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Modeling of metal nanoparticles: Development of neural-network interatomic potential
inspired by features of the modified embedded-atom method
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Interatomic potential plays a key role in ensuring the accuracy and reliability of molecular-dynamics simu-
lation results. While most empirical potentials are benchmarked against a set of carefully chosen bulk material
properties, recent advances in machine learning have seen the emergence of neural-network-based mathematical
potentials capable of describing highly complex potential energy surfaces for a variety of systems. We report here
the development of a neural-network interatomic potential (NNIP) with modified embedded-atom method back-
ground density as fingerprint functions, which could accurately model the energetics of metallic nanoparticles
and clusters (Cu as a representative example) widely used in catalysis. To appropriately account for the diverse
chemical environments encountered in nanoparticles/nanoclusters, an extensive set of atomic configurations
(totaling 18 084) were calculated using density-functional-theory (DFT) at the Perdew-Burke-Ernzerhof level. In
addition to standard bulk properties such as cohesive energies and elastic constants, the sampled configurations
also include a substantial number of differently oriented crystal facets and differently sized nanoparticles and
nanoclusters, greatly expanding the value range of NNIP features that was otherwise quite limited. The complex
energy potential surface of Cu can be faithfully reproduced, with an average error of 0.011 eV/at for energy
states within 3 eV of the ground state. As an illustration, the developed NNIP is used to simulate the molecular
dynamics of copper nanoparticles, and good agreement is achieved between DFT and the NNIP.

DOI: 10.1103/PhysRevB.102.144107

I. INTRODUCTION

Computational materials design through advanced first-
principles or molecular-dynamics (MD) simulations has
contributed greatly to materials discovery, innovation, man-
ufacturing, and commercialization in recent years. We are
now entering an era in which the paradigm of material de-
velopment is shifting from trial-and-error experimentation to
computer-aided rational design [1–5]. It has become common
practice to investigate the physical and chemical behavior of
materials via computation, since some properties are diffi-
cult or costly to obtain directly from experiments [6,7]. This
paradigm shift also makes possible rapid screening of virtual
materials candidates with desired physical and chemical prop-
erties before they are synthesized, opening up new avenues
of research [8–11]. The first-principles method [12] has been
one of the core tools for describing interactions and dynamic
processes of materials on an atomic scale. However, such a
method relies on solving the electronic wave function to deter-
mine the force exerted on each atom to evolve the system, the
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computational cost of which is prohibitive for large systems.
MD [13,14] has been one of the most effective approaches
for larger systems, and it is widely used in studying atomic
processes such as defect formation, crack propagation, and
nanoparticle segregation [15–18]. The accuracy and reliability
of MD hinges critically on the interatomic potential’s capa-
bility to faithfully describe potential energy surfaces and to
conform to the actual laws of the physical model. Parameters
involved in potential functionals are in general fitted to exper-
imental data or higher-level density functional theory (DFT)
calculations.

Among the different types of interatomic potentials devel-
oped over the past few decades [19–24], the embedded-atom
method (EAM) proposed by Daw et al. stands out as a
successful model for describing metallic systems [24]. Re-
searchers have since developed different flavors of analytical
EAM potentials, such as the Johnson EAM the Cai-Ye EAM
[23,25,26]. One of the deficiencies of the EAM is the lack of
angular dependence in background density, making it chal-
lenging to correctly predict the ground state and surface
properties of non-close-packed systems [25]. The modified
embedded-atom method (MEAM) [25,26] was proposed as
a direct extension to the EAM by incorporating angular
terms to the background density distribution, and it has been
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successfully applied to modeling metal surfaces and impuri-
ties [26–28]. Recent progress toward a more accurate MEAM
includes the formulation of the second nearest-neighbor
MEAM (2NN-MEAM) [29,30]. Our group also developed
the lattice inversion MEAM (LI-MEAM) [31], which uses
the Chen-Mobius inversion method to take into account the
contribution of farther neighbors. Nonetheless, the analytical
MEAM employs preset embedding and pairwise functional
forms based on physical intuitions that are parametrized
mostly against bulk structure properties [23,31]. This makes it
less transferrable in predicting the energies of small nanoparti-
cles, whose local atomic environment is considerably different
from that of the bulk counterpart [32–35]. By using mathemat-
ical potentials based on machine learning (ML) [34,36–39],
extended datasets can be used to construct complex potential
energy surfaces with reasonable accuracy and transferability.
It is desirable to combine the flexibility of mathematical po-
tential with MEAM-derived input features that could reflect
the physics based upon which the total energy is assigned [40].

We report here the development of a neural-network inter-
atomic potential (NNIP) that uses MEAM background density
as fingerprint features, which preserves vector invariance un-
der spatial translation and rotation and has proven to be
capable of modeling diverse local atomic environments. Cop-
per, being a widely used material in catalysis and other fields,
has been chosen as an illustrative example to demonstrate the
flexibility and transferability of the developed NNIP. Our DFT
training set contains a total of 18 084 structures with 471 300
unique atomic environments that can be roughly categorized
into bulk, surface, nanoparticle, and cluster configurations.
The overall energy deviation across this diverse dataset is
less than 0.02 eV/at, well within the DFT accuracy limit. In
particular, the NNIP shows good agreement with DFT data for
nanoparticle and cluster configurations, which are generally
not well treated in the original MEAM formalism. Our work
extends the applicability of MEAM descriptors to nanoparti-
cles and clusters with improved accuracy and reliability.

II. METHOD

A. Fingerprint construction from MEAM background density

In the original MEAM formalism, the total energy of the
system E equals the sum of individual atomic energies Ei, fur-
ther divided into an embedding part and a pairwise interaction,
which is given by

E =
∑

i

Ei, (1)

Ei = Fi(ρi ) + 1

2

∑
j �=i

V (Ri j ). (2)

The embedding function Fi is the energy to embed atom i
into the background density at site i. Ri j denotes the distance
vector between atoms j and i. ρi and V (ri j ) denote the super-
position of the background density for all neighboring atoms
j at site i and a pair interaction separated by a distance Ri j .

In the original MEAM formalism, Baskes designed the
expressions for the partial background densities ρ

(0)
i (radial

term) and ρ
(1)
i , ρ

(2)
i , ρ

(3)
i (angular terms) to reflect the local

atomic environments [26]. They are given by the following
expression:
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where xα
i j = Rα

i j/Ri j , and Ri j
α denotes the component of Ri j on

x, y, or z. ρ
α(0)
j (Ri j ) represents the atomic electron density of

the atom j at the distance Ri j from the site i. The different par-
tial background density components are constructed to relate
to different local atomic environments.

Due to its invariant nature with respect to spatial translation
and rotation, MEAM-based background densities serve as
good candidates for symmetry functions to NNIP. We adopted
here a slightly modified version of partial background density
components Gs, Gp, Gd , and G f as features to describe the
local chemical environment:

Gi
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[∑
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e−ηRi j
2 · fc(Ri j )

]2

, (7)
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, (10)

fc(Ri j ) =
{ 1

2

[
cos

(πRi j

Rc

) + 1
]
, Ri j < Rc,

0 otherwise,
(11)

where Ri j denotes the vector of atom i pointing to atom j,
and α, β, and γ denote the vector of Ri j along the axis of
x, y, and z, respectively. Rc and η denote the cutoff radius
and decay rate in units of Å−1. fc(Ri j ) is a cutoff function
that smoothly truncates the potential beyond Rc. Note that
the angular shielding function Si j in the original MEAM has
been removed as it was primarily introduced in the MEAM
formalism to simplify the deduction of the analytical pair
function. Based on Eqs. (3)–(6), a smooth cutoff term fc(Ri j )
[Eq. (11)] is added to ensure the continuity of the func-
tion and the efficiency of the transformation; a decay term
e−ηRi j

2
is used to differentiate contributions of neighboring

atoms to local environments. The computational complexity
associated with the computation of the MEAM fingerprint
function for the n-atom system is O(n2), compared to the
O(n3) complexity in calculating the angular term symmetry
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FIG. 1. The schematic of the construction of the NNIP. Using DFT to obtain an accurate dataset, the symmetry functions convert the
atomic coordinates into modified background density as the inputs of NN, and the NN directly constructs the mapping relationship between
the structure and the energy as the main framework.

function for high-dimensional neural network potentials
(HDNNPs) [34].

B. Neural-network interatomic potential formalism

Regarding the neural-network structure, a four-layer NN is
constructed that enables us to take into account various types
of structural and energetic information with different local
chemical environments. ML frameworks Tensorflow [41] is
used to train the NNIP. The feedforward FNN [42] is used
to represent each atomic energy of the system, which can be
written as follows:

Ei = FNN
({

Gi
s, Gi

p, Gi
d , Gi

f

})
, (12)

where FNN denotes the neural network with each atom corre-
sponding to an atomic NN (Fig. 1), with input features being
Gi

s, Gi
p, Gi

d , and Gi
f .The output is the atomic energy Ei. All

the neurons are connected to the network with appropriate
weighting factors. A hyperbolic tangent (tanh) function is
selected as the activation function, and optimization of the NN
weights leads to a minimization of the target loss function.

For the model fitting, a loss function L(yi, f (xi )) is intro-
duced to evaluate the difference between the predicted total
energy f (xi ) and actual energy yi. Among the many types
of loss functions, Huber loss [Eqs. (13)] is chosen for its
continuous gradient and good robustness toward off-group
points. It is given by

L(yi, f (xi )) =
{ 1

2 [yi − f (xi )]
2, |yi − f (xi )| < δ,

δ|yi − f (xi )| − 1
2δ2 otherwise,

(13)
where yi denotes the system energy calculated by DFT, and
f (xi ) denotes the system energy predicted by the neural net-
work. N is the number of samples, and λ and δ are weighting
factors. To prevent the model from overfitting and to improve

the generalization ability of the model, a regularization term is
added to the loss function. The final regularized loss function
is given by

loss = min
1

N

N∑
i=1

L(yi, f (xi )) + λJ ( f ), (14)

where J( f ) is an additional penalty term to prevent overfitting,
including L1 (Lasso regression) [43] and L2 (ridge regression)
[44]. λ is a weighting factor that balances between underfitting
(large λ) and overfitting (small λ). With appropriate choice
of λ, one can train a model to have both good accuracy and
generalization capability. Since a large number of deformation
configurations has been included in the training set, implicitly
taking the force into account [45,46], the force is not explicitly
included due to efficiency considerations. The batch gradient
descent (BGD) optimization algorithm is used to search for
the minimum value of loss to get optimized NNIP parameters.

C. DFT training dataset for a Cu element

Similar to any other NN applications, the completeness
of the dataset affects directly the reliability of the NNIP
potential. Types of structures included in the training set de-
termine the applicable range of the NNIP potential, as only
configurations that have similar counterparts in the training
set can be predicted with high confidence. As one of the
major motivations for the development of NNIP potential
is to enable the modeling of metallic clusters and nanopar-
ticles, our datasets purposely include the potential energy
surfaces of a large number of regular and deformed Cu struc-
tures. Self-consistent DFT calculations are performed with
the Perdew-Burke-Ernzerhof exchange-correlation functional
as implemented in the Vienna Ab Initio Simulation (VASP)
package [47]. The Kohn-Sham electronic wave function is
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FIG. 2. A total of 15 427 structures are included in the dataset. They can be roughly divided into four categories: bulk, slab, nanoparticle,
and cluster. The initial atomic configurations are established, and the dataset is extended by using deformation, MD, and interpolated frequency
vibration modes.

expended by plane waves with an energy cutoff of 400 eV,
and the total energy converges to less than 10−3 meV. Cu is
used as an illustrative example to demonstrate the process of
dataset construction and the applicability of NNIP as a whole
(Fig. 2).

A total of 18 084 geometries included in the training set
can be roughly divided into four categories: bulk, surface,
nanoparticles, and clusters. For bulk structures, in addition
to the ground state of fcc structure, we have included other
symmetrical structures with different packing forms, such
as bcc, sc, hcp, and diamond. A 9*9*9 k-point mesh was
used to sample the first Brillouin zone of the bulk copper.
A series of configurations are sampled along the equation of
state for Cu under different stress/strain conditions, including
the isotropic expansion, pure shear, and uniaxial expansion.
Vacancy formation energy is also incorporated into the dataset
as it dictates the behavior of materials structural evolution in
phase transformation, crystal growth, and atomic diffusion. In
addition, MD at relatively high temperatures (below melting
point) is conducted to generate deformed bulk configurations,
supplementing the aforementioned bulk properties data with
more distorted structures.

Surface properties are also of great importance as they
account for chemical processes such as catalysis and corro-
sion. To model the surface properties, we have used a slab
geometry with six layers. p (1 × 1), p (2 × 1), and p (2 × 2)
primitive surface cells for the simulation of crystal planes
(100), (110), and (111), respectively. (210) and (211) planes
are also considered as they possess distinctive coordinately
unsaturated sites that would be very similar to edge sites
in nanoparticles. The surface energy calculations are done
with the bottom three layers fixed at their crystallographic
positions, while atoms in the upper three layers are allowed
to fully relax. A 9*9*1 k-point mesh is used with a vacuum
thickness of 10 Å to prevent slab image interactions along
the z axis. This part of the datasets is also supplemented with
structures from MD runs equilibrated at appropriate volumes
and temperatures.

On an even smaller scale, atoms in nanoparticles show
even richer local chemical environments. Nanoparticles have
distinct terrace, edge, and vertex sites. One of the essential
properties of a nanoparticle that determines its stability with
respect to other phases is the size-dependent chemical poten-
tial, which can be defined as

Eche = 1

n
(Etot − nEbulk ), (15)

where Etot is total energy of the structure, Ebulk is the cohesive
energy, and n denotes the number of atoms in the structure.
In general, the chemical potential would become more posi-
tive going toward smaller nanoparticles, reflecting the higher
chemical potential of smaller nanoparticles.

The final part of the dataset is small-sized nanoclusters
consisting of only a few atoms. The defined MEAM input fea-
tures for nanoclusters would deviate most from bulk values.
By including these geometries, we significantly extended the
range of feature values, especially in the low background den-
sity part and the higher-order component (p, d , and f ) input
vectors, as they are mostly small numbers due to symmetry
restrictions in bulk cases. To ensure that the nanoclusters are
locally stable geometries, we chose three dominant vibrational
modes in each cluster, and we calculated the energy curve with
respect to distortions along these vibrational modes. This way,
the NNIP would predict correctly the local optimum even in
geometries that deviate significantly from bulk environments.

Through the dataset construction strategy, we constructed
a database of initial configurations and expanded the dataset
by means of deformation, MD, frequency mode, etc. Detailed
information is shown in Fig. 2 and Table I.

III. RESULTS AND DISCUSSION

A. Feature space and correlation

Gs, Gp, Gd , and G f as defined in Eqs. (7)–(10) describe
the partial background density components of different sym-
metries from neighboring atoms in the system. This forms a
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TABLE I. The label and number corresponding to different struc-
tures in the dataset.

Label Detail Number

bulk deformation information of bulk structure 3284
bulkmd disordered bulk structure 5000
NP typical shapes of large size cluster 1200
NPmd disordered structure of large size cluster 5000
nano small size cluster 2400
slab slab structure contains the information of surface 1200

unique set of features for each atom in different local chemical
environments. Overall, the characteristic quantization mark
indicates the type of structure we are modeling [Fig. 3(a)]. For
example, bulk configurations have a larger number of nearest
neighbors, so Gs in bulk structure is typically larger than that
in the surface, nanoparticles (NPs), and nanoclusters. Gp and
G f are relatively small as the nearest neighbors around a bulk
atom tend to form a symmetrical spatial distribution, and the
magnitude of Gd is similar to that of Gs because of the peaks
at 180° [Fig. 4(c)]. In many cases, such as ideal fcc/bcc/sc
structures, all other components except Gs and Gd are zero
due to cubic symmetry. Under distorted conditions (shear and
uniaxial distortion, and configurations obtained by MD), there
is a small increment of Gp and G f components, but overall
they remain relatively small. One exception to this rule is the
bulk diamond structure, where there is a large G f component
due to the existence of tetrahedral interstitial atoms. For slab
configurations, the atoms in the surface layer (slab) are situ-
ated in an asymmetric local environment, where the Gp and
G f contribution from the vacuum side is completely missing,
leading to a large Gp and G f value. For atoms located on the
surface of the NPs, they form fewer bonds with neighboring
atoms than bulk, so their characteristics are similar to those
of the surface atoms. The final scenario is nanoclusters, where
we can see that Gs decreases considerably due to the smaller
number of atoms around. From the above discussion, it can
be seen that features in the NNIP establish a unique mapping
between energy and local atomic environment, which helps
to accurately capture the nonlinear scaling of atomic energies
with respect to local coordination numbers [46].

FIG. 3. (a) The distribution of features for different structures.
(b) The distribution of each sample in the dataset is in G-space and
shows the diversity and uniformity of the dataset release.

FIG. 4. (a) The change of Gs with distance R; (b)–(d) the change
of Gp, Gd , and Gf with angle θ .

One requirement of a good dataset is to have diversity
and uniformity of data points across a majority of the feature
space. In our high-dimensional feature space, each data point
reflects the distribution of particular geometries transformed
into local chemical environment features. Here, we use the
RadViz chart to plot the feature vector collection [Fig. 3(b)]
that summarizes all the datasets in one concise graph. Along
the four corners of the unit circle, each point represents an
attribute (Gs, Gp, Gd , and G f ). The position of the data point
on the plane is determined by an equilibrium position assum-
ing simultaneous spring connection to each corner. Samples of
different classes are represented by different colors. We can
see that bulk properties only expand a very limited feature
space, mostly centered around s (since Gp and G f are small)
and selected lines between s and f (diamond structures). Gen-
erating distorted bulk configurations with MD expands the
feature space by occupying an enlarged portion of the space
with Gs, Gd , and G f , yet Gp is mostly negligible (indicated
by the green dots). The reason for this is that neighboring
atoms tend to distribute uniformly on both sides of an atom,
canceling out the Gp component. The upper RadViz space
is mostly filled up by slab and nanoparticle configurations,
where the existence of a large portion of surface atoms leads
to a substantial Gp component due to asymmetricity. Most of
the nanocluster configurations take up the feature space on the
left side, indicating a lack of symmetry and a smaller mag-
nitude of Gs. Overall, by sampling over the four categories
of structures, we have obtained a G-space that is fairly well
taken up as compared to the limited G-space spanned by bulk
configurations only. The dataset (Table I) contains the nec-
essary structural information, and the corresponding energy
information is obtained through standard DFT calculations.

B. The effect of parameters on accuracy

The transformation from Cartesian coordinates to features
has been defined above to quantify the local atomic environ-
ment [Eqs. (7)–(10)], and the selection of the parameters Rc

and η relates to details of the NNIP features. Rc determines
the range of the interatomic interaction, and η dictates the rate
of background density decay that can effectively distinguish
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FIG. 5. (a) The effect of η parameter on the loss function. (b)
Comparison of fitting errors for several neural-network (NN) archi-
tectures. (c) Gs, Gp, Gd , and Gf contribution for the final result. (d)
Comparison of the error between the NNIP potential and the DFT;
the red dot represents the training set, and the green square represents
the test set.

contributions from different neighbors. Each set of parameters
with different η reflects a different aspect of the local atomic
structure, and when combined they provide a comprehensive
picture of the local chemical environment. Each of Gs, Gp,
Gd , and G f contains partial information about the local en-
vironment, similar to the Fourier series expansion. Different
parameters of Gs, Gp, Gd , and G f are combined into a unique
feature vector to represent the local atomic environment.
Gs explicitly contains the information about the radial Ri j

[Fig. 4(a)], and η determines the width of the nonzero region
with different values representing different neighbors. Gp, Gd ,
and G f not only contain the radial term Ri j , but they also
indirectly give the local atomic environment information con-
taining angular terms in Rα

i j/Ri j . To understand the variation
of features (Gp, Gd , and G f ) with θ , the three-atom system
is discussed as an illustrative example. η plays the same role
as in Gs to distinguish the atomic environment information of
different neighbors. Since the increase in the number of series
in the angular direction Rα

i j/Ri j leads to the differences in
contributions at different angles in Figs. 4(b)–4(d), the angular
information on a part of the local atomic environment can be
independently provided, and it can also be seen that Gp, Gd ,
and G f are complementary to each other.

A few Rc and η combinations are selected, and the root-
mean-square error (RMSE) between the predicted NNIP
energies and DFT calculations is evaluated. The range of
[0, rc] is divided into N regions corresponding to {ηi}, and
the results are shown in Fig. 5(a). As can be seen from
Fig. 5(a), when the number of η is larger than 8, the accuracy
does not improve much. Thus, we chose Rc = 7 Å, and the
eight η parameters are listed in Table II. Gs, Gp, Gd , and G f

partial electron densities are added progressively to test the
contribution of the individual component to the final result
[Fig. 5(c)]. It can be seen that Gs alone could reduce the
average energy error to the order of 0.1 eV/at. Utilizing Gs

only is conceptually equivalent to the EAM. The addition of

TABLE II. Symmetry function parameter values list in NNIP.

The parameter of symmetry functions Gs, Gp, Gd , and Gf

Rc(Å) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
η(Å−1) 0.01 0.02 0.05 0.1 0.2 0.5 1.0 1.5

Gp and Gd further reduces the error to 0.01 eV/at, primarily
improving the description of non-close-packed systems and
nonbulk systems. The inclusion of G f improves redundancy,
making it more flexible to describe lattice structures such as
diamond.

For the optimization of NNIP parameters, we tested vary-
ing numbers of neurons in the two middle hidden layers. A
total of five different neural-network structures are evaluated
and compared [Fig. 5(b)]. It can be seen that when the number
of neurons in the middle layers is larger than 30, it has a neg-
ligible influence on either accuracy or convergence. Taking
a reasonable balance between flexibility and computational
cost, we used a 32-40-40-1 NN. After determining the neural-
network structure, the training details are straightforward: the
weight of Adam is optimized using the minibatch method
algorithm. The required potential function model is obtained
at the end of the optimization.

Figure 5(d) shows the correlation between DFT and NNIP
data for all the geometries in our training dataset. The point
distribution is on the 45° line, with a standard deviation of
0.041 and 0.043 eV for the training set and the test set, re-
spectively. The small and comparable MSD value for the two
sets indicates that the fitting is not overfitted or biased. The
overall correlation coefficient is 0.999 93 across the energy
range from −3.8 to 0 eV.

C. Application of NNIP to copper

1. Properties of Cu bulk

We first discuss the reliability of the developed NNIP po-
tential in describing the properties of bulk Cu. Binding energy
curves obtained by the NNIP potential, DFT, and the original
MEAM potential are compared in Fig. 6. These structures
represent a range of different coordination environments. For
the ground state of fcc Cu, both MEAM and NNIP agree
well with DFT data. The average error between the NNIP
and DFT is 0.006 eV. The discrepancy at lattice constants
larger than 5.4 Å for MEAM could be attributed to its shorter
cutoff distance The advantage of NNIP primarily lies in the
description of bulk copper other than fcc structure. As can
be seen from Fig. 6, the lattice constant of MEAM deviates
substantially from DFT for non-close-packed structures such
as bcc and sc, with an underestimation as high as 3.4%, while
NNIP very well reproduces both the lattice constant and the
cohesive energy of non-close-packed Cu structures. The mean
absolute error (MAE) between the NNIP and DFT is 0.044
eV/at and the root-mean-square error (RMSE) is 0.054 eV/at.
For comparison, MAE between MEAM and DFT is 0.297
eV/at and RMSE is 0.288 eV/at. In Table III, we quantita-
tively compare the lattice constants and equilibrium structure
energy differences of NNIP and MEAM. Overall, MEAM
gives comparable accuracy to NNIP for fcc ground states, but
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FIG. 6. The binding energy curves obtained by NNIP, DFT, and
MEAM. The black dotted line represents the DFT calculation, the
red line represents the NNIP potential calculation, and the blue line
represents the MEAM potential calculation. (a) fcc binding energy
curves; (b) bcc binding energy curves; (c) sc binding energy curves;
(d) hcp binding energy curves.

significantly worse results for crystals with non-close-packed
lattice systems.

In addition to the binding energy curve, bulk structures
under different types of deformation and distortion (uniaxial
tension, isotropic expansion, and pure shear) are studied. The
range of variation is set to be ±10% (Fig. 7). From Fig. 7,
it can be seen that the energy curves obtained by the NNIP
potential agree well with DFT data, with a RMSE of around
0.01 eV. The lowest point obtained by the MEAM poten-
tial in Figs. 7(b), 7(e), 7(g), and 7(h) has an apparent offset
from the DFT results, mostly due to the error stemming from
non-close-packed systems, and the curves of Figs. 7(d), 7(e),
and 7(g) have completely different curvatures with DFT. In
addition, both the DFT calculation and NNIP show that the sc
structure of Cu is a transition state structure [Fig. 7(i)], while
the MEAM potential predicts that it is a local minimum. In
general, the MEAM potential performs well for fcc structures
that are in the process of deformation, but it does not apply to
other crystal symmetries. In addition, we also calculated the

TABLE III. List of results from NNIP, DFT, and MEAM calcu-
lations of lattice constants and structural energy differences between
different crystals of Cu.

Lattice (Å) �Estructure (eV)

fcc bcc sc �Efcc→bcc �Efcc→sc �Efcc→hcp

DFT 3.637 2.889 2.413 0.046 0.458 0.008
NNIP 3.647 2.894 2.402 0.040 0.456 0.003
MEAM 3.620 2.790 2.330 0.044 0.205 0.013
δ (NNIP) 0.28% 0.17% 0.46% 13.04% 0. 44% 62.50%
δ (MEAM) 0. 47% 3.43% 3.44% 10.00% 55.04% 333.33%

FIG. 7. The energy curves of DFT, NNIP, and MEAM when
fcc, bcc, and sc are different strains (uniaxial expansion, isotropic
expansion, and pure shear and). (a) The energy change curves of
fcc during deformation. (b) The energy change curves of bcc during
deformation. (c) The energy change curves of sc during deformation.

elastic constants, which requires precision, and the results of
the comparison of NNIP and MEAM with DFT are listed in
Table IV. The average deviation of NNIP from DFT is 4.6 GPa
while that of MEAM is around 16.3 GPa. It is also worth
noting that NNIP correctly captures the instability of sc struc-
ture with respect to shear distortion, while MEAM incorrectly
labels it as a local minimum. Overall, NNIP performs better
than MEAM in predicting elastic constants.

2. Properties of Cu surfaces

Surface energy is one of the most basic properties of mate-
rial. It is defined as the energy required to cleave a surface of
a bulk material as follows:

γ = 1

2A
(Eslab − NEbulk ), (16)

where Eslab denotes the energy of the symmetric slab model,
Ebulk denotes the energy of the atom in the bulk, and A denotes
surface area of slab.

We first investigate the surface energy of fcc Cu. As can be
seen from Fig. 8(a), the order of stability of the fcc surface
predicted by the NNIP follows the order (111) > (100) >

(110) > (211) > (210), consistent with DFT calculations.
This is also in line with the physical intuition that a close-
packed (111) facet is most stable and has the lowest surface
energy. The RMSE of the difference between the surface en-
ergies obtained by the NNIP and DFT is around 0.003 eV/Å2.
For comparison, the MEAM potential correctly predicts the
stability of most surfaces, but it deviates significantly for
a non-close-packed (100) facet. Overall, both MEAM and
NNIP predict with reasonable accuracy the surface energies of
fcc Cu. To further test the robustness of MEAM and NNIP for
surface energies of Cu with other crystallographic symmetry,
we chose non-close-packed bcc Cu as another case [Fig. 8(c)].
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TABLE IV. List of results from NNIP, DFT, and MEAM calculations of elastic constants between different crystals of Cu.

fcc (GPa) bcc (GPa) sc (GPa)

C11 C12 C44 C11 C12 C44 C11 C12 C44

DFT 178.45 115.97 91.66 114.13 142.81 81.26 284.48 6.48 saddle point
NNIP 180.56 110.61 81.23 129.27 127.52 98.58 276.49 12.40 saddle point
MEAM 169.44 115.04 63.99 33.68 129.49 87.28 259.93 −20.14 local minima

The order predicted by the NNIP potential is (110) > (210) >

(100) > (211) > (111), which only deviates slightly from
the DFT on the (100) facet. In contrast, the MEAM potential
grossly overestimated the surface energy of bcc Cu, where
the surface energy error reaches as high as 40%, without
any correlation to the stability order as predicted by DFT.
The relative error in surface energy for MEAM benchmarked
against DFT is 13% compared to that of 4% for NNIP.

We further compare the relationship between G and surface
energy in Figs. 8(a) and 8(c). This is well reflected in the
value of Gs where the (111) facet for fcc is higher than any
other facets, and the order of Gs is consistent with the trend of
surface energy change. We can also see that the surface energy
is no longer directly correlated to the Gs background density
on non-close-packed structures (bcc). We can infer that the
surface energy is not only related to Gs, but also to Gp, Gd , and
G f . It is found from regression analysis that the surface energy
and G are multivariate linearly correlated [Figs. 8(b) and 8(d)],
where R2 for fcc is 0.999 92 and for bcc is 0.999 96. From the
multiple regression analysis of the two surface structures, the
weights of Gp and G f are considerably different. Because G f

has a narrower range of angle contribution than Gp and there
are many small-angle atom pairs in the close-packed struc-
tures, the weight of G f is smaller than Gp, but the opposite
situation exists in non-close-packed structures.

FIG. 8. (a) The surface energy of fcc surfaces obtained by NNIP,
DFT, and MEAM. (b) The correlation between G and fcc surface
energy. (c) The surface energy of bcc surfaces obtained by NNIP,
DFT, and MEAM. (d) The correlation between G and bcc surface
energy.

3. Chemical potentials of Cu nanoparticles

This section evaluates the accuracy of the NNIP poten-
tial simulation for nanoparticle configurations, which has a
large ratio of surface atoms that are critically important for
catalysis and other surface-related processes. In addition to
terrace atoms that are similar to surface atoms, NPs have a
large number of edge and vertex atoms that are even lower
coordinated. We compare the chemical potential energy of
polyhedral nanoparticles of different sizes as obtained from
DFT and NNIP, which is defined as Eqs. (15).

It can be seen from Fig. 9 that the smaller the size of the
nanoparticles is, the higher is the chemical potential, indi-
cating the instability of nanoparticles going to smaller sizes.
Comparing the chemical potential curves from MEAM and
NNIP, we can see that both potentials reproduce faithfully
the DFT chemical potentials for nanoparticles larger than 50
atoms. Reducing the size to under 50, the electronic effect of
the asymmetric structure is underestimated in MEAM, which
leads to the underestimation of the chemical potential as com-
pared to the DFT data. This is in line with the phenomenon
observed in Ref. [48], from which we can explain the variation
of the size and melting point of the nanoparticles. Moreover,
RMSE obtained by NNIP and DFT is 0.020 eV/at while the
origin MEAM is an order of magnitude higher at 0.214 eV/at,
so it can be considered that the NNIP is superior in terms of
accuracy in simulating the configuration with small nanopar-
ticle sizes.

4. Subnanometer Cu clusters

Since the cluster consists of only a small number of atoms,
the total energy is strongly dependent on the relative position
of atoms, where even small changes in structure can cause

FIG. 9. Left: chemical potential curves of different nanoparticles
changing with size and the error of different nanoparticles changing
with size. Right: structural graph of Cun (4 � n � 187).
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FIG. 10. The energy curves when small clusters (up to Cu5) are distorted along certain vibration modes, with gray arrows indicating the
mode of vibration.

significant energy changes. At the same time, the small cluster
will exhibit different properties from the large-sized nanopar-
ticles [49,50], so we use Cu clusters as the ultimate test of
the robustness of the NNIP. Besides predicting correctly the
energy of these small clusters at a fixed geometry, another
critical test is the geometric stability of the cluster. To validate
that the NNIP has a similar potential energy surface profile
around the optimized local configurations, we distort each Cu
cluster along typical vibration modes and trace their energy
change to evaluate the reliability of the NNIP.

In Fig. 10, a total of 16 typical vibration modes for Cun

(2 � n � 5) clusters are listed. Their corresponding energy
curves are obtained by DFT, the MEAM potential, and NNIP,
respectively. The energy trends obtained by DFT and NNIP
are very consistent and form smooth curves, with an average
error of 0.008 eV/atom, well within the DFT accuracy limit.
The MEAM potential has an overall overestimation of the
binding energy value, as most of the curves are located below
the DFT. We also observe in Figs. 10(c), 10(d), 10(i), and
10(p) that there is a certain degree of curvature change in
MEAM that is not consistent with DFT. The NNIP shows
smaller errors compared to MEAM for smaller nanoparticles,
providing a unified formalism capable of simulating metallic
systems from bulk to small clusters.

5. Comparison to HDNNPs

To evaluate the efficiency and accuracy of the MEAM
inspired NNIP, we compare it against Behler’s HDNNP [34].
For consistency, we used the same dataset and the same neural

network structure, with two hidden 40-node layers to train
the HDNNP and NNIP model, respectively. In the HDNNP
formalism, a total of 51 atom-center symmetry functions
(the radial terms G1, G2, and G3 and the angular terms
G4 and G5) were required to describe the copper-copper
interactions in both bulk and surface systems. In NNIP, the
background density of the MEAM potential as symmetry
functions helps transformthe atomic coordinates into feature
vectors that represent local chemical environments, allowing
the use of fewer descriptors (only 32 descriptors) while retain-
ing accuracy. The use of MEAM-inspired feature vectors not
only makes optimization easier due to the smaller number of

FIG. 11. Comparison of the error between the NNIP (a) and
HDNNP (b) potential and DFT; the red dot represents the training
set, and the green square represents the test set.
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FIG. 12. MD at NVT ensemble for simulating the heating process
of nanoparticles Cu10 (a), Cu19 (b), and Cu55 (c) at 500 K.

hyperparameters (Rc and η), but it also reduces the algo-
rithmic complexity of O(n3) involved in the calculation of
symmetry function G5 in HDNNP (which requires three
atoms per group to compute the angle term) to O(n2). Our
preliminary testing showed that the construction of symmetry
functions derived from the MEAM potential is faster than
HDNNP for reasonably large systems [51].

The accuracy of HDNNP and NNIP was further compared
to illustrate the reliability of the MEAM-derived features.
Figure 11 show the correlation between these two mathemat-
ical potentials with respect to DFT datasets, with an average
error of 0.018 eV/at for HDNNP and 0.011 eV/at for NNIP.
There are no obvious outliers in either case, demonstrating
the capability of symmetry functions (Gs, Gp, Gd , and G f ) in
accurately fitting the complex PES and achieving comparable
accuracy to HDNNP with fewer features.

6. Application example: MD of small Cu clusters

To assess the accuracy of the NNIP potential on disordered
structures such as nanoparticles, we conducted three sets of
MD simulations with an NVT ensemble at 500 K for 10-, 19-,
and 55-atom nanoparticles, respectively (Fig. 12). All these
intermediate configurations are not in the training dataset.
As can be seen from Fig. 12, the potential energies along
trajectories for NNIP and DFT are very close, with a mean
error of 0.011 eV/at. This suggests that the NNIP potential
has good generalization capability and can perform robustly
in treating nanoparticle structures.

IV. SUMMARY

We constructed NNIP using MEAM background density as
symmetry functions and extended its application to nanopar-
ticles and cluster. The method can be applied to different
structures such as bulk, slab, and nanoparticles, with reason-
able accuracy and reliability. NNIP inherits the insights of
MEAM feature construction and combines the high flexibility
of the NN, making it a highly transferrable potential with a
solid theoretical foundation. NNIP can be applied to the study
of metal catalysts in molecular-dynamics simulations.
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