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The demonstration of the non-Abelian properties of Majorana bound states (MBSs) is a crucial step toward
topological quantum computing. We theoretically investigate how the fusion of MBSs manifests itself in the
current-voltage characteristics of a topological Josephson junction. The junction is assumed to be built on
U-shaped quantum spin Hall edges and is supposed to host a Majorana qubit formed by four MBSs. Inter-
and intraedge couplings among adjacent MBSs provide two orthogonal components of the rotation axes of the
Majorana qubit. We show that the interplay of the dynamics of the superconductor phase difference and the
Majorana qubit governs the Josephson effect. Strikingly, we identify sequential jumps of the voltage across
the junction with increasing DC current bias without external AC driving. Its role in the formation of ordinary
Shapiro steps is replaced by the intrinsic Rabi oscillations of the Majorana qubit. We coin this phenomenon
DC Shapiro steps.
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Majorana bound states (MBSs) are non-Abelian excitations
supported by topological superconductors and represent the
building blocks of topological quantum computation [1–5].
The non-Abelian exchange statistic of MBSs allows for
the implementation of topological quantum gates process-
ing quantum information in a topologically protected manner
[6,7]. A key property of MBSs, which serves as an indirect
demonstration of non-Abelian statistics, is their nontrivial
fusion properties [2,8]. In general, the fusion of two MBSs
produces an equal-weight superposition of even and odd
fermion parity. This implies that MBSs feature a nontrivial
quantum dimension greater than one.

In condensed matter physics, several platforms capable
of hosting and manipulating MBSs have been investigated,
including semiconducting quantum wires [9–14] and more
recently second-order topological superconductors [15–23].
Among other platforms, topological Josephson junctions
(TJJs) have proven to be promising theoretically and exper-
imentally [24–29]. Importantly, single-electron tunneling into
a pair of MBSs in a TJJ leads to the fractional Josephson
effect [30–33], recently confirmed by experiments [34–38]
with missing odd Shapiro steps. These results, together with
other seminal experimental observations [11,12,14,39], have
deeply strengthened the evidence for MBS. More recently,
intriguing Josephson effects stemming from nonlinear dynam-
ics of MBSs have been suggested as a way to visualize the
particular dynamics of Majorana qubits [40,41]. In this Rapid
Communication, we pursue an approach adopting the same
phenomenological model but study it in a different regime. It
turns out that this difference leads to the novel phenomenon
of DC Shapiro steps described below.
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We consider a TJJ hosting four MBSs defining a Majorana
qubit (see Fig. 1). Importantly, we allow a single MBS to
fuse with different partners; for instance, γ2 can develop an
intraedge coupling with γ1 and/or an interedge coupling with
γ3. This leads to nontrivial dynamics of the Majorana qubit,
whose interplay with the dynamics of the phase difference
affects the Josephson effect. Remarkably, the Majorana dy-
namics lowers the critical current I∗

c of the junction. Moreover,
when a DC current bias increases over I∗

c , it induces sequential
steps of the voltage drop V across the junction.

We coin this phenomenon DC Shapiro steps to empha-
size its relation to the known AC Shapiro steps. Both in
conventional and topological Josephson junction, AC Shapiro
steps appear (under certain conditions) if a DC current bias—
in combination with an AC current component—is applied
across the junction [42,43]. By contrast, the novel DC Shapiro
steps emerge without any external periodic drive. The role of
the AC driving is replaced by the intrinsic (Rabi) oscillations
of the Majorana qubit, whose frequency can be estimated
from the height of the steps. The importance of the novel
DC Shapiro steps is twofold: (i) They represent a new phe-
nomenon in the realm of the Josephson effect. (ii) They are a
manifestation of the nontrivial fusion of MBSs.

Setup. We consider the TJJ sketched in Fig. 1, consisting
of the edge of a quantum spin Hall (QSH) insulator which
is proximitized by two superconductors separated by a fer-
romagnetic region [30]. The Hamiltonian of the system is
H = 1

2

∫
dx �†(x)H(x)�(x) with

H(x) = τz[−ih̄v∂xsz − μ(x)] + M(x) · s

+�0(x)[τx cos ϕ + τy sin ϕ], (1)

where �†(x) = [ψ†
↑(x), ψ

†
↓(x), ψ↓(x), −ψ↑(x)], and ψ†

s (x)
and ψs(x) are the creation and annihilation operators of
electrons with spin index s. Pauli matrices sx,y,z and τx,y,z
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FIG. 1. Josephson junction formed on U-shaped QSH edges
hosting four MBS γ1,2,3,4. Counterpropagating QSH edges are col-
ored with blue and red lines. The region with in-plane magnetization
M (gray) constitutes weak links between two superconductors Sl and
Sr (blue). Pairs of two MBSs at the upper and lower sides of the
junction compose two fermion parity states of |012034〉 and |112134〉.
A superposition of them defines a Majorana qubit state |Q〉. Intraedge
coupling provides the rotation of the Majorana qubit along the z axis,
and interedge coupling along the x axis.

describe spin and particle-hole space, respectively; v is the
Fermi velocity of QSH edge states. The chemical poten-
tials in the region with magnetization and superconductors
are, respectively, μM and μS . The superconducting phase
difference of Sl and Sr is ϕ, and their proximity gap is
�0(x) = �0. We assume a finite magnetization M(x) =
sgn(x)(M cos φ, M sin φ, 0) only in the weak link between the
superconductors. The distance between superconductors is L,
and the length of the QSH edge in Sl is W . We consider that
h̄v/W is much smaller than the bulk gap of the QSH insulator
so that the upper and lower edges are completely decoupled in
the other regions.

To characterize the junction, we consider at first the
limits h̄v/L � M and h̄v/W � �0, so that well-separated
MBSs γi=1,2,3,4 appear at zero energy. Those are equal
superpositions of spin-polarized electrons and holes γi ∝∫

dx[ψ†
i (x) + ψi(x)] localized at position xi, where ψ

†
i (x) ∝

e−|x−xi|/ξ (x)[ψ†
↑(x) + eiφ+iθi (x)ψ

†
↓(x)]. The localization length

ξ (x) is inversely proportional to the size of the gap
of the region at position x. Importantly, the spin polar-
ization θi(x) is electrically tunable with chemical poten-
tials: μM tunes θi at position xi according to sin θi(xi ) =
(−1)isgn(xi )

√
1 − (μM/M )2; μS changes the length of the

spin helix of γi in the superconducting regions, i.e., θi(x) =
θi(xi ) + 2(x − xi )μS/(h̄v). In the M region, the spatial depen-
dence of θi is θi(x) = θi(xi ).

To enable the fusion of MBSs, we consider the follow-
ing regime: h̄v/L ∼ M and h̄v/W ∼ �0. Projecting the full
Hamiltonian H on the Majorana wave functions, we ob-
tain the effective low-energy Hamiltonian Heff = iExγ2γ3 +
iEzγ1γ2 + iEzγ3γ4. The interedge coupling through Sl is Ex ∝
sin{[θ2(x) − θ3(x)]/2}, where x is in Sl . Ex is vanishing
(maximized) when the spin polarizations of γ2 and γ3 are
(oppositely) aligned in the Sl region. Explicitly, the interedge
coupling is

Ex =
2�0

√
M2 − μ2

M

�0 +
√

M2 − μ2
M

e−W �0/h̄v sin
(μM

M
+ μSW

h̄v

)
, (2)

and the intraedge coupling reads Ez = EM cos ϕ

2 . The deriva-
tion of Eq. (2) is provided in the Supplemental Material (SM)
[44]. We stress that the magnetized region allows us to control
the interedge coupling (via μM) and to get rid of other midgap
states at higher energies.

In order to study the Josephson effect, we describe the
junction in terms of the complex fermions fi j ≡ (γi + iγ j )/2,
which mediate the supercurrent. In particular, Majorana
fermions γ1 and γ2 define two oppositely current-carrying
states coined |012〉 and |112〉. They satisfy f12|012〉 = 0 and
f †
12|012〉 = |112〉. Analogously, γ3 and γ4 provide current-

carrying states |034〉 and |134〉. The total supercurrent across
the junction is therefore controlled by the state of the Ma-
jorana qubit |Q〉. Importantly, states with total odd fermion
parity do not carry any net supercurrent across the junction
and they are invisible from a transport point of view [52].
By contrast, the generic state with even total fermion par-
ity |Q〉 = α|012034〉 + β|112134〉 carries a finite supercurrent
IJ = (|α|2 − |β|2) eEM

h̄ sin ϕ

2 . In the following, we focus on the
even-parity sector and recast Heff in terms of the current-
carrying fermion states, Heff = Exσx + Ezσz, where the basis
is {|112134〉}, |012034〉}. The off-diagonal elements Ex manifest
as Rabi oscillations between the current-carrying two-level
states of the Majorana qubit.

Josephson effect with Majorana dynamics. We consider
an overdamped Josephson junction shunted by the normal
resistor RN . Under a DC current bias IDC, the voltage drop v(t )
across the junction is described by the nonlinear differential
equation [35,36,43]

IDC = −ZIc sin
ϕ

2
+ h̄

2eRN

dϕ

dt
, (3)

where Z = 〈Q|σz|Q〉 and Ic = eEM/h̄ in our setup. Dynamics
of the phase ϕ(t ) is obtained by equating IDC with the sum
of the supercurrent IJ and the normal current v(t )/RN , so
that the voltage drop is determined by the Josephson relation
v(t ) = h̄/(2e)ϕ̇(t ). A mechanics analog provides comple-
mentary insight into the dynamics of ϕ(t ): Eq. (3) can be
interpreted as the dynamics of a massless (phase) particle
sliding along a tilted washboard potential U (ϕ) = −IDCϕ +
2ZIc cos ϕ/2 [43].

Without interedge coupling, Ex = 0, Z is a conserved
quantity: the profile of the associated washboard potential
is fixed in time. In this case, a sudden change in IDC �
Ic causes ϕ to evolve towards a fixed point ϕ f satisfy-
ing IDC = −ZIc sin ϕ f /2. During the transient regime, ϕ(t )
monotonically increases with a characteristic timescale τr =
h̄/(2eIcRN ). Thus, a positive voltage v(t ) is temporarily gen-
erated and vanishes afterwards. For a larger DC current,
IDC > Ic, the phase ϕ increases with time and a finite av-
erage voltage drop across the junction is developed, V =
limτ→∞ 1

τ

∫ τ

0 v(t )dt .
With a finite interedge coupling, Ex > 0, assumed to be

positive without loss of generality, the behavior of the junction
is controlled by the dynamics of both the phase particle and
the Majorana qubit. To describe the latter, we introduce the
unit vector R = (X ,Y,Z ) on the Bloch sphere, with X =
〈Q|σx|Q〉 and Y = 〈Q|σy|Q〉. Its dynamics is controlled by the

140501-2



MAJORANA-INDUCED DC SHAPIRO STEPS IN … PHYSICAL REVIEW B 102, 140501(R) (2020)

FIG. 2. (a) Sketch of the washboard potential U (ϕ) when Z >

Zth (red line), 0 < Z < Zth (blue line), Z = 0 (dashed line),
and Z < −Zth (green line). When the Majorana qubit precesses with
Z > 0, the phase particle (solid circle) is recaptured in ϕ ∈ R1 =
[π, 3π ]. After recapturing the phase particle by a certain number of
times n, Z flips its sign, and the phase particle rolls down to ϕ ∈
R2 = [3π, 5π ] (hollow circle). (b) Colormap of the time-averaged
voltage V under DC current bias IDC and the interedge coupling
Ex . I∗

c in Eq. (5) is drawn as a guide for the eye (dotted line). V
exhibits sequential jumps as increasing IDC. We use EM = 5 μeV
and the experimental parameter of 2eIcRN/h ∼ 2 GHz extracted from
Ref. [36].

equations of motion,

dR
dt

= N × R, (4)

where N = 2(Ex, 0, Ez )/h̄. R precesses around N with
time period T = π h̄/(E2

x + E2
z )1/2 with time-independent

Ez. However, as Ez = EM cos ϕ(t )
2 , the precession axis N(t )

changes according to Eq. (3), while the barrier height Z (t )
in Eq. (3) changes simultaneously according to Eq. (4).
The intertwined dynamics of the phase difference and Ma-
jorana qubit has been analyzed in Ref. [40] in terms of the
Landau-Zener transition with an exponentially small parame-
ter Ex/EM . Contrarily, we focus on comparable parameters of
Ex and EM which is a crucial choice for the emergence of DC
Shapiro steps.

To develop intuition about the interplay between the dif-
ferential equations (3) and (4) with comparable Ex and EM ,
we analyze the features of the washboard potential U (ϕ).
As shown in Fig. 2(a), for a DC current IDC, the qubit state
Z modulates the profile of U (ϕ) with the constant over-
all slope in time due to the absence of AC driving. While
U (ϕ) is pinned at the points ϕ̄ j ≡ π (mod 2π ), as for the
regions Rj , i.e., ϕ̄ j−1 � ϕ < ϕ̄ j , in between those points, two
configurations are possible: (i) If |Z| exceeds the threshold
Zth = IDC/Ic, the regions feature an alternating pattern of
local minima and maxima [red and green lines in Fig. 2(a)].
(ii) If |Z| < Zth, the potential U (ϕ) becomes a monotonically
decreasing function [blue and dashed lines in Fig. 2(a)]. In
configuration (i), the phase particle cannot leave the region of
its initial location. Hence, it moves towards a local minimum.
As this motion affects the direction of the precession axis
N(t ), the whole system starts to display damped oscillations
because energy is dissipated via the resistance. If the bias
current is sufficiently small IDC � Ic, the phase particle and
the Majorana qubit eventually reach fixed points ϕ0 and R0 as

t → ∞ and stop moving. Therefore, after a transient time, the
average voltage drop vanishes, V = 0, and the ground state
carries the supercurrent IDC without resistance. We provide
analytic solutions of the fixed points and numerical results of
ϕ(t ) and R(t ) in the SM [44].

As a physical consequence of finite interedge coupling Ex,
we find that finite voltage develops as the bias current in-
creases but still fulfills IDC < Ic. A finite value of Ex stimulates
the Majorana qubit to evolve from the state |012034〉 into a su-
perposition of the opposite current-carrying states |012034〉 and
|112134〉, corresponding to |Z| < 1. Hence, the configuration
(ii) of the washboard potential |Z| < Zth = IDC/Ic can occur
and the phase particle can roll down. A sustained onset of this
mechanism leads to a finite V and therefore to a reduction of
the critical current I∗

c of the junction. The analytical compu-
tation of I∗

c confirms the existence of this effect. In particular,
by computing the maximal current carried by the ground state
of the system, we obtain

I∗
c =

√
I2
c +

(eEx

h̄

)2

− eEx

h̄
� Ic (5)

which is indeed lowered by a finite interedge coupling Ex [44].
In Fig. 2(b), we show the agreement between Eq. (5) (white
dashed line) and the numerical computation of V , which fea-
tures finite values even for IDC well below Ic. As the lowering
of the critical current traces back to the fusion properties of
the four MBSs hosted by the TJJ, it represents an important
insight of our work.

DC Shapiro steps. Interestingly, an in-depth analysis of
the average voltage V in the regime IDC � I∗

c reveals a more
striking effect: V features sequential sudden steps as the DC
current increases. We provide numerical computations of V
in Figs. 2(b) and 3(a) with realistic experimental parameters
[36]. The voltage is averaged over a time period 2 × 103τr ∼
160 ns. In Fig. 3(a), where we consider a ratio Ex/EM = 0.67,
more than four sequential jumps are visible. These jumps are
the DC Shapiro steps.

To understand their physical origin, we analyze further the
mechanism responsible for the rolling of the phase particle
down the washboard potential. The key observation is that,
for IDC > I∗

c , the oscillations of Z (t ) make the washboard
potential keep alternating between configurations (i) and (ii)
(described above). Hence, it can still develop local minima,
which temporarily trap the phase particle. The motion of the
phase particle thus alternates between oscillations around one
local minimum and the rolling from a region Rj down to the
next region Rj+1. The integer number of oscillations within
a single region decreases as the average slope of the wash-
board potential IDC is increased. When this number changes
by one, it abruptly modifies the dwelling time �−1 of the
phase particle within a single region, which causes a sudden
jump of the average voltage V = h�/(2e). We observe that,
in between the steps, the voltage does not feature flat plateaus,
as the frequency � continuously increases with IDC, even for a
fixed number of oscillations. In the SM [44], we provide short
movies which display the time evolution of the system.

Supported by the numerical analysis of the trajectories fol-
lowed by R(t ) [see Figs. 3(b)–3(d)], we identify the following
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FIG. 3. (a) A current-voltage curve for Ex/EM = 0.67. The
number n of recapturing the phase particle is indicated and the ana-
lytically estimated size of jumps is shown with horizontal lines (red).
(b)–(d) The trajectories of [Y (t ),Z (t )] are displayed for various
n. The Majorana qubit rotates around N with the counterclockwise
direction (black arrows). At t = 0, T, 2T, . . ., solid circles (red) indi-
cate the normalized precession axis N̂ = N/||N||, which approaches
to Z = 0 monotonically. The horizontal red lines depict the thresh-
old Z = Zth. When the trajectory intercepts the red line with Z̈ =
εxẎ > 0 (blue circles), the phase particle is recaptured. Contrarily,
when the condition Z̈ = εxẎ < 0 is met (dotted circles), Z keeps
on decreasing and flips its sign, allowing the phase particle to roll
down. The voltage V jumps exactly when the number of recapturing
n decreases [panel (c)]. We use the same parameters as in Fig. 2.

criteria to understand whether the phase particle is captured at
a local minimum or if it rolls down to the next local minimum.
For concreteness, we display the passage between regions R1

and R2 in Fig. 2(a). When Z (t ) > Zth, region R1 features a
local minimum, which can trap the phase particle. Once the
system dynamics lowers Z (t ) to Z (t ) = Zth, the subsequent
evolution of the system depends on the sign of the second
derivative Z̈ = εxẎ . If Z̈ is positive, Z (t ) rapidly increases
back above the threshold and the phase particle is recaptured
by the local minimum in R1. By contrast, if Z̈ < 0, Z (t )
keeps on diminishing and eventually flips sign as the phase
particle enters the next region R2. The system then follows
an analogous evolution, since Eqs. (3) and (4) are symmetric
under Y → −Y , Z → −Z , and ϕ → ϕ + 2π .

As anticipated before, the steps in the average voltage V
are associated with changes in the number n of subsequent
recapturing processes [see Figs. 3(b)–3(d). In Fig. 3(b), the

trajectories of R(t ) show that the phase particle is recaptured
n = 3 times before it can roll down to the next region and Z
can flip sign. In Fig. 3(c), where we increase the bias current to
exactly match the DC Shapiro step in Fig. 3(a), we observe a
vanishing second derivative Z̈ = εxẎ when Z lowers to Zth

for the third time. In Fig. 3(d), with a higher bias current
IDC, the phase particle is recaptured two times (n = 2) before
rolling down to the next region. With increasing IDC, two more
steps appear when n = 2 → 1 and n = 1 → 0.

We give an estimation of the height of the DC Shapiro
steps. To this end, close to the jumps, we roughly approximate
the dwelling time within a single region as �−1

n ∼ nT , where
T is the precession period of R(t ). We estimate the latter
as 1/T ∼ (E2

x E2
M + E4

x )1/4/(π h̄) by assuming an almost con-
stant cos(ϕ) ∼ −(I∗

c /Ic)2. We can therefore compute the size
of the jumps as �V = (�n − �n+1)h/(2e), which agrees with
the numerical result in Fig. 3(a). Hence, observations of the
size of steps provide a way to estimate the Rabi frequency 1/T
of the Majorana qubit by assigning n to the steps and using
the formula for �V written above. Notice that �V vanishes
when Ex = 0.

Robustness. Our findings are robust against a finite capaci-
tance of the junction [44]. Moreover, we analyze the influence
of an additional 2π -periodic supercurrent, which could be
larger in magnitude up to three times of the 4π -periodic
supercurrent in Eq. (3). Since the alternating configurations
of the washboard potential remain qualitatively similar, DC
Shapiro steps are preserved [44].

Furthermore, we explicitly check that the DC Shapiro steps
are robust against decoherence, when the timescales for the
decoherence are much longer than the period of the Rabi
oscillation T . The trajectories of the Majorana qubit, which
lead to DC Shapiro steps [see Fig. 3(b)], form the limit cycles
[53], to which the nonlinear dynamics of the system eventu-
ally converges. Hence, the dynamics of the Majorana qubit
and DC Shapiro steps are intact if decoherence happens at
larger timescales. We show the robustness of DC Shapiro steps
against decoherence by considering parity flipping by nearby
impurities and quasiparticle poisoning by thermal environ-
ments [44].

Summary. We have investigated a novel Josephson effect of
a TJJ hosting a Majorana qubit. We have predicted a lowering
of the critical current and the emergence of DC Shapiro steps.
Notably, the detection of DC Shapiro steps is measurable with
the same experimental techniques as the ones used to observe
the AC Shapiro steps in TJJs [35,36,54]. Therefore, we are
confident that our proposal is feasible.
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