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We formulate an efficient scheme to perform a Migdal-Eliashberg calculation considering the retardation
effect from first principles. While the conventional approach requires a huge number of Matsubara frequencies,
we show that the intermediate representation of the Green’s function [H. Shinaoka et al., Phys. Rev. B 96, 035147
(2017)] dramatically reduces the numerical cost to solve the linearized gap equation. Without introducing any
empirical parameter, we obtain a superconducting transition temperature of elemental Nb (∼10 K), which is
consistent with experiment. The present result indicates that our approach has a superior performance for many
superconductors for which Tc is lower than O(10) K.
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I. INTRODUCTION

Ab initio calculation of the superconducting transition
temperature (Tc) has been an intriguing challenge in com-
putational condensed-matter physics [1,2]. Based on the
experimental phonon spectrum of elemental Nb and the
Migdal-Eliashberg theory, McMillan [3] and Allen and
Dynes [4] derived a formula to calculate Tc of phonon-
mediated superconductors. While the McMillan-Allen-Dynes
formula has been widely used to estimate Tc of a variety of
superconductors [1], one crucial problem is that it contains
the pseudo-Coulomb interaction parameter μ∗ [5]. Although
there were some efforts made to improve the derivation of
μ∗ [6,7], and to calculate it from first principles [8], μ∗ is
usually treated as an adjustable parameter [2,9]. Thus the
McMillan-Allen-Dynes formula cannot be used for predicting
Tc of unknown superconductors.

On the other hand, it has been well known that the numeri-
cal cost of ab initio momentum-dependent Migdal-Eliashberg
calculation is formidably high [10,11]. Especially when Tc is
relatively low, the retardation effect [5] becomes more and
more difficult to treat numerically [2]. While the typical en-
ergy scale of the dynamical structure of the electron-phonon
interaction is just 10 meV, that of the screened Coulomb
interaction is as large as the bandwidth (W ∼ 10 eV). Thus
in the scheme based on the Matsubara Green’s function, we
need to introduce an extremely large number of Matsub-
ara frequencies (NM) to describe the frequency dependence
of the effective interaction between electrons accurately. In
many cases, NM should be as large as W/T to obtain a well-
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converged solution, where T is the temperature. Therefore,
ab initio Migdal-Eliashberg calculation requires a consider-
ably large amount of memory and computation time, and it
has been performed only for hydride superconductors having
Tc ∼ 200 K under high pressures [2,12,13].

In addition to the approach based on the Migdal-Eliashberg
theory, there is another approach based on an extension of
density functional theory, namely the so-called superconduct-
ing density functional theory (SCDFT) [14–18]. In SCDFT,
the gap equation consists of static quantities that do not de-
pend on frequency, so that we can solve the gap equation
in SCDFT much more efficiently than that in the Migdal-
Eliashberg theory. Indeed, SCDFT calculations have been
performed for many conventional superconductors [2,16–22].

In Ref. [16], the kernel of the SCDFT gap equation was
constructed based on the Kohn-Sham perturbation theory.
There, to describe the mass enhancement effect due to the
electron-phonon coupling, the bare Green’s function rather
than the fully dressed Green’s function was employed. There-
fore, the treatment of the mass enhancement effect in Ref. [16]
is not self-consistent. In fact, there is no guarantee that
this treatment always works successfully. When it does not
work, it is a highly nontrivial challenge to derive a better
exchange-correlation functional [23]. On the other hand, in
the Migdal-Eliashberg theory, we know what kind of diagrams
are considered to dress the Green’s function, and it is easier to
improve the calculation systematically. Thus, the development
of an efficient scheme to perform the Migdal-Eliashberg cal-
culation based on the fully dressed Green’s function is highly
desired.

Recently, a method that can solve the long-standing
problem of a large number of Matsubara frequencies was de-
veloped [24]. This method is based on a compact and efficient
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representation [which we call an intermediate-representation
(IR)] of the Green’s functions proposed by two of the present
authors and their collaborators [24–28]. The IR basis not only
provides us with a compact representation of the Green’s
function, but it also enables us to perform efficient many-
body calculations with the Green’s functions. The number
of basis functions (the IR basis) required to store and recon-
struct the Green’s functions both in imaginary-time space and
Matsubara-frequency space is much smaller than that of the
conventional Legendre polynomials. There, it has been shown
that the conventional uniform Matsubara-frequency grid can
be replaced by a series of sparse sampling points to describe
the frequency dependence of the IR basis and hence Green’s
functions [28]. Using the sparse sampling method, we can re-
construct the Matsubara Green’s function with only about 100
points on the frequency grid, and we can transform efficiently
the imaginary-time Green’s function to the Matsubara Green’s
function and vice versa. It is worth noting that there have
been studies on the acceleration to obtain self-consistent field
solutions [29]. A recent study has also been proposed [30]
to perform Migdal-Eliashberg calculations with improved nu-
merical performance, in which the high-energy part and the
low-energy part of the calculations are treated separately. It
should be noted that the present approach based on the IR
basis is a direct numerical calculation without any approxi-
mations.

In this paper, we formulate a scheme to perform ab ini-
tio Migdal-Eliashberg calculation with the IR basis. We find
that we can solve the anisotropic (momentum-dependent) gap
equation very efficiently. We show the results for two different
superconductors: one is elemental Nb with Tc ∼ 10 K, and
the other is LaH10 under 250 GPa with Tc ∼ 200 K [13].
With these benchmark calculations, we demonstrate that our
approach has a superior performance, especially when Tc is
lower than O(10) K.

II. METHOD

A. Eliashberg equation

In the framework of the Migdal-Eliashberg the-
ory [1,2,31,32], we calculate the superconducting Tc by
solving the gap equation

�m(k, iωn)

= − T

Nk

∑
m′

∑
k′,iωn′

Kmm′ (k − k′, iωn − iωn′ )Fm′ (k′, iωn′ ),

(1)

where �m is the superconducting gap function, Kmm′ is a
pairing-interaction kernel, and Fm′ is the anomalous Green’s
function, which are functions of the electron momenta k, k′,
Matsubara frequencies ωn, ωn′ , and band indices m, m′. Nk

denotes the total number of k-points. Tc is the highest tem-
perature T at which �m is finite.

In the following calculations, we solve the linearized gap
equation to calculate Tc, where the anomalous Green’s func-
tion can be written as

Fm(k, iωn) = |Gm(k, iωn)|2�m(k, iωn), (2)

where Gm(k, iωn) is the electron Green’s function. The ker-
nel Kmm′ consists of the contributions from the attractive
interaction due to electron-phonon coupling and the repulsive
screened Coulomb interaction as

Kmm′ = Kel−ph
mm′ + KC

mm′ . (3)

Let us first focus on the first term and leave the treatment of
the second term in Sec. II B. Considering the electron-phonon
interaction as a scattering process of electrons from momen-
tum k to k − q mediated by a phonon with a momentum q, we
can write Kel−ph

mm′ as

Kel−ph
mm′ (q, iων ) =

∑
λ

∣∣gmm′
λ (q)

∣∣2
Dλ(q, iων ), (4)

where λ and ων are the phonon’s mode index and the Mat-
subara frequency of bosons, respectively. Here we assume
that the electron-phonon interaction matrix element gmk,m′k−q

λ

does not depend on k significantly, thus we take an average
over k around the Fermi level, and we use a k-average one
gmm′

λ (q) in Eq. (4). For conventional superconductors, ignoring

the k-dependence of gmk,m′k−q
λ could be a good approximation,

since the gap function is almost isotropic. This approximation
was successful in the recent studies of sulfur hydrides [12],
and we think it could be good approximation for our following
calculations. For a detailed discussion on this k-average ap-
proximation, we refer the reader to the Appendix. The phonon
Green’s function Dλ(q, iων ) is given as

Dλ(q, iων ) = − 2ωqλ

ω2
ν + ω2

qλ

, (5)

where ωqλ is an energy dispersion of phonons. In the present

study, we calculate ωqλ and gmk,m′k−q
λ by density functional

perturbation theory (DFPT) [33].
Before the electron Green’s function Gm(k, iωn) enters

Eqs. (1) and (2), we consider the self-energy due to the
electron-phonon interaction as

�m(k, iωn)

= − T

Nk

∑
m′

∑
k′,iωn′

Kel−ph
mm′ (k − k′, iωn − iωn′ )Gm′ (k′, iωn′ ).

(6)

The contribution of Coulomb interaction is not included in
Eq. (6), since we usually assume that it is already contained
in the Kohn-Sham energy [2]. By solving the Dyson equation
self-consistently, we obtain the dressed electron Green’s func-
tion

Gm(k, iωn) = 1

iωn − εmk − �m(k, iωn)
, (7)

where εmk is the bare energy dispersion of electrons. If we
have ab initio results for εmk, ωqλ, gmk,m′k−q

λ , and KC
mm′ , we can

solve Eq. (1) and calculate Tc from first principles. It should
be noted that Eq. (1) with the approximation (2) becomes an
eigenvalue problem,

λ̃�m(k, iωn) = − T

Nk

∑
m′

∑
k′,iωn′

Kmm′ (k − k′, iωn − iωn′ )

× |Gm′ (k′, iωn′ )|2�m′ (k′, iωn′ ). (8)
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Here we introduce a parameter λ̃ as an eigenvalue. Using the
power method, we calculate λ̃ for different temperatures. The
maximum eigenvalue λ̃max reaches unity when T = Tc.

B. Screened Coulomb interaction

In the present study, following the SCDFT calculation [17],
we employ the static approximation for the screened Coulomb
interaction, which successfully reproduces the experimental
Tc of elemental Nb. It should be noted that while the plas-
mon effect enhances Tc [34,35], spin fluctuations suppress
Tc [19,36,37]. Thus SCDFT calculation considering these ef-
fects gives similar Tc to that of the static approximation [19].

Based on the results of DFT calculations, the polarizability
function in the random phase approximation (RPA) can be
written as [38]

χGG′ (q, iων )

= 2

Nk

∑
m,m′

∑
k

MG
mk+q,m′kMG′∗

mk+q,m′kXmk+q,m′k(iων ), (9)

with interstate scattering matrix

MG
mk+q,m′k = 〈ψmk+q|ei(q+G)·r|ψm′k〉, (10)

as well as

Xmk+q,m′k(iων ) = fmk+q − fm′k

iων + (εmk+q − εm′k)
, (11)

where ψmk+q and ψm′k represent the Kohn-Sham wave func-
tion, fmk+q and fm′k are the corresponding Fermi distribution
function, and G and G′ are reciprocal-lattice vectors. Then the
RPA dielectric function is

εGG′ (q, iων ) = δGG′ − 4π



1

|q + G|χGG′ (q, iων )
1

|q + G′| .
(12)

With the Fourier transformation of the dielectric function,
combined with the bare Coulomb interaction, we can write
the screened Coulomb interaction

w(r, r′, iων ) =
∫

V
dr′′ ε

−1(r, r′′, iων )

|r′ − r′′| , (13)

as well as its scattering matrix elements between two Kohn-
Sham electrons as

W RPA
mk,m′k′ (iων ) =

∫
V

dr
∫

V
dr′ψ∗

mk(r)ψm′k′ (r)w(r, r′, iων )

×ψ∗
m′k′ (r′)ψmk(r′). (14)

Therefore, we can write the Coulomb kernel in Eq. (3) as the
static mode of the RPA screened Coulomb interaction:

KC
mm′ (q, iων ) = W RPA

mm′ (q, iων = 0), (15)

where q = k − k′, and we have neglected the plasmon effect,
namely the Matsubara frequency dependence of the screened
Coulomb interactions. Taking average of W RPA

mk,m′k′ (iων = 0)
over the Fermi surface, we will get a parameter μC [39] to
estimate the effect of screened Coulomb interaction of the
system as

μCN (0) =
∑

mk,m′k′
W RPA

mk,m′k′ (iων = 0)δ(εmk)δ(εm′k′ ), (16)

where N (0) is the total density of states at the Fermi level.

C. Fourier transformation with the IR basis

When we solve Eqs. (6) and (8), we have to calculate the
convolution of Kel−ph

mm′ and Gm′ and that of Kmm′ and |Gm′ |2�m′ ,
respectively. In general, we can write the convolution of two
functions f and g on the discrete imaginary frequency grid
{iωn} as∑

iωn′

f (iωn − iωn′ )g(iωn′ ) = F−1[F ( f ) ∗ F (g)], (17)

where F and F−1 are the Fourier and inverse Fourier trans-
form between the imaginary frequency space {iωn} and the
imaginary time space {τm}, and the star (∗) denotes the el-
ementwise product of two arrays. The convolution on the
discrete k mesh can be calculated similarly. In the conven-
tional calculation of Tc [12,13], we calculate Eq. (17) using
the fast Fourier transformation (FFT) [40].

However, for systems with relatively low Tc � 10 K, the
conventional FFT method will always be problematic due
to its high computational cost. This is because the uniform
Matsubara frequency grid of {iωn} becomes denser and denser
at low temperature, while the cutoff frequency is always as
high as the bandwidth W � 10 eV. Thus we need to introduce
a huge number of Matsubara frequencies to perform a calcu-
lation for T ∼ 10 K.

To overcome this problem, in the present study we in-
troduce an alternative route combining the FFT and the
IR basis [24–28]. With the precomputed IR basis functions
{U α

l } [27], we have a compact and efficient representation of
the Matsubara Green’s function:

Gα (iωn) =
lmax∑
l=0

Gα
l U α

l (iωn), (18)

Gα (τm) =
lmax∑
l=0

Gα
l U α

l (τm), (19)

where α = F,B denotes the fermionic and bosonic Green’s
functions, respectively. The expansion of the Green’s func-
tions using the IR basis depends on two dimensionless
parameters, � and lmax, where � = βωmax, β = 1/T is an
inverse temperature, and ωmax is a cutoff frequency of the
spectral function. The value of � controls the truncation errors
due to the frequency window. The number of basis functions
lmax grows only logarithmically with respect to � [26] (e.g., a
typical value of lmax for � = 105 is 136, and lmax for � = 107

is 201). In the present study for Nb and LaH10, we need no
more than 200 IR basis functions.

We solve from Eq. (6) to (8) by means of the sparse sam-
pling method based on the IR basis [28]. In this method, one
takes sampling points in imaginary time {τ̄ α

k } (k = 0, 1, . . . )
according to the distribution of lmax roots of the highest-
order basis function U α

lmax
(τ ). Similarly, one takes Matsubara

frequency sampling points {iω̄α
k } (k = 0, 1, . . . ) according to

the distribution of the sign changes of U α
lmax

(iωn). This pro-
cedure always generates lmax or lmax + 1 sampling points,
whose distribution depends on the statistics α and � by con-
struction. The sampling points are sparsely and nonuniformly
distributed, covering from low- to high-frequency regions
more efficiently than uniform grids.
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When iωn is replaced by iω̄α
k in Eq. (18), U α

l ({iω̄α
k }) can be

regarded as a matrix element with the dimension index l and
the sampling point index k. Thus, one can evaluate the ex-
pansion coefficients Gα

l from Gα (iωn) given on the sampling
points by a least-squares fitting procedure with a precomputed
(pseudo) inverse of the fitting matrix. This procedure is nu-
merically stable because the sampling points are chosen so
as to minimize the condition number of the fitting matrix. The
inverse transform from the right-hand side to the left-hand side
is a simple matrix multiplication.

These two transforms together with their counterparts
for the τ sampling enable efficient transforms between the
imaginary-time and Matsubara-frequency space via the IR
basis. They are much more efficient than the conventional
FFT method. For example, in Sec. III A we will demonstrate
that in the calculation of Nb with Tc ∼ 10 K, the size of
the fitting matrix is around 150 × 150 with � = 105, while
the FFT requires at least 4000 Matsubara frequencies to give
comparable results. We refer the reader to Ref. [28] for more
technical details on the sparse sampling method.

D. Calculation conditions

In this paper, we calculate Tc of elemental Nb and LaH10.
Elemental Nb has the body-centered-cubic lattice. The lattice
parameter is optimized as a = 3.31 Å, where the experimental
value is a = 3.30 Å. Following Ref. [13], we take the crystal
structure of the Fm3̄m face-centered-cubic phase of LaH10

at 250 GPa with lattice constant a = 4.84 Å. For the DFT
calculation, we use the QUANTUM ESPRESSO code [41] with the
exchange correlation functional proposed by Perdew, Burke,
and Ernzerhof [42]. We use a projector-augmented wave
(PAW) [43] pseudopotential for Nb and ultrasoft pseudopo-
tentials [44] for La and H atoms. All these pseudopotentials
are provided in PSLibrary [45]. The cutoff energy for the
plane-wave expansion of the wave functions is set to be 70 Ry
for Nb and 50 Ry for LaH10. The cutoffs for the charge density
are 280 Ry for Nb and 500 Ry for LaH10. For the DFPT cal-
culation, we use the package in QUANTUM ESPRESSO [41]. For
Nb, we take a 20 × 20 × 20 and 18 × 18 × 18 k-mesh for a
10 × 10 × 10 and 9 × 9 × 9 q-mesh, respectively. For LaH10,
we use a 12 × 12 × 12 k-mesh and a 6 × 6 × 6 q-mesh.

In the calculation of Eqs. (6) and (8), we use the conven-
tional FFT to take a convolution on the k-mesh, and we use
the IR-basis to take a convolution on the Matsubara frequency
grid. For Nb, we use the number of k-points ranging from
36 × 36 × 36 to 100 × 100 × 100 for sampling in the first
Brillouin zone to check the convergence. We use a 36 × 36 ×
36 k-mesh for LaH10.

For the calculation of the screened Coulomb interaction
for Nb, we use a 18 × 18 × 18 and 20 × 20 × 20 k-mesh for
a 9 × 9 × 9 and 10 × 10 × 10 q-mesh, respectively. Twenty
unoccupied bands are used for Nb. For LaH10, we use a
12 × 12 × 12 k-mesh, a 6 × 6 × 6 q-mesh, and 30 unoccu-
pied bands. The cutoff energy for the dielectric function is
set to be 70 Ry for Nb and 50 Ry for LaH10. The resulting
Coulomb parameter in Eq. (16) is 0.24 for LaH10 and 0.43 for
Nb. In the following calculations, we use W RPA

mm′ (q, iων = 0) as
the screened Coulomb kernel. For computing IR basis func-
tions and the sampling points, we use the IRBASIS library [27].

 10

 20

 50

 100

 200

 10  100  1000

T c
 (

K
)

Number of Matsubara frequencies

LaH10
Nb

FIG. 1. NM (number of Matsubara frequencies) dependence of Tc

for Nb and LaH10 at 250 GPa. Results are shown in a logarithmic
scale. Tc for Nb is calculated using a 9 × 9 × 9 q-mesh and a 36 ×
36 × 36 k-mesh. Data points are connected by lines.

III. RESULT AND DISCUSSION

A. Convergence along Matsubara frequencies

To solve the Eliashberg equation based on the Matsubara
Green’s functions, a large NM has to be employed in the
calculation, which causes numerical difficulty due to the ex-
pensive memory and computational time. Since the Matsubara
frequencies are proportional to T , the required number of NM

increases linearly with decreasing T . Thus, it is extremely
difficult to solve the equation in a system with low Tc. In
this section, we will demonstrate this problem by comparing
calculations of Nb and LaH10 at 250 GPa, one with Tc about
10 K and the other with a high Tc around 230 K.

Figure 1 shows the numerical convergence of Tc for Nb as
well as LaH10, calculated with different numbers of NM. Since
LaH10 has a high Tc ∼ 230 K, the whole range of energy bands
is covered with only several hundred Matsubara frequencies,
therefore the result of Tc reaches convergence. However, with
the same number of Matsubara frequencies, we cannot get
a converged result of Tc for Nb, because Tc for Nb is much
lower.

In Fig. 2, we compare the convergence of λ̃max for Nb and
that for LaH10 at 250 GPa (left panel), and we also show the
results for Nb based on the IR basis method (right panel). For
LaH10, only a few hundred Matsubara frequencies are enough
to obtain the converged value because T is sufficiently high
(271.6 K). On the other hand, for Nb we need at least 4096
Matsubara frequencies to reach convergence, which is due to
the low temperature used in the calculation (19.7 K). How-
ever, as is seen in the right panel of Fig. 2, λ̃max of the IR basis
method reaches convergence at � = 104, which only requires
lmax = 103 basis functions. Thus, it is obvious that the IR basis
method performs better in Nb. Note that the IR basis method
gives the same λ̃max as the conventional method in the limit
of large NM. In addition, comparing the computational time
for a single calculation of convolution, the IR basis method
with � = 105 performs 20 times faster than the conventional
FFT method with 4096 Matsubara frequencies. In the follow-
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Number of Matsubara frequencies

LaH10
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FIG. 2. Left panel: Eigenvalue λ̃max vs number of Matsubara frequencies (NM) for Nb and LaH10 at 250 GPa. Based on the conventional FFT
method, the eigenvalue is calculated with T fixed at 19.7 K for Nb, and 271.6 K for LaH10. The eigenvalue reaches numerical convergence with
NM = 512 for LaH10, while it requires NM = 4096 for Nb. Data points are connected by lines. Right panel: eigenvalue λ̃max vs dimensionless
parameter � for Nb and LaH10 in the IR basis method. Temperature T is fixed at 19.7 K for Nb and 271.6 K for LaH10. The horizontal dash-
dotted lines in both panels indicate that the IR basis method gives λ̃max = 0.913 for Nb and λ̃max = 0.925 for LaH10, which is consistent with the
converged value of λ̃max for NM → ∞. Calculations for Nb in both panels are calculated using a 9 × 9 × 9 q-mesh and a 36 × 36 × 36 k-mesh,
and the results for LaH10 in both panels are calculated using a 6 × 6 × 6 q-mesh and a 36 × 36 × 36 k-mesh.

ing calculations we set � = 105, where lmax = 136 and the
number of sampling Matsubara frequency points for fermions
is 138.

B. Critical temperature and gap function

In addition to the convergence test for NM, we should
also consider the convergence on a discrete k-mesh. Numer-
ical results of different q-meshes and k-meshes are shown
in Fig. 3. With the eigenvalue λ̃ in Eq. (1), we can solve

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  10  20  30  40  50

λ~
m

ax

T (K)

Tc
exp.

Tc
∞

q-103, k-1003

q-93, k-723

q-103, k-603

q-93, k-363

 10

 12

 14

 16

 18

 0  0.01  0.02  0.03

T c
 (

K
)

Nk
-1

FIG. 3. Eigenvalue λ̃max vs temperature T for Nb. Circles with
different colors are the results of different meshes with different
numbers of sampling k points and q points. Solid lines with cor-
responding colors are fitting results using a fitting function λ̃max =
A + B lnT . The crossing points of the fitting lines and horizontal
dashed line λ̃max = 1 are Tc. The numerical result of Tc for a 100 ×
100 × 100 k-mesh is 13.2 K. The inset shows N−1

k dependence of
Tc, as well as a linear fitting function Tc = T ∞

c + aN−1
k as a guide

to the eye, where Nk is the number of k points in one dimension.
The extrapolation result of Tc with Nk → ∞ is T ∞

c = 11.4 K. The
experimental result of Tc for Nb is T expt.

c = 9.3 K [46].

the equation at different temperature. Then we can get a
numerical result of Tc, as shown in Fig. 3. All the results of
Tc with different numbers of sampling k points are shown in
the inset of Fig. 3. For the calculation with a 36 × 36 × 36
and 72 × 72 × 72 k-mesh, a 9 × 9 × 9 q-mesh is used to
calculate the screened Coulomb interaction. In the calculation
on the other k-meshes, the screened Coulomb interaction is
calculated using a 10 × 10 × 10 q-mesh. Linear interpolation
is employed to use the screened Coulomb interaction data on
the coarse q-mesh in the Eliashberg calculation on the dense
k-mesh. Tc for a 100 × 100 × 100 k-mesh is 13.2 K. The de-
viation between the results with different k-mesh calculations
increases upon lowering the temperature since the discrete
k-mesh approximation becomes less accurate. We can expect
that the numerical result will become closer to the experimen-
tal value with a much denser k-mesh. A linear extrapolation
of the results to the infinite number of sampling k points gives
T ∞

c = 11.4 K. Although this value is just a reference, it is
consistent with the experimental result of T exp.

c = 9.3 K [46].
Although we have neglected the dynamical structure of

the screened Coulomb kernel, our numerical result turns out
to have good agreement with the experimental Tc, which
might be because we have neglected both the plasmon ef-
fects and spin fluctuations. Since the plasmon effects increase
Tc and spin fluctuations decrease Tc, these two effects on
Tc might counteract each other eventually. Calculations in-
cluding spin fluctuations together with a dynamical Coulomb
kernel [19] will be addressed in future work. We note that
the value of Tc in Ref. [17] is slightly lower than that
of the present study. This might be ascribed to the fact
that the mass enhancement in the SCDFT is not calculated
self-consistently.

In Fig. 4, we plot the normalized eigenfunction � of the
Eliashberg equation (8) at k close to the Fermi level as a
function of the Matsubara frequency. �(iωn) changes rapidly
in the range of 10−2–10−1 eV, which is a typical energy
scale of the Debye frequency. This means that the behavior
of �(iωn) in this scale is dominated by the electron-phonon
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FIG. 4. Normalized eigenfunction � in the Eliashberg equation
for Nb as a function of Matsubara frequency ωn. Frequency sampling
points are sparsely distributed along the frequency axis. Temperature
is set to 39.4 K, and we use a 100 × 100 × 100 k-mesh. The wave
number is fixed at the � point (0,0,0) in the Brillouin zone, and we
choose the band just above the Fermi level. Data points are connected
by lines.

interaction. �(iωn) becomes negative for ωn � 10−1 eV due
to the retardation effect. It should be noted that the sampling
frequency points in Fig. 4 are sparsely sampled along the
imaginary frequency axis. This confirms our discussions in
Sec. II C that our scheme based on the IR basis can easily
reach the high-energy region ∼10 eV without introducing a
huge number of Matsubara frequencies [47].

IV. CONCLUSION

We have formulated a fully ab initio scheme to perform
calculations on the superconducting transition temperature
Tc, combined with the recently proposed intermediate-
representation basis of the Green’s function. With consider-
ation of the fully dressed Green’s function, our numerical
result reproduced the experimental result without a consid-
erably large memory and computation time cost, which is
always troublesome in the conventional approach. It provides
an efficient and promising approach to calculate and predict
properties of superconducting systems at T � 10 K.
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APPENDIX: K-DEPENDENCE OF THE
ELECTRON-PHONON INTERACTION

MATRIX ELEMENTS

In our calculation we have used an averaged electron-
phonon interaction kernel Kel−ph

mm′ (q, iων ), where the averaged

matrix element is written as

∣∣gmm′
λ (q)

∣∣2 =
∑

k

∣∣gmk,m′k−q
λ (q)

∣∣2
δ(εmk)δ(εm′k−q)∑

k δ(εmk)δ(εm′k−q)
. (A1)

When the bands m and m′ are away from the Fermi
level and |gmm′

λ (q)|2 in Eq. (A1) is smaller than a
threshold value, then the averaged matrix element is
approximated as

∣∣gmm′
λ (q)

∣∣2 = 1

Nk

∑
k

∣∣gmk,m′k−q
λ (q)

∣∣2
. (A2)

We calculate here the Eliashberg spectral function, and we
examine if the k-average approximation in Eqs. (A1) and (A2)
is a good approximation for our calculation. We first calculate
the Eliashberg function using QUANTUM ESPRESSO code, in
which the Eliashberg function is defined as

α2F (ω)

= 1

N (0)

∑
mk,m′k′

∑
λ

∣∣gmk,m′k′
λ

∣∣2
δ(εmk)δ(εm′k′ )δ(ω − ωq,λ),

(A3)
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FIG. 5. (a) Eliashberg function for Nb. (b) Eliashberg function
for LaH10 at 250 GPa. The red lines are results given by k-dependent
matrix elements using the QUANTUM ESPRESSO code, and the blue
dashed lines are results given by k-averaged matrix elements using
our Migdal Eliashberg calculations. The broadening of the δ-function
is set to be 0.01 Ry for both k-average and k-dependent cases. Results
for Nb are calculated using a 9 × 9 × 9 q-mesh and a 36 × 36 ×
36 k-mesh, and results for LaH10 at 250 GPa are calculated using
a 6 × 6 × 6 q-mesh and a 36 × 36 × 36 k-mesh.
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and q = k − k′. Then we used the k-averaged electron-
phonon coupling matrix elements |gmm′

λ (q)|2, which are used
in our Migdal-Eliashberg calculations, to replace the k-
dependent matrix elements |gmk,m′k′

λ |2 in Eq. (A3), and we
calculate the corresponding α2F (ω); then we compare the
results of two Eliashberg functions.

As is shown in Fig. 5, the results of two Eliashberg func-
tions prove that our k-averaged coupling matrix elements
|gmm′

λ (q)|2 are a good description of the electron-phonon
coupling properties in these two typical phonon-mediated su-
perconductors, which agrees with our discussion of Eq. (4) in
Sec. II.
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