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Theoretical spectroscopy of the VNNB defect in hexagonal boron nitride
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The VNNB defect in hexagonal boron nitride (h-BN), comprising a nitrogen vacancy adjacent to a nitrogen-
for-boron substitution, is modelled in regard to its possible usefulness in a nanophotonics device. The modelling
is done on both a simple model compound and on a 2D periodic representation of the defect, considering its
magnetic and spectroscopic properties. The electronic distribution in most excited states of VNNB is found to
be very open-shell in nature, and to deal with this two new computational methods are developed: one allows
standard density-functional theory (DFT) calculations to be employed to evaluate state energies for doublet states
with three unpaired electrons, the other introduces techniques needed to apply the VASP computational package
to these and many other problems involving excited states. Also of general use, results from DFT calculations are
then calibrated against those from the ab initio methods MRCI, CASPT2, CCSD, EOM-CCSD, and CCSD(T),
seeking robust computational schemes. This complements previous work to reveal quite different properties for
systems with odd and even numbers of electrons. These innovations allow 45 electronic states of the defect in
its neutral, +1 and −1 charged forms to be considered. The charged forms of the defect are predicted to display
properties of potential interest to nanophotonics.
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I. INTRODUCTION

Point defects play an important role in spin and photo-
physics of semiconductor materials and can be exploited for
technological application [1,2]. Recently, 2D materials have
emerged as a new class of semiconductors with color centers
that have applications in many areas of nanophotonics [3–5],
for example quantum sensing [6,7] and quantum information
processing [8,9]. Exploitation of these color centers requires a
detailed knowledge of their electronic structure and magnetic
properties. In particular, we focus herein on defects in hexag-
onal boron nitride (h-BN). Over the past few years, they have
generated interest owing to the observation of single photon
emission in both the visible [9–18] and UV spectral regions
[19–21]. Recent advances including the discovery of optically
detected magnetic resonance [22,23] (ODMR) and the iden-
tification of carbon as a constituent in many active defects
[24]. Computational modelling of magnetic and optical prop-
erties has been critical to the establishment of assignments
of observed signals to defects of particular chemical compo-
sitions [22,24–31]. Nevertheless, many observed features of
the significant visible emission observed in the 1.6–2.2 eV
range still await interpretation [27]. The search for improved
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computational methodologies to facilitate this drives many
aspects of modern research [32–34]. We look forward to
the day in which defects of prescribed composition can be
made, and assembled to order, based on predicted nanopho-
tonics properties. Both of these aspects are addressed herein,
considering the possible usefulness of the VNNB defect (nitro-
gen vacancy with adjacent nitrogen-for-boron substitution) in
h-BN, and in doing so developing new computational method-
ologies of general usefulness throughout defect spectroscopy
and beyond.

Various studies have focused on identifying the nature of
observed defects in h-BN [22,24–32,35–39], often inspired by
the suggestion [26,35] that defects such as VNNB, VNCB, and
VBCN could be implicated. Recent work has focused on the
possibility that out of plane distortion [32,40] control defect
spectroscopic properties [24]. Studies of VNCB [32] and V−

B
[31] revealed that computational methods normally thought to
be reliable can show catastrophic failure when used in defect
modelling, as most defect states are open-shell in nature, a
feature poorly supported by most methods. Further, electronic
transitions in defects can involve charge transfer, a feature that
can also induce catastrophic failure in computations, demon-
strated in an extreme example recently for the V−

N defect [34].
Possible large spatial extent, coupled with typically

very complex electronic interactions, makes accurate spec-
tral predictions for h-BN defects extremely difficult.
Multi-length-scale approaches such as mixed quantum-
mechanics/molecular mechanics (QM/MM) offer a generally
useful technologies for the future, allowing long-range nu-
clear structure to be modelled at a simple level, while
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critical short-range electronic interactions pertaining to
defect-localized transitions are treated at the highest level pos-
sible [24]. Such calculations can include multiple h-BN layers
and large numbers (eg., 30) of rings of BN atoms surrounding
the defect centre [31]. Various modern calculations report the
critical defect electronic properties as converging very quickly
with model size expansion: small one-ring models are qual-
itatively reasonable but not always quantitatively accurate,
two-ring models are adequate for most purposes, and three-
ring models show near complete convergence [24,31,33,34].
Care must be taken with one-ring models as they can
predict unrealistic levels of geometrical distortion [31,32].
Defect models include both the cluster-type molecular models
just described, as well as 2D (or 3D) models of periodic
sheets (or solids). Even though 2D models must be much
larger than cluster models to achieve convergence to simi-
lar accuracy for spectroscopic transitions confined within the
defect, both types of approached lead to the same converged
answers [33].

One feature favoring the efficient modelling of defects in
2D materials such as h-BN is the short-range nature of 2D
dielectric effects compared to the long-range effects that are
well-known to dominate 3D materials [41]; this facilitates the
use of small model systems in electronic-structure calcula-
tions. Alternatively, defect features can make modelling very
computationally challenging. Relative defect state energies
may have very little correlation with differences in one-
particle orbital energies [32,33], inhibiting the use of human
intuition for state searching. Also, very large reorganization
energies of several eV can be associated with geometrical re-
laxation following state transition, making the lowest-energy
states often very difficult to find [24,31,32].

The defect considered in this work, VNNB, is chosen as it
has been widely mooted as a useful defect in nanophotonic ap-
plications [9,10,26,28,42], has electronic properties known to
converge very rapidly with model size [33], yet presents some
of the most difficult challenges for computational methods in
terms of dealing with open-shell state character. These issues
are so extreme that DFT codes that evaluate spectroscopic
properties through state-energy differences (“delta-SCF” cal-
culations) are not even able to make estimates for many states
of VNNB. To proceed, new methodology is therefore required
that links results from delta-SCF calculations to physical
observables. In addition, many codes do not have sufficient
facilities to guarantee convergence of delta-SCF calculations
on excited states. The VASP package [43,44] has some required
facilities but not others, and hence we develop some missing
infrastructure needed to use this commonly applied code in
spectroscopic applications.

We then calibrate the medium-level density-functional the-
ory (DFT) methods available in many periodic-model codes
against high-level density-functional and ab initio methods
available in molecular-model codes such as Gaussian-16 [45]
and MOLPRO [46]. This work focuses on a simple one-ring
model compound, as well as a basic 2D periodic model of the
defect. In terms of the development of basic understanding
of the properties of defects and the properties of available
computational approaches, our study of neutral VNNB com-
pliments previous analogous work on VNCB as it pertains

FIG. 1. The geometrical structure of the VNNB defect in C2v

symmetry, in which a nitrogen vacancy is neighbored by a nitrogen
substituting boron, is represented as either (a) a model compound or
(b) a rectangular (6 × 4�3)R30° unit cell representing a periodic 2D
lattice of defects; N- blue, B- beige, and H- white. Allowed in-plane
spectroscopic transitions may be polarized along the indicated a1

and b2 axes, while b1 transitions are polarized out-of-plane and a2

transitions are forbidden.

to defects with an odd number of electrons whereas VNCB

contains an even number. The odd-even difference is show to
have profound consequences concerning both aspects.

Empowered by methods that work for defects with both
odd and even electron numbers, we then make useful esti-
mates concerning the properties of 45 electronic states of the
defect in its neutral, +1 and −1 charged forms. This allows for
the realistic description of the spectroscopy of VNNB defects,
leading to determination of the desirability of the construction
of such defects.

II. COMPUTATIONAL METHODS

Calculations were performed for periodically replicated
defects in 2D h-BN using DFT, as well as for a one-ring model
compound using both DFT and ab initio approaches. Many
calculations refer to vertical excitation energies obtained at
the ground-state structures shown in Fig. 1. Others refer to
relaxed structures, yielding adiabatic transition energies and
reorganization energies. All structures are constrained to local
C2v point-group symmetry, and all symmetry specifications
are named using standard conventions for planar molecules
[47,48], with the in-plane a1 and b2 axes shown in the figure.

For the 2D simulations, calculations of the total energies,
electronic structures and optimized geometries were obtained
using version 5.3.3 of VASP [43,44]. For accurate calculation
of electron spin density close to the nuclei, the projector
augmented wave (PAW) method [49,50] was applied, together
with a plane-wave basis set. We utilized the standard PAW
projectors provided by the VASP package using a plane-wave
basis-set cutoff of 350 eV. A large vacuum region of 30 Å
width was used to separate a single layer of h-BN from its
periodic images to minimize interactions. The defect was then
realized in a fixed-size rectangular (6 × 4�3)R30° supercell
[see Fig. 1(b)], with the native h-BN B-N bond length set to

144104-2



THEORETICAL SPECTROSCOPY OF THE … PHYSICAL REVIEW B 102, 144104 (2020)

1.443376 Å, treated only at the gamma-point of the Brillouin
zone. Convergence of calculations for VNNB with respect
to sample size are rapid and have been considered in detail
elsewhere, with likely shortcomings in the current calculations
being in the order of just 0.01 eV [33]. Geometries are allowed
to relax until a maximum atomic force of 0.01 eV Å−1 was
reached. We used the PBE [51] and HSE06 [52,53] density
functionals to approximate electron exchange and correlation.
All HSE06 2D optimized geometries are reported in Sec. S5
of Ref. [54].

For the evaluation of magnetic properties, optimized 2D
geometries were used to calculate the wave function coef-
ficients of defect orbitals. Zero-field splitting tensors were
evaluated using the method described by Ivády et al. [55], with
full details of the calculations of spin properties described
in Sec. S3 of Ref. [54]. For the calculation of the spin-spin
contribution to the zero-field tensor, a higher cutoff energy of
600 eV and lower force tolerance of 10−4 eV Å−1 were used.
The Hessian matrix specifying the normal modes depicting
phonon motions was calculated using an energy cut off of
500 eV.

The model molecular compound used is shown in Fig. 1(a).
This contains a single ring of atoms surrounding the defect va-
cancy, augmented by three additional atoms near the nitrogen
substituent. These additional atoms facilitate a more balanced
description of the defect’s electronic properties [32], enabling
very rapid convergence of electronic-state properties with
respect to increasing ring numbers [33]. For spectroscopic
transitions localized to the defect, the obtained results are es-
timate to be within 0.1 eV of values converged with regard to
sample size [33]. In the vertical excitation-energy calculations
initially performed, the cluster geometry used was obtained
by extracting atoms from the 2D model [Fig. 1(a)], adding
terminating hydrogen atoms at coordinates optimized using
HSE06/6-31G* using GAUSSIAN-16 [45].

A wide variety of calculations are performed on the model
compound. DFT calculations are performed using the HSE06
[52,53] and CAM-B3LYP [56–58] density functionals by
GAUSSIAN-16 [45], with additional calculations in a large pe-
riod cell of dimension 13 × 30 × 30 Å performed using VASP

[43,44]. Time-dependent DFT (TD-DFT) calculations [59] are
performed using Gaussian-16. Also applied are the ab initio
methods that pertain to formal expansions of the electron cor-
relation that would eventually converge on the exact answer
for the basis set and geometrical model used. These methods
are: coupled-cluster singles and doubles (CCSD) [60–63], this
perturbatively corrected for triples excitations, CCSD(T) [64],
complete active space self-consistent field (CASSCF) [65–67]
calculations corrected for singles and doubles excitations,
either perturbatively (CASPT2) [68], or else through con-
tracted [69] multireference configuration (MRCI) [70] with
Davidson correction, and equation-of-motion coupled cluster
singles and doubles (EOM-CCSD) [71,72] theory. The CCSD,
CCSD(T), CASPT2, and MRCI calculations are performed
using MOLPRO [73] and the EOM-CCSD calculations using
GAUSSIAN-16 [45]. Convergence of the CASPT2 and MRCI
calculations with respect to the choice of active space is ad-
dresses in Table S1 in Ref. [54]. Comparison of best-available
results to those obtained using smaller active spaces indi-

cate convergence of results to within 0.13 eV for MRCI and
0.15 eV for CASPT2.

III. RESULTS AND DISCUSSION

A. Overview

All calculations report that the ground state of neutral
VNNB (Fig. 1) as (1)2B1 (i.e., the lowest energy state of dou-
blet spin symmetry and B1 spatial symmetry), when the defect
is constrained to C2v local point-group symmetry [14,35,37].
Its ground state has been predicted to distort out of plane [40],
but the consequences of this effect (which in defects can be
critical [24]) are not significant to our interests herein, and its
inclusion would make difficult the exhaustive scans that we
perform of state manifolds. All work presented herein thus
pertains to planar structures only. The basic electronic-orbital
structure of VNNB has also been discussed elsewhere [37],
with critical features portrayed in Fig. 2. At each defect site,
one σ and one π orbital produce dangling bonds. For the case
of neutral VNNB, five electrons need be distributed in these six
orbitals, reducing to four electrons for VNNB

+1, but increas-
ing to six electrons for VNNB

−1. The three σ atomic defect
orbitals combine to make molecular orbitals, one of an ap-
parently “bonding” nature (named 1a1, i.e., the lowest-energy
orbital of a1 spatial symmetry that is dominantly localized
on the defect), one of a “non-bonding” nature (named 2a1),
and one of an “antibonding” nature (named b2). Similarly,
the three π orbitals combine to make the orbitals named 1b1,
2b1, and a2, respectively. The “bonding” orbitals are typical of
three-center two-electron bonds but the interatomic distances
are so large that in reality no bond exists (Fig. 1), and it
is this open-shell feature that computational methods based
on single-determinant representations of the wavefunction or
density find difficult to model [32,74]. We find that 1a1 lies
below the valence-band (VB) maximum of h-BN and so is
always doubly occupied, 2a1, 1b1 and then 2b1, shown picto-
rially in Fig. 2, fall in the VB to conduction band (CB) gap
becoming the primary focus of attention, while a2 and b2 fall
inside the CB. Defect orbital energies from spin-unrestricted
HSE06 calculations on the 2D periodic model for neutral
VNNB are shown in the figure as a guide.

Transitions amongst the shown defect orbitals are expected
to dominate the low-energy spectroscopy of the defect, with
contributions also from VB and CB orbitals. We consider up
to 18 electronic states for neutral VNNB, 14 for VNNB

+1,
and 13 for VNNB

−1. These states are depicted in Table I in
terms of their dominant orbital occupancies, with occupancy
variations found involving 4 of the 6 defect orbitals, 6 VB
orbitals, and 8 CB orbitals. Details of the VB and CB orbitals
are model-size dependent, so the result obtained using the
molecular model for states involving their partial occupation
are only indicative.

Of the 45 states listed in Table I, 28 have dominant oc-
cupancies in which the number of partially occupied orbitals
corresponds to that expected for the spin multiplicity (0 for a
singlet state, 1 for a doublet state, 2 for a triplet state, of 3 for
a quartet state). For many of these, single determinants can be
used to represent the wavefunction, and the Kohn-Sham [75]
or Gunnarsson-Lundqvist [76] theorems, etc., indicates that
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FIG. 2. Shown for the example of neutral VNNB in 2D h-BN constrained to C2v symmetry are: (central) defect HSE06 orbitals localized
within the h-BN valence-conduction band gap from (1) 2B1 ground-state electronic structure, and (flanks) wavefunctions pertaining to some
of the key orbitals. The associated, dominantly defect-localized, Kohn-Sham single-electron orbital energies are also indicated relative to the
highest-energy orbital calculated in the valence band, and are labelled by their symmetry (a1, a2, b1, and b2 in C2v), their generic type as σ

or π , and, if needed, their energy ordering; spin-down electrons are donated by a bar above the symmetry label, e.g., b1.

single-reference methods such as orthodox DFT and CCSD
can be used to determine the state energies, with transition
energies therefore determinable as state-energy differences
(often called the “delta SCF” approach). The theorems limit
applications in that they indicate that results can only be
obtained for the lowest-energy state of each spin multiplic-
ity and spatial symmetry. Nevertheless, many computational
packages allow higher roots to be obtained by setting the de-
sired occupancies and using poor convergence criteria; results
obtained in this fashion always require detailed scrutiny.

In addition, 17 of the states listed in Table I have lower
spin multiplicities than the maximum possible for the given
number of unpaired electrons. For these open-shell states,
multiple determinants must always be used to represent the
wavefunction, an effect known as static electron correlation.
The Kohn-Sham [75] and Gunnarsson-Lundqvist [76] theo-
rems do not apply, so, whilst DFT calculations can be run
that appear to have the desired spin and spatial symme-
tries, their results cannot be related to physically observable
properties.

B. DFT calculations on open-shell systems

We focus on the 17 states listed in Table I with essen-
tial open-shell character. If the ground-state of any system
is essentially singlet reference, then excited states of any
nature may be prepared using the first-principles TD-DFT
approach (or EOM-CCSD based on a CCSD ground-state
wavefunction). Alternatively, if adding or removing one
or two electrons results in a closed-shell reference state,
then first-principles approaches are also available [31,77–82],
something highly appropriate for the singlet states of V−

B [31].
In general, however, only ab initio approaches embodying

multi-reference methods like CASSCF, CASPT2, and MRCI
can readily deal with the issues generated. Currently, much
research effort is being spent in the development of first-
principles DFT approaches that capture the same essential
elements [83–91]; similar empirical approaches have been ap-
plied to V−

B [29], with mixed success [31]. These approaches
all involve methodologies not available in most DFT compu-
tational packages, however, and herein we consider empirical
schemes that make delta-SCF calculations on this type of state
widely available.

Empirical schemes have for a long time been applied to
the simplest case of interest, when two unpaired electrons
combine to make a singlet state. This situation is depicted
in Fig. 3(b) and is very common, arising, e.g., whenever
optical excitation occurs from a closed-shell ground state of a
molecule or material. It is also commonly produced as a result
of antiferromagnetic couplings in molecules and materials.
As Fig. 3(b) shows, four determinants can be constructed
depicting one singlet state and one triplet state. Determinants
5a and 5b each have two electrons of the same spin and so
provide easy computational access to the properties of the
triplet state. In contrast, determinants 6a and 6b, with one elec-
tron of each spin, do not satisfy the Gunnarsson-Lundqvist
theorem and must be coupled together to make singlet-state
and triplet-state components. Ignoring dynamic electron cor-
relation between these electrons and the others, the energy
of the mixed-spin determinants must be the average of the
energies of the triplet and singlet states:

ES + ET = E6a + E6b, (1)

where ES and ET are the observable energies of the singlet and
triplet states, while E6a and E6b are the energies coming from
DFT calculations made by setting occupancies to correspond
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TABLE I. Considered state symmetries, their dominant orbital occupancies, and their transition polarizations from the ground state, for
various charged states of the VNNB defect in h-BN.

Dominant orbital occupancy

Defect Statea Trans. pol. V2a1 V2b1 V1a1 1a1 V2a2 V1b1 2a1 V1a2 1b1 2b1 C1a2 C2a2 C1b1 C1a1 C2a1 C1b2 C2b1 C3a2 Spin compb

VNNB (1)2B1 – 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0 0 0
(2)2B1 A1 2 2 2 2 2 2 2 2 0 1 0 0 0 0 0 0 0 0
(1)2A1 B1 2 2 2 2 2 2 1 2 2 0 0 0 0 0 0 0 0 0
(1)2A2 B2 2 2 2 2 2 2 2 2 0 0 1 0 0 0 0 0 0 0
(2)2A2 B2 2 2 2 2 2 2 2 1 2 0 0 0 0 0 0 0 0 0
(2)2A1 B1 2 2 2 2 2 2 1 2 1 1 0 0 0 0 0 0 0 0 D3
(3)2A2 B2 2 2 2 2 2 2 2 1 1 1 0 0 0 0 0 0 0 0 D3
(4)2A2 B2 2 2 2 2 2 2 2 2 0 0 0 1 0 0 0 0 0 0
(3)2B1 B1 2 2 2 2 2 2 2 2 0 0 0 0 1 0 0 0 0 0
(4)2B1 B1 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 1 0
(3)2A1 A1 2 2 2 2 2 2 1 2 1 1 0 0 0 0 0 0 0 0 D1
(5)2A2 A2 2 2 2 2 2 2 2 1 1 1 0 0 0 0 0 0 0 0 D1
(4)2A1 A1 2 2 2 2 2 2 2 2 0 0 0 0 0 1 0 0 0 0
(6)2A2 A2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 1

(1) 4A1 – 2 2 2 2 2 2 1 2 1 1 0 0 0 0 0 0 0 0
(1) 4A2 A2 2 2 2 2 2 2 2 1 1 1 0 0 0 0 0 0 0 0
(1) 4B1 B1 2 2 2 2 2 1 2 2 1 1 0 0 0 0 0 0 0 0
(1) 4B2 B2 2 2 2 2 2 2 1 2 1 0 1 0 0 0 0 0 0 0

VNNB
+ (1) 1A1 – 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0

(1) 1B2 B2 2 2 2 2 2 2 2 1 1 0 0 0 0 0 0 0 0 0 S
(1) 1B1 B1 2 2 2 2 2 2 1 2 1 0 0 0 0 0 0 0 0 0 S
(2) 1A1 A1 2 2 2 2 2 1 2 2 1 0 0 0 0 0 0 0 0 0 S
(2) 1B1 B1 2 2 1 2 2 2 2 2 1 0 0 0 0 0 0 0 0 0 S
(2) 1B2 B2 2 2 2 2 1 2 2 2 1 0 0 0 0 0 0 0 0 0 S
(3) 1B1 B1 1 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0 0 0 S
(3) 1A1 A1 2 1 2 2 2 2 2 2 1 0 0 0 0 0 0 0 0 0 S

(1) 3B1 – 2 2 2 2 2 2 1 2 1 0 0 0 0 0 0 0 0 0
(1) 3B2 A2 2 2 2 2 2 2 2 1 1 0 0 0 0 0 0 0 0 0
(1) 3A1 B1 2 2 2 2 2 1 2 2 1 0 0 0 0 0 0 0 0 0
(2) 3B2 A2 2 2 2 2 1 2 2 2 1 0 0 0 0 0 0 0 0 0
(2) 3B1 A1 2 2 2 1 2 2 2 2 1 0 0 0 0 0 0 0 0 0
(2) 3A1 B1 2 2 2 2 2 2 2 1 2 0 1 0 0 0 0 0 0 0

VNNB
− (1) 1A1 – 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0

(1) 1B2 B2 2 2 2 2 2 2 2 2 1 0 1 0 0 0 0 0 0 0 S
(2) 1A1 A1 2 2 2 2 2 2 2 2 1 1 0 0 0 0 0 0 0 0 S
(1) 1B1 B1 2 2 2 2 2 2 2 2 1 0 0 0 0 1 0 0 0 0 S
(1) 1A2 A2 2 2 2 2 2 2 2 2 1 0 0 0 1 0 0 0 0 0 S
(2) 1B1 B1 2 2 2 2 2 2 2 2 1 0 0 0 0 0 1 0 0 0 S
(2) 1B2 B2 2 2 2 2 2 2 2 2 1 0 0 1 0 0 0 0 0 0 S

(1) 3A1 – 2 2 2 2 2 2 2 2 1 1 0 0 0 0 0 0 0 0
(1) 3B2 B2 2 2 2 2 2 2 2 2 1 0 1 0 0 0 0 0 0 0
(1) 3B1 B1 2 2 2 2 2 2 2 2 1 0 0 0 0 1 0 0 0 0
(2) 3B2 B2 2 2 2 2 2 2 2 2 1 0 0 1 0 0 0 0 0 0
(2) 3A1 A1 2 2 2 2 2 2 2 2 1 0 0 0 1 0 0 0 0 0
(1) 3A2 A2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 1 0 0

aFranck-Condon allowed A1 transitions are polarized in-plane along the symmetry axis, A2 transitions are forbidden, B1 transitions are
polarized perpendicular to the layer, while B2 transitions are polarized in plane and orthogonal to the symmetry axis. Transition symmetries
to/from the lowest-energy state of each spin multiplicity and ionization level are listed.
bSpin components for open-shell calculations involving multiple degenerate spin components: S- singlet energy from Eqn. (2), D3 and D1-
tripdoublet and singdoublet energies from Eq. (5).
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1a

quartet 2 doublets + quartet

2a 3a 4a 1b

quartet 2 doublets + quartet

2b 3b 4b

(a)

5a

triplet singlet + triplet

6a 6b 5b

triplet

(b)

FIG. 3. Possible occupancies (a) when three unpaired electrons
distribute into three orbitals (resulting in two doublet states the trip-
doublet, D3, and singdoublet, D1, and one quartet), and (b) when
two unpaired electrons distribute into two orbitals (resulting in one
singlet state and one triplet).

to each individual determinant. As E6a = E6b in the absence
of a magnetic field, and as the Gunnarsson-Lundqvist theorem
yields ET = E5a = E5b, this allows the singlet state energy to
be approximated by

ES = 2E6a − E5a. (2)

Such an approach could be thought of as being
the simplest-possible empirical multi-configurational DFT
scheme. When considering antiferromagnetic interactions in
materials, the electrons being correlated are typically large
distances apart, making dynamical electron correlation small,
and this approximation has successfully led to very many
important results in the field. In defects, the neglect of dy-
namic electron correlation is questionable, but we have found
that in VNCB model compounds, the associated errors are
small compared to the accuracy required to make qualitative
assignment of defect properties [32]. Gradients for geometry
optimizations should be taken from ES , but instead we simply
optimize E6a and then apply the correction from Eq. (2), as the
computations are much more likely to complete successfully.

Paralleling this well-known case for two electrons in two
orbitals, we develop a similar empirical scheme for the case
of three electrons in three orbitals. For neutral VNNB, the
states (2)2A1, (3)2A1, (3)2A2, and (5)2A2 listed in Table I
involve three unpaired electrons in three orbitals, with the
spin multiplicity (doublet) being less than the highest-possible
value (quartet). For each of these, eight determinants con-
tribute to the various states involved, as sketched in Fig. 3(a).
Four determinants, named 1a–4a, have more spin-up electrons
than spin-down ones, while the others named 1b–4b, are sym-
metrically equivalent determinants obtained by interchanging
spin-up and spin-down electrons. Ignoring spin-orbit cou-
pling, in the absence of an applied magnetic field, the two sets
of determinants have equal energies and are noninteracting,
meaning that just one set, here taken as 1a–4a, need be explic-
itly considered in most discussions. The eight determinants
depict three electronic states: one quartet state with four spin
components, and two doublet states each with two spin com-
ponents. These are known as the tripdoublet state, labelled
“D3” in Table I, and the singdoublet state, labelled “D1”; these

names reflect the asymptotic limits of the wavefunction forms
[92,93]. Within a state, all spin components have the same
energy. Two components 1a and 1b of the quartet state are im-
mediately apparent in Fig. 3(a), but the other two components,
and all components of the doublet states, arise from complex
linear combinations of determinants 2a–4a and 2b–4b. A first-
principles multi-state DFT approach to deal with tripdoublet
and singdoublet states has recently been developed [90,94],
but this is not available in most periodic codes widely applied
by the h-BN community.

Determining an empirical scheme for the three-electrons
in three-orbitals case is more difficult owing to the increased
number of independent variables that need to be determined.
As before, one equation of constraint can be written that
conserves the total energy (trace of the Hamiltonian matrix)
for the states:

ED1 + ED3 + EQ = E2a + E3a + E4a = E2b + E3b + E4b,

(3)
where ED1, ED3, and EQ are the physically observable en-
ergies of the singdoublet, tripdoublet, and quartet states,
respectively, in the absence of a magnetic field. As the
Gunnarsson-Lundqvist theorem yields EQ = E1a = E1b, this
allows the average energy of the two doublet state to be
approximated by

ED1 + ED3 = E2a + E3a + E4a − E1a. (4)

Performing standard DFT calculations on the single deter-
minants in Fig. 3(a) therefore cannot reveal the energies of the
two doublet states, only their average. TD-DFT calculations
explicitly embody all terms in a first-principles way and hence
do not suffer from this problem, but they are currently not
feasible to apply to large periodic solids containing defects.
Hence we proceed by evaluating the energy splitting �ED1D3

using TD-DFT calculations for the model compound. The
state energies are then approximated by:

ED3 = (E2a + E3a + E4a − E1a − �ED1D3)/2,

ED1 = (E2a + E3a + E4a − E1a + �ED1D3)/2. (5)

In Ref. [54], Table S2 shows all of the quantities required
to evaluate the energies of tripdoublet and singdoublet state
pairs (2)2A1 and (3)2A1 (singly occupied orbitals 1a1, 1b1,
and 2b1), as well as for the pairs (3)2A2 and (5)2A2 (singly
occupied orbitals V1a2, 1b1, and 2b1). The approximation

E ′
D3 ≈ min (E2a, E3a, E4a) (6)

provides an uncontrolled upper bound to the state energy. It
has previously been applied to consider properties of (2)2A1

for the 2D material using HSE06 [28], yielding results close
enough to those from Eq. (5) that are hence useful for assign-
ing observed defect spectroscopy. Such an approach should be
applied with extreme caution, however.

Gradients for geometry optimization should be taken from
ED3 or ED1. Here, we take the simpler approach of optimizing
the three individual configuration energies E2a, E3a, and E4a,
applying Eq. (5) after the optimizations complete. This yields
three different approximations for the state energies ED3 or
ED1 and their associated optimized geometries. We find that
the different results are all in good agreement, suggesting that
this approach is successful.
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TABLE II. Energies (in eV) of various excited states of the single-ring VNNB model compound [Fig. 1(a)] with respect to (1)2B1, performed
at a reference geometry determined for (1)2B1, depicting calculated vertical excitation energies.

State MRCI CASPT2 CCSD (T) CCSD EOM-CCSD TD CAM-B3LYP TD HSE06 TD PBE HSE06 G09 PBE VASP HSE06 VASP

(2)2B1 3.35 3.99 3.69 3.04 2.23 2.46 3.38
(1)2A1 3.19 3.50 3.26 3.35 3.34 3.18 3.00 2.47 2.96 2.54 2.93
(1)2A2 3.61 3.15 3.15 3.43 3.57 3.48 3.10 2.38 3.06 2.55 3.00
(2)2A2 3.81 3.89 4.21 4.88 4.59 4.34 3.84 2.74 3.87 3.10 3.60
(2)2A1 4.37 4.10 4.48 4.16 4.82 3.99
(3)2A2 4.31 4.98 4.78 4.46 4.19
(4)2A2 4.58 5.21 5.05 4.61 3.84 4.42 3.74 4.39
(1)4A1 4.36 4.20 4.38 4.48 4.28 3.89 3.52 3.94 3.55 3.88
(3)2B1 5.03 5.57 5.31 4.76 3.87 4.17
(3)2A1 4.95 5.25 5.54 5.43 5.12 5.32 4.18 4.48 5.17
(5)2A2 4.83 5.52 5.35 5.06 4.29
(4)2A1 5.27 5.57 5.63 5.21 4.36 4.59
(6)2A2 4.52 6.25 5.31 5.53

C. DFT calculations using VASP that select states of prescribed
spatial symmetry

In Ref. [54], Sec. S2, software is developed
[28,32,95–98] that facilitates the use of the VASP package
[43,44] in determining defect state energies and densities.
VASP does not provide the ability to determine the spatial
symmetry of the wavefunctions that it optimizes. Software
is provided that seamlessly determines the symmetry from
the final listed wavefunction. Also, VASP allows initial
occupancies to be selected, defining wavefunction symmetry,
but does not guarantee that the final converged wavefunction
will retain this symmetry. Software is described that
overcomes this limitation by exploiting an available option
that only partially optimizes the wavefunction, but most of the
time retains symmetry. Through an iterative procedure, a fully
optimized wavefunction, obeying the Gunnarsson-Lundqvist
[76] theorem, but constrained to be of the desired symmetry,
can usually be determined. Higher-energy states outside of
those supported by the Gunnarsson-Lundqvist theorem can
often also be reliably obtained using standard convergence
criteria, though their physical meaning and dependence on the
convergence criteria used must always be carefully assessed.

D. Ab Initio and DFT calculations for the neutral VNNB model
compound test geometry

The relative energies to the ground state, obtained using
11 computational methods for 13 low-energy excited states,
of the model compound [Fig. 1(a)] are compared in Table II,
evaluated at the test geometry. The included states were cho-
sen based on TD-DFT and EOM-CCSD evaluations, selecting
all low-energy states plus also a few others of particular
relevance. This systematic search procedure identified some
low-energy states such as (2)2B1 and (1)2A2 that have not
previously been considered [28].

First, we note that parallel calculations are reported using
Gaussian-16 and VASP . Agreement of these calculations, per-
formed using very different numerical approaches, is usually
very good, despite a small difference in the implementation
of HSE06 in the two codes: the parameter μ in Gaussian-
16 is 0.20787 au, but in VASP it is 0.2 au, whereas the

actually specified value [52,53] is 0.200436 au. Previously,
defect state energy differences have been reported as within
0.03 eV [33] or 0.08 eV [32] for states for which VASP

has no difficulty in providing results. Table II shows mostly
similar results, indicating the stability of the new numeri-
cal techniques introduced to allow VASP to function more
generally; the exception is for (2)2A2, differing by 0.27 eV,
and is indicative of the problems associated with operations
on high-energy states of a given spin and spatial symmetry
outside the bounds allowed by the Gunnarsson-Lundqvist [76]
theorem.

To compare and calibrate methods, Table III lists the av-
erage differences and standard-deviations between excited
state energies obtained by comparing the various computa-
tional results presented in Table II to each other. First, we
consider comparisons between results obtained using the ab
initio MRCI, CASPT2, CCSD, EOM-CCSD, and CCSD(T)
methods. Each method has its own set of advantages and
disadvantages in terms of feasibility and comprehensiveness.
MRCI treats static electron correlation the best, with CASPT2
providing a more computationally efficient approximation.
CCSD(T) includes static electron correlation in an asym-
metric fashion yet contains the best description of dynamic
electron correlation, provided that the occupied-unoccupied
orbital energy difference is large enough. CCSD is a more
computationally efficient alternative that, in this application, is
most likely more approximate than MRCI. Note, however, that
errors associated with the size inconsistency of MRCI calcula-
tions can be of the order of the differences between it and other
ab initio approaches. EOM-CCSD embodies any deficiency
in the treatment of its reference state (here (1)2B1) and has a
less accurate treatment of dynamic electron correlation, but,
like TD-DFT, properly includes the static electron-correlation
effects addressed empirically through Eqs. (1)–(5).

The results show excellent agreement between the best
methods, MRCI and CCSD(T), predicting an average excited-
state energy difference of 0.0 ± 0.3 eV. The CCSD and
EOM-CCSD results differ from these by 0.3 eV, suggesting
that the enhanced treatment of dynamic correlation present in
CCSD(T) is able to subsume the enhanced treatments of static
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TABLE III. Corrections to add to DFT calculated transition energies from (1)2B1 (second column, in eV), determined from averaged
differences in transition energies predicted by the methods listed in the rows compared to those in the later columns, for the VNNB model
compound [Fig. 1(b)], evaluated at a test geometry.a

Difference analyses (number of comparisons, average difference ± standard deviation)

method Correction MRCI (13,13) CCSD(T) CCSD EOM- CCSD CASPT2 TD CAM-B3LYP HSE06 TD PBE

4
CCSD(T)

0.0 ± 0.3
4 5

CCSD
0.3 ± 0.5 0.3 ± 0.2

4 4 4
EOM-CCSD

0.3 ± 0.3 0.3 ± 0.1 −0.0 ± 0.2
5 5 5 11

CASPT2 −0.1 ± 0.3 −0.0 ± 0.2 −0.3 ± 0.4 −0.5 ± 0.2
TD CAM- 5 5 5 11 13

0.0 ± 0.3
B3LYP 0.0 ± 0.3 0.1 ± 0.2 −0.2 ± 0.2 −0.2 ± 0.1 0.4 ± 0.4

4 4 4 3 4 4
HSE06 −0.3 ± 0.2 −0.3 ± 0.2 −0.3 ± 0.1 −0.6 ± 0.3 −0.5 ± 0.1 −0.2 ± 0.2 −0.4 ± 0.1

5 5 5 11 13 13 4
TD HSE06 −0.2 ± 0.4 −0.1 ± 0.4 −0.2 ± 0.2 −0.5 ± 0.3 −0.5 ± 0.3 0.1 ± 0.4 −0.3 ± 0.4 0.0 ± 0.0

5 5 5 11 13 13 4 13
TD PBE −0.9 ± 0.3 −0.8 ± 0.3 −1.0 ± 0.3 −1.2 ± 0.5 −1.2 ± 0.4 −0.6 ± 0.6 −1.0 ± 0.4 −0.7 ± 0.3 −0.7 ± 0.4

aCalculations are performed at a geometry optimized for the (1)2B1 reference state, see text.

correlation present in MRCI, with other correlation effects
not being important. That CASPT2 agrees well with MRCI
and CCSD(T) results supports this conclusion, suggesting that
it provides an efficient and accurate ab initio approach for
studying the spectroscopy of this defect. This situation is
very different to that found for VNCB [32] and V−

B [31]. The
lowest-energy singlet state of V−

B leads to dramatic effects as-
sociated with static electron correlation, with reduced internal
consistency between the different ab initio results. Whether
defects states contain an odd or even number of electrons is
therefore critical to computational success.

Next we compare these ab initio results to analogous ones
from DFT and TD-DFT, with the second column of Table III
providing correction energy shifts for each method as a crude
summary. The TD-DFT and DFT results are very similar,
indicating the success of the empirical scheme Eqs. (1)–(5)
and the dominant closed-shell nature of the ground state. Of
the density functionals, CAM-B3LYP, which contains correc-
tions affecting the charge-transfer contributions to the states,
performs best with related differences to MRCI of 0.0 ± 0.3
and 0.1 ± 0.2 eV, respectively. HSE06 does not provide basic
support for charge-transfer transitions [34] but nevertheless
performs well for the states of interest, with an average differ-
ence of −0.3 ± 0.2 eV compared to MRCI and −0.3 ± 0.1 eV
compared to CCSD(T). It hence has an accuracy similar to that
of CCSD. PBE performs poorly in absolute terms, with related
differences of −0.8 ± 0.3 and −1.0 ± 0.3 eV, respectively,
but the standard deviations remain low and hence relative
state orderings are maintained. Overall, these results parallel
those for VNCB [32], with the differences here much reduced
in magnitude owing to the odd/even electron difference: for
VNCB, only CAM-B3LYP provided a realistic description,
with much larger ones reported for HSE06 and for PBE. For
the low-energy excited state (1)2A1, this analysis has been

extended to model compounds containing three rings [33],
revealing that calculated excitation energies change by less
than 0.1 eV, with the differences between methods preserved.
Hence the analysis in Table III is expected is maintained, pro-
vided that no untoward effects manifest, e.g., as expected for
charge-transfer bands determined using HSE06 and PBE [34].

E. Adiabatic transition energies and reorganization
energies of VNNB

Table IV lists the HSE06 adiabatic energies of 13 excited
states of VNNB, along with the reorganization energies λa

and λe depicting the absorption and emission spectroscopic
widths, respectively, for both the model compound and the
2D material (Fig. 1). Some results are also presented using the
PBE and CAM-B3LYP density functionals. Large differences
are predicted between the excitation energies of the model
compound and those for the 2D material of up to ±1 eV.
Two effects contribute to this: the model compound can ac-
commodate too much motion, artificially lowering transition
energies [31], and the small model compound used do not ad-
mit influences exerted by the CB and VB, increasing transition
energies. The calculated reorganization energies are in much
better agreement, however, indicating that, for this defect, the
geometrical effect is minor compared to that arising from the
involvement of orbitals from outside the defect core.

The HSE06 values for the reorganization energies of
(1)2A1 and (1) 4A1 in the 2D material match well with pre-
vious calculations [28]. Mostly the reorganization energies
calculated for emission and absorption match, indicating the
often-expected emission-absorption symmetry, but for other
states the differences are large, typically indicative of the op-
eration of large Duschinsky rotation effects that would control
details of internal defect photochemical processes, as is now
being commonly observed for aromatic chromophores [99].
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FIG. 4. HSE06 adiabatic energies of low lying states of 2D
VNNB as calculated by DFT, with, in (), these energies corrected
according to ab initio CCSD(T), EOM-CCSD, and CASPT2 cal-
culations for the model compound (Table III). Allowed transition
polarizations are also indicated. The left column shows the lowest
energy states with doublet spin multiplicity, with the lowest quartet
state shown on the right; multiplet splitting are also indicated (not to
scale).

The reorganization energies listed in Table IV include
only the contributions from in-plane relaxation within C2v,
excluding any that may arise from in-plane or out-of-plane
distortions. As is known [40], the (1) 1B1 ground state is
predicted by HSE06 to undergo a distortion in a b1 mode, and
we find that the same also applies to (2) 1B1 by normal-mode
analysis of its Hessian matrix at C2v symmetry.

A summary of the best-estimate spectroscopic properties
of VNNB is illustrated in Fig. 4. As inclusion of structures
much larger than the single-ring model compound are critical
to some of the properties of this defect, we start with HSE06-
calculated transition energies for the 2D material. To these,
we add corrections based on the calibration of HSE06 against
ab initio methods for the model compound. Such corrections
would normally be considered to be both accurate and trans-
ferrable, but the energies of charge-transfer transitions in the
2D model results are likely to be underestimated [34] in a way
not included in the calibration data. The (1)2A1 → (1)2B1

emission consistent in energy with many observed single-
photon emitters, but the calculated oscillator strength listed
in Table IV is far too low to account for the observed short
photoemission lifetimes, and the calculated emission reorga-
nization energy of 0.42 eV is 4–10 times too large to account
for observed spectral widths [27]. Hence these results indicate
that VNNB is not a commonly observed single-photon emitter.

F. The +1 and −1 charged forms of VNNB

Engineering of the Fermi energy in h-BN could, in prin-
ciple, lead to the charging of the defect in either its natural
environment or an artificial one. Table V shows properties
of the VNNB

+1 and VNNB
−1 defect states, evaluated on the

model compound using HSE06 and CAM-B3LYP, as well
as on the 2D material using HSE06 in broken symmetry
[100]. Both ions are predicted to have (1) 1A1 ground states in

both the model compound and the 2D material, arising from
closed-shell electronic configurations. A (1) 1A1 ground state
was also previously predicted for VNCB, a system isoelec-
tronic to VNNB

+1 that also can display C2v symmetry [26].
These closed-shell ground states depict covalent bonds form-
ing between defect atoms, but the associated bond lengths
far exceed those typical of covalent bonding (see Fig. 1).
As a result, the ground state has in reality large open-shell
character, meaning that single-reference computational ap-
proaches such as those applied in Table V can introduce large
errors.

For VNCB, we found that CAM-B3LYP calculations ap-
peared to give the most reliable results, but computational
tools are not currently available that would allow this method
to be applied to 2D materials [26]. For HSE06, we found
corrections of 0.7 eV are needed for triplet states compared
to closed-shell singlet states and 1.0 eV for open-shell sin-
glet states. For the isoelectronic species VNNB

+1, applying
these corrections bring the HSE06 and CAM-B3LYP results
in Table V into line, whereas they already agree well for
VNNB

−1 without correction. These corrections are therefore
do not appear universal, but depend on the nature of the
occupied frontier orbitals and in particular on whether the
defect has an odd or even number of electrons. We present
tentative descriptions of the low-lying excited-state energetics
of VNNB

+1 and VNNB
−1, calculated at HSE06 level and then

corrected, in Fig. 5.
Table V shows that the naïve expectation that absorption

and emission reorganization energies should be similar is
mostly met, again vindicating the quality of the computational
procedures developed. Significant systematic differences are
found for the related states (2)1B1 and (2)3B1 of the cation,
however, and for the important state (1)1B2 of the anion.
These calculations appear robust, but are wisely treated as
being suspicious.

For VNNB
+1, the calculations predict the lowest-energy

singlet excited state to be (1)1B1. This state would have an
out-of-plane transition with the ground state that is inconsis-
tent with commonly observed h-BN defect spectra [27]. It
is predicted to have very large reorganization energies (λa,
λe = 1.82, 1.31 eV) in the 2D material, and hence extremely
broad spectra, with very low calculated oscillator strength,
additional features all inconsistent with experiment. Within
the triplet manifold, the low energy transitions are predicted
to be either forbidden or else very weak and out-of-plane
polarized, again inconsistent with experiment.

For VNNB
−1, the calculations again predict the lowest-

energy singlet excited state to be (1)1B1, having a weak and
out-of-plane polarized transition to the ground state, but this
time with only a small reorganization energy of λe = 0.26 eV.
However, above it by just 0.5 eV are predicted to be the
(1)1B2 and (2)1A1 states, states with symmetries consistent
with the observed dual in-plane absorption polarizations [16].
It could be that the calculations have just misrepresented the
energy of (1)1B1, and that, in reality, the other states are of
lower energy. Indeed, the (2)1A1 state shows all the required
properties: intense, with very small reorganization energy of
just λe = 0.11 eV, but (1)1B2 appears to be too weak to partic-
ipate. The calculated reorganization energies of λa = 0.79 eV
and λe = 0.27 eV appear suspicious, but if such a scenario

144104-10



THEORETICAL SPECTROSCOPY OF THE … PHYSICAL REVIEW B 102, 144104 (2020)

TABLE V. Energies of various excited states of the VNNB
+1 and VNNB

−1 model compound and related periodic 2D material (Fig. 1), with
respect to their (1) 1A1 ground states, evaluated at their adiabatic minimum-energy geometries constrained to C2v symmetry (see Sec. S5 of
Ref. [54]), oscillator strengths in absorption, and the reorganization energiesaλa and λe depicting the width of absorption and emission bands,
respectively.

Adiabatic excitation energy / eV
Osc. Strength

λa/eV λe/eV

model 2D material model TD model 2D material 2D material

Defect State HSE06 TD CAM TD HSE06 CAM HSE06 HSE06 TD CAM TD HSE06 HSE06

VNNB
+1 (1) 1B2 0.72 1.84 2.24 0.0014 0.0006 0.81 0.83 0.57 0.58

(1) 1B1 1.9 3.27 0.86 0 0 0.82 0.53 1.82 1.31
(2) 1A1 2.68 3.35 2.44 0.0886 0.0552 0.60 0.68 0.48 0.66
(2) 1B1 3.33 3.6 3.70 0.0046 0.0029 0.21 0.26 0.32 0.59
(2) 1B2 3.11 3.88 2.75 0.0454 0.0116 0.36 0.35 0.54 0.58
(3) 1B1 4.00 4.42 3.79 0.0057 0 0.19 0.20 0.73 0.81
(3) 1A1 2.30 0.62 0.61
(1) 3B1 1.55 2.13 0.60 – – – 0.31 – –
(1) 3B2 1.09 1.96 2.20 0 0 0.66 0.77 1.28 1.42
(1) 3A1 2.24 2.99 2.33 0.0000 0.0000 0.75 0.93 1.31 1.17
(2) 3B2 2.71 3.48 2.76 0.0000 0.0000 0.29 0.28 1.36 1.08
(2) 3B1 2.77 3.22 3.78 0.1038 0.0760 0.54 0.75 0.50 1.01
(2) 3A1 2.93 3.96 2.78 0.0001 0.0001 0.45 0.55 1.24 1.13

VNNB
−1 (1) 1B2 1.27 1.53 1.66 0.0001 0.0014 0.74 0.73 0.79 0.27

(2) 1A1 2.13 2.24 1.66 0.2766 0.2689 0.27 0.31 0.11 0.11
(1) 1B1 2.73 2.76 1.10 0.0011 0.0008 0.21 0.22 0.27 0.26
(1) 1A2 2.8 3.23 1.71 0 0 0.42 0.48 0.26 0.28
(2) 1B1 2.93 3.44 1.52 0.0006 0.0001 0.37 0.39 0.29 0.26
(2) 1B2 3.29 3.39 collapsed 0.2237 0.2070 0.32 0.35
(1) 3A1 1.67 1.11 0.76 – – – – – –
(1) 3B2 1.48 1.06 1.89 0.0095 0.0018 0.33 0.69 0.52 0.39
(1) 3B1 −0.13 1.10 0 0.0001 0.85 0.39 0.36
(2) 3B2 3.08 2.66 1.98 0.0347 0.0364 0.21 0.15 0.47 0.34
(2) 3A1 3.59 3.08 1.77 0.1306 0.1515 0.15 0.17 0.31 0.37
(2) 3B1 1.50 0.39 0.43
(1) 3A2 3.46 2.99 1.71 0 0 0.22 0.21 0.34 0.30

aFor relaxation from/to the (1)1A1 ground state for all singlet states and for the lowest triplet state, (1) 3B1 for VNNB
+1 and (1) 3A1 for VNNB

−1,
else for excited triplet states for relaxation from/to the lowest triplet state, as is appropriate for triplet to triplet spectroscopy.

were real then it depicts interesting properties: the second
excited state is narrow in emission and so does not become
the emitting state, whilst it is broad in absorption, allowing
for a wide variation in excitation wavelength to drive photo-
luminescence. In summary, while some required features are
present, overall it would seem unlikely that these states could
explain the observed h-BN emission. The triplet manifold of
VNNB

−1 is predicted to have many low energy transitions
and is inconsistent with the commonly observed h-BN defect
spectra [27].

G. Spin-spin interactions and possible applications
to quantum information

While none of the defects studied appear to relate to ob-
served h-BN defects, it could be possible to engineer these
defects intentionally. One of the driving forces for research
into h-BN defects is the possibility that they may prove useful
as qubits in quantum information processing systems. We

proceed by examining how useful the calculated defects are
likely to be in this regard.

Spin-orbit coupling can mix the triplet and singlet spin
states, generating intersystem crossings, while spin-spin inter-
action lifts the degeneracy of spin multiplets. This can reveal
critical properties concerning the optical cycle of a defect
[101], and indeed controls [31] optically detected magnetic
resonance (ODMR) observed [22] for the V−

B defect. Specific
patterns of spin-orbit couplings and zero-field splittings are
required for defects to be useful as qubits, and the calculated
patterns for the charged defects are shown in Fig. 5. A de-
tailed discussion on the nature of the spin-orbit interactions
[102], zero-field splitting, and allowed intersystem cross-
ing and optical transitions are complex and are provided in
Sec. S3 of Ref. [54], also see Refs. [102–104].

The key conclusion reached is that, in subsequent opti-
cal cycles, ODMR contrast can be achieved by microwave
excitation for VNNB

+1 and VNNB
−1, owing to the lifetime

differences of the first and second order transitions from the
different triplet sub-states to the singlet ground state. This

144104-11



SAJID, REIMERS, KOBAYASHI, AND FORD PHYSICAL REVIEW B 102, 144104 (2020)

FIG. 5. HSE06 adiabatic energies of low lying states of 2D VNNB
+1 (left) and VNNB

−1 (right), as calculated by HSE06, with, in () for
the anion, these energies corrected according to previously obtained [32] ab initio CCSD(T), EOM-CCSD, and CASPT2 calculations for the
isoelectronic defect VNCB. Allowed transition polarizations in the a1, b1, and b2 directions (see Fig. 1) are also indicated. The left column
shows the lowest energy states with singlet spin multiplicity, with the lowest triplet states shown on the right; multiplet splitting are also
indicated (not to scale).

behavior is similar to that found for the N2V defect in dia-
mond. Thus VNNB

+1 and VNNB
−1, should be exploitable to

realize a long-living quantum memory in h-BN, as has been
achieved for the N2V defect in diamond [103]. Indeed these
have similar electronic-state structures.

IV. CONCLUSIONS

The a priori calculation of properties of defect states in
2D materials remains a daunting challenge. Here, we intro-
duce both basic theory and computing techniques to enable
many computational packages to performing calculations on
periodic systems to treat some rather unusual electronic states
that can arise in defects. Indeed, the types of states that arise
in defects with odd and even numbers of electrons are found
to be quite different and demand individual consideration.
The developed methods are then used to look at neutral and
charged states of the VNNB defect of h-BN. Of the charged
states with an even number of electrons, VNNB

+1 is isoelec-
tronic with a previously well-studied defect, VNCB [32]. In
both cases, large discrepancies appear when DFT methods
are compared to ab initio ones for model compounds, the
cause being the intrinsic open-shell nature of the ground state
and other key defect states. The error here is an intrinsic one
belonging to the DFT approaches used, and is not affected by
use of a 2D periodic model instead of a model compound. The
problems generated by the open-shell nature of key states is
less for VNNB

−1 than it is for VNNB
+1, owing to the change in

the nature of the key HOMO orbital. Universal corrections for
DFT calculations therefore cannot be obtained; at least every
isoelectronic system needs to be treated independently. In
addition, we see for this defect that in many cases transitions
are not defect-localized and hence 1-ring model compounds
show large differences in state energies compared to 2D mate-

rials, owing to the importance of transitions involving the VB
and CB.

For neutral VNNB, a system with an odd number of elec-
trons, we find here that the errors in DFT are much reduced,
with state energies for model compounds requiring correc-
tions of on average 0.0 ± 0.3 eV for CAM-B3LYP, 0.3 ±
0.2 eV for HSE06, and, as expected, large values of 0.9 ±
0.3 eV for PBE.

Concerning, the possibility that VNNB defects could con-
tribute to the commonly observed defect spectroscopy of
h-BN, from the calculations performed it is clearly unlikely.
Nevertheless, we note that the calculations predict that if by
some means VNNB defects could be engineered into h-BN and
charged states +1 and −1 could be realized, then these defects
should be useful for quantum computing applications that
access different defect states. Our prediction is that VNNB

+1

and VNNB
−1 should be exploitable to realize a long-living

quantum memory in h-BN, as has been achieved for N2V
defect in diamond.
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