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Noncentrosymmetric superconductors have sparked significant research interests due to their exciting prop-
erties, such as the admixture of spin-singlet and spin-triplet pairing. Here we report on the muon spin rotation
and relaxation and thermodynamic measurements on the noncentrosymmetric superconductor La7Rh3, which
show an isotropic superconducting gap but also spontaneous time-reversal-symmetry breaking occurring at
the onset of superconductivity. We show that our results pose severe constraints on any microscopic theory
of superconductivity in this system. A symmetry analysis identifies ground states compatible with time-reversal-
symmetry breaking, and the resulting gap functions are discussed. Furthermore, general energetic considerations
indicate the relevance of electron-electron interactions for the pairing mechanism, in accordance with hints of
spin fluctuations revealed in susceptibility measurements.
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I. INTRODUCTION

The symmetry of the order parameter plays a pivotal role
in determining the nature of the superconducting ground
state [1]. The key symmetries that are associated with su-
perconductivity are spatial inversion, gauge, and time-reversal
symmetries. Time-reversal symmetry (TRS) is intimately re-
lated to superconductivity as Cooper pairs are built from
Kramers partners [2]. The superconducting ground state in
systems which exhibit inversion symmetry in the crystal struc-
ture (centrosymmetric superconductors) can be expressed
distinctly via the parity of the Cooper pair state. If the spin
part of the Cooper pairs is a singlet, then the orbital part
corresponds to even parity, whereas the spin-triplet pair state
requires odd-parity orbital wave functions. However, a re-
markably different situation occurs in a noncentrosymmetric
superconductor (NCS) with spin-orbit coupling: as parity is
not a good quantum number in the normal state, the absence of
inversion symmetry leads to the mixing of singlet and triplet
pairings [3–6]. Together with the antisymmetric spin-orbit
coupling, which removes the spin degeneracy of the electronic
bands [7], this leads to the emergence of many exciting super-
conducting properties [3–6,8–16].

A particularly interesting and rare phenomenon is
TRS-breaking superconductivity. Exclusivity of TRS break-
ing can be adjudged by the fact that, to date, only
a few superconductors have been found to break TRS,
e.g., Sr2RuO4 [17,18], UPt3 and (U, Th)Be13 [19–22],
(Pr, La)(Os, Ru)4Sb12 [23,24], PrPt4Ge12 [25], LaNiGa2

[26], Lu5Rh6Sn18 [27], and Ba0.27K0.73Fe2As2 [28]. In sys-
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tems with broken TRS, the nonzero moments of the Cooper
pairs locally align to induce an extremely small spontaneous
internal field (0.01μB), which is difficult to detected with most
measurement techniques. Muon spin rotation and relaxation
(μSR) [29,30] are a technique which is extremely sensitive to
such tiny changes in internal fields and can measure the effect
of TRS breaking in these exotic superconductors. Moreover,
the symmetry of the superconducting gap function can also be
inferred from μSR by measuring the temperature dependence
of the magnetic penetration depth.

The search for NCSs with broken TRS is driven by the
fundamental interest in the interplay of inversion symmetry of
the crystal structure, spin-orbit coupling, and TRS. However,
it has been observed in only a few compounds, e.g., LaNiC2

[31], Re6Zr [32], Re6Hf [33], SrPtAs [34], and La7Ir3 [35],
even though many NCSs have been studied [36–42].

In this work, we report the μSR study of the NCS
La7Rh3. Zero-field μSR reveals that spontaneous magnetic
fields develop at the superconducting transition tempera-
ture, identifying the presence of spontaneous TRS breaking.
Furthermore, the temperature dependence of the magnetic
penetration depth determined from the transverse-field muon
measurements indicates a nodeless, isotropic gap. We show
that our findings impose strong restrictions on the possible mi-
croscopic superconducting order parameters and indicate that
the mechanism of superconductivity must be unconventional,
i.e., driven by electron-electron interactions.

II. EXPERIMENTAL DETAILS

Single-phase polycrystalline samples of La7Rh3 were pre-
pared by melting together a stoichiometric mixture of La
(99.95%, Alfa Aesar) and Rh (99.99%, Alfa Aesar) in an
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FIG. 1. (a) Superconductivity appears around Tc = 2.65 K with
the onset of strong diamagnetic signal in the zero-field-cooled
warming (ZFCW) and field-cooled cooling (FCC) magnetization
measurements. (b) Low-temperature specific heat data in the super-
conducting regime fit well for the BCS s-wave model for a fitting
parameter �(0)/kBTc = 1.74.

arc furnace under a high-purity argon gas atmosphere on a
water-cooled copper hearth. The sample buttons were melted
and flipped several times to ensure phase homogeneity with
negligible weight loss. To verify the phase purity we per-
formed room temperature powder x-ray diffraction (XRD)
using an X’pert PANalytical diffractometer (Cu Kα1 radia-
tion, λ = 1.540598 Å). A Quantum Design superconducting
quantum interference device and physical property measure-
ment system were used to measure the magnetization and
specific heat of La7Rh3.

In order to probe the superconducting ground state locally
and to further understand the superconducting gap structure
of our sample, μSR experiments were carried out at the ISIS
Neutron and Muon facility, in STFC Rutherford Appleton
Laboratory, United Kingdom, using the MUSR spectrometer.
A full description of the μSR technique may be found in
Ref. [43]. μSR measurements in transverse-field (TF), zero-
field (ZF), and longitudinal-field (LF) configurations are used
to probe the flux line lattice (FLL) and TRS breaking. The
powdered sample of La7Rh3 was mounted on a high-purity
silver sample holder which was then placed in a dilution
fridge, which can operate in the temperature range from
40 mK to 4 K.

III. RESULTS

La7Rh3 crystallizes in a hexagonal structure with space
group P63mc (No. 186) [44], which we confirmed for our
sample by performing room-temperature powder XRD mea-
surements. The lattice constants are a = 10.203 ± 0.002 Å
and c = 6.505 ± 0.002 Å. Very importantly, no impurity
phases were observed. The superconducting transition tem-
perature was found to be Tc = 2.65 ± 0.02 K [Fig. 1(a)] from
magnetization measurements, which is in good agreement
with the published literature [44]. The lower and upper critical
fields Hc1(0) and Hc2(0) were obtained using Ginzburg-
Landau expressions, which yield Hc1(0) = 2.51 ± 0.02 mT
and Hc2(0) = 1.02 ± 0.03 T. The upper critical field is thus
significantly smaller than the Pauli paramagnetic limiting
field H p

c2(0) = 1.86Tc = 4.93 T. This indicates a significant
singlet component rather than dominant spin triplet. Using
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FIG. 2. (a) TF-μSR spectra collected in an applied magnetic
field of 30 mT at temperatures 3.5 K (> Tc) and 0.1 K (<Tc). The
solid lines are fits using Eq. (). (b) Temperature dependence of the
muon spin relaxation rate at different applied magnetic fields from
15 to 50 mT.

the standard relations given in Ref. [45], we obtain a co-
herence length of ξGL(0) = 179 Å and a penetration depth
λGL(0) = 4620 Å. The normalized specific heat jump at Tc is
�Cel/γnTc = 1.38 ± 0.02, which is close to the value reported
earlier [46] and to the BCS value of 1.43, indicating weakly
coupled superconductivity in La7Rh3. The specific heat data
in the superconducting state below Tc fit well to that of a
superconductor with a single, isotropic gap [Fig. 1(b)] for
�(0)/kBTc = 1.74.

Transverse-field μSR (TF-μSR) measurements provide
detailed information on the nature of the superconducting gap.
The TF-μSR measurements were performed in the supercon-
ducting mixed state in applied fields in the range 15 mT �
H � 50 mT, well above the Hc1(0) of this material. The data
were collected in the field-cooled mode, where a field of
H = 30 mT was applied perpendicular to the initial muon spin
direction from a temperature above the transition temperature
to the base temperature in order to establish a well-ordered
FLL in the mixed state. Figure 2(a) shows the signal in the
normal state (T = 3.5 K > Tc) where the depolarization rate
is small, attributed to the homogeneous field distribution
throughout the sample. The significant depolarization rate
in the superconducting state (T = 0.1 K < Tc) is due to an
inhomogeneous field distribution of the FLL.
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The TF-μSR asymmetry spectra can be described by the
sum of cosines, each damped with a Gaussian relaxation term
[47,48]:

GTF(t ) =
N∑

i=1

Ai exp

(
−1

2
σ 2

i t2

)
cos(γμBit + φ), (1)

where Ai is the initial asymmetry, σi is the Gaussian relaxation
rate, γμ/2π = 135.5 MHz/T is the muon gyromagnetic ratio,
φ is the common phase offset, and Bi is the first moment for
the ith component of the field distribution. We found that the
asymmetry spectra of our sample can best be described by two
oscillating functions (N = 2), where the second component
of the depolarization rate was fixed to zero (σ2 = 0), which
accounts for the nondepolarizing muons that stop in the silver
sample holder. Additional Gaussian terms were also tried, but
no improvement in the fit quality was obtained. The field
distribution in the mixed state of a superconductor is broad-
ened by the presence of static fields arising from the nuclear
moments.

The temperature dependence of the muon spin relaxation
rate σ = σ1 has been determined for different applied mag-
netic fields and is displayed in Fig. 2(b). The background
nuclear dipolar relaxation rate σN obtained from the spectra
above Tc was assumed to be temperature independent over
the temperature range of study. It is shown by the dotted
horizontal orange line in Fig. 2(b), with σN = 0.08786 ±
0.0032 μs−1, which is then subtracted quadratically from the
total sample relaxation rate σ to extract the superconduct-
ing contribution to the muon spin relaxation rate σFLL =√

σ 2 − σ 2
N. Figure 3(a) shows the field dependence of the

depolarization rate σFLL(H ) evaluated using isothermal cuts
of the σ (T ) data sets in Fig. 2(b). In an isotropic type-II
superconductor with a hexagonal Abrikosov vortex lattice
the magnetic penetration depth λ is related to σFLL by the
equation [49]

σFLL(μs−1) = 4.854 × 104(1 − h)[1 + 1.21(1 −
√

h)3]λ−2,

(2)
where h = H/Hc2 is the reduced field. The temperature depen-
dence of λ−2 is displayed in Fig. 3(b), which was extracted
by fitting Eq. (2) to the data presented in Fig. 3(b), taking
into account the temperature dependence of the upper critical
field Hc2. Note that λ−2(T ) is nearly constant below Tc/3 �
0.88 K. This suggests the absence of low-lying excitations and
is indicative of a nodeless superconducting gap at the Fermi
surface. This is verified by the temperature dependence of
the London magnetic penetration depth λ(T ) within the local
London approximation for an s-wave BCS superconductor in
the clean limit using the following expression:

λ−2(T )

λ−2(0)
= 1 + 2

∫ ∞

�(T )

(
∂ f

∂E

)
EdE√

E2 − �2(T )
, (3)

where f (E ) = [exp(E/kBT ) + 1]−1 is the Fermi function
and �(T )/�(0) = tanh{1.82[1.018(Tc/T − 1)]0.51} is an ap-
proximate solution to the BCS gap equation [50]. The
above-discussed model fits ideally [see Fig. 3(b)] for the fitted
value of the energy gap �(0) = 0.462 ± 0.004 meV, which
yields the BCS parameter �(0)/kBTc = 2.02 ± 0.02. This is
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FIG. 3. (a) Muon spin depolarization rate as a function of field at
various temperatures. The data were fitted using Eq. () to extract the
temperature dependence of the inverse magnetic penetration depth
squared. (b) Temperature dependence of λ−2, where the solid line
represents the best fit using Eq. (3).

larger than the value of 1.76 expected from weak-coupling
BCS theory and what we found from specific heat above; a
similar discrepancy was reported for La7Ir3 [35,51].

Zero-field muon spin relaxation (ZF-μSR) measurements
are carried out in order to look for the tiny spontaneous
magnetization associated with TRS breaking in the supercon-
ducting state. The time evolution of the relaxation spectra
was collected below (T = 0.3 K) and above (T = 5.4 K) the
transition temperature (Tc = 2.65 K), as displayed in Fig. 4(a).
There are no visible oscillatory components in the spectra,
ruling out the presence of any ordered magnetic structure.
As Fig. 4(a) illustrates, there is stronger relaxation below the
superconducting transition temperature Tc, which suggests the
presence of internal magnetic fields in the superconducting
state.

The ZF-μSR in the absence of atomic moments and muon
diffusion is best described by the Gaussian Kubo-Toyabe (KT)
function [52]

GKT(t ) = 1

3
+ 2

3
(1 − σ 2

ZFt2)exp

(−σ 2
ZFt2

2

)
, (4)
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FIG. 4. (a) ZF-μSR spectra at 0.1 and 3.5 K. The orange circles refer to measurements in the presence of a small LF of 10 mT.
(b) The temperature dependence of the electronic relaxation rate � shows a systematic increase below T = 2.64 K, which is close to Tc.
(c) The temperature dependence of the nuclear relaxation rate σZF shows no appreciable change at Tc.

where σZF denotes the relaxation due to static, randomly ori-
ented local fields associated with the nuclear moments at the
muon site.

The spectra obtained for La7Rh3 comprise additional relax-
ation signals below Tc, which can be described by the function

A(t ) = A1GKT(t )exp(−�t ) + ABG, (5)

where A1 is the initial asymmetry, ABG is the time-independent
background contribution from the muons stopped in the sam-
ple holder, whereas the exponential term [exp(−�t )] accounts
for the presence of additional electronic relaxation channels.
The parameters A1 and ABG are found to be approximately
temperature independent with statistical average values A1 =
0.26185(4) and ABG = 0.00865(4). The nuclear depolariza-
tion rate σZF was also found to be approximately temperature
independent, as displayed in Fig. 4(c). Interestingly, the elec-
tronic relaxation rate parameter � shows a clear increase
below the temperature T = 2.64 K [see Fig. 4(b)], which is
close to the superconducting transition temperature. Such a
systematic increase in � below Tc was also identified in
compounds like Sr2RuO4 [17], LaNiC2 [31], and the locally
noncentrosymmetric compound SrPtAs [34] by μSR mea-
surements, where the particular behavior was attributed to the
formation of spontaneous magnetic fields below Tc, which,
in turn, indicates TRS breaking in these compounds. These
observations clearly suggest that TRS is broken in the super-
conducting state of La7Rh3.

To eliminate the possibility that the above signal is due
to extrinsic effects such as impurities, we also performed
LF-μSR measurements. As shown by the gray markers in
Fig. 4(a), the magnetic field of 10 mT was sufficient to fully
decouple the muons from the electronic relaxation channel.
This indicates that the associated magnetic fields are, in fact,
static or quasistatic on the timescale of the muon preces-
sion. This further provides unambiguous evidence for TRS
breaking in La7Rh3 in the superconducting state. The in-
crease �� in the relaxation channel below Tc for most of
the NCS superconductors with broken TRS was found to be
between 0.005 and 0.05 μs−1 [17,19,31,32,34,35,53]. In our
case, �� � 0.007 μ s−1, suggesting a smaller TRS-breaking
field.

IV. DISCUSSION

Let us next discuss the implications of our experimen-
tal findings for the possible microscopic superconducting
order parameters and the interactions driving the supercon-
ducting instability. The point group C6v of the normal state
above Tc together with the expected sizable spin-orbit cou-
pling resulting from the large atomic numbers of La and Rh
allows for ten distinct pairing states: four associated with
the four different one-dimensional (1D; dn = 1) irreducible
representations (IRs) and three with each of the two two-
dimensional (2D; dn = 2) IRs of C6v . In centrosymmetric
systems, the superconducting order parameter is usually ex-
pressed in the (pseudo)spin basis �k,αβ , with α and β denoting
the (pseudo)spin of the two electrons forming a Cooper pair
and k being their relative momentum. This is not a good
basis in systems without a center of inversion, like La7Rh3,
where the spin degeneracy of the electronic bands is removed
at generic momenta k, and it is physically more insightful
to describe �k,αβ in the band basis: at low energies, the
superconducting order parameter is described by a single
complex function �̃ka ∈ C for each nondegenerate band a of
the normal state which is obtained by projecting �k,αβ on
the respective band [54]. If the order parameter transforms
under the IR n, �̃ka = ∑dn

μ=1 ημϕμ
na(k) holds, with complex

coefficients ημ and continuous, real-valued basis functions
ϕμ

na(k) transforming under n (see Appendix A for details).
As all IRs of C6v are real, time-reversal acts as ημ → (ημ)∗,

and hence, only the two 2D IRs, E1 and E2, are consis-
tent with the observation of broken TRS. Furthermore, by
performing a Ginzburg-Landau analysis for E1 and E2, one
finds that only the three discrete configurations (η1, η2) =
(1, 0), (0, 1), (1, i) can arise. Only the third option is con-
sistent with the broken TRS, which reduces the number of ten
possible pairing states to the two remaining states, E1(1, i) and
E2(1, i).

To further constrain the order parameter, let us next
take into account the implications of our observation of a
fully established, nodeless, superconducting gap. Being odd
under twofold rotation Cz

2 along the z axis, the basis func-
tions of the E1 state satisfy ϕ

μ
E1a(k) = −ϕ

μ
E1a(−kx,−ky, kz ) =

−ϕ
μ
E1a(kx, ky,−kz ), where we used the constraint ϕμ

na(k) =
ϕμ

na(−k) resulting from TRS and Fermi statistics [54].
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FIG. 5. The location of symmetry-imposed zeros of the single-
band gap function |�̃ka| in the Brillouin zone is shown in red
for the TRS-breaking candidate states (a) E1(1, i) and (b) E2(1, i).
Nondegenerate Fermi surfaces crossing these lines/planes lead to
symmetry-protected point/line nodes. Bands are expected to be non-
degenerate for generic momentum points (invariant only under the
identity operation of the point group), including generic points in the
planes kz = 0, π/c; however, at the high-symmetry lines parallel to
the kz axis and going through the indicated high-symmetry points,
this will not necessarily be the case.

Consequently, the gap function |�̃ka| of the E1(1, i) state
necessarily vanishes on the planes kz = 0, π/c, which, in turn,
will lead to line nodes for any Fermi surface crossing these
planes. Note that this does not contradict Blount’s theorem
[55] as we consider a noncentrosymmetric system with non-
degenerate Fermi surfaces. The Cz

2-even E2(1, i) state does
not exhibit planes of zeros of |�̃ka| and is forced to vanish
only at high-symmetry points in the Brillouin zone (see Fig. 5
and Appendix B for more details), where the assumption of
having nondegenerate bands is not satisfied any more. We thus
conclude that E2(1, i) is the most natural pairing state based
on our experimental findings. However, the detailed micro-
scopic form of the E2(1, i) order parameter, why it effectively
behaves like an isotropically gapped superconductor, in par-
ticular in the vicinity of the aforementioned high-symmetry
points, or whether fine-tuning/approximate symmetries are
necessary (leading, e.g., to two nearly degenerate supercon-
ducting transitions or accidentally degenerate bands) remain
open questions. Given the multitude of atoms in the unit cell,
the phenomenological real-space picture of Ref. [56] might
allow for useful insights.

Our experimental results also provide important infor-
mation about the mechanism of superconductivity: taking
advantage of general mathematical properties of Eliashberg
equations for noncentrosymmetric superconductors, it was
shown in Ref. [57] that electron-phonon coupling alone
cannot give rise to TRS-breaking superconductivity. This
indicates that the superconductivity of La7Rh3 must be
crucially driven by electron-electron interactions (“unconven-
tional pairing”). Furthermore, the results of Ref. [57] imply
that the collective electronic mode φ providing the “pairing
glue” must be time reversal odd; that is, its condensation
〈φ〉 
= 0 breaks time-reversal symmetry. This is, e.g., the case
for spin fluctuations, signs of which have been reported for
La7Rh3 in Ref. [46]. The relevance of electron-electron in-
teractions in the system is corroborated by the large value
Rw � 2.97 of the Wilson ratio extracted from our measure-
ments (see Appendix C). In general, susceptibility data and
the calculation of the Wilson ratio give signatures of electron-
electron correlation; however, these measurements are not

sufficient to draw a definite conclusion. Therefore, specific
heat measurements down to low temperatures at various high
applied magnetic fields coupled with the density of states
calculations are, indeed, required to understand the strength
of the correlation in the system.

V. CONCLUSION

To summarize, our results indicate that the superconduct-
ing ground state in La7Rh3 breaks TRS while exhibiting an
isotropic gap, similar to that of La7Ir3. A symmetry analy-
sis showed that there are only two distinct candidate pairing
phases consistent with TRS breaking, one of which gives rise
to nodal lines and hence is disfavored by our observations.
General energetic considerations indicate an unconventional
pairing mechanism. Further experimental work on single crys-
tals, coupled with theoretical studies, is required to fully
unravel the microscopic nature of superconductivity in this
important family of materials.
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APPENDIX A: ORDER PARAMETER IN THE BAND BASIS

1. Bloch states and microscopic representation of symmetries

La7Rh3 crystallizes in the hexagonal Th7Fe3 structure,
with space group P63mc (No. 186). The space group is non-
symmorphic, which means that it is not possible to choose
an origin such that all symmetry operations, {g|τ} f (r) =
f (Rv (g)r + τ ), with Rv (g) denoting the vector represen-
tation of the point symmetry operation g, contain only
Bravais-lattice translations τ; put differently, it is not pos-
sible to choose an origin such that the point group P :=
{{g|0}|{g|τ} ∈ G } is a subset of the space group G .

The space group of La7Rh3 contains fractal translations
along the c direction corresponding to interchanging of the
two alternating layers in the crystal structure. More specifi-
cally, besides lattice translations, the symmorphic symmetries
are {E |0}, {Cz

3|0}, and {3σv|0}, which form the group C3v , a
subgroup of the full point group C6v . On top of that, there are
the screw axis {Cz

6| 1
2 ẑ} (and hence also {Cz

2| 1
2 ẑ}) and the glide

planes {3σd | 1
2 ẑ}.

To describe superconductivity, it is very convenient to work
in second quantization. We here follow the frequently used
convention and define the creation operator of an electron with
crystal momentum k, in atom s, with on-site index α (which
might label just spin or, more generally, several relevant or-
bitals per atom) according to

c†
kαs = 1√

N

∑
R

eik(R+rs )c†
Rαs, (A1)
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where N is the number of unit cells and c†
Rαs creates an

electron in the state α of atom s in the unit cell labeled by
R; the associated electronic state is located, in real space, at
position R + rs. Note that these operators satisfy the nontrivial
boundary conditions

c†
k+Gαs = eiGrs c†

kαs, G ∈ RL, (A2)

with RL denoting the set of reciprocal lattice vectors. To
demonstrate the consequences of these boundary conditions,
consider the general superconducting mean-field Hamiltonian
(with translation symmetry)

HMF =
∑

k

{
c†

khkck + 1

2
[c†

k�k(c†
−k)T + H.c.]

}
, (A3)

where the sum over k refers to the Brillouin zone of the
Bravais lattice and we use the matrix notation implicitly con-
taining the summation over α and s. Shifting the summation
over momentum in the mean-field Hamiltonian (A3) by G and
using the property (A2) of the fermionic operators, we obtain
the (in general) nontrivial boundary conditions

hk = VGhk+GV †
G , �k = VG�k+GV †

G ,

(VG)αs,α′s′ = δs,s′δα,α′eiGrs , G ∈ RL. (A4)

From the point of view of boundary conditions, it seems to
be more convenient to just set rs = 0 in Eq. (A1). However,
as we will see next, the transformation properties under non-
symmorphic symmetries become more symmetric when rs is
chosen to be the position of atom s in the unit cell.

Let us consider a general space group transformation {g|τ}
which acts on the real-space creation operators according to
(we assume summation over repeated indices)

c†
Rαs −→ c†

R′βs′Rc(g, s)βα,

R′ + rs′ = Rv (g)(R + rs) + τ. (A5)

From Eq. (A1), we find

c†
kαs −→ 1√

N

∑
R

eik(R+rs )c†
R′βs′Rc(g, s)βα (A6)

= 1√
N

∑
R

ei[Rv (g)k][Rv (g)(R+rs )+τ−rs′ ]e−i[Rv (g)k](τ−rs′ )

× c†
R′βs′Rc(g, s)βα (A7)

= 1√
N

∑
R′

ei[Rv (g)k]R′
e−i[Rv (g)k](τ−rs′ )c†

R′βs′Rc(g, s)βα (A8)

= e−i[Rv (g)k]τ 1√
N

∑
R

ei[Rv (g)k](R+rs′ )c†
Rβs′Rc(g, s)βα (A9)

= e−i[Rv (g)k]τc†
Rv (g)kβs′Rc(g, s)βα. (A10)

Introducing the multi-index μ = (α, s), defining Ru(g)μ′μ as
the representation in the combined (α, s) space (which is
uniquely determined by g for a given crystal structure), and
noting that [Rv (g)k]τ = kτ can be assumed without loss of
generality (only screw axes and glide planes remain after a
proper choice of the origin), we can write the final result as

{g|τ} : c†
kμ

−→ e−ikτc†
Rv (g)kμ′Ru(g)μ′μ. (A11)

Having derived the general transformation properties
(A11) of the electronic operators, it is straightforward to ob-
tain the invariance condition of the normal-state Hamiltonian,

Ru(g)hR−1
v (g)kR†

u(g) = hk ∀ {g|τ} ∈ G , (A12)

and the representation of the space group symmetries on the
superconducting order parameter,

{g|τ} : �k −→ Ru(g)�R−1
v (g)kRT

u (g). (A13)

We now see that the momentum-dependent phase factors in
Eq. (A11) cancel and the (either lattice or fractional) transla-
tional part τ does not show up explicitly.

2. Boundary conditions in the band basis

The weak-pairing limit, which we use to classify the pos-
sible superconducting instabilities of La7Rh3, was proposed
in Ref. [54] as a minimal description of pairing in noncen-
trosymmetric and spin-orbit coupled systems. The key idea
is to project the microscopic, matrix-valued, superconducting
order parameter �k onto the band basis, i.e., consider instead
the scalar order parameter

�̃ka = 〈φka|�kT †|φka〉 , (A14)

where φka denotes the eigenstate of the normal-state Hamil-
tonian hk close to the Fermi surface and T is the unitary
part of the antiunitary time-reversal operator � = TK, with
complex-conjugation operator K. We refer to Ref. [54],
where the same form of the transformation properties as in
Eqs. (A12) and (A13) was used, for a detailed introduction to
this approach.

We here focus on one aspect that was not discussed in
Ref. [54] but is of relevance to our discussion of symmetry-
imposed zeros of �̃ka at the zone boundary: despite the
nontrivial boundary conditions in Eq. (A4), �̃ka satisfies peri-
odic boundary conditions,

�̃ka = �̃k+Ga, G ∈ RL, (A15)

as we prove next. We first note that Eq. (A4) implies, for
nondegenerate bands,

φk+Ga = eiϕkaV †
Gφka, (A16)

where eiϕka is an arbitrary phase factor and the association
of both wave functions with the same band index is purely
a convention which, however, is very natural: if the Fermi
surface a does not cross the boundary of the Brillouin zone,
Eq. (A16) means that we just give the equivalent band outside
the Brillouin zone the same label; if it crosses the zone bound-
ary, this convention will be required in order to give the same
label a to all momentum points on a connected Fermi surface.

Applying Eq. (A16) and the boundary condition of the
superconducting order parameter in Eq. (A4), we find

�̃k+Ga = 〈φka|VGV †
G�kVGT †V †

G |φka〉 = �̃ka, (A17)

where we have used the fact that VG and T † commute,
which is a consequence of time reversal being local [Tαs,α′s′ =
T̃α,α′ (s)δs,s′ ].
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TABLE I. Possible pairing states in La7Rh3 classified according
to the IRs of the point group C6v . Here X , Y , and Z are continuous,
real-valued functions on the Brillouin zone which are odd under k →
−k and transform under C6v as kx , ky, and kz, respectively, with the
sixfold rotation symmetry along kz and the kx and ky axes oriented
normal to two of the six mirror planes. We have already taken into
account the constraint ϕμ

na(k) = ϕμ
na(−k) of the scalar basis functions

resulting from TRS and Fermi statistics [54]. This is why we have
omitted, e.g., (X,Y ) as basis functions of E1.

IR dn Symmetry/leading basis functions ϕμ
na(k)

A1 1 1, X 2 + Y 2, Z2

A2 1 XY (3X 2 − Y 2)(3Y 2 − X 2)
B1 1 XZ (3Y 2 − X 2)
B2 1 Y Z (3X 2 − Y 2)
E1 2 (XZ,Y Z )
E2 2 (X 2 − Y 2, 2XY )

3. Basis functions

In Table I, we summarize the scalar basis functions ϕμ
na(k)

for the different IRs of the point group C6v of La7Rh3

that determine the weak-pairing order parameter accord-
ing to �̃ka = ∑dn

μ=1 ημϕμ
na(k). As mentioned in the main

text, a Ginzburg-Landau analysis beyond quadratic order
shows that only the three symmetry-inequivalent combina-
tions (η1, η2) = (1, 0), (0, 1), (1, i) are possible in the case
of the two 2D IRs E1 and E2.

APPENDIX B: SYMMETRY-PROTECTED ZEROS

The symmetry-protected, i.e., nonaccidental, nodes of the
two pairing states that break TRS are shown in Fig. 5. To
understand how these zeros emerge, we first note that, for
both of the TRS-breaking states transforming under n = E1

and n = E2, the superconducting order parameter has the form
�ka = ϕ(1)

na (k) + iϕ(2)
na (k), leading to the gap function [54]

|�̃ka| =
√[

ϕ
(1)
na (k)

]2 + [
ϕ

(2)
na (k)

]2
, n = E1, E2. (B1)

Consequently, the gap vanishes at k = k0 if and only if
ϕ(1)

na (k0) = ϕ(2)
na (k0) = 0. In the following, we analyze where

this condition is met, discussing the E1(1, i) and E2(1, i) states
separately.

1. Order parameter E1(1, i)

For this IR, the basis functions ϕ
(1)
E1a(k) and ϕ

(2)
E1a(k) have

to transform as kx and ky under C6v . For any k = k∗ with
Rv (Cz

n )k∗ = k∗ (fixed point), n = 2, 3, 6, it thus holds that(
ϕ

(1)
E1a(k∗)

ϕ
(2)
E1a(k∗)

)
=

(
ϕ

(1)
E1a(R−1

v (Cz
n )k∗)

ϕ
(2)
E1a(R−1

v (Cz
n )k∗)

)
= Rxy

v (Cz
n )

(
ϕ

(1)
E1a(k∗)

ϕ
(2)
E1a(k∗)

)
,

(B2)
where Rxy

v (Cz
n ) is the vector representation of Cz

n in the xy
plane. Equation (B2) implies ϕ

(1)
E1a(k∗) = ϕ

(2)
E1a(k∗) = 0 for any

fixed point k∗ of Cz
2, Cz

3, or Cz
6. This leads to the red lines in

Fig. 5(a) through the �, K , and M points.
The second generator of the point group, one of the re-

flections, say, σxz : (kx, ky, kz ) → (kx,−ky, kz ), does not yield

symmetry-protected nodes: While it implies ϕ
(2)
E1a(kx, 0, kz ) =

0, the other component can be nonzero on the kx-kz plane.
As already discussed in the main text, the constraint

ϕ
μ
E1a(k) = ϕ

μ
E1a(−k) combined with Cz

2 leads to

ϕ
μ
E1a(kx, ky, kz ) = −ϕ

μ
E1a(−kx,−ky, kz ) = −ϕ

μ
E1a(kx, ky,−kz ).

(B3)
Together with the boundary conditions (A15), we conclude

ϕ
μ
E1a(kx, ky, kz ) = 0, kz = 0, π/c, (B4)

leading to the two distinct nodal planes in Fig. 5(a). We em-
phasize that generic points in the planes defined by kz = 0 and
kz = π/c are not high-symmetry points, i.e., are invariant only
under the identity transformation of the point group (the little
point group of these momenta is trivial, admitting only 1D
IRs). Consequently, our assumption of nondegenerate bands is
(in general) expected to hold for almost all momenta in these
planes, and Eq. (B4) leads to line nodes for Fermi surfaces
crossing kz = 0, π/c. Note that the presence of these line
nodes is related to the selection rule derived in Ref. [54] which
is based on the observation that ϕ

μ
E1a(k) = ϕ

μ
E1a(−k) does not

allow for a superconducting gap in a 2D system if the order
parameter is odd under a twofold rotation perpendicular to the
plane of the system.

2. Order parameter E2(1, i)

Let us now perform the same analysis for E2. Here ϕ
(1)
E2a(k)

and ϕ
(2)
E2a(k) transform as k2

x − k2
y and 2kxky under C6v , which

leads to important differences. First of all, the transformation
behavior under Cz

6 implies(
ϕ

(1)
E2a(R−1

v (Cz
6 )k)

ϕ
(2)
E2a(R−1

v (Cz
6 )k)

)
= Rxy

v (Cz
3 )

(
ϕ

(1)
E2a(k)

ϕ
(2)
E2a(k)

)
. (B5)

Consequently, the two components have to vanish only at
fixed points, k = k∗, with Cz

nk∗ = k∗, of sixfold (n = 6) and
threefold (n = 3) rotation (but no constraint for fixed points of
Cz

2 = (Cz
6 )3 as [Rv (Cz

3 )]3 = 1). Consequently, there are only
line nodes through the � and K points [but not through the M
point; see Fig. 5(b)].

Just like for E1, the additional reflection symmetries
do not impose further zeros. Furthermore, being even un-
der Cz

2, the analog of Eq. (B3) just reads ϕ
μ
E2a(kx, ky, kz ) =

ϕ
μ
E2a(kx, ky,−kz ) and hence does not impose any nodal planes.

APPENDIX C: SIGNATURES OF SPIN FLUCTUATIONS
AND WILSON RATIO

In this Appendix, we discuss experimental evidence for
the presence of sizable electronic correlations, in particular,
spin fluctuations, which underpin the relevance of electron-
electron interactions for the superconducting instability.

Before presenting our data, we briefly discuss indications
from previous literature. In Ref. [46], signs of spin fluctuations
in La7Rh3 were reported based on the observation that the
susceptibility shows a broad maximum at around 150 K, very
similar to that of pure Pd metal, which is a typical example of
an “incipient ferromagnet.” We point out that similar behavior
was also observed, e.g., in TiBe2 [58], (Ca, Sr)2RuO4 [59],
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FIG. 6. Temperature dependence of the magnetic susceptibility
measured at 1 T. The solid line is a fit to the indicated function form
[61] for χ (T ).

and MnSi [60], which are known examples of systems with
spin fluctuations.

As argued in Ref. [46], we can also get evidence of spin
fluctuations by looking at the temperature dependence of re-
sistivity ρ(T ) near Tc. It has been reported that the La7X3 (X
= Ir, Ru) [46,51] series of compounds, isomorphic to La7Rh3,

exhibits low-temperature ρ(T ), which is similar to YCo2, an
archetype of a spin-fluctuating compound.

In order to quantify the importance of electronic correla-
tions, we have determined the Wilson ratio from our specific
heat data [see Fig. 1(b) in the main text] and our magnetic
susceptibility measurements (see Fig. 6). The Wilson ratio is
defined as the dimensionless quantity [62]

Rw = 4π2k2
Bχ (0)

3(gμB)2γn
, (C1)

where χ (0) is the Pauli susceptibility of the electrons at zero
temperature, γn is the specific heat coefficient, and g and μB

are the Landé factor and the Bohr magneton, respectively. The
Wilson ratio Rw reveals how strong electronic correlations are;
Rw � 1 for the noninteracting electron gas, and Rw � 1–2
for weakly interacting Fermi liquids and it is larger than 2 for
strongly correlated systems.

We have fitted the indicated phenomenological functional
form for χ (T ) to the measured susceptibility to extract
χ (0) = 0.001713 emu/mol Oe. Using γn = 42.06 mJ/mol K2

extracted from the heat capacity data, we estimated the value
of the Wilson ratio to be Rw = 2.966, indicating strong elec-
tronic correlations in La7Rh3.

Together with the time-reversal-symmetry breaking at the
superconducting transition, these observations, in conclusion,
suggest that superconductivity in La7Rh3 is crucially driven
by electron-electron interactions.
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