, CEIMC is a very precise method be-
cause the two most important sources of errors, the fixed-node
approximation and finite-size effects, are very small at low
density. This is because in a system with a large gap, electrons
are well localized and the electrons within the same molecule
have different spins so do not need to be antisymmetrized.
Also, the exchange effects between molecules are small and
those effects are well approximated by the Slater-Jastrow trial
function.

Rather than using the CEIMC method to directly esti-
mate (e0, P0) we have used several indirect approaches which
are based on the idea that at low density the system con-
sists of weakly interacting deuterium molecules. CEIMC
would require a large number of imaginary-time slice in the
path-integral representation of the deuterons, resulting in an
exceedingly slow dynamics to explore the phase space of
the disordered molecules. In earlier work we used energies
from the properties of an isolated deuterium molecule with
experimental information on how D2 molecules interact at
low temperatures and densities to determine the reference
point energy, pressure, and volume. We arrived at an esti-
mate of r0

s = 3.183 53, e0 = −0.583 725 Ha/atom, and P0 =
4.2 × 10−9 a.u. = 1.2 × 10−4 GPa.

For our estimates we note that at the reference point the
typical distance between molecules is about four times the
molecular bond length. Thus, we first consider a system of
quantum molecules interacting through the Silvera-Goldmann
potential [26]. This is a spherically symmetric potential
between molecular centers of mass. For this model we per-
formed PIMC simulations using the pair action [15] of a
system with N = 32 molecules. Convergence of the results
with the imaginary-time step was investigated by performing
simulation with an increasing number of time slices. It was
found that four time slices were enough for the convergence of
the energy at 22 K. As expected, we found a liquid hydrogen
molecular state. To estimate the internal energy and pressure
we included a tail correction for the interaction outside of the
periodic box.

To further test the CEIMC procedure, we generated the
bond distances and angles of the molecules using a second
PIMC simulation with the Kolos-Wolniewicz (KW) potential
[27]. An estimate of the reference point properties, obtained
by adding SG and KW energies, is reported in Table I.

To obtain another estimate of the reference point prop-
erties, we build nuclear configurations as follows. From the
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TABLE I. Total, kinetic energy per atom and pressure computed
using the Silvera-Goldman (SG) for the molecular liquid and Kolos-
Wolniewicz (KW) effective potentials for the isolated molecule.

SG KW Total

etot (Ha/at.) −2.225(2) ×10−4 −0.583598(2) −0.583821(2)
ekin (Ha/at.) 8.893(3) ×10−5 0.001701(3) 0.001790(3)
P (GPa) −0.0050(1) 0 −0.0050(1)

trajectory of the SG model we extracted 120 molecular config-
urations, representing the position of the center of mass of the
D2 molecules. From the PI simulations of the KW potential,
we extract 32 × 120 snapshots that we assigned randomly to
the 32 molecules in the different configurations to obtain 120
atomic configurations with 64 nuclei each. These configura-
tions are used as source to calculate the Coulomb potentials
in both the electronic QMC and DFT calculations; in QMC
for each configuration we optimized the trial wave function
using the correlated sampling scheme, then we computed
energy and pressure with both VMC and RMC. Finally, we
averaged over the configurations and added size corrections
[28], reported in Table IV, to obtain the properties of the ref-
erence state. Results are reported in Table II and compared to
the SG+KW model. Table II also reports the reference point
values obtained with the same 120 molecular configurations
using the vdW-DF1 XC functional. These values will be used
in the evaluation of the DFT-BOMC Hugoniot.

The reference energies for different models are different.
The RMC energy is lower than VMC energy by 5.57 mHa/at.
But, the SG+KW energy is only 0.1 mHa/at. higher, almost
within error bars from the RMC result. Also, the value used
in previous work [12,13], based on the energy of a single D2

molecule [27], the binding energy of solid D2 [29] and its heat
capacity [30], is only 0.13 mHa/at. higher than the reference
RMC energy. The vdW-DF1 has a lower energy than the RMC
reference but this depends on energy cutoff and pseudopo-
tential: we employed a scalar relativistic projector augmented
wave (PAW) pseudopotential with an energy cutoff of 40 Ry.
In computing the Hugoniot within the VMC or DFT models,
it is important to use the reference point of that model since
we expect some cancellation of errors. In both QMC and DFT
we did not consider the pressure of the reference point which
in all cases is comparable to the statistical accuracy of the
pressure entering the Hugoniot function (see below). For the
RMC calculations we find the uncertainty in the reference
point energy is about 0.1 mH/atom, and so does not affect
our final estimate of the Hugoniot: see below.

TABLE II. VMC and extrapolated RMC results for the reference
system with N = 64 atoms, T = 22 K, and rs = 3.183 53, averaged
over 120 atomic configurations.

SG+KW VMC RMC vdW-DF1

Eel (Ha/at.) −0.585611(4) −0.58013(6) −0.58570(6) −0.60265(6)
Etot (Ha/at.) −0.583821(2) −0.57828(6) −0.58385(6) −0.60081(6)
P (GPa) −0.0050(1) 0.52(6) −0.17(6) −0.54(4)
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FIG. 1. Comparison between ground-state (red squares, this
work) and thermal electrons (blue circles, [5]) for thermodynamic
points along the principal Hugoniot as obtained with DFT vdW-DF1
based simulations. None of the points included nuclear quantum
effects in the calculations.

B. Hugoniot computations

We performed both DFT-BOMC and CEIMC calculations
for 54 classical deuterons in a periodic box. In both DFT and
CEIMC we sum over a 4 × 4 × 4 regular grid of k points.
Single-electron orbitals in the CEIMC trial function are from
PBE-DFT [31] with an plane-wave energy cutoff of 40 Ry
while in DFT-BOMC we employed vdW-DF1 XC approxi-
mation with the same energy cutoff.

Using DFT-BOMC we ran at temperatures of 2000,
4000, 4446, 6207, 8000, 10 000, 12 500, 22 000, 32 900,
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TABLE III. VMC and RMC results for energy per atom, pressure, and Hugoniot. The values include finite-size effects and nuclear quantum
and thermal effects.

T (K) rs ρ/ρ0 EVMC (Ha/at.) PVMC (a.u.) PVMC (GPa) HVMC (Ha/at.) ERMC (Ha/at.) PRMC (a.u.) PRMC (GPa) HRMC (Ha/at.)

22 3.18353 1.00 −0.57828(6) 0.000018(2) 0.52(6) −0.58385(6) −0.000006(2) −0.17(6)
2000 2.20 3.03 −0.56845(7) 0.000337(5) 9.9(1) −0.0055(3) −0.57192(5) 0.000308(4) 9.1(1) −0.0021(2)

2.25 2.83 −0.56921(6) 0.000270(4) 7.9(1) −0.0028(2) −0.57270(5) 0.000244(4) 7.2(1) 0.0004(2)
2.30 2.65 −0.56933(7) 0.000243(4) 7.1(1) −0.0014(2) −0.57296(6) 0.000229(4) 6.7(1) 0.0012(2)
2.40 2.33 −0.56962(7) 0.000209(5) 6.1(1) 0.0005(2) −0.57371(5) 0.000176(4) 5.2(1) 0.0033(2)

4000 1.80 5.53 −0.5424(2) 0.001611(14) 47.4(4) −0.0534(8) −0.5451 (2) 0.001599(13) 47.1(4) −0.0499(7)
2.00 4.03 −0.5503(1) 0.000826(9) 24.3(3) −0.0141(5) −0.5536 (1) 0.000808(8) 23.8(2) −0.0109(4)
2.20 3.03 −0.5541(1) 0.000461(6) 13.6(2) 0.0032(3) −0.5581 (1) 0.000443(6) 13.0(2) 0.0056(3)

8000 1.80 5.53 −0.5075(2) 0.001832(16) 53.9(5) −0.0308(9) −0.5106(2) 0.001770(15) 52.1(4) −0.0249(9)
1.85 5.10 −0.5085(2) 0.001533(16) 45.1(5) −0.0136(9) −0.5120(2) 0.001475(16) 43.4(4) −0.0083(9)
1.90 4.70 −0.5098(2) 0.001295(14) 38.1(4) −0.0006(8) −0.5136(2) 0.001236(13) 36.4(5) 0.0044(7)
1.92 4.56 −0.5100(2) 0.001259(14) 37.1(4) 0.0017(8) −0.5140(2) 0.001203(14) 35.4(4) 0.0063(8)
2.00 4.03 −0.5141(3) 0.001045(17) 30.7(5) 0.0110(9) −0.5183(3) 0.000991(16) 29.2(5) 0.0151(9)

and 39 000 K to compare directly with results of Ref. [5]
but using ground-state electrons. In Fig. 1 we report this
comparison for the EOS along the principal Hugoniot. We
observe a good agreement below T = 10 000 K while above
this temperature electronic thermal effects become increas-
ingly large. Note that our small simulation cells do not
show (nuclear) finite-size effects invoked in Ref. [5] as pos-
sible source of inaccuracy in the CEIMC results of Ref.
[12].

With CEIMC we performed computations beyond those
reported in Ref. [12]. In particular, we ran a lower-temperature
isotherm at T = 2000 K and more computations at T = 4000
and 8000 K. We did not consider higher temperatures to
avoid the need of considering thermal electrons (see Sec. III C
for a discussion). At each thermodynamic point, after the
generation of the trajectory we selected about 100 nuclear
configurations for which we optimized the trial function in-
dividually to get the VMC estimates and to perform RMC
analysis. In addition, we considered both single- and two-
body finite-size effects as described in Ref. [28]. The pressure
was estimated using the virial estimator

P = 2e − u

4πr3
s

, (5)

where e is the total energy per atom and u is the potential en-
ergy per atom. For each temperature and density we compute
the Rankine-Hugoniot function (1), and we find the Hugoniot
point, i.e., (v, T ) : H (v, T ) = 0, using a linear interpolation.
Results of our analysis, including finite-size effects, are re-
ported in Table III while finite-size effects on energy and
pressure are reported in Table IV. Note that “electronic” size
corrections are important to the final result, and increase with
the temperature of the system, as the system becomes more
metallic.

Figure 2 reports H (T, v) for the three isotherms. Each
panel show results for VMC and RMC and for the DFT-
BOMC calculations. Before summarizing our results in
Sec. III E, in the next two subsections we need to address two
effects.

C. Electronic thermal effects

A way to establish the relevance of electronic thermal
effects in QMC, and possibly to estimate their size, is to
perform, for given nuclear configurations, electronic QMC
calculations with excitations built into the trial function. At
the VMC level this is not difficult and can be realized by
considering excited Slater determinants in the trial function.
With enough excitations, thermal averages can be obtained
by weighting each contribution with its Boltzmann weight
∼e−β(En−E0 ). Here, E0 is the ground-state energy and En the
energy of the nth excited state. Unfortunately, the number
of relevant excitations increases rapidly with temperature, in
particular near metallization where the energy gap is small. It
also depends on the grid of twists, so computing in practice
the thermal correction is impractical. What we can do is
to compare how the QMC energy and pressure for each
excitation differ from the corresponding DFT ones. If the
differences are small, we can expect that electronic thermal

TABLE IV. Finite-size effects on the energy and pressure of
a system of deuterium at different temperatures and densities; the
system is made of N = 64 atoms for the T = 22 K reference state
and N = 54 atoms in the other cases.

T (K) rs �E (Ha/at.) �P (a.u.)

22 3.18353 0.00050 0.0000012
2000 2.20 0.00156 0.0000104

2.25 0.00145 0.0000088
2.30 0.00137 0.0000078
2.40 0.00119 0.0000057

4000 1.80 0.00326 0.0000492
2.00 0.00259 0.0000277
2.20 0.00172 0.0000123

8000 1.80 0.00423 0.0000703
1.85 0.00395 0.0000597
1.90 0.00383 0.0000543
1.92 0.00373 0.0000504
2.00 0.00316 0.0000371
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FIG. 2. QMC Hugoniot for T = 2000, 4000, and 8000 as a func-
tion of the ratio between density ρ and density at the reference point
ρ0. The shaded regions represent the uncertainties in the interpola-
tions of the QMC data. Uncertainties due to changes in the reference
energy are within these regions.

effects in QMC are similar and of the same size as the ones in
the DFT calculations.

We selected several nuclear configurations generated dur-
ing the CEIMC sampling at T = 8000 K and rs = 1.88, very
close to the density of the principal Hugoniot at this temper-
ature, and for each configuration we ran VMC with single-
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and two-particle excitations. The trial wave functions for the
excited states were obtained including single- and double-
particle excitations in the Slater determinants in Eq. (4).
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2000, 4000, and 8000 K, respectively. Open symbols at T = 2000 K
represent our QMC and DFT-BOMC results including nuclear quan-
tum effects (NQE); all other results are obtained with classical nuclei.

Backflow transformation was used, but the trial wave func-
tions were not reoptimized independently for each excitation.
In Fig. 3 we compare energy and pressure from VMC ex-
cited calculations and DFT excited calculations (in fact, the
eigenvalues of the Kohn-Sham solution). Even if the values
of the energy and pressure estimated with DFT and QMC can
differ, the energy (pressure) differences between excited and
ground states display a very similar behavior. Since the effect
of finite temperature is to increase the population of excited
states with their relative Boltzmann weight (with respect to

the ground state), having the same excitation energies means
having the same thermodynamic properties. From the bottom
panel of Fig. 3 we see that the virial estimator for the pressure
displays the same behavior; this behavior holding for energy
and pressure means that the same will apply to the Hugoniot
(1). Since we have shown that at T � 8000 thermal effects
are negligible in DFT, we conclude that we can safely use
ground-state QMC methods to describe the electrons in our
system for T � 8000 K.

D. Nuclear quantum effects

In the results described up to now, we have neglected
nuclear quantum effects (NQE) except at the reference point.
NQE in high-pressure hydrogen and deuterium could be rel-
evant, depending on the thermodynamic conditions, because
of the light nuclear mass and the molecular character. The
energy of an isolated D2 molecule is higher by 1089 K/atom
over a molecule of classical ions, a contribution that is rele-
vant for the present level of accuracy. We also note that the
zero-temperature, zero-pressure atomic volume of solid H2 is
16% higher than that of solid D2, showing the significance of
nuclear quantum effects in the equation of state. To gauge the
influence of nuclear quantum effects on our results, we per-
formed path-integral simulations of deuterium at T = 2000 K
at rs = 2.20, 2.25, and 2.30. Because of the very good struc-
tural agreement observed between CEIMC and DFT-BOMC
for classical nuclei (see Appendix A) we ran these calculations
using DFT-BOMC since that requires a smaller computational
resource. Path-integral simulations were performed with the
strategy implemented in CEIMC and detailed in Refs. [23,24]
but using DFT to evaluate the electronic energy. We found
that four nuclear time slices were enough to converge the time
step. Comparing results of these calculations to the results
for classical nuclei we compute the correction to the energy,
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FIG. 6. Proton-proton pair correlation function from CEIMC and from DFT-BOMC along the T = 2000 K isotherm.
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pressure, and Hugoniot. The same corrections are used for
both the CEIMC and DFT results.

In Fig. 4 we report the changes in total energy, pres-
sure, and H (T, v). Corrections are small (in particular on the
pressure) but on the scale of the Hugoniot [see Fig. 2(a)] a
correction of ∼1 mHa/atom is significant. At higher temper-
atures, the NQE is unimportant to the Hugoniot.

E. Summary of Hugoniot results

We show in Fig. 5 our computed Hugoniot curve, using the
values for the reference point, and we compare with experi-
mental data and previous simulations. The figure also reports
our DFT-BOMC points already shown in Fig. 1. VMC and
RMC data are rather close to experimental determinations
of the Hugoniot line, in particular at low compression and
temperature while the deviation is larger at higher com-
pression near the stiffening of the Hugoniot. This stiffening
appears when the molecular fraction is small and the nearly
fully atomic system becomes less compressible. Our structural
analysis, reported in the Appendix A, shows a molecular frac-
tion of 10%–15% in the system at 8000 K along the principal
Hugoniot. Conversely at low compression and temperature
the system is fully molecular and its electronic configura-
tion (molecular singlet) should be rather simple and easy to
model by QMC. Agreement of our results with experimental
data is particularly good at T = 2000 K, even better for the
VMC estimate than for the RMC one. One cannot exclude the
possibility of a residual error in the correction of the RMC
results for time step and projection time errors. NQE effects
are small and shift the points to higher compression and pres-
sure. In general, our deuterium model appears to be slightly
more compressible than experiment with the VMC description
being slightly less compressible than the RMC model. This
is in line with the trend observed in the previous CEIMC
determination of the Hugoniot [12] but our results are closer
to the experimental curve, in particular at low compression.
Figure 5 also reports the previous CEIMC prediction [12]
together with its corrected values from Ref. [13]. Compared
to the experimental data, the quality of our present predictions
of the Hugoniot at 4000 and 8000 K is equivalent to the Clay
et al. [13] fixed note error corrections. However, we note that
these points do not agree in terms of absolute compression and
pressure.

IV. CONCLUSIONS

We have reported an investigation of the deuterium prin-
cipal Hugoniot by CEIMC methods. By combining several
QMC methods, VMC and RMC, we focused on the low-
compression–low-temperature part of the Hugoniot where
deuterium is molecular. We also performed a careful study
of the cryogenic reference state using both effective model
potentials with path-integral Monte Carlo and electronic
QMC calculations. We obtained a good agreement with the
low-compression experimental Hugoniot while at the higher
temperature our predicted Hugoniot remains slightly more
compressible than experiment [5]. Our Hugoniot is essentially
in agreement with the one from recent first-principles analysis
[13] of previous CEIMC calculation [12]. However, compar-
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FIG. 7. Proton-proton pair correlation function from CEIMC and
from DFT-BOMC along the T = 4000 K isotherm.

ing predictions at fixed temperature our Hugoniot point has a
smaller compression and pressure than from Ref. [13], hence,
the two models have different equations of state. The origin of
this deviation is unclear and deserves further investigation.
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APPENDIX A: STRUCTURAL ANALYSIS

In this Appendix we provide some structural analysis along
the three isotherms investigated by CEIMC. We start by com-
paring CEIMC and DFT-BOMC proton-proton correlation
functions at the densities reported in Table III. Those com-
parisons are reported in Figs. 6–8. In all cases we observe a
rather good agreement between CEIMC and DFT-BOMC data
confirming that the two models provide similar local environ-
ment, at least at the two-particle level, as already observed
at higher pressure across the liquid-liquid transition line [32].
Figure 6 indicates the fully molecular character of the system
along the T = 2000 K isotherm in the investigated density
range. At higher temperature we employed the cluster analysis
detailed in Ref. [33] to compute the molecular fraction. Re-
sults at T = 4000 and 8000 K are shown in Fig. 9. Different
estimators for the molecular fraction have been proposed in
the literature. In Ref. [33] we proposed an estimator based
on the probability of an atom to be paired to the same partner
along the entire simulation, called Pp, and we compared to two
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an atom to be paired to the same partner along the entire trajectory,
Nav the average number of pairs found within a cutoff distance
corresponding to the first minimum of gpp(r), and Holst indicates the
estimator based on the coordination number at the molecular peak
of gpp(r).

other estimators, the first one called Nav is the average number
of molecules found within a cutoff distance corresponding to
the first minimum of gpp(r), and the second one is the coor-
dination number at the first maximum of gpp(r) proposed in
Ref. [34]. Of the three estimators, only Pp implements the no-
tion of persistence of bonding for well-formed molecules and
it was considered a better measure of the molecular fraction in
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FIG. 10. Normalized, reweighted Boltzmann weight of 136 nu-
clear configurations for deuterium at T = 8000 K and rs = 1.9. We
can see how the weights of the single configurations generated with
CEIMC span several orders of magnitude.

particular in the dissociated regime. Here, we observe that it is
between the other two estimators at T = 4000 K where gpp(r)
has a strong molecular peak, while Pp is rather lower than
the other two estimators at T = 8000 K where the molecular
character of gpp(r) is only marginal. Moreover, as discussed
in Ref. [33], even this estimator in the dissociation regime can
only be considered an upper bound to the molecular fraction.
This analysis shows that the elbow in the Hugoniot, although
related, is not determined by molecular dissociation because
at T = 8000 K at the Hugoniot conditions the molecular dis-
sociation is almost exhausted.

APPENDIX B: SAMPLING CORRECTION

In this Appendix we discuss the possible bias coming
from nuclear configurations that have been sampled through
a simplified procedure. This is indeed the case in our pro-
tocol where nuclear sampling is performed with a not fully
optimized VMC procedure and final results are obtained per-
forming fully optimized VMC and RMC calculations for a set
of fixed nuclear configurations.

Let us consider the general problem of comparing the av-
erage of an observable O(R) for two different models with
statistical weight w0 and w1, e.g., corresponding to two differ-
ent Born-Oppenheimer energy surfaces w0 ∼ exp[−βV0(R)]
and w1 ∼ exp[−βV1(R)], where β is the inverse temperature.
At thermal equilibrium we have

〈Ô〉1 =
∫

dR O(R)w1∫
dR w1

=
∫

dR O(R)w10w0∫
dR w10w0

= 〈O(R)w10〉0

〈w10〉0
,

(B1)

FIG. 11. RMC convergence with respect to τe and βe for total and
potential energy.
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TABLE V. Total energy, pressure, and Hugoniot averaged over 136 configurations for T = 8000 K and rS = 1.85 and 1.9, obtained from
arithmetic means and using reweighting.

rs = 1.85 VMC Reweight RMC Reweight

E (Ha/at.) −0.5085(2) −0.5081(3) −0.5120(2) −0.5114(3)
P (a.u.) 0.001533(16) 0.001550(17) 0.001475(16) 0.001518(17)
H (Ha/at.) −0.0136(9) −0.0140(10) −0.0083(9) −0.0100(10)

rs = 1.90 VMC Reweight RMC Reweight

E (Ha/at.) −0.5098(2) −0.5095(4) −0.5136(2) −0.5128(3)
P (a.u.) 0.001295(14) 0.001318(19) 0.001236(13) 0.001266(18)
H (Ha/at.) −0.0006(8) −0.0013(11) 0.0044(7) 0.0036(11)

where

w10 = w1

w0
= e−β[V1(R)−V0(R)]. (B2)

Stochastically sampling the configurations in continuum
space within Monte Carlo methods the averages are estim-
ated by

〈Ô〉0 �
∑

i O(Ri )

N , (B3)

where the set of configurations {Ri, i = 1,N } is extracted
with probability proportional to w0. An unbiased estimate of
averages for the other model Hamiltonian corresponding to
weight w1 is then obtained by reweighting

〈Ô〉1 �
∑

i O(Ri )w10(Ri )∑
i w10(Ri )

. (B4)

Although formally exact, this procedure is not useful if the
weights are wildly varying [note the extensive character of the
exponent in Eq. (B2)]: for a finite set of configurations only
few will dominate the sums. This is the case when reweighting
nuclear configurations generated during the CEIMC sampling
with their proper weight either from fully optimized VMC
(O-VMC) or from RMC. An example is given in Fig. 10
where for 136 different nuclear configurations we report both
the weights from O-VMC and RMC. It is, however, possible
to introduce a cutoff to exclude outliers, i.e., configurations
with a disproportionately large statistical weight, that would
otherwise dominate the whole reweighted sampling. By doing
so we have recomputed energy, pressure, and the Hugoniot for
two systems at T = 8000 K, at rs = 1.85 and 1.90. We show
our results in Table V. We can see that even if there are a few

small differences in the energies and pressures, the results are
largely compatible. Moreover, we see that the estimates for the
hugoniot are well within error bars. This means that CEIMC
is able to provide a sample of configurations that can be used
to accurately describe the system even after wave-function
optimization and projection in imaginary time, corroborating
the overall robustness of our method.

APPENDIX C: CONVERGENCE OF THE RMC
CALCULATIONS

In this last Appendix we report convergence tests for our
RMC calculations. In RMC results for finite imaginary-time
step (τe) and finite projection in imaginary time (βe) need to
be extrapolated to the limits τe → 0, βe → ∞. In Fig. 11 we
report, for a single nuclear configuration, total and potential
energy dependence on τe for various βe and on βe for various
τe. As for the total energy we see a very small dependence on
τe and an exponential decaying behavior of e(βe) as expected.
Potential energy is more cumbersome. First, we observe a
strong τe linear dependence at fixed βe with the linear slope
slightly depending on βe. When plotting u(βe, τe) vs βe for
various τe we observe a growing exponential behavior at large
βe and a nonmonotonous behavior at short βe. This procedure
needs to be performed for all twists and all different nuclear
configurations before averaging. It is one of the most delicate
points of our procedure since the convergence of the potential
energy propagates to the pressure estimator. We note that the
extrapolations introduce an important source of systematic
bias of the RMC results, notably for the pressure, which is
absent in the corresponding VMC calculations.
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