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Entanglement-related properties work as a nice fingerprint of the quantum many-body wave function. How-
ever, those of fermionic models are hard to evaluate in standard numerical methods because they suffer from
finite-size effects. We show that a so-called density embedding theory (DET) can evaluate them without a size
scaling analysis, in comparably high quality with those obtained by a large-size density matrix renormalization
group analysis. This method projects the large-scale original many-body Hamiltonian to a small number of basis
sets defined on a local cluster, and optimizes the choice of these bases by tuning the local density matrix. The
DET entanglement spectrum of one-dimensional interacting fermions perfectly reproduces the exact ones and
works as a marker of the phase transition point. It is further shown that the phase transitions in two dimensions
could be determined by the entanglement entropy and the fidelity that reflects the change of the structure of the
wave function.
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Historical findings in condensed matter physics owe much
to the identification of the wave functions of the cor-
responding new phases of matter, as exemplified by the
Bardeen-Cooper-Schrieffer wave function of superconductiv-
ity [1] and the Laughlin wave function for the fractional
quantum Hall effect [2]. In more recent studies, it turned out
that direct access to the ground-state wave function has the ad-
vantage in that a fidelity and entanglement-related properties
can be straightforwardly evaluated. These quantities, origi-
nally coming from the quantum information field, have proven
to be useful for the study of strongly correlated systems. The
fidelity is defined as the magnitude of the overlap between two
wave functions. Considering two ground states corresponding
to slightly different Hamiltonian parameters, a quantum phase
transition is detected by a drop in the fidelity [3], which can
also contain details about the nature of the transition [4–6].
The advantage of the fidelity approach is that it does not
require knowledge of an order parameter, while still providing
a clear sign of a transition. Similarly, entanglement is shown to
contain information about the phase diagram in general [7,8].
In particular, several types of entanglement measurements are
expected to be valuable probes for quantum phase transitions
[9–11].

In the present Rapid Communication, we use the density
embedding theory [12] (DET), a variation of the density ma-
trix embedding theory method (DMET) originally introduced
in Ref. [13], as a systematic and efficient method to simulate
fermionic systems with intersite two-body interactions. The
method relies on a wave function based embedding procedure,
in which an impurity model of a much smaller size than the

original bulk problem is constructed and solved. The method
eventually yields a wave function which is expected to repro-
duce bulk properties.

Let us first outline the main ideas of DET. We first divide
a lattice of N sites into a small subsystem called an impurity
fragment of size Nimp and its complement of size N − Nimp,
that we will call the bath. Let us assume we have some trial
wave function for the whole system, and Schmidt decompose
it as |�〉 = ∑

i λi|αi〉|βi〉, where |αi〉 and |βi〉 are orthogonal-
ized states living on the fragment and the bath, respectively.
They define the embedding basis, onto which the original
Hamiltonian H is projected to obtain a so-called impurity
Hamiltonian, Himp = PeHPe, where Pe = ∑

i j |αiβ j〉〈αiβ j |.
The motivation of this scheme is that if |�〉 is the true ground
state of H, then by construction both Hamiltonians share
the same ground state. The ground state |�imp〉 of Himp can
therefore be used to compute the expectation values of H.
The crucial point is that the size of the embedding basis is
determined by the size of the fragment. As a consequence,
Himp has a much smaller Hilbert space than H, and its ground
state can be obtained using efficient numerical solvers.

Since the exact solution is not known, the fundamen-
tal approximation of DET is to build the embedding basis
from |�〉 taken as a Slater-type wave function [13]. This
considerably simplifies the computational treatment, as the
Schmidt fragment and bath states are then written in terms of
single-particle states [14,15]. Thus, the impurity Hamiltonian
construction becomes a simple change of a single-particle
basis, instead of a generically nontrivial many-body projec-
tion. In practice, |�〉 is chosen to be the ground state of a
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certain effective one-body Hamiltonian h. This allows tuning
the embedding basis by self-consistently updating h such that
the one-body density matrices given by |�〉 and |�imp〉 match
[13]. In the original introduction of DMET, the matching con-
dition is that the two matrices are entirely identical [16]. DET
is a variant in which this condition is relaxed and imposed
only for their diagonals in the impurity block [12].

The DMET has been first proposed and tested on one- and
two-dimensional (1D and 2D) Hubbard models, showing that
it reproduces accurately the ground-state energies [13], and
locates the Mott metal-insulator transition with comparable
efficiency to dynamical mean-field theory (DMFT). It has
then been applied to various Hubbard models [17–19]. Several
variations and extensions have been proposed, such as DET
[12], formulations to restore translational invariance [20], for
dynamical properties [21], electron-phonon models [22,23],
Anderson impurity models [24], nonequilibrium electron dy-
namics [25], and a different scheme has been designed for spin
models [26,27]. DMET has also been applied to a variety of
quantum chemistry problems [28–34].

However, the quality of the wave function |�imp〉 has es-
sentially been tested by calculating the ground-state energy
[12,13,20], which is not an enlightening quantity in general.
Here, in particular, its accuracy does not guarantee the effi-
ciency of the method: Since DMET is not variational [13],
it can deliver energies lower than the exact ones [12]. The
accuracy of the energy of molecular chains with long-range
interactions is benchmarked from the quantum chemistry
point of view [29,35]. However, in the context clarifying the
nature of the models themselves in physics, how physical
quantities such as the correlation functions behave needs to be
studied, particularly in the presence of intersite interactions.

In this Rapid Communication, we apply DET to spinless
fermion models. Benchmarking it on a reference chain model,
we find that the wave function produced reproduces not only
local fragment observables such as the energy or the correla-
tions with high accuracy but also the entanglement content.
We accordingly show that DET can detect phase transitions,
and is applicable in 2D systems. We briefly comment that
DET is computationally much faster than DMET and con-
verges much better partially for the reason mentioned in Ref.
[16].

The generic form of the t-V Hamiltonian we deal with
reads

H =
∑

i j

(
ti jc

†
i c j + H.c.

) +
∑

i j

Vi jnin j, (1)

where c†
i (ci) is the creation (annihilation) operator of spinless

fermions, ni = c†
i ci. The embedding basis is constructed from

the ground state of the one-body Hamiltonian

h =
∑

〈i j〉

(
ti jc

†
i c j + H.c.

) +
∑

i

uini, (2)

where we have introduced the DET effective one-body po-
tentials ui, i = 1, . . . , Nimp, whose purpose is to adapt the
embedding basis. It is defined on the fragment and periodi-
cally repeated over the lattice. This choice of taking h as the
one-body part of H is the simplest one, but more sophisticated

alternatives are possible, such as doing a mean-field calcula-
tion [12,31]. The ground state |�〉 of h is then easily Schmidt
decomposed [14], and we obtain a set of Nimp single-particles
states fα for the fragment, and similarly Nimp states bα for
the bath [36]. The dimension of the single-particle embedding
basis is thus 2Nimp, considerably smaller than of the original
problem.

The impurity Hamiltonian is then expressed as

Himp =
∑

αβ

t̃αβe†
αeβ +

∑

αβγ δ

Ṽαβγ δe†
αeβe†

γ eδ, (3)

where the 2Nimp creation operators e†
α collectively denote the

fragment and bath states. Several comments are in order here.
First, we remark that the fragment states can be chosen to be
the original ones, f †

α = c†
α [12,28], such that the intrafragment

part of Eq. (3) is the original Hamiltonian. We also point out
that the Hamiltonian (3) is generically much more complex
than the original one, namely, in practice it contains assisted
and pair hoppings. Third, it is worth noting that the embedding
yields a finite bath, thus no bath scaling is needed, contrary
to DMFT. To find the ground state |�〉imp, we employ a
standard exact diagonalization approach, which is possible
for small enough fragments. Following the DET prescription
[12], the effective potentials ui are updated to minimize the
difference |〈 f †

α fα〉�imp
− 〈 f †

α fα〉�|2. Physically, this condition
ensures that the fragment in the impurity model has the correct
average number of particles if the minimum is zero, and the
meaning of the effective potential becomes clear. In practical
calculations, the perfect match between the two quantities is
not always achieved, but we have verified that deviations of
the fragment density remain small, of order 10−3 or less.

We start by presenting the results for the t1-V1-V2 chain at
half filling. We set the nearest-neighbor hopping term ti j =
t1 = 1 and the next-nearest-neighbor term t2 = 0, and the cor-
responding interactions are Vi j = V1 and V2, respectively. The
case V2 = 0 can be mapped to the exactly solvable spin-1/2
XXZ chain, where a Berezinskii-Kosterlitz-Thouless (BKT)
transition from a gapless Tomonaga-Luttinger liquid to the
gapped Ising phase takes place at the Heisenberg point. In
the fermionic language, these are metallic and charge density
wave (CDW) phases, respectively, at V1 = 2. Introducing a
finite V2, the model no longer has an exact solution and the
transition point is shifted to larger V1 values. Since the model
is one dimensional, we can use the efficient density matrix
renormalization group (DMRG) [37] algorithm to assess the
correctness of the DET results.

Figures 1(a) and 1(b) show the energy per site for V2 = 0
and 0.4, measured at the center of the fragment to reduce
boundary effects, computed with DET for various Nimp with
N = 72Nimp, and compared with the DMRG values with N =
128 sites. We observe that the smallest Nimp = 2 gives very
poor results, even at small V1, whereas the next size Nimp = 4
already provides good accuracy. For larger sizes, the devia-
tions from DMRG become negligible. The reason is that for
Nimp = 2 the whole fragment interacts with the bath in Eq. (3),
which translates into strong boundary effects. This does not
happen in the Hubbard case, where a single site is sufficient to
obtain accurate energy [13].
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FIG. 1. (a) and (b) Comparison between DMRG and DET re-
sults for the energy per site of the t1-V1-V2 chain at half filling as
a function of V1, for various fragment sizes Nimp and (a) V2 = 0,
(b) V2 = 0.4. (c) and (d) Connected density correlations C(r) =
〈nini+r〉 − 〈ni〉〈ni+r〉 obtained by DET for Nimp = 10 and various
values of V1. Cross symbols are the DMRG results with N = 128.

We report in Figs. 1(c) and 1(d) the density correlations
C(r) = 〈nini+r〉 − 〈ni〉〈ni+r〉, with the reference site i taken on
the edge of a Nimp = 10 site fragment, and the correlations
computed along the whole fragment. While it would seem
more natural to choose the reference site at the center of
the fragment, we have verified that both setups give very
similar results, but the present one allows us to reach larger
r. Remarkably, we obtain almost coincident values to that of
DMRG with N = 128, even for the largest r where devia-
tions due to the fragment boundary could be expected [38].
This demonstrates that DET can reproduce the correlations
obtained for a very large system. In particular, this is true
in the gapped CDW phase (V1 > 2 for V2 = 0), even if the
|�〉 used does not have the CDW pattern and is thus qual-
itatively different from |�imp〉. An important remark is that
we have verified that using an odd Nimp does not alter the
results, despite the fragment not being commensurate with
the CDW state. This is a striking difference with DMFT or
cluster DMFT, in which the choice of the shape and size of
the cluster severely influences the result, where particularly
the incompatibilities between the odd/even cluster choice and
the symmetry-breaking pattern matters.

The quality of the correlated wave function |�imp〉 can be
more precisely tested by examining the entanglement between
the fragment and the bath, a nonlocal quantity. To measure
entanglement properties, we divide the impurity model into
two subsystems A and B, where A contains NA sites in the frag-
ment and B the remaining NB = 2Nimp − NA sites. From the
eigenvalues λk of the reduced density matrix of subsystem A,
ρA = TrB(|�imp〉〈�imp|), the von Neumann entanglement en-
tropy reads SA = −Tr(ρA log ρA) = −∑

k λk log λk . Another
quantity of interest is the so-called entanglement spectrum
[39] (ES), which corresponds to the eigenvalues ζk of the
entanglement Hamiltonian HA defined by ρA = e−HA , from
which we see that ζk = − log λk .

FIG. 2. Top panel: Entanglement spectrum computed in DET
between the fragment Nimp = 10 and the bath, N = 720, and for
(a) V2 = 0 and (b) V2 = 0.4. Bottom panel: von Neumann entangle-
ment entropy for the same parameter values. The cross symbols are
the reference values from DMRG with periodic boundary conditions
and N = 64.

We plot in the top panel of Fig. 2 the lowest levels of
the ES as a function of V1, for V2 = 0 and 0.4, together with
the DMRG values for N = 64. The calculations are done for
Nimp = 10 and NA = Nimp [40]. We see that the lowest level is
very well reproduced for all values of V1, in both the metallic
and the CDW phases. For higher levels, the agreement is
good in the entire metallic phase and up to the transition
point, where the accuracy starts to deteriorate. Nonetheless,
the trends of the various levels are still in fairly good agree-
ment on the CDW side. The entanglement entropy, which is
essentially the ES integrated and dominated by the lowest
levels, is close to the DMRG values (bottom panel of Fig. 2).

In our case, the BKT transition between the metal and the
CDW phases is revealed by changes in the ES, namely by a
level crossing [41] with a change of degeneracy of the first
excited level, reminiscent of what happens in the real energy
spectrum [42]. In the gapless side, it is twofold degenerate
in the sectors nA = NA/2 ± 1, while in the gapped phase it is
unique and belongs to the sector nA = NA/2. Notice that there
is no anomaly in the energy in Fig. 1 at the transition point.

To further demonstrate the efficiency of DET, we move
to a 2D t-V Hamiltonian on the anisotropic triangular lat-
tice at half filling. We take the interactions along two of the
three bond directions as V1 and V2 for the remaining one,
as illustrated in Fig. 3(c), and the nearest-neighbor hopping
t = 1 as uniform. The phase diagram at half filling has been
numerically studied by DMRG [43] [see Fig. 3(c)], exact di-
agonalization [44,45], and the variational Monte Carlo (VMC)
method [46]. Although the overall features of the phase dia-
gram are consistent among them, the quantitative location of
some transitions still has large uncertainties.

In Fig. 3(a), we plot the fragment charge densities 〈ni〉,
the fidelity |〈
imp(V1)|
imp(V1 + dV )〉|, and the entangle-
ment entropy S for NA = Nimp across the metal-stripe CDW
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FIG. 3. DET results for the t-V model on the anisotropic triangu-
lar lattice with two different nearest-neighbor interactions V1 and V2

bonds, and uniform hoppings t1 = t2 = t . (a) Metal-CDW transition
along the V2 = 0 axis revealed by the fragment particle densities
〈ni〉, the fidelity, and the von Neumann entanglement entropy S.
(b) Metal-pinball liquid transition along the V1 = V2 line shown for
the same quantities. (c) Phase diagram sketch as a function of V1

and V2 from DMRG calculations [43]. Red star symbols indicate
the metal-CDW and metal-pinball liquid transition points from the
DET results of (a) and (b). Diamond and circle symbols stand for the
DMRG and VMC estimates, respectively.

transition, as functions of V1 for V2 = 0, where the transition
takes place around V1;c ∼ 2 in DMRG. The fragment is la-
beled by its side lengths (�x, �y) (see Fig. 3), with Nimp =
�x�y, and we perform calculations for (4,2), (6,2), and (4,3)
fragments in an N = 60 × 60 system. The transition out of
the metallic phase is signaled by the appearance of high and
low charge densities respecting the stripe order. The transition
point is more accurately evaluated from the dip in the fidelity,
which is also consistent with the onset of the reduction of
S. It has a clear fragment size dependence, but we find that
the values V1,c = 3.47, 2.85, and 2.52 for (4,2), (6,2), and
(4,3), respectively, quickly converge with a larger fragment
size and a more isotropic shape towards a value definitely
larger than the DMRG estimate [47]. Also, we see from the

V1 dependence of 〈ni〉 and S, that the (4,2) ones approach the
value of the extrapolated (4,3), and the (6,2) ones to (4,2),
thus the different fragment calculations are fully consistent
with each other. Therefore, we suppose that the (4,3) results
are reasonably good, and the true transition point should be
V1;c = 2–2.5.

This model also has a more complicated transition along
the V1 = V2 line, from the metal to a “pinball liquid” at a large
interaction. In this phase, a partial charge order coexists with
a metallic behavior: In one of the three sublattices, holes of
fermions produce a symmetry-breaking long-range order, and
the rest of the sites form a honeycomb metal. In previous
methods it has been difficult to locate the phase boundary,
with very different findings from DMRG and VMC, V1;c � 6
and �12, respectively, even though these were obtained from
a careful finite-size scaling analysis. We demonstrate that
DET can detect the transition. As plotted in Fig. 3(b) for
a (3,3) fragment, the fidelity exhibits a dip around V1;c =
8.6, where the entanglement entropy also starts to decrease.
The charge densities show the development of a pinball-like
charge distribution. The transition point is found in between
the two methods mentioned above, which should be reason-
able enough. Interestingly, the charge differentiation observed
in 〈ni〉 develops rather slowly from V1 = V2 ∼ 0, in contrast
to the case of the metal-CDW transition, and does not indicate
any anomaly at V1;c. Despite that, the fact that DET produces
a wave function still allows us to evaluate the transition point
by using the fidelity and the entanglement-related quantities.

To summarize, we have shown that DET can be a per-
formant method to study spinless fermion models. It is an
embedding-type method which eventually yields a wave func-
tion allowing the use of fidelity and entanglement properties
as markers for phase transitions. The standard physical quan-
tities such as energy and two-point correlators retain their
accuracy independent of the shape and size of the impurity
fragment, indicating that it should be differentiated from the
other cluster methods such as DMFT.
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