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Energy storage in magnetic textures driven by vorticity flow
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An experimentally feasible energy-storage concept is formulated based on vorticity (hydro)dynamics within
an easy-plane insulating magnet. The free energy associated with the magnetic winding texture is built up
in a circular easy-plane magnetic structure by injecting a vorticity flow in the radial direction. The latter is
accomplished by electrically induced spin-transfer torque, which pumps energy into the magnetic system in
proportion to the vortex flux. The resultant magnetic metastable state with a finite winding number can be
maintained indefinitely because the process of its relaxation via phase slips is exponentially suppressed when
the temperature is brought well below the Curie temperature. We characterize the vorticity-current interaction
underlying the energy-loading mechanism through its contribution to the effective electric inductance in the
rf response. Our proposal may open an avenue for naturally powering spintronic circuits and nontraditional
magnet-based neuromorphic networks.
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Introduction. The centerpiece of the global energy chal-
lenge today is a viable method for energy storage, whose key
is to convert captured energy into forms that are convenient
or economic for long-term storage. Commonly used forms
of energy storage are based on chemical energy (lithium-ion
batteries), gravitational energy (hydroelectric dam), thermal
energy (molten salt), etc. Recent progress in the field of
spintronics enables us to manipulate magnetic textures in nu-
merous ways [1–3], which inspires the possibility of storing
energy in the exchange energy associated with topological
magnetic textures [4].

Here we propose a feasible scheme for energy storage
in the topological magnetic winding texture of a magnetic
insulator. The physical mechanism for charging or discharging
is through the control of radial vorticity flows in a Corbino
geometry. A “phase slip” in a spin superfluid [5] is known
to reduce the phase winding of a one-dimensional system
with XY order by 2π by sending a vortex across it. Vice
versa, driving a vortex flow in the opposite direction will
naturally build up the winding number and hence the magnetic
exchange energy. Different from Ref. [4], where a locally
induced spin Hall torque is used to produce spin winding of a
one-dimensional magnetic loop, the present proposal is based
on a quasi-two-dimensional annulus, where a spin-transfer
torque is applied over the entire area of the magnetic film, in
order to inject an isotropic radial vortex current. This vortic-
ity flow is accomplished at elevated temperatures, where the
magnetic system may be disordered with no XY order present,
even locally. The topological protection of the induced wind-
ing is recovered when, after texturing the magnet by the vortex
flow, we cool the system in order to prevent any parasitic
phase slips.

Although our structure is limited in terms of energy density
compared with the prevalent lithium-ion battery technology,
our approach does have a few advantages. First, magnetic

systems are highly nonvolatile and endurable. Magnetic tex-
tures protected by nontrivial topological numbers, such as
domain walls, vortices, and skyrmions, have already been
employed in memory and logic devices [6–9]. Energy can
be stored over an extremely long timescale, with essentially
no degradation in charging and discharging cycles. Second,
magnetic batteries can be naturally incorporated into spin-
tronic circuits [6,10–12], neuromorphic platforms [13–17],
and quantum-information processing tasks based on insulat-
ing magnets [18–20], rendering coherent and low-dissipation
operations based purely on spin dynamics. Third, common
magnetic materials are environmentally friendly, and the de-
velopment of magnetic batteries is another possible avenue
leading to the goal of clean energy.

Central concept. To illustrate our concept, we consider the
annulus structure depicted in Fig. 1. A thin-film easy-plane
magnetic insulator is placed on top of a metal contact. The
magnetic insulator can be ferro- or antiferromagnetic, with
a vectorial order parameter n(r, t ) which fluctuates in both
direction and magnitude. The in-plane texture is described by
the spin-space azimuthal angle ϕ(l, t ), where l is the polar
position. The metal annulus has a uniform magnetic order
M = M ẑ.

We define the vorticity 3-current in (2 + 1) dimensions
within the thin-film magnetic insulator as

J μ = εμνρ ẑ · (∂νn × ∂ρn)/2π, (1)

which is carried by the magnetic texture [21]. Here εμνρ is
the Levi-Civita symbol (with the Einstein summation implied
over the Greek indices μ = 0, 1, 2 ↔ t, x, y). The current
obeys a topological conservation law, ∂μJ μ = 0. The total
vortex number in the bulk �,

N =
∫

�

dxdy J 0 = 1

2π

∫
∂�

d�l n2
‖ �∇ϕ, (2)
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FIG. 1. The ring-shaped bilayer with a radius r, width δr, and
heights hm for the magnetic insulator and hc for the metal contact.
The order parameter of this magnetic insulator with easy-xy-plane
anisotropy is parametrized by the spin-space azimuthal angle ϕ. The
(ferromagnetic) metal layer has a uniform magnetization M = M ẑ
and an azimuthal current I . The electric current induces a vortex
flow Iv in the radial direction, which builds up an azimuthal winding
density ∂lϕ of the magnetic order parameter, where l (= rφ in polar
coordinates) is the polar position in the plane of the annulus.

by Stokes theorem, is also the total winding number at the
boundary ∂�. Here n‖ is the easy-plane projection of the order
parameter n. We remark that this construction is true not only
at the low-temperature regime, where N is integer valued,
but also applicable at high temperatures and the paramagnetic
regime (even in the lattice limit [22]), where the vortex num-
ber is not quantized.

To load the free energy associated with the magnetic wind-
ing texture, we operate the magnetic system near the Curie
temperature (paramagnet regime) so that vortices and antivor-
tices deconfine to form a two-dimensional, two-component
plasma with finite vortex conductivity σv [21]. A constant
electric current I circulating in the magnetic metal contact
(see Fig. 1) energetically biases a radial vortex flow Iv [21]
based on symmetry analysis. The electric current and vortex
current are Magnus cross-coupled, as shown in Fig. 2(a). We
articulate the detailed mechanism in a later section.

Using this externally driven vortex flow, we are able to re-
verse the typical “phase-slip” process in superfluids [5,23,24]
and build up a finite order-parameter winding density ∂lϕ in
the magnetic insulator. The rate of change of the magnetic
winding number and the intensity of the vorticity flow are
related by the conservation law for the vortex 3-current (1):

dN /dt = Iv. (3)

As the winding number accumulates, the magnetic configura-
tion builds up a finite free-energy and exerts a restoring force
on the vortex flow, which decays exponentially and eventu-
ally vanishes when the restoring force balances the external
drive. This type of process is analogous to the experimental
proposal by Pearl [25], in which a magnetic screw rotating
inside a superconducting cylinder is used to propagate vortices
radially in order to increase the azimuthal superflow. In this

FIG. 2. (a) Schematic in Fig. 1 shows two viscously coupled
hydrodynamic entities: one is electron flow I and the other is vor-
tex flow Iv . The electrical circuit (b) has a current I , resistance
R, self-inductance L (due to geometry), and effective impedance
Zv (ω) arising from the vortex-flow backaction on the electric circuit.
Within the vortex circuit (c), the electric current I acts as a bias
V = γ I/hc for the vortex flow, where γ /hc parametrizes the Magnus
force between the electron and vortex degrees of freedom. Vortex
flow through the magnetic bulk experiences resistance Rv , which
is temperature dependent. The accumulated magnetic texture stores
energy according to the capacitance Cv .

system, the mechanical energy of the rotating magnetic screw
is converted into the energy associated with the increased
winding of the order parameter. Similarly, our system converts
electrical energy into the exchange energy of the magnetic
texture.

Tuning the temperature for our magnetic system well be-
low the Curie temperature Tc keeps the winding texture within
plane, due to the easy-plane anisotropy, thus endowing it
with topological protection. In this regime, the conductivity
of vortices and hence the unwinding process is exponen-
tially suppressed. As a result, the energy associated with
the magnetic texture can be stored indefinitely in the ab-
sence of an external drive. To release the energy stored in
the magnetic winding texture, we can simply raise the tem-
perature near Tc and make use of the natural vortex flow
in the “phase-slip” regime. The electromotive force from
the vortex flow becomes the output voltage of the magnetic
battery.

Main results. As we explain below, the dynamics of the
system in Figs. 1 and 2 can be understood by mapping to
two coupled circuits, one for electron flow and the other for
topological charge (vortex) flow. For the topological charge
circuit [see Fig. 2(c)], the electric current I in the metal con-
tact plays the role of a bias, which applies the vortex-motive
force γ I/hc, triggering a vortex current Iv . Here γ /hc is an
interfacial spin-transfer torque parameter to be defined below.
The magnetic insulator itself behaves like a vortex capacitor
(Cv) and resistor (Rv) in series.

For the electric circuit, a reciprocal electromotive force
EEMF = γ Iv/hc arises from the coupling between electron and
vortex dynamics [26,27], in series with the resistance R and
the geometric inductance L of the metal contact. The Onsager
reciprocity [28] between the two circuits can be expressed in
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the compact form V = R̂I, In our treatment, the geometric
inductance L may be neglected (as shown below). Ohms law
then becomes,

(V
Vv

)
=

( R γ /hc

−γ /hc Rv

)( I
Iv

)
, (4)

where V is the electric voltage drop across the metallic contact
and Vv = −Q/Cv is the effective chemical potential associated
with the accumulated topological charge Q ≡ 2πN 1 the re-
sistance matrix R̂ is positive semi-definent and time reversal
antisymmetric. We will see that the electromotive force results
in an impedance in the electric circuit, interpolating between a
resistance (in the high-frequency response, compared with the
characteristic RvCv time) and an inductance (at low frequen-
cies). As we discuss below, this inductance can exceed the
geometrical inductance within the electrical circuit, leading us
to propose to experimentally characterize the vorticity-current
interaction through its contribution to the effective inductance.

Lastly, by neglecting the geometric inductance L, we esti-
mate the charging efficiency, defined to be the ratio of the total
energy stored to the total energy input, to be

η = 1/2

RRvh2
c/γ

2 + 1
, (5)

from which we see explicitly that the efficiency benefits from
a thinner metal contact hc. The three parameters (R, Rv , and
γ /hc) correspond to three dissipation channels: electrical re-
sistance of the metal, resistance of the vortex current in the
magnetic insulator, and their mutual resistance, respectively.

Biased vortex flow. A motive bias for vortex flow is es-
tablished by a circulating electric current I (see Fig. 1) in a
magnetically polarized metal contact (M = M ẑ). This current
exerts a long-wavelength torque (per unit area) on the mag-
netic texture [21],

τ = γ nz

π
(�j · �∇ )n, (6)

where j = I/hcδr is the azimuthal electric current density, and
nz is the z component of the magnetic order parameter. γ ≡
sgn(M ) π h̄heff/e, where the length scale heff can be loosely
interpreted as the spatial extent of the torque (proximity effect
at the interface) within the insulator. The torque does work
upon magnetic dynamics at the rate

Ẇ =
∫

dxdy τ · (n × ṅ) = γ

∫
dxdy ( �J × �j) · ẑ, (7)

where the integration is performed over the interface. Here,
we have taken, for simplicity, the magnitude of the order
parameter to be fixed, n = 1. In the high-temperature regime,
where n is fluctuating strongly, a similar result is expected,
albeit with a renormalized prefactor. Equation (7) indicates
that the coupling between electron and vortex dynamics is
Magnus crosslike [see Fig. 2(a)]. In other words, the electric
current tangential to a magnetic interface produces a Magnus

1Note that the resistance matrix R̂ is antisymmetric since the
metallic magnetization flips sign under time reversal (when one
invokes Onsager reciprocity). One can also easily check the positive-
definiteness of the dissipation Iᵀ · V � 0.

force on vortices, resulting in a transverse vortex flow, and
vice versa. This underlies the mechanism for building up and
relaxing the winding texture in the magnetic insulator.

Mapping onto two coupled circuits. We first consider the
vortex dynamics in the magnetic insulator by exploiting the
duality between the XY magnet and electrostatics in two
dimensions [29,30]. In the low-temperature regime (for sim-
plicity), n is in plane and has a fixed magnitude (though,
the results we obtain also generalize to the high-temperature
regime where the magnitude of n is allowed to fluctuate).
The duality is accomplished by identifying the total winding
of the magnetic order parameter, multiplied by 2π , with the
electric charge Q = 2πN , and the spatial gradients of the
order-parameter angle with the electric field �E = A �∇ϕ × ẑ,
where A is the order-parameter stiffness. We can now recast
the definition of the winding number (2) as Gauss’s law for the
electric charge

∫
d�s · �E = Q/ε, where d�s = d�l × ẑ is the line

element in the radial direction and ε = 1/A is the permittivity.
Mapping the energy expression for the insulating magnet to
electrostatic notation gives

E = hm
A
2

∫
dxdy ( �∇ϕ)2 = hm

∫
dxdy

ε �E2

2
, (8)

where hm is the height of the magnetic insulator.
Therefore, driving topological charges (vortices) from the

inner edge to the outer edge can be interpreted as a charging-
capacitor process, which is triggered by a charge transfer (that
is linked to the winding number) across the annulus. Noting
that the power (7) can be rewritten as Ẇ = γ IIv/hc, we can
view the metallic contact as a battery with voltage V = γ I/hc

acting on a vortex RvCv circuit, as illustrated in Fig. 2. The
effective capacitance can be extracted by simply equating the
energy (8) with E = Q2/2Cv , whereas Ohm’s law [31] �J =
−σv �∇μ gives the resistance Rv = �μ/Iv , where Iv = 2πrJ
is the vortex current and �μ is the motive force on the vortex
flow. Thus we arrive at the effective vortex capacitance and
resistance

Cv = 1

A
2πr

hmδr
, Rv = 1

σv

δr

2πr
. (9)

Here σ−1
v is the vortex resistivity whose main contributions

arise from vortex collisions (such as umklapp scattering, dis-
order, etc.) and Gilbert damping.

The vortex current acts reciprocally on the electric circuit,
as summarized in Eq. (4), from which we wish to determine
its effective impedance in the electric current. After Fourier
transforming and solving for the electric response, we arrive
at the total impedance:

Z (ω) ≡ V (ω)

I (ω)
= R + iωL + iωCvγ

2/h2
c

1 + iωRvCv

, (10)

where the last term [henceforth denoted Zv (ω)] is the vorticity
impedance, arising from the coupling between electron and
vortex dynamics. In the high-frequency regime (ω � 1/τ ),
where τ = RvCv is the timescale of the vortex charging (or
discharging) process, one obtains Zv (ω) = γ 2/h2

cRv , indicat-
ing that the magnetic insulator, generating an electromotive
force against the input electric current, behaves like a resistor
in the electric circuit. In the opposite regime where ω � 1/τ ,
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we have Zv (ω) = iωCvγ
2/h2

c , suggesting that the magnetic
insulator plays the role of an inductor with Lv = Cvγ

2/h2
c .

Battery efficiency and quantitative estimates. The dc elec-
tric current I flowing in the metal contact (Fig. 1) eventually
results in a steady-state magnetic texture, with winding den-
sity ∂lϕ = γ I/Ahchmδr and an associated free energy,

E = 1

2
CvV2 = 1

A
πr

hmδr

(γ I

hc

)2
, (11)

at time t � τ = RvCv = 1/Aσvhm. Here the vortex con-
ductivity σv = ρvμ = ρvD/kBT depends on the temperature
through the free-vortex density ρv and vortex mobility μ (via
the Einstein relation). In the extreme limit T � Tc, where
ρv ∼ 0, we have zero vortex conductivity, leading to τ → ∞.
In the opposite regime (above the Curie temperature Tc ∼
J/kB), the order parameter varies on the atomic scale, ρv ∼
1/a2 and D ∼ Ja2/h̄, giving the lower bound of the charging
time τ ∼ h̄/J . Thus the vortex conductivity σv and τ are
highly tunable by temperature.

To estimate the efficiency η of the charging process, we
neglect the geometrical inductance of the metal contact and al-
low the device to charge for a time τ . The charging will be ac-
complished by using a single square-wave pulse of current I .
The total external energy input during the charging process is

W =
∫ τ

0
dt I V (t ) = I2Rτ + τ

V2

Rv

(1 − e−1), (12)

where V (t ) is the electric voltage drop across the metal contact
that can be obtained by solving Eq. (4). These terms take into
account the energy loss due to Joule heating and vortex motion
as well as the stored energy within the magnetic texture. The
numerical factor of the second term is of order unity; replacing
this factor with 1 leads to the efficiency defined in Eq. (5) of
the charging process. Considering the regime where τ ∼ h̄/J ,
we have RRvh2

c/γ
2 ∼ hmhc/h2

effk
2
F ad , where d and kF are the

mean free path and Fermi wave number of electrons within the
metal, respectively. It is clear that the efficiency benefits from
improving the conducting quality of the metal and decreasing
thicknesses of both insulating magnet and metallic contact,
which makes sense intuitively. When taking the geometrical
inductance L into account we can improve the efficiency fur-
ther. In the limiting case of L → ∞, where the charging pro-
cess is adiabatic, the efficiency can, in principle, approach 1.

The maximal energy-storage capacity, another quantity of
interest, is dictated by the Landau criterion for energetic sta-
bility [32], where the magnetic texture is maximally wound.
It is achieved when the winding texture energy [∼A(∂lϕ)2]
is comparable to the easy-plane anisotropy energy (∼K) that
fixes the winding within the easy plane. Let us take the bulk
stiffness to be A = 5 × 10−12 J/m, an easy-plane anisotropy
strength of K = 5 × 105 J/m3, and mass density 5.11 g/cm3

(yttrium iron garnet), which yields for the winding den-
sity 1/∂lϕ = √

A/K ∼ 3 nm and a specific energy density of
0.1 J/g. Such an energy can be loaded by applying an electric
current density of 1012A/m2 within a thin metal contact, which
is feasible experimentally [8]. We can further increase the spe-
cific energy density by enhancing the easy-plane anisotropy.
For example, in the extreme limit where the order parameter

can vary on the atomic scale, 1/∂lϕ ∼ a, we have the specific
energy density 104 J/kg, which is about an order of magnitude
below the capacity of lithium-ion batteries.

To characterize the vorticity-current interaction, which un-
derlies the mechanism of our proposal, we suggest measuring
its contribution to the electric inductance in the rf response.
To this end, we note that Lv can be manufactured to exceed
with the geometrical inductance L: Lv/L ∼ e2a/α2Jhmδr ∼ 1
(where α is the fine structure constant), when we take used
δrhm ∼ 100 nm2. Alternatively, one can measure the (tran-
sient) vortex discharging process, where the electric voltage
of the metal is V (t ) = Vmaxe−t/τ , by solving Eq. (4) with
an open electric circuit. For a thin contact (hc ∼ heff), one
obtains that Vmaxτ ∼ h̄r/e

√
A/K. Assuming r ∼ 1 μm and

τ ∼ 10 ns, which should be easily accessed experimentally,
we get a measurable voltage drop of Vmax ∼ 10−4 V.

Summary and outlook. We have proposed an experimen-
tally feasible energy-storage concept in insulating magnets
based on the collective transport of vortices emerging out of
the topologically nontrivial real-space order-parameter tex-
tures. This allows us to utilize the current-magnet interaction
with a focus on the dynamics of topological textures rather
than the conventional spin currents. The energy associated
with the winding texture can be loaded by electric means,
which biases vortex flow within the magnet [21,22]. The sys-
tem is mapped onto two coupled circuits, where we interpret
the energy-loading process as a capacitor-charging action.
This energy storage is attractive due its potential longevity
[33,34], endowed by the topological nature of vorticity, and its
compatibility with integrated spintronic circuits [6,10–12] and
quantum-information processes based on insulating magnets
[18–20].

Note that the heating/cooling in the vicinity of Tc (which
may be a natural consequence of the Joule heating by the
applied current) is invoked in our proposal only to change
the vorticity transport parameters, which effectively undergo a
transition between diffusive (above Tc) and insulating (below
Tc) behaviors. The associated dissipation of energy (by Joule
heating) is accounted for in our analysis and would not be
of much concern otherwise if the vortex conductivity changes
significantly over a small temperature range. Other ways to
modulate the impedance of vorticity may, in principle, be
developed in the future.

One could envision a variety of generalizations of our
proposal by exploiting different topological hydrodynam-
ics. An immediate example is the magnetic hedgehog in
three dimensions [35]. When a hedgehog passes through a
chiral magnet [36], a finite skyrmion density is built up
which is associated with finite energy and can be devised
to store energy. The resultant skyrmion density is protected
by Dzyaloshinskii-Moriya interaction, which plays a role of
easy-plane anisotropy for winding texture. We remark that
this is the generic property of n-dimensional nonlocal topo-
logical defects, which would establish (n − 1)-dimensional
nonlinear textures when they flow through a medium, dic-
tated by the generalized Stokes’ theorem. Other types of
topologically conserved local defects, such as skyrmions in
two-dimensional magnetic films [37] and three-dimensional
skyrmionic textures in frustrated magnets [38], can also
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be quite valuable potentially for energy-storage purposes.
These systems provide ample opportunities to explore energy-
storage concepts based on spin degrees of freedom and
deserve further investigation.

Acknowledgments. We are grateful to Mostafa Ahari, Wei
Han, and Jiang Xiao for insightful discussions. This work was
supported by the US Department of Energy, Office of Basic
Energy Sciences, under Award No. DE-SC0012190.

[1] Spin Current, edited by S. Maekawa, S. O. Valenzuela, E.
Saitoh, and T. Kimura, Series on Semiconductor Science and
Technology (Oxford University Press, Oxford, England, 2015).

[2] Y. Tserkovnyak, J. Appl. Phys. 124, 190901 (2018).
[3] H. Ochoa and Y. Tserkovnyak, Int. J. Mod. Phys. B 33, 1930005

(2019).
[4] Y. Tserkovnyak and J. Xiao, Phys. Rev. Lett. 121, 127701

(2018).
[5] S. K. Kim and Y. Tserkovnyak, Phys. Rev. Lett. 116, 127201

(2016); S. K. Kim, S. Takei, and Y. Tserkovnyak, Phys. Rev. B
93, 020402(R) (2016).

[6] D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit,
and R. P. Cowburn, Science 309, 1688 (2005).

[7] A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol. 8, 152
(2013).

[8] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190
(2008).

[9] A. Fert, Rev. Mod. Phys. 80, 1517 (2008).
[10] A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands,

Nat. Phys. 11, 453 (2015).
[11] A. Khitun, M. Bao, and K. L. Wang, J. Phys. D 43, 264005

(2010).
[12] J. Lan, W. Yu, R. Wu, and J. Xiao, Phys. Rev. X 5, 041049

(2015).
[13] S. Zhang and Y. Tserkovnyak, arXiv:2003.11058 [Phys. Rev.

Lett. (to be published)].
[14] J. Grollier, D. Querlioz, and M. D. Stiles, Proc. IEEE 104, 2024

(2016).
[15] K. Yue, Y. Liu, R. K. Lake, and A. C. Parker, Sci. Adv. 5,

eaau8170 (2019).
[16] J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D.

Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H.
Kubota, S. Yuasa, M. D. Stiles, and J. Grollier, Nature (London)
547, 428 (2017).

[17] A. Sengupta and K. Roy, Appl. Phys. Express 11, 030101
(2018).

[18] S. Takei, Y. Tserkovnyak, and M. Mohseni, Phys. Rev. B 95,
144402 (2017).

[19] J. Zou, S. K. Kim, and Y. Tserkovnyak, Phys. Rev. B 101,
014416 (2020).

[20] A. Kamra, E. Thingstad, G. Rastelli, R. A. Duine, A. Brataas,
W. Belzig, and A. Sudbø, Phys. Rev. B 100, 174407 (2019).

[21] J. Zou, S. K. Kim, and Y. Tserkovnyak, Phys. Rev. B 99,
180402(R) (2019).

[22] Y. Tserkovnyak and J. Zou, Phys. Rev. Research 1, 033071
(2019).

[23] S. M. Girvin and K. Yang, Modern Condensed Matter Physics,
1st ed. (Cambridge University Press, Cambridge, England,
2019).

[24] B. I. Halperin, G. Refael, and E. Demler, Int. J. Mod. Phys. B
24, 4039 (2010).

[25] J. Pearl, Vortexes are creating a stir in the superconductor field,
Electronics (USA, 1966), Vol. 39, p. 100.

[26] G. E. Volovik, J. Phys. C: Solid State Phys. 20, L83 (1987).
[27] C. H. Wong and Y. Tserkovnyak, Phys. Rev. B 80, 184411

(2009).
[28] L. Onsager, Phys. Rev. 37, 405 (1931).
[29] J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).
[30] S. Dasgupta, S. Zhang, I. Bah, and O. Tchernyshyov, Phys. Rev.

Lett. 124, 157203 (2020).
[31] L. P. Pitaevskii and E. Lifshitz, Physical Kinetics, Course of

Theoretical Physics Vol. 10 (Butterworth-Heinemann, Oxford,
England, 1981).

[32] E. B. Sonin, Adv. Phys. 59, 181 (2010).
[33] A. J. Smith, J. C. Burns, S. Trussler, and J. R. Dahn,

J. Electrochem. Soc. 157, A196 (2010).
[34] D. Apalkov, B. Dieny, and J. M. Slaughter, Proc. IEEE 104,

1796 (2016).
[35] J. Zou, S. Zhang, and Y. Tserkovnyak, arXiv:2006.10910.
[36] P. Milde, D. Köhler, J. Seidel, L. M. Eng, A. Bauer, A. Chacon,

J. Kindervater, S. Mühlbauer, C. Pfleiderer, S. Buhrandt, C.
Schütte, and A. Rosch, Science 340, 1076 (2013).

[37] H. Ochoa, S. K. Kim, and Y. Tserkovnyak, Phys. Rev. B 94,
024431 (2016).

[38] R. Zarzuela, H. Ochoa, and Y. Tserkovnyak, Phys. Rev. B 100,
054426 (2019).

140411-5

https://doi.org/10.1063/1.5054123
https://doi.org/10.1142/S0217979219300056
https://doi.org/10.1103/PhysRevLett.121.127701
https://doi.org/10.1103/PhysRevLett.116.127201
https://doi.org/10.1103/PhysRevB.93.020402
https://doi.org/10.1126/science.1108813
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1126/science.1145799
https://doi.org/10.1103/RevModPhys.80.1517
https://doi.org/10.1038/nphys3347
https://doi.org/10.1088/0022-3727/43/26/264005
https://doi.org/10.1103/PhysRevX.5.041049
http://arxiv.org/abs/arXiv:2003.11058
https://doi.org/10.1109/JPROC.2016.2597152
https://doi.org/10.1126/sciadv.aau8170
https://doi.org/10.1038/nature23011
https://doi.org/10.7567/APEX.11.030101
https://doi.org/10.1103/PhysRevB.95.144402
https://doi.org/10.1103/PhysRevB.101.014416
https://doi.org/10.1103/PhysRevB.100.174407
https://doi.org/10.1103/PhysRevB.99.180402
https://doi.org/10.1103/PhysRevResearch.1.033071
https://doi.org/10.1142/S021797921005644X
https://doi.org/10.1088/0022-3719/20/7/003
https://doi.org/10.1103/PhysRevB.80.184411
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1103/PhysRevLett.124.157203
https://doi.org/10.1080/00018731003739943
https://doi.org/10.1149/1.3268129
https://doi.org/10.1109/JPROC.2016.2590142
http://arxiv.org/abs/arXiv:2006.10910
https://doi.org/10.1126/science.1234657
https://doi.org/10.1103/PhysRevB.94.024431
https://doi.org/10.1103/PhysRevB.100.054426

