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Frustration-induced highly anisotropic magnetic patterns in the classical XY model
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We predict and observe numerically highly anisotropic magnetic patterns in the classical frustrated model of
planar XY spins on the regular kagome lattice. Frustration is introduced by a specific spatial arrangement of
both ferromagnetic and antiferromagnetic bonds between adjacent magnetic moments on the lattice vertices.
Defining a quantitative measure of frustration, we find that at a critical value of frustration, f = fc = 3/4, the
system displays a phase transition from an ordered ferromagnetic state to a frustrated regime featuring a highly
degenerate ground state. In this frustrated regime, which extends for a finite range of frustrations fc < f � 1,
we obtain an unexpected scaling of a spatially averaged magnetization 〈 �M〉 with the total number of nodes N :
〈 �M〉 � N−1/4. This scaling results from highly anisotropic magnetic patterns displaying perfect ferromagnetic
ordering along the y-direction, and short-range correlations of magnetic moments along the x-direction. We
show that all these features are explained by the presence of the doubly degenerate ground state in the basic cell,
i.e., a single triangle, of the kagome lattice combined with an extensive number of intrinsic constraints on the
spins. This model represents an interesting class of frustrated magnetic systems, which might be present in other
lattice geometries.
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Introduction. Low-dimensional frustrated magnetic sys-
tems composed of strongly interacting microscopic magnetic
moments located on vertices of regular lattices have fasci-
nated scientists for many years. Multiple magnetic phases,
e.g., simple ferromagnetic or antiferromagnetic states, as well
as highly degenerate ground states with exotic properties
[1–3], topological magnetic vortices and magnetic vortex-
(anti)vortex pairs [4,5], and magnetic skyrmions [6], to name
a few, as well as the corresponding phase transitions have been
predicted theoretically and observed experimentally [7–9].
Similar inhomogeneous states have been predicted and ob-
served in other settings, such as various artificially prepared
solid states and optical systems, e.g., Josephson junction net-
works [10–13], trapped-ion simulators [14], and/or photonic
crystals [15,16] thanks to the universality of the underlying
mathematical models describing these magnetic phases.

Systems of strongly interacting planar magnetic moments
defined on various quasi-one-dimensional (quasi-1D) or 2D
lattices, the so-called classical XY model, are a case of
special interest, hosting both spin-waves and topological
excitations, and the famous Berezinskii-Kosterlitz-Thouless
(BKT) transition [4,5]. Even more peculiar inhomogeneous
magnetic patterns have been obtained in the ground state
of frustrated magnetic lattices [17–20], e.g., the vortex
states, the checkerboard distribution of vortices [10,21],
strip phases [22], etc., and sharp transitions were observed
between these magnetic patterns as the external parame-
ter varies. This abundance of different ground states is a

consequence of frustrations that in these systems can be
introduced by various means: application of an external mag-
netic field [23–25]; fabrication of specific geometry such
as honeycomb, Lieb, or kagome lattices [10,17]; and peri-
odic patterns of magnetic couplings with alternating signs
(ferromagnetic/antiferromagnetic interactions) [19,26]. Iden-
tifying the ground states in such settings is an intriguing
problem requiring a combination of analytical and numerical
tools.

In this paper, we consider a classical frustrated XY model
on the kagome lattice. Our analysis relies on a corner-sharing
property of the kagome lattice: every site is shared in be-
tween two triangles of the lattice (see Fig. 1). Frustration
in this model arises due to periodically distributed mag-
netic couplings with alternating signs. We find and classify
highly degenerate ground states occurring for large enough
frustration. These ground states exhibit extremely anisotropic
magnetic patterns that are characterized by spatial correlation
functions. The fingerprint of the patterns is the unusual scaling
of the spatially averaged magnetization with the system size.

A great advantage of this method of introducing the frus-
tration is the persistence of the frustrated regime and the
corresponding complex ground state for a finite range of cou-
plings rather than for a specific fine-tuned value of couplings,
as was discussed in many previous works [2,10,24,25]. A re-
lated frustration regime was explored in detail in Ref. [27] for
the case of Josephson junction networks forming 1D diamond
and sawtooth chains. Two phases—ferromagnetic ordering
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FIG. 1. (a), (b) The classical anisotropic XY model on the
kagome lattice. The color code of the links—black for FM and dark
yellow for α-links—in (a) shows the anisotropic distribution of the
couplings. Parts (a) and (b) show nonfrustrated/ferromagnetic/ f =
0 and frustrated/ f = 1 ground states. (c), (d) Magnetic mo-
ments of a single triangle in the frustrated ( f > 0.75) phase.
The two possible configurations of the phases φi=1,2,3—clockwise
(counterclockwise)—are marked by red (green) circles. The cou-
plings J and Jα are indicated for the single triangle.

and a disordered pattern of penetrating vortices (antivortices)
separated by a T = 0 phase transition—have been found.

Such a classical frustrated XY model can be naturally
implemented in artificially prepared Josephson junctions
networks [11–13] and would require Josephson couplings
of different signs. Such Josephson couplings are provided
by the so-called π -Josephson junctions that can be fabri-
cated on the basis of multijunction superconducting quantum
interference devices (SQUIDs) in an externally applied
magnetic field [10–13,28,29], superconductor-ferromagnet-
superconductor junctions [30], different facets of grain bound-
aries of high-temperature superconductors [31], or Josephson
junctions between two-band superconductors [32].

The model. We consider N planar spins �si = (cos ϕi, sin ϕi )
sitting at the vertices of a finite patch of the kagome lattice
with lattice spacing a = 1. The Hamiltonian is

H = −J
∑
〈i j〉

αi j�si · �s j = −J
∑
〈i j〉

αi j cos(ϕi − ϕ j ), (1)

where J is the strength of the interaction, which we set to
1, and αi j is the coupling, which we take to be nearest-
neighbor. The frustration is introduced as follows: αi j = α for
all the horizontal links (e.g., pointing along the x-direction)
and αi j = 1 for all the other links. The coupling strength α

varies from 1 to −1. In our conventions, the positive (negative)
coupling corresponds to ferromagnetic (antiferromagnetic) in-
teraction. To quantify frustration, we define the frustration
parameter f = (1 − α)/2, so that for frustrations 0 � f � 0.5
all the links are ferromagnetic ones, while for frustrations
0.5 < f � 1 there are both ferromagnetic (FM) and antifer-

romagnetic (AFM) couplings with a periodic pattern in space.
Before discussing the case of generic frustration f , we remark
that exactly for frustration f = 1 (α = −1) our model can
be mapped onto the well-known kagome XY antiferromagnet
[33]. This is a consequence of a special symmetry of our
Hamiltonian (1): flipping all the spins �s → −�s that only have
ferromagnetic adjacent links and then changing the sign of all
the FM links does not change the energy of the state, while the
Hamiltonian becomes that of the antiferromagnetic kagome
Ising model. The pattern of the FM and AFM couplings and
the two representative ground states for low and high frustra-
tions are shown in Figs. 1(a) and 1(b), respectively.

The Hamiltonian (1) expressed in the angles ϕi represen-
tation [5,10,34,35] also describes the dynamics of complex
Josephson junction networks composed of both 0- and π -
junctions [30–32]. For these networks, the parameter Jαi j

represents the critical current of a single Josephson junction
between the superconducting islands occupying the lattice
nodes i and j.

Ground state. Next we discuss the zero-temperature (T =
0) phase diagram, i.e., the ground state of a system, as a
function of frustration f : for low values of frustration, f <

fc = 3/4, there is a unique FM ground state. However, it
becomes unstable for high values of frustrations, f > fc, as
first indicated by the appearance of an unstable flatband mode
in the spin-wave spectrum, similarly to quasi-one-dimensional
cases, e.g., the frustrated sawtooth and diamond chains, stud-
ied in Ref. [27]. Such a flatband mode indicates instability
of the FM ground state toward a new highly degenerated set
of ground states. One such ground state is shown in Fig. 1(b).
Just like in sawtooth and diamond chains [27], we observe that
the ground states (GSs) of the Hamiltonian (1) minimize the
energy of individual triangles of the kagome lattice due to the
corner-sharing character of the lattice. A single triangle has
two FM links and one AFM link for high frustrations, and it
has two degenerate GSs for large frustration, fc < f < 1. The
corresponding two sets of phases ϕ1,2,3 are [27] [as shown in
Figs. 1(c) and 1(d)]

ϕ2 − ϕ1 = ϕ3 − ϕ2 = u±, ϕ3 − ϕ1 = 2u±,

u± = ±2 arccos

[
1

4 f − 2

]
. (2)

The two solutions correspond to the penetration of a vortex
(antivortex) that differs by clockwise (counterclockwise) ro-
tation of the magnetic moments �s1−3 on the triangle in the
Josephson junction terminology. The vortices (antivortices)
are marked by red (green) circles in Figs. 1(c) and 1(d).

In the frustrated regime, fc < f � 1, the full set of ground
states is given by the set of all the possible tilings of the
triangles of the kagome lattice with these two states of a
single triangle. These tilings have to satisfy a macroscopic
number of intrinsic constraints: the sums of phases ϕi around
any closed loop made of the hexagons of the kagome lattice
have to be 2πn, where n = 0,±1, . . . . This can be simplified
by imposing this constraint for individual hexagons only. In
the spin language, the ground states have total spin of every
triangle fixed to have the same length, as implied by the con-
figurations (2) but different directions. This is different from
many frustrated magnetic models, where the typical constraint
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requires a zero total spin of every triangle or other frustrated
unit [2,36].

To study GS phase configurations for finite kagome lat-
tices, we implemented a transfer-matrix-like algorithm that
generates ground states satisfying these constraints. It pro-
ceeds by scanning through the kagome lattice from bottom
to top, and assigning the phases to the sites of the hexagons
based on the constraints. We have implemented a stochastic
version of this algorithm, which produces random samples of
the ground-state manifold, and we used it to generate rep-
resentative samples of the ground-state manifold for a wide
range of lattice sizes. We also used this stochastic sampling
for small lattice sizes to count the number of ground states
by running the sampling until no new ground states were
discovered. These enumeration results suggest the scaling of
the total number of eigenstates NGS as lnNGS ∝ √

N . This
highlights an important role played by the local constraints
discussed above since in their absence where the triangles can
be tiled freely with any of the configurations (2), we would
have lnNGS ∝ N . This is exactly the situation in the 1D case
of the sawtooth or diamond chains [27].

Magnetization and spatial correlation functions. Next we
discuss the properties of the ground states of the model at tem-
perature T = 0: the average magnetization 〈M〉 = 1

N | ∑i �si|
and the correlation function C(i − j) = 〈�si�s j〉. The depen-
dence of the magnetization 〈M〉 on frustration f is shown
in Fig. 2(a): Magnetization is completely saturated taking
the largest possible value M = 1 for small frustrations 0 <

f < fc, where the ground state is ferromagnetic, and it does
not depend on either N or f . For large frustrations f > fc

the average magnetization 〈M〉 shows a strong dependence
on frustration f and the number of sites N . In the limit of
N → ∞, the magnetization flows to zero for all f > fc, in-
dicating the presence of disordered magnetic patterns. The
dependence of the magnetization on the number of sites N
is presented in Fig. 2(b): for small values of N there is a
noticeable magnetization that flows to zero as N increases
for all values of frustration f > fc. However, in order to see
that, one has to go to larger and larger system sizes as one
approaches the critical frustration fc.

We quantitatively relate the size dependence of the mag-
netization 〈M〉 to the spatial correlation functions. For a large
number of sites N 
 1 we can use the continuous limit, and
introducing the spatial correlation function C(�ρ ) = 〈�s(�ρ) ·
�s(0)〉, the magnetization is expressed as

〈M2〉 = 1

L2

∫
d2 �ρ C(�ρ), (3)

where L � √
N is the linear size of a system. Thus, the de-

pendence of 〈M〉 =
√

〈M2〉 on the size L (or the number of
sites N) is completely determined by the correlation func-
tion C(�ρ ). Assuming an isotropic correlation function with
a finite frustration-dependent correlation length ξ ( f ), we ob-
tain 〈M〉 ∝ 1/

√
N as L 
 ξ . This scaling is confirmed for

the same model on the sawtooth chain [27] [dashed line in
Fig. 2(b)]. However, the scaling of the magnetization 〈M〉 ∝
N−1/4 observed on the kagome lattice for various large values
of frustrations is clearly different [solid lines in Fig. 2(b)].
Such scaling suggests a strong anisotropy of the correlation

FIG. 2. Average magnetization 〈M〉 of the XY model. (a) The
dependence of the magnetization on frustration f for N = 90 300
spins: in the frustrated phase the magnetization drops to zero. The
nonzero values of the magnetization, especially for f � fc, are a
finite-size effect. (b) Average magnetization as a function of the
system size L for several frustrations—0.755 to 1.0 (solid lines: the
brighter the color, the larger the frustration; frustration increases as
the color goes from black to red/from the top to the bottom curve).
Several other curves are shown for comparison: the dashed magenta
line is the M ∝ N−1/4 dependence. The dashed blue curve shows
the average magnetization 〈M〉 of the frustrated sawtooth chain [27]
vs the system size L, while the solid green line corresponds to the
kagome AF case of f = 1.

function C(�ρ ) in the frustrated regime. Namely, such scaling
〈M〉 ∝ N−1/4 for high frustrations can be explained assuming
long-range correlations in one direction, and short-range cor-
relations in the perpendicular direction.

To check this hypothesis, we calculated the spatial cor-
relation function Cx,y(�ρ ) numerically for several values of
frustration and for two different directions, x (horizontal) and
y (vertical). The typical behavior of the correlation functions
is presented in Fig. 3 for f = 4/5 and two different system
sizes (the other values of f > fc show similar behavior).
We see indeed a strong anisotropy in the spatial correlation
functions: short-range exponential correlations along the hor-
izontal direction [see the Cx(�ρ) in Fig. 3(a)], and long-range
ferromagnetic correlations along the vertical direction [see the
Cy(�ρ) in Fig. 3(b)]. The exponential decay of the correlation
function along the horizontal direction is confirmed in the
inset of Fig. 3(a), which shows the log-normal plot. Two
comments are in order. First, the long-range ferromagnetic
correlations in the y direction were observed for systems of
large size; for systems of moderate size, i.e., N � 2000 [red
(gray) dots in Fig. 3(b)], the long-range correlations are ab-
sent. Secondly, the correlation length of Cx(�ρ) increases as
the frustration f approaches the critical value of fc, and this
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FIG. 3. The anisotropic spin-spin correlators Cx,y(i − j) in the
frustrated phase for frustration f = 4/5 and two system sizes N =
2070 [red (gray)] and N = 90 300 [blue (light gray)]. (a) Short-range
correlations along the x-direction. The inset shows the same plot in
the log scale: the thick black line is the exponential decay provided
for reference. (b) Emerging long-range ferromagnetic correlations
along the y-direction: as the system size increases, the ferromagnetic
plateau is emerging.

enhancement of the correlation length explains the saturation
effect in the dependence of ln〈M〉 on N observed in the region
of small N [see Fig. 2(b)].

Discussion. Here, we present a qualitative explanation of
this highly anisotropic behavior of the correlation functions
based on the analysis of the degenerate ground states. We start
with a single hexagon of the kagome lattice composed of six
triangles and having one closed loop. The ground states of this
hexagon are all the possible configurations (2) of individual
triangles subject to the constraint of zero-phase accumulation
over the hexagon loop. This gives the 14-times degenerate
ground state. The seven GSs are shown in Figs. 1(a)–1(g), and
the remaining seven GSs are obtained by swapping red and
green marks, corresponding to the two possible ground states
of individual triangles. It is worth pointing out that the total
number of tilings is 26 = 64, and therefore even a single con-
straint drastically reduces the number of available states. Out
of these 14 configurations, 8 show perfect anisotropy in the
vertical direction, while the remaining 6 are more isotropic.
For larger system sizes, the fraction of ground states that show
no anisotropy drops down, and the overwhelming number of
ground states has the almost perfect ferromagnetic ordering in
the vertical direction. This results in the anisotropic behavior
of the correlation function Cx,y(i − j) that we discussed above
(see Fig. 3). The perfect correlations in the vertical direction
drop down in a layer at the boundary. The thickness of this
layer does not scale with the total number of sites N .

This argument also provides a simple intuitive explanation
of the

√
N scaling of the logarithm of the number of ground

states lnNGS: in the presence of the perfect correlations in
the vertical direction, the degeneracy is only coming from the
horizontal direction, and it scales with the horizontal extent of
the system, which is exactly

√
N for a system of N spins.

As we have stated above, the ground state of the model
has the total phase accumulation of phase over any hexagon
proportional to 2πn with integer n. Our analysis shows that
for most values of frustration f only the constraints with the
value n = 0 are realized in the ground states. The ground-
state realizations corresponding to the sums of phases ϕi

on closed loops around the hexagons ±2π were obtained
for special values of frustration f = (

√
3 + 3)/6 and f = 1.

These additional realizations can lead to the recovering of
the isotropic spatial correlation function Cx,y(�ρ). However,
e.g., for f = 1 the spatial isotropic correlation function shows
long-range correlations as C(ρ) � 1/ρ, and the spatially av-
eraged magnetization still displays the scaling 〈 �M〉 � N−1/4

[see Fig. 2(b)].
So far we have concentrated on the T = 0 ground states,

which exhibit a degeneracy. In general, such degenera-
cies are susceptible to various perturbations that might lift
the degeneracy. In the case of the thermal (or quantum)
fluctuations, such degeneracy lifting is known as order-by-
disorder [37]. To explore this possibility, we have used the
standard approach [36] and analyzed the Gaussian fluctua-
tions around the ground states corresponding to the limit of
low temperatures: Expanding the free energy F (T → 0) to
quadratic order in the fluctuations ϕi,GS + δϕi, one computes
the temperature-dependent correction to the ground-state en-
ergy. Order-by-disorder is indicated by the dependence of the
correction on the ground-state realization. We have found no
sign of any thermal order-by-disorder selection to the har-
monic order for all values of f > fc. We have also found
zero modes, their number being proportional to the system
size N . However, a more careful analysis indicates that this is
a finite-size effect caused by the open boundary used in the
simulations. The location of the weight of the eigenmodes
associated with the zero modes scales with the system size,
indicating that the modes are located close to the boundary.

Conclusions. We have studied various magnetic patterns
in the model of frustrated planar interacting magnetic mo-
ments (the classical XY model) on the kagome lattice. The
frustration is provided by the presence of both ferromag-
netic and antiferromagnetic interactions between adjacent
magnetic moments. At the critical value of the frustration,

FIG. 4. (a)–(g) Distributions of magnetic moments in a single
plaquette of the kagome lattice. The (counterclockwise) clockwise
distributions of a single triangle magnetic moment �M1−3 are marked
by (green) red circles.
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f = fc = 3/4, such a system shows the phase transition from
the ordered ferromagnetic state to the disordered frustration
regime characterized by a highly degenerate ground state
[see Fig. 2(a)]. In this frustrated regime, fc < f � 1, unex-
pected scaling of spatially averaged magnetization 〈M〉 on
the number of sites, N , i.e., 〈M〉 � N−1/4, has been obtained
[see Fig. 2(b)]. Such scaling is determined by the anisotropic
magnetic patterns displaying the ferromagnetic ordering along
the y-direction, and short-range correlations of magnetic mo-
ments along the x-direction (see Fig. 3). All of these intriguing
features were explained by the presence of a doubly degen-
erate ground state of a basic cell, i.e., single triangles, of
the kagome lattice [see Figs. 1(c) and 1(d)] accompanying
a large amount of intrinsic constraints [see Figs. 4(a)–4(g)].

The classical frustrated XY model on the kagome lattice can
be implemented in natural magnetic molecular clusters, arti-
ficially prepared Josephson junctions networks, and photonic
crystals, and we anticipate the observation of the frustration-
induced phase transition and various anisotropic magnetic
patterns in such systems. An interesting open problem is to un-
derstand how this frustrated degenerate phase reacts to various
perturbations, like dilution, which is known to produce inter-
esting effects in other strongly frustrated systems [38–41].
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