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Towards dark space stabilization and manipulation in driven dissipative Majorana platforms
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We propose driven dissipative Majorana platforms for the stabilization and manipulation of robust quantum
states. For Majorana box setups, in the presence of environmental electromagnetic noise and with tunnel
couplings to quantum dots, we show that the time evolution of the Majorana sector is governed by a Lindblad
master equation over a wide parameter regime. For the single-box case, arbitrary pure states (“dark states”) can
be stabilized by adjusting suitable gate voltages. For devices with two tunnel-coupled boxes, we outline how
to engineer dark spaces, i.e., manifolds of degenerate dark states, and how to stabilize fault-tolerant Bell states.
The proposed Majorana-based dark space platforms rely on the constructive interplay of topological protection
mechanisms and the autonomous quantum error correction capabilities of engineered driven dissipative systems.
Once a working Majorana platform becomes available, only standard hardware requirements are needed to

implement our ideas.

DOLI: 10.1103/PhysRevB.102.134501

I. INTRODUCTION

It has been known for a long time that the dynamics
of open quantum systems subject to external driving forces
and coupled to environmental modes (‘“heat bath”) can be
described by master equations [1-3]. For a Markovian bath,
the memory time of the bath represents the shortest timescale
of the problem. The master equation is then of Lindblad type
[4,5], where a Hamiltonian describes the coherent time evolu-
tion of the system’s density matrix and a Lindbladian captures
the dissipative dynamics. (We here use “Lindbladian” for the
dissipator terms in the master equations below.) The Lind-
blad equation is the most general Markovian master equation
which preserves the trace and positive semidefiniteness of the
density matrix.

A major development over the past two decades has come
from the realization that driven dissipative (DD) quantum sys-
tems can be stabilized in a pure quantum state by appropriate
engineering of the driving fields and of the coupling to the
dissipative environment [6—19]. Such states are eigenstates of
the corresponding Lindbladian with zero eigenvalue, i.e., the
operation of the Lindbladian leaves them inert. We therefore
will refer to these DD stabilized states as dark states in what
follows. Rather than viewing the coupling to a dissipative
environment as foe (e.g., leading to decoherence of quantum
states and undermining the utilization of similar platforms
for quantum information processing), the combined effect
of drive and dissipation can thus be harnessed to engineer
quantum-coherent pure states. Going beyond dark states, the
stabilization of a dark space [20-22]—a manifold spanned
by multiple degenerate dark states — raises the prospects
of employing such systems as viable platform for quantum
information processing. Reference [23] reports on recent ex-
perimental results in this direction.

Using trapped ions or superconducting qubits, the above
ideas have already allowed for first qubit stabilization
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experiments [23-25], for the implementation of quantum
simulators [26,27], and for the generation of selected highly
entangled multiparticle states [28—31]. Systems composed of
many coupled qubits stabilized by DD mechanisms could
eventually result in universal quantum computation platforms
[32,33], where fault tolerance is the consequence of au-
tonomous error correction [34] due to the engineered dis-
sipative environment, without the need for active feedback
[19,35-38]. Recent experimental progress on autonomous
error correction in DD qubit systems has been described in
Refs. [29,31,39,40]. At present, reported fidelities in DD qubit
setups (which by construction are stable in time) are typically
below 90% for state stabilization, with significantly lower
fidelities for single- or two-qubit gate operations.

Another important and at first glance unrelated develop-
ment towards the (so far elusive) goal of fault-tolerant univer-
sal quantum computation comes from the field of topological
quantum computation [41]. By using topological quasipar-
ticles [42] for encoding and processing quantum informa-
tion, the latter is nonlocally distributed in space and thereby
protected against local environmental fluctuations. In general
terms, for practically useful and scalable DD systems with
multiple degenerate dark states, the coupling to the environ-
ment has to be carefully engineered such that it is blind to
all system operators acting within the targeted dark space
manifold [43]. It will thus be imperative to avoid residual
(uncontrolled and unwanted) noise sources. In that regard,
platforms harboring topological quasiparticles may offer a key
advantage since they should come with a strongly reduced
intrinsic sensitivity to residual environmental fluctuations as
compared to conventional systems. The simplest candidate for
topological quasiparticles is given by Majorana bound states
(MBSs), which are localized zero-energy states in topological
superconductors. For Majorana reviews, see Refs. [44-50].
Topological codes relying on MBSs have so far been dis-
cussed in the context of active error correction [51-61], where
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periodically repeated stabilizer measurements are needed for
fault tolerance. It remains an important challenge to devise
feasible and scalable Majorana platforms exploiting passive
error correction strategies, where DD mechanisms serve to
continuously measure the system in a way that the desired
highly entangled many-body quantum state becomes stabi-
lized automatically, see, e.g., Ref. [62]. While this ambitious
goal is beyond the scope of our work, we here analyze related
questions for DD systems with up to eight MBSs.

For a mesoscopic floating (not grounded) topological su-
perconductor harboring four MBSs, strong charging effects
[63] imply that the ground state is doubly degenerate under
Coulomb valley conditions (see Sec. I A for details). Such
a superconducting island is therefore a good candidate for a
topologically protected Majorana qubit, named Majorana box
qubit [58] or tetron [59]. Thanks to the nonlocal Majorana
encoding of quantum information, such a qubit allows for
unique addressability options via electron cotunneling when
quantum dots (QDs) or normal leads are attached to the
island by tunneling contacts, see also Refs. [64,65]. Majorana
qubits have not yet been experimentally realized. However,
the recent emergence of new Majorana platforms (see, e.g.,
Refs. [66-71]) in addition to the semiconductor nanowire
platform mainly explored so far [49,50] indicates that they
may be available in the foreseeable future. We note that
alternative Majorana qubit designs have been put forward,
e.g., in Refs. [52,53,55]. Many of the ideas discussed below
can be adapted to those setups as well.

A. Motivation and goals of this work

We here show that once available, Majorana box devices
yield highly attractive platforms for implementing DD pro-
tocols aimed at the realization of dark states and/or dark
spaces. The driving field is applied to the tunnel link connect-
ing a pair of QDs, and dissipation is due to environmental
electromagnetic noise. To the best of our knowledge, apart
from a distantly related proposal for the DD stabilization of
Majorana-based quantum memories [72], no studies of DD
Majorana systems have appeared in the literature so far. We
note that the DD engineering of MBSs in cold-atom based
Kitaev chains [12,13,18] differs from our ideas: We consider
topological superconductors harboring native MBSs, and then
subject the resulting Majorana systems to DD stabilization
and manipulation protocols targeting dark states and/or dark
spaces. Our unique platform enables us to employ QDs as
external knobs to be used not only for state engineering but
also for state manipulation.

Our motivation for designing and studying novel DD stabi-
lization and manipulation schemes using Majorana platforms
rests on several arguments and expectations.

(1) Since uncontrolled environmental effects are largely
suppressed by topological protection mechanisms, one may
reach higher fidelities than those reported so far for DD dark
state or dark space implementations using conventional (topo-
logically trivial) platforms. This point should be especially
important for high-dimensional dark spaces, where residual
noise effects could break the degeneracy of the dark states
spanning the dark space manifold [43]. Such spaces are highly
attractive candidates for implementing fault-tolerant quantum

computing platforms. These topological protection elements
are especially important for platforms where the Lindblad
spectrum is not gapped.

(2) It is known that for large-scale Majorana surface codes,
where active feedback is needed for code stabilization, the
fault-tolerance error threshold is much more benign than for
conventional bosonic surface codes, see Refs. [54,57,73] and
references therein. In particular, in Majorana surface codes
no ancilla qubits are needed for stabilizer readout at all. We
expect that our dark space constructions using MBS systems
can allow for similar fault tolerance advantages over conven-
tional dark space realizations. However, more work is needed
to reach a quantitative conclusion on this point.

(3) The DD stabilization and manipulation of Majorana-
based dark states or dark spaces offers several practical advan-
tages. In particular, the robustness of such states as quantified
by the dissipative gap is expected to be superior to quantum
states that are encoded without DD mechanisms in native
Majorana devices, see Sec. III. Moreover, a small overlap
between MBSs is often tolerable, without causing dephasing
of dark states, cf. Sec. III E.

(4) When steering a state into the dark space or manipulat-
ing a state within the dark space, one may need to maximize
its purity, having in mind quantum information manipulation
protocols. For this purpose, we may adiabatically switch on
a suitable perturbation either to the Lindbladian dissipator
or to the accompanying Hamiltonian, thereby breaking the
degeneracy of the dark space. In this manner, one can re-
vert to a specific pure dark state, manipulate this state, and
subsequently adiabatically switch off this perturbation again.
The DD Majorana platforms discussed below offer convenient
tools to switch on and off such degeneracy-breaking perturba-
tions.

The dynamics of the Majorana degrees of freedom in a
device such as the one depicted in Fig. 1 will here be discussed
on several conceptual levels. We show that our DD protocols
indeed give rise to master equations of Lindblad type. These
equations contain both a Hamiltonian (governing the unitary
part of the time evolution) and a Lindbladian (causing dissi-
pative dynamics). By choosing suitable parameter values as
discussed in Sec. III, we demonstrate that an arbitrary dark
state can be stabilized. In more complex two-box devices,
see Sec. IV, the Lindbladian can be engineered to support
a multidimensional dark space. As a generic initial state is
driven towards the dark space, we show (see also Ref. [74])
how to optimize the purity, the fidelity (i.e., the overlap of the
state with the target dark space), and the speed of approach.

A major benefit of applying DD strategies to a topologi-
cally nontrivial system comes from the insight that one can
here implement unidirectional cotunneling processes in an
elementary and practically useful manner. Using Majorana
boxes which are tunnel-coupled to two quantum dots, we
show that the combination of driving fields, energy relax-
ation, and the tunability of tunneling amplitudes allows for
the controlled design of directed cotunneling processes. The
latter directly determine the important jump operators in the
Lindblad equation.

In our accompanying short paper [74], we provide a sum-
mary of our key ideas and apply them to show that in a
two-box setup, one can stabilize and manipulate ‘dark qubit’
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FIG. 1. Schematic sketch of a driven dissipative Majorana box
setup. The superconducting island harbors four Majorana operators
Vv, three of which are tunnel-coupled to two single-level quantum
dots (QDs, in blue). The Majoranas could be realized as end states
of two parallel topological superconductor nanowires (green) which
are electrically connected by a superconducting bridge (orange) [58].
The tunnel links connecting QDs to MBSs are shown as dashed
lines. The phases f; in Eq. (45) are also indicated. Due to the large
box charging energy, transport between different QDs through the
Majorana island proceeds only via cotunneling processes. These
cotunneling processes can be inelastic, involving the emission or
absorption of photons from the dissipative electromagnetic environ-
ment. In addition, a driving field can pump electrons via a tunnel link
between the QDs (solid line).

states. In effect, the topologically protected native Majorana
qubit discussed in Refs. [58,59] (which exists in a single box)
is thereby stabilized by adding another protection layer due to
DD mechanisms (at the prize of adding a second box).

B. Overview

In order to guide the focused reader through this long
paper, we here provide a short overview summarizing the
content of the subsequent sections. In addition, Table I sum-
marizes the key symbols and notations used throughout this
paper.

In Sec. II, we introduce the theoretical concepts and physi-
cal ingredients needed for the DD stabilization and manipula-
tion of dark states using a single Majorana box, see Fig. 1, and
we derive the dynamical equations. Our model is introduced
in Sec. IT A, where the dissipation arises from environmental
electromagnetic fluctuations and the drive is applied to a pair
of QDs. We subsequently derive the Lindblad equation [1-5]
governing the time evolution of the combined QD-Majorana
system in Sec. II B, where we also present numerical results
for the dynamics obtained from this Lindblad master equation.
Remarkably, up to initial transient behaviors, one can describe
the dynamics in the Majorana sector in terms of a reduced

TABLE 1. List of important symbols.

Symbol Meaning First appearance

Model parameters:

A drive amplitude (@)

o dimensionless system-bath coupling for Ohmic bath (23)

Bj phases of the tunnel couplings 2, (45)

Ec charging energy of the Majorana box (1)

€ level energy of the respective quantum dot 3)

8o cotunneling scale for single-box setup, go = 12/Ec (11)

8 cotunneling scale for double-box setup (89)

Ajy tunnel coupling between QD fermion d; and Majorana operator y, (6)
(“state design parameters”)

M number of MBSs on Majorana box (12)

wo drive frequency (@]

o8 cut-off frequency for Ohmic bath 21

T temperature )

to overall scale of tunnel couplings between QDs and Majorana box @)

1R tunnel coupling connecting both Majorana boxes, see Sec. [V (81)

Dynamical quantities:

D dark space dimension Sec. lIIE4

Ay vym dissipative gap for the respective dark state e.g., see (58)

hih n Lamb shift parameters for full and reduced Lindblad eq., respectively (43), (54)

Ji, Ty, Hy, jump operators, transition rates, and Hamiltonian for full Lindblad eq. (35), (43), (46)

J L, I L I-7L jump operators, transition rates, and Hamiltonian for reduced Lindblad eq. (44), (53), (54)

Ki_i,. 6 r ; jump operators and transition rates for two-box setup (86), (90)

P occupation probability of high-lying QD (&28)

p() reduced density matrix for combined QD-Majorana system (32)

om(t) reduced density matrix for the Majorana sector (50)

(Te, Ty, T2) Pauli operators for QD pair in single-occupancy regime Ny = 1 (5)

0y, 0 fluctuating electromagnetic phases 6), (8)

ij, Wx,y,z fluctuating cotunneling operators (12), (14)

Wik, Wey.z cotunneling operators for §; , = 0 (18)

X,Y,Z2) Pauli operators of Majorana box 2)
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Lindblad equation, where the QD degrees of freedom have
been traced out. We describe this step in Sec. IIC, along
with a discussion of the conditions under which this reduced
Lindblad equation applies. All of our subsequent results are
obtained by employing this reduced Lindblad equation.

In Sec. III, we then describe dark state stabilization proto-
cols for the single-box device in Fig. 1. We begin in Sec. I[II A
with the case of Pauli operator eigenstates, followed by the
stabilization of the so-called magic state in Sec. IIIB. In
Sec. IIIC, the role of increasing temperature on our sta-
bilization protocols is examined. Interestingly, as shown in
Sec. III D, we find that for certain parameter settings, dark
states can be stabilized even in the absence of any drive.
However, the field-free stabilization is limited to very special
conditions and is also characterized by rather small dissipative
gaps. In practical implementations, it will thus be preferable
to employ a driving field. Finally, in Sec. IIIE, we discuss
additional points, e.g., concerning the role of Majorana state
overlaps or how to perform a parity readout of the stabilized
states.

In Sec. IV, we turn to a setup with two coupled boxes and
present our DD stabilization and manipulation protocols for
quantum states that belong to a dark space manifold. The
Lindblad equation for this setting is derived in Sec. IV A.
We explain how one can engineer a degenerate dark space
in Sec. IV B. This topic is the main focus of Ref. [74], and
the discussion is therefore kept rather short here. Finally, in
Sec. IV C, we show how to stabilize Bell states in the two-box
setting.

The paper concludes with a summary and an outlook in
Sec. V. Technical details and additional information can be
found in three Appendices. Let us also remark that we often
use units with 1 = kg = 1.

II. DRIVEN DISSIPATIVE MAJORANA DYNAMICS

We start this section by discussing the Majorana box
[58,59]. Our DD model as well as the physical assumptions
behind it are explained in Sec. Il A. We then derive the Lind-
blad master equation governing the dynamics of the reduced
density matrix of the Majorana sector. To that end, we first
trace over the environmental degrees of freedom in Sec. 11 B,
and then over the QD fermions in Sec. II C.

A. Model and low-energy theory

In this section, we introduce the model for the DD Majo-
rana setup illustrated in Fig. 1. We also outline the hardware
ingredients needed for implementing our dark state stabiliza-
tion and manipulation protocols. For concreteness, we refer
to a possible realization using proximitized semiconductor
nanowires [58,59]. In addition, we describe the effective low-
energy Hamiltonian obtained after the high-energy charge
states on the Majorana island are projected away.

1. Majorana box

Consider the setup depicted in Fig. 1, where a floating topo-
logical superconductor island harbors M zero-energy MBSs.
For this case we have M = 4, but for generality, we shall allow
for general (even) values of M. The MBSs correspond to the

Majorana operators y, = ¥, , with anticommutator {y,, Y./} =
28,y and v =1,..., M. As indicated in Fig. 1, they could
be realized as end states of two parallel InAs/Al nanowires
[49]. We consider class-D topological superconductor wires,
where time reversal symmetry is broken by a magnetic field
[44]. Both nanowires are electrically connected by a super-
conducting bridge such that the entire island has a common
charging energy, Ec = ¢?/(2C), with typical values of the
order Ec ~ 1 meV [49]. The isolated island (“box”) has the
Hamiltonian (we work in the Schrodinger picture for now)

Hyox = Ec(N — N,)*. (1)

The operator N refers to the total electron number on the
box, and N, is a tunable backgate parameter. In Eq. (1),
we have neglected hybridization energies resulting from a
finite overlap between different MBS pairs. These energy
scales are exponentially small in the respective MBS-MBS
distance. As will be discussed in Sec. III E, a small hybridiza-
tion between MBSs is often tolerable for DD-generated dark
states or dark spaces. For the native Majorana qubit, such
effects cause dephasing.

Our theory requires several conditions to be satisfied. First,
we assume that our DD protocols only involve energy scales
well below both E¢ and the superconducting (proximity) gap
A. This assumption implies that the ambient temperature sat-
isfies T < min{E¢, A}, which typically requires temperatures
below 100 mK in semiconductor-based Majorana platforms
[49]. We can then neglect the effects of above-gap contin-
uum quasiparticles, as has tacitly been assumed in Eq. (1),
which otherwise constitute an intrinsic source of dissipation
in the Majorana sector. In practice, one also needs to ensure
that accidental low-energy Andreev states are not accessible,
see Ref. [75] for a recent discussion. Second, we consider
Coulomb valley conditions [76,77], i.e., N, is tuned close to
an integer value and the box is only weakly coupled to the
QDs in Fig. 1. In that case, Hyox leads to charge quantization,
which dictates the fermion number parity of the island. At
temperatures well below the superconducting gap, only the
Majorana sector of the full Hilbert space of the box has to be
kept [63]. For M = 4, we arrive at a parity constraint in the
Majorana sector, y;y2y3ys = 1 [78], and the lowest-energy
island state is then doubly degenerate. The corresponding
Pauli operators associated with the resulting Majorana qubit
are represented by Majorana bilinears [56,57,78],

Z=iyy2. @

The fact that Pauli operators correspond to spatially separated
pairs of Majorana operators allows for unusually versatile
qubit access options. The qubit is encoded either in the even
parity sector, i.e., by using the two degenerate states with
fermionic occupation number N,, = 0 and 2 in the Majorana
sector (with one Cooper pair less for the N,, = 2 state), or in
the odd parity sector, where both states have N,, = 1.

X =iyivs, Y =iy,

2. Quantum dots

We next turn to the Hamiltonian describing the two QDs,
Hjy, in Fig. 1. We start from a general single-dot Hamiltonian,
Hop = Y, hadld, + ec(i — ng)?, where o labels electron
spin and orbital degrees of freedom, d,, are fermion operators

134501-4
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with 1 = Za d;da, h, describes a single-particle energy, and
€c is the (large) dot charging energy [59,76,77,79]. On low
energy scales, the dot can then effectively be described by
a single spinless fermion level. Denoting the corresponding
level energy by €; for QD j = 1, 2, one arrives at

Ho= Y edid, 3)

j=1.2

see Ref. [59] for details. The energies €; can be controlled
by variation of the gate voltage parameter n,. Without loss of
generality, we take €, > €; throughout, where both energies
should satisfy |€;| « min{Ec, A}. In addition, we employ a
time-dependent electromagnetic driving field which can pump
single electrons between the two QDs via a tunnel link. To
that end, a suitable AC voltage can be applied to a gate
electrode located near this link. The respective Hamiltonian
contribution is given by [80]

Hyive () = w(t)dfd2 + H.c., w(t) =1t + 2Acos (wot),

“)
where w( denotes the drive frequency and A the drive ampli-
tude. In what follows, we assume that the static contribution
vanishes, t;, = 0, because a small coupling #;, # 0 will not
affect the dissipator in the Lindblad equation, see Eq. (33)
below, and thus does not change the physics in a qualitative
manner.

In this work, we consider the Coulomb valley regime where
the total charge on the box is fixed by the charging term
in Eq. (1) on timescales 6z > 1/E¢ [81]. The total particle
number on the QDs, Ny = ) ] d;d i is therefore also con-
served on such timescales. For even Ny € {0, 2}, the inter-QD
dynamics is effectively frozen out. We here mainly focus on
the case Ny = 1, where the pair of QDs forms a spin-1/2
degree of freedom corresponding to Pauli operators 7, , with
1 = (1, 2 iTy)/2,

.=t =did,, v,=dd —djdy,=2t,t —1. (5)

We next turn to the tunnel couplings connecting the QDs to
the island.

3. Tunnel couplings and electromagnetic environment

In the above parameter regime, tunneling to the box has
to proceed via MBSs since no other low-energy island states
are available. Such processes can be inelastic due to the
coupling to a bosonic environment. We here consider the case
of a dissipative electromagnetic environment, which can be
modeled by including fluctuating phases 6;, in the tunneling
matrix elements [76,82,83],

j:jv = )"jveiej"a (6)

with dimensionless complex-valued parameters 2 , subject to
max({|A;,|} = 1. Here, A, determines the transparency of the
tunnel link between the QD fermion d; and the Majorana
state y, in the absence of electromagnetic noise [84]. The
parameters A;, play an important role in our DD scheme
below. Both their amplitude as well as their phase can be
tuned by varying the voltage on a local gate near the tunnel
contact in question, see Ref. [49] and references therein.
With the overall hybridization energy #, characterizing the

QD-MBS couplings, the tunneling Hamiltonian is then given
by [76,82,83]

Hun = 10¢™ Y Jjdly, + Hee, )

J,v

The phase operator ¢ of the island has the commutator
[IQ{ , (f)] = —i with the number operator N in Eq. (1). The
e’ (e~*®) factor in Eq. (7) thus ensures that an electron
charge is added to (subtracted from) the island in a tunneling
process. It is well known that the electromagnetic potential
fluctuations predominantly couple to the phase of the wave
function [82,83]. This fact is expressed by the appearance
of the fluctuating tunnel couplings A jv» see Eq. (6), in the
tunneling Hamiltonian (7).

For concreteness, we assume that the electromagnetic en-
vironment can be modeled by a single bosonic bath, see
also Ref. [65]. Representing the bath by an infinite set of
harmonic oscillators [1,2], the environmental Hamiltonian is
H.., = Zm Embj;lbm, with the energy E,, > O of the photon
mode described by the boson annihilation operator b,,. In
practice, the relevant bath energies E,, are strongly suppressed
above a cutoff frequency w.. With dimensionless real-valued
couplings g, ., the stochastic phase operators 6, are written
as

O =Y &jum(b, +b}). ®)
Clearly, they commute with each other, [0;,, 6;,/] = 0.

4. Low-energy theory

We are interested in the parameter regime defined by the
conditions

max{T, A, 1o, wo, we, |€;]} K min{Ec, A}. €))

The parameters on the left side of Eq. (9) affect the dissi-
pative transition rates in the Lindblad equation (33) below.
These rates in turn set the timescale on which dark states
are approached. We will adopt a concise description, whereby
for engineering a stabilization protocol targeting a specific
dark state, it suffices to adjust the complex-valued tunnel link
parameters A;,, see Sec. III. In practice, those state design
parameters can be changed via gate voltages. We also note
that under the conditions in Eq. (9), boson-assisted processes
can neither excite above-gap quasiparticles nor higher-energy
charge states on the island.

The full Hamiltonian can then be projected onto the doubly
degenerate ground-state space of the box, H(t) — Heg(?).
Using a Schrieffer-Wolff transformation to implement this
projection, and noting that Hyox then reduces to an irrelevant
constant energy shift, we arrive at the effective low-energy
Hamiltonian

Heff(t) = Hd + Henv + Hdrive(t) + HCOtv (10)

with the drive term in Eq. (4) and the cotunneling contribution

2
~ ¥ I
Heor = g0 ;zwjk(zdjdk—a,k), g = E—OC (11
Jk=1,
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We here use the operators

W= Y Gpkl, =l vun.  (12)

I<pu<vsM

Equation (11) describes cotunneling paths through the box,
where the energy of the intermediate virtual state has been
approximated by E¢, cf. Eq. (9), and photon emission and
absorption processes are encoded by the A factors in Eq. (6).
For even QD occupation number Ny, Eq. (11) reduces to

HN = go sgn(Ng — 1) Y Wy (13)
J

For Ny = 1, using the notation

W+ = le, W = WL Wx = W+ +W_,
Wy =iW, —Wo), W, = Wiy — Wi, (14)

we find that Eq. (11) can instead be expressed in the form

HE™ =0 > Wata, (15)

a=x,y,z

with the QD Pauli operators t, in Eq. (5). We emphasize that
like the ij operators in Eq. (12), also the W, still contain
the phase fluctuation operators due to the electromagnetic
environment. In order to realize the most general qubit-qubit
exchange coupling between the QD spin {7,} and the M = 4
Majorana box spin (X, Y, Z) in the cotunneling regime, one
has to specify nine independent (tunable) real-valued coupling
constants. For the M = 4 case in Fig. 1, taking into account
gauge invariance—which allows us to set one of the A,
to a real value—the five different complex-valued hopping
parameters A ;, are sufficient. On top of that, the direct tunnel
amplitude between the QDs is assumed to be real-valued after
setting ¢1, = 0 in Eq. (4).

To simplify the subsequent analysis, we assume that the
dominant contribution to the environmental electromagnetic
noise comes from the long wavelength part. In effect, such
contributions will cause dephasing of the QDs, e.g., due to
the presence of a backgate electrode. This assumption is
also consistent with the picture of a single bath. To good
accuracy, the couplings g;,, in Eq. (8) then do not depend
on the Majorana index v, i.e., g, » = &j.m- As a consequence,
also the fluctuating phases (8) become v-independent, 6;, =
0;. In that case, the diagonal entries Wj j are insensitive to
electromagnetic noise and the bath completely decouples for
even Ny, see Eq. (13).

From now on, we therefore focus on the case of a single
electron shared by the QDs, Ngy = 1. Defining the phase
operator

0=60—0=> (g1m—&mb, +b}),  (16)

Eq. (15) then yields
Heo = 280(¢" Wyt + H.c.) + goW... a7

The operators W, and W, correspond to ‘undressed’ (6, —
0) versions of W, and W, respectively. These operators act
only on the Hilbert space sector describing Majorana states.

Comparing to Eq. (12), we have

M
Wi =Y (ki = Ak Wado- (18)
n<v
For the device in Fig. 1, the Wj; operators can be expressed in
terms of the Pauli operators (X, Y, Z) in Eq. (2), see below.

5. Bath correlation functions

The equilibrium density matrix of the thermal environment
is given by

—1 —Heny/T
Penv = Zg€ e/

With  Zepy = treny e 2/T - (19)

with “trepy”” denoting a trace operation over the environmental
bosons. Using (O).py = treny (O Peny ), We define the correlation
function [1]

Jens () = (10(1) = 0(0)10(0)) oy
_ /°° do J ()
0

T w?

x {[cos(a)t) — 1] coth <%) - isin(wt)}, (20)
with the spectral density
J@) =7 (&im—gmVEsd@—Ey). (1)

Switching to the continuum limit in bath frequency space,
we focus on the practically most important Ohmic case with
J(w) x w in the low-frequency limit. In concrete calcula-
tions, we use the model spectral density [1]

T (@) = awe ™/, (22)

where « is a dimensionless system-bath coupling and fre-
quencies above w, are exponentially suppressed. For a related
discussion in the context of Majorana qubits, see Ref. [65].
The parameter « is related to the environmental impedance
Z(w) [82],
2
a=- ReZ(w = 0). (23)

We consider the case & < 1 below.
For the subsequent discussion, we rewrite H, in normal-
ordered form relative to the phase fluctuations,

Het = HY 4V, (24)

cot

where H'") is the expectation value of H.o with respect to
phase fluctuations and V' represents the coupling of the com-
bined QD-MBS system to phase fluctuations. Since (92)eny
diverges in the Ohmic case, we have (em)em = 0, resulting

m

HSO = (Heot)eny = W, .. (25)

cot —
The interaction term in Eq. (24) is then given by
V = 2go(e”W, T, + H.c.). (26)

By construction, (V).,, = 0. Correlation functions of expo-
nentiated phase fluctuations are given by (s = £1)

( 20 efisé(O)) = glem(®) (27)

env

with Jeny (7) in Eq. (20).
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6. Interaction picture and rotating wave approximation

From now on, we shall switch to the interaction picture
with respect to Hy + Heny. The Hamiltonian then takes the
form, see Egs. (10) and (24),

Heg (1) = Ho 1 (t) + Vi(2),
Ho (1) = Harive, 1 (t) + Hg, ;(¢). (28)

For simplicity, we drop the ‘I’ index (for interaction picture)
in what follows and focus on resonant drive conditions,

wy = € — €]. (29)

In the regime wy >> T considered below, see Eq. (31), we can
then apply the rotating wave approximation (RWA) [3]. As a
consequence, Hyyive () — Harive With

Huive = A(d] d, + d}d,) = A, (30)

resulting in a time-independent drive Hamiltonian in the
interaction picture. If the drive frequency is slightly de-
tuned, wy = €, — €] + Swy, a residual time dependence re-
mains, Hyive(t) = e’i‘gw“’Ad;Ld2+ H.c., after applying the
RWA. However, we find that the final Lindblad equation for
the dynamics of the Majorana sector in Sec. II C is not affected
to leading order in Swp. A small mismatch in the resonance
condition (29) will therefore not obstruct our findings. We
then put wy = 0 from now on.

B. Master equation

In this section, we consider the time evolution of the
reduced density matrix, p(¢), describing the coupled system
defined by the MBSs and the pair of QD fermions. After
tracing over the environmental bosons, we arrive at a Lindblad
master equation for the dynamics of p(7). In Sec. II C, we will
subsequently trace over the QD fermions to obtain a Lindblad
equation for the Majorana sector only. With wy = €, — €; and
gy = tg /Ec, we consider the regime

g0 KT Kwy, AZgo. (3D

In particular, 7 < wg is needed to justify the RWA, while
go K T 1is required for the Born-Markov approximation. In
addition, the regime gy <« T allows us to neglect emission
and absorption processes taking place only in the Majo-
rana sector since the bath is then unable to resolve such
transitions. Of course, we will account for boson-assisted
inter-QD transitions resulting from cotunneling processes.
Equation (31) also states that we study a weakly driven system
with drive amplitude A < go. The opposite strongly driven
case is briefly discussed in Appendix A. We note that inelastic
corrections to the drive Hamiltonian due to electromagnetic
phase fluctuations, see Eq. (19), can be neglected by the
secular approximation, cf. Sec. II B of Ref. [85]. We show
below that the parameters appearing in Eq. (31) will only
affect the speed of approach towards the targeted dark state (or
dark space) but not the state fidelity. Moreover, our protocols
turn out to be exceptionally robust under even 10% mismatch
in all tunneling amplitudes which in turn may affect the state
fidelity, see, e.g., Fig. 5 below. We therefore expect that, in
practice, it is not necessary to fulfill the “<«” inequalities in
Eqg. (31) in an overly strict sense.

1. Lindblad master equation for p(t)

The master equation governing the dynamics of the density
matrix p(¢) for the combined system (QDs and Majorana
sector) is obtained by following the standard derivation of
Born-Markov master equations [1-3]. We assume a factor-
ized initial (time ¢ = 0) density matrix of the total system,
Pi0t(0) = p(0) ® Peny, With peny in Eq. (19). Starting from
the von-Neumann equation for pi(#) subject to Heg(f) in
Eq. (28), we trace over the environmental modes and apply
the Born-Markov approximation [1-3]. As a result, p(#) obeys
the master equation

O pt) = —i[Ho(1), p(t)] — trenvfo dr[V(), [V —1)

+Ho(t — 1), p(t) ® penv]l, (32)

where we have used that, by  construction,
treny[V (), p(0) ® peny] = 0. Similarly, the mixed term
involving V (¢) and Hy(¢ — 7) vanishes identically. We are left
with the coherent evolution term due to Hy and the double
commutator containing two V terms.

Unfolding the double commutator, we arrive at a master
equation of Lindblad [4,5] type,

dp(t) = —i[H.. p()] + Y _T1LUJL]p(t).  (33)
+

The subscript “L” in Hy is meant to clarify that this Hamilto-
nian appears in a Lindblad equation. The dissipator £ acts as
superoperator on p [2],

LUp =JpJ" = HIJ, p}. (34)
The two jump operators in Eq. (33) are given by
Jo=2Wyty =JI, 35)

with the corresponding dissipative transition rates,

Iy =2¢ ReAs. (36)
Here, we define the quantities

00 .
Ay = / dt = en ) (37)
0

with the bath correlation function (20). Their imaginary parts
give Lamb shift parameters,

hy = ggImAL, (38)

which appear in the Hamiltonian governing the coherent time
evolution in Eq. (33),

Hy = At + goWot, + ) hedlJ.. (39)
+

The first two terms in Hy, originate from Hj in Eq. (30), while
the third term contains the Lamb shifts (38).
Next we observe that Eq. (20) implies the general relation

Jenv(—=t = i/T) = Jeny (1) (40)

in the complex-time plane. Using Eq. (40) in Eq. (37) then
results in a detailed balance relation, A_ = e /T A, . As a
consequence, for arbitrary parameters, we find

_=eTr,, h.=eTh,. 41)
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In particular, for T < wy, the dissipative rate I'_ associated
with the jump operator J_ will be exponentially suppressed
against the rate I'y. The dissipative part of the Lindblad
equation (33) is therefore completely dominated by the jump
operator J .

It is a distinguishing feature of our DD platform that
jump operators can be directly implemented by designing
unidirectional inelastic cotunneling paths connecting pairs
of QDs via the box, with the overall energy scale go. The
QDs are also directly coupled by a driven tunnel link w(z),
see Eq. (4), with overall energy scale A. For T < wyg, as
far as inter-dot transitions via the box are concerned, only
photon emission processes are relevant. As a consequence,
only transitions from the energetically high-lying QD 2 to
QD 1 may take place, corresponding to the jump operator
J+ « 14, see Egs. (5) and (35). Such transitions act on the
Majorana state according to the operator W,.. As we show
below, this operator can be engineered at will by adjusting
the tunneling parameters Aj,, which in turn is possible by
changing suitable gate voltages. The driving field pumps
the dot electron in the opposite direction, i.e., from QD
1 — 2, and for a small pumping rate, A < gy, we obtain a
steady state circulation 1 — 2 — 1 by alternating pumping
and cotunneling processes. On the other hand, for A > g,
pumping processes will dominate and the cotunneling channel
is effectively suppressed, see Appendix A.

To facilitate analytical progress, we consider the case
wy K . [Otherwise Eq. (37) can be solved numerically in
a straightforward manner.] One then finds [1]

We

T sinh(rth)) —imasgn(t), (42)

Jony (1) = —2a1In <
b4

and with the Gamma function I'(z), we arrive at

s
[Oh) ’

. wo
r, ~rda- 20{)s1n(27nx)<—>

we
1
hy =~ 3 cotma)l,. 43)

For the device in Fig. 1, using the Pauli operators (2), the
jump operators J, = J follow from Eq. (35) in the general
form

J+ == j+f+,
T = 2ie™ a3l (e 7P M1 X — e 7P |110]Y)
—2i[e™ P [ A1ahar| — €4 A10221Z, 44)

where the phases f; 234 are indicated in Fig. 1. They are
connected to the phases y ;, in the tunneling parameters, A ;, =
|Ajv]e™"%v, by the relations

Ba = x22, 45)

with the gauge choice x»; = 0. In particular, 8; — B3 (B) is
the loop phase accumulated along the shortest closed tunnel-
ing trajectory involving only QD 1 (QD 2), cf. Eq. (46). These
phases, as well as the absolute values |2, |, can be experimen-
tally varied, e.g., by changing the voltages on nearby gates.
We emphasize that J, is fully determined by selecting the
state design parameters A ;,. The Hamiltonian Hy, then follows

Br=xi2, Br=x3, B3=xi1,

as

Hy = At + 2oLt + ) hedlJ.,
+

1_
J. = E)ﬂ + sin B2 |21 h03|X

+ sin (B4 — B2)|A2nAs|Y
+ [sin B4 A21A22| — sin (B1 — B3)|AnA2|1Z, (46)

where 1% = (1112 + [A2l? + [A21]? 4 A2 + [As)% Tt is
worth mentioning that the operators Ji. and J, act only on the
Majorana subsector.

To illustrate the above general expressions, let us consider
a simple example. We take stabilization parameters subject to
the conditions

[A11] = [A12], A2 =0,
Bi=—-B=m/2, Bz=ps=0. 47

Using Eq. (44), the dominant jump operator contributing to
the Lindbladian is then given by

J+ =2l ClAnslog + (A1l 2)T4, (48)

where 01 = (X £1iY)/2. For |Ay3| > |Az1], the Lindbladian
will then automatically drive an arbitrary Majorana state py
towards |0) (0|, with the Z eigenstate |0) to eigenvalue +1, i.e.,
Z|0) = |0). Here, the reduced density matrix py(¢) describes
the Majorana sector only, see Sec. II C. However, the operator
J. appearing in the Hamiltonian H; still contains a small
X component, see Eq. (46), which could potentially disrupt
the action of the dissipator. Nonetheless, we find below that
for small |X,;|, the desired state |0) is approached with high
fidelity, regardless of the initial system state p(0). An opti-
mized parameter choice for stabilizing |0) will be discussed
in Sec. IIL.

2. Numerical results

We next turn to a numerical integration of Eq. (33) using
the approach of Refs. [86,87]. Numerical results for the above
parameters are shown in Figs. 2 and 3. While the goal of the
DD protocol is to stabilize a selected state in the Majorana sec-
tor, it is useful to also study the dynamics in the QD sector, see
Fig. 2. We start from a pure initial state, p(0) = |W(0)) (¥(0)],
with |W(0)) = |[+) ® |0)4, where the T, = +1 QD eigenstate,
|0)4, describes an electron located in the energetically lower
QD 1, with QD 2 left empty, see Eq. (5). The initial Majorana
state has been chosen as the X eigenstate |[+) with eigenvalue
+1. However, we have checked that the same long-time limit
of p(t) is reached for other initial states. We define the purity
of the system state as

P,(t) = trp’(t). (49)

The upper left panel of Fig. 2 shows that the purity approaches
a value close to the largest possible value (P, = 1) at long
times. Moreover, as observed from Fig. 3, the DD protocol
steers the Majorana state towards the pure state |0), i.e.,
towards the north pole of the corresponding Bloch sphere.
For the shown example, the QD state pg has most probability
weight in the energetically lower QD 1. Indeed, Fig. 2 shows
that at long times, the electron shared by the two QDs will
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1.0 1.000-
P(t) <7,>
0.8 0.998-
0 25 5 75 10 0 25 5 75 10
got [10°] got [10°]
O_m_ < TX > 0025- < Ty >
0.000-
—0.054, —0.025+

0 25 5 75 10 0 25 5 75 10
got [10°] got [10°]

FIG. 2. Driven dissipative dynamics for the setup in Fig. 1,
illustrating the time-dependent expectation values of the Pauli op-
erators T, ,. describing the QDs, see Eq. (5). We also show the
purity, P,(t), of the system state, see Eq. (49). All results were
obtained by numerical integration of the Lindblad equation (33)
for the density matrix p describing the QDs and the Majorana
sector, with H;, in Eq. (46). We used the parameters in Eq. (47),
with T/go =4, wo/go =40, w./go =200, A/go =0.1, a« = 1/4,
M1l = [A12] = |A23] = 1, and |A;;| = 0.1. Fast transient oscillations
in (7,(?)) are not resolved on the shown timescale, corresponding to
shaded regions. The respective dynamics in the Majorana sector is
depicted in Fig. 3.

predominantly relax to QD 1, corresponding to the state |0)g.
Nonetheless, it is of crucial importance that the occupation
probability p for encountering the electron in the energetically

0)

FIG. 3. Time evolution of the Bloch vector, ((X), (Y), (Z))(t),
describing the Majorana state py(z) for the same parameters as in
Fig. 2. The expectation value is computed by numerically integrating
the Lindblad equation. Starting from the initial X eigenstate |+), the
DD protocol stabilizes the dark state |0) at long times, corresponding
to the north pole of the Bloch sphere. The intermediate states
(with alternating colors) were obtained at times got € {5 x 10%, 10 x
103, ...,15 x 10%}.

higher QD 2 (corresponding to the state |1)4) remains finite at
long times. We find p &~ 0.001 for the parameters in Fig. 2.

We conclude that the system state factorizes at long times,
p(t) = pm ® pg with py = |0)(0]. The approach of the Ma-
jorana state towards |0) takes place on a timescale given by
the inverse of the dissipative gap of the reduced Lindbladian
describing the Majorana sector only, see Sec. III below. The
relaxation timescales for the QD subsystem can be longer, see
Figs. 2 and 3.

Finally, we remark that for the special case X, = 0, the
electron shared by the two QDs will not predominantly relax
to the energetically lower QD 1. One here has only two
cotunneling paths between both QDs, namely the constituents
forming the operator 4|A;jAz3|lo4 in Eq. (48). Both paths
interfere destructively once the Majorana island is stabilized
in the state |0). An arbitrarily weak drive can then overcome
all dissipative effects in the long-time limit. In contrast to
what happens for A,; # 0, the QDs will thus realize an equal-
weight mixture of |0)q and |1)4. Nonetheless, the reduced
Lindblad equation (52) below still applies, with p — 1/2 and
p1 — 01in Eq. (51). We note that those parameters are also
appropriate in the strongly driven case, cf. Appendix A.

C. Lindblad equation for the Majorana sector

The above observations allow us to derive a reduced Lind-
blad equation, which directly describes the dynamics of pp(?)
in the Majorana sector alone. To that end, we now trace also
over the QD subspace. At long times, our numerical simu-
lations generically show that p(¢) factorizes into a Majorana
part, pm(?), and a QD contribution, pq4(%),

p(t — 00) = pu(1) ® pa(t). (50)

The discussion in Sec. II B highlights that the Majorana sector
and the dot sector have to couple during intermediate times
in order to drive the Majorana system towards the desired
target dark state (or dark space). Once this state is stabilized,
however, the dot electron can relax to the energetically favored
state (up to the effects of the drive). This argument also
shows that, in accordance with our numerical observations,
the specific choice for the tunneling parameters {2 ;,} is only
important for determining the targeted dark state while the
disentanglement of Majorana and dot subspaces in Eq. (50)
represents a generic long-time feature.

For tracing over the QD part, we can effectively use a time-
independent Ansatz,

l—p py
pa = ( 7P ) (5D
written in the basis {|0)q, |1)q} selected by the coupling to the
QDs. Here, p # 0 refers to the occupation probability of the
energetically higher QD 2. This probability can be determined
by numerically solving Eq. (33), cf. Sec. II B, or it may be
treated as phenomenological parameter. A simple estimate
predicts p &~ max(A, go)/wy. Noting that a small but finite
expectation value (t,) # O is observed in Fig. 2 at long times,
we have also included an off-diagonal term (p, ) in Eq. (51).

Inserting Eq. (50) into Eq. (33) and tracing over the QD
subsystem, we arrive at a Lindblad equation for the 2 x 2
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density matrix pp(?) only,

dom(t) = —ilHL, pm] + Z CLlUdpm(@),  (52)
s==%

where the jump operators J. have been defined in Eq. (44).
The dissipative transition rates 'y in Eq. (52) are given by

f,=pr, T =0-pr., (53)

cf. Egs. (36) and (43). The coherent time evolution in Eq. (52)
is governed by the Hamiltonian

AL =21 —2p)gol. + Y hed1,. (54)
+

where J. has been specified in Eq. (46) and the Lamb shifts
hy are given by

hy =phy, ho=(1—ph_. (55)

The drive amplitude A then appears only implicitly through
the dependence p = p(A). We note that within the RWA,
no contributions op, appear in Eq. (52). Indeed, the RWA
allows one to neglect terms o typt+ which stem from
pL#0.

Importantly, apart from the initial transient behavior, all
of our numerical results for the Majorana dynamics obtained
from the full Lindblad equation for the combined QD-MBS
system, Eq. (33), are quantitatively reproduced by using the
simpler Lindblad equation (52). This statement is valid for
arbitrary model parameters subject to Egs. (9) and (31). We
emphasize that the integration over the QD degrees of freedom
as carried out above relies on the facts that (i) the convergence
towards the target state is dictated by the Majorana sector,
and that (ii) the QD and MBS degrees of freedom always
decouple in the long-time limit, see Eq. (50). The latter feature
has been established by extensive numerical simulations of
Eq. (33). The reduced Lindblad equation (52) is applicable as
long as transient behaviors are not of interest. In particular,
when studying, e.g., the dynamics of py(f) in the presence
of time-dependent QD level energies €;(z), Eq. (52) should
only be used for very slow (adiabatic) time dependences. For
rapidly varying QD level energies, one has go back to the
full Lindblad equation for the combined QD-MBS system in
Eq. (33).

III. DARK STATE STABILIZATION

Using the Lindblad master equation (52) and the Choi
isomorphism [15] summarized in Appendix B, we now turn
to a detailed analysis of our stabilization protocols for the
single-box device in Fig. 1. The parameter values for sta-
bilizing a specific dark state can be determined by solv-
ing the zero-eigenvalue condition of the Lindbladian, cf.
Appendix B. We recall that the key state design parameters of
our DD protocol are given by the complex-valued tunneling
amplitude parameters A;,, which also define the phases f;
in Fig. 1. In Sec. III A, we show how to stabilize Pauli
operator eigenstates. In Sec. III B, we discuss magic state
stabilization protocols, followed by a study of temperature
effects in Sec. IIIC. We show in Sec. IIID that in certain
cases, a dark state can be stabilized even in the absence of any

0.05- xS 10 ——
0.00+ 0.5
—-0.05+ . . . 0.0 . . .
0 2 4 6 0 2 4 6
1 <Y > 1 <Y >
0 . 0+
0 2 4 6 0 2 4 6
1.0 —— 005 5=
0.5 0.00+
0.0 . . . —0.05+
0 2 4 6 0 2 4 6
t [ns] t [ns]

FIG. 4. Dark-state stabilization protocols for Pauli operator
eigenstates. Left side panels (blue curves): Stabilization of |0). Right
side panels (red curves): Stabilization of |+), where X|+) = |+). In
both cases, the Majorana island has initially been prepared in the Y
eigenstate with eigenvalue +1. We use the parameters in Eq. (56)
with p = 1/2, all other parameters are as in Fig. 2. With Ec =
1 meV and gy/Ec = 2.5 x 1073, the time units follow as shown.
As explained in the main text, for the chosen parameter set, Rabi
oscillations are absent.

driving field. Finally, we conclude in Sec. IIIE with several
remarks.

A. Pauli operator eigenstates

We start by discussing DD protocols targeting Pauli opera-
tor eigenstates. Typical numerical results obtained by solving
Eq. (52) are illustrated in Fig. 4. Following the method in
Appendix B, the Z = +1 eigenstates can be realized by
choosing

Al =1ri2l, A2 =in=0, pi—p==x7/2, (56)
with arbitrary A3 and B, .4, see Eq. (45). (We note that for
A23 = 0, the phases S, 4 are not defined.) At this point, we use
the concept of a dissipative map E [2], which is defined in
terms of a jump operator mapping the system onto a specific
state when acting inside the Lindblad dissipator. For example,
the dissipative maps targeting the Z = +£1 eigenstates are

Ei=o0.=X=%iY)/2. (57)

For the stabilization parameters in Eq. (56), the jump op-
erator J, o By, with the & sign determined by Eq. (56),
completely dominates the Lindbladian part of Eq. (52) at low
temperatures, T < wy. The dissipative dynamics then maps
every input state to |0) (for the + sign) or [1) (for the —
sign). At the same time, the Hamiltonian evolution in Eq. (52)
comes from Hy, « Z, see Eq. (54). Evidently, this Hamiltonian
commutes with the targeted state py(00), and therefore does
not affect the dynamics towards the steady state generated
by the dissipative map E.. The Majorana state py () is thus
automatically steered towards the corresponding Z eigenstate
by the Lindbladian, with no obstruction from the Hamiltonian
dynamics.
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For the above protocol, the dissipative gap is given by, cf.
Appendix B,

A. =4 Y T (58)

s==+

In general terms, the dissipative gap is defined as the real part
of the smallest nonvanishing eigenvalue of the Lindbladian
(the dark state itself has eigenvalue zero) [2]. The timescale
on which the dark state will be approached is therefore given
by Az‘l. Moreover, the approach of the Bloch vector towards
the dark state |0) is in general accompanied by damped os-
cillations in the (X, Y') components, where A, is the damping
rate and the Rabi frequency follows from Eq. (54) as

Q. = 2g0(1 = 2p)|Ani > — 8lhi1 A3 PRy . (39)

For the special case A;; = 0 with p = 1/2, cf. Sec. II B, and

noting that /1, = 0 for & = 1/4, cf. Eq. (43), we obtain Q, =

0 in Eq. (59). The left panels in Fig. 4 therefore exhibit only

damping in the (X, Y') components, without Rabi oscillations.
Next, X = *1 eigenstates are realized by choosing

[A21] = [A2sl, B =Fm/2, (60)

with the dissipative gap A, = [4A 12421 |2 ZS ['y. As shown in
the right panels of Fig. 4, X eigenstates, e.g., the state |+) for
eigenvalue +1, can be stabilized using the setup in Fig. 1. As
for the Z stabilization shown in the left panels, there are no
Rabi oscillations for this parameter set.

Finally, for stabilizing the Y eigenstates with eigenvalue
=+1, one requires

[A22| = [A23],

Al =An =0,

AM2=2n =0, Br—p3—Bs==xm1/2,

(61)

with the dissipative gap A, = [4X11 A2 |? > L.

In all these examples, the target axis (say, &, for Z
eigenstates) is controlled by selecting appropriate tunneling
amplitude parameters A;,. Two links are switched off, and
two are matched in amplitude such that the desired jump
operator J, is implemented. For T < wy, dissipative transi-
tions are fully governed by this jump operator which is due
to inelastic cotunneling transitions from QD 2 — 1. Under
these conditions, we find that Ay commutes with the Pauli
operator & corresponding to the target axis (e.g., 6 = Z for
Z-states). Finally, by adjusting the phases §;, one can select
the stabilized state, say, |0) or |1). It is a remarkable feature
of our Majorana-based DD setup that the Hamiltonian A
can be engineered to only generate 6. As a consequence, the
Lindbladian dissipator already drives the system to the desired
dark state.

B. Magic states

In order to highlight the power of our DD stabilization
protocols, we next consider the magic state [88]

Im) = e~'570). (62)

The practical importance of this state comes from the fact that
a large number of ancilla qubits approximately prepared in the
state |m) are needed for the magic state distillation protocol.
The latter is an essential ingredient for implementing the T

0.5

0 100 200 300 400
t [ns]

FIG. 5. Fidelity for a stabilization protocol targeting the magic
state |m). Here the Majorana state follows by numerical integra-
tion of Eq. (52) using the parameters in Eq. (63) with [Ay| = 1.
Other parameters are Ec = 1 meV, go/Ec =2.5 x 1073, T /gy = 4,
wo/go =40, w./go =200, « =1/4, and p =0.01. (Main) Time
dependence of the fidelity for ideal parameters [Eq. (63)] (red
curve), with a mismatch of order 10% in all state design param-
eters [[A;] = —0.1 + 1/v/2, [A2i| = +0.1 4 1/3/2, [hia| = [Ana| =
0.9, B3 = —B, = 117 /20] (blue), and a mismatch of order 20%
in the same parameters (orange). (Inset) Steady-state fidelity vs
deviation A B, with otherwise ideal parameters, where 8, = —%(1 +

ApBy).

gate required for universal surface code quantum computation
[54,56,57,73,88]. Targeting |m), the stabilization conditions
now involve all tunnel links in Fig. 1 and are given by

Dol = Pasls il = Al = [hasl/v2,
Ap =0, B3s=p1+pB, Br=-—-m/2. (63)

We here define the fidelity of the state py(¢) with respect to a
specific pure state, p\. = |v/)(¥/], as

E(t) = tw[[y ) (¥l om@)]. (64)

We show numerical results for the magic state fidelity with
|[Y) = |m) in Fig. 5, using the parameters in Eq. (63). We
find F =1 at long times for the ideal parameter choice
in Eq. (63). Figure 5 also illustrates the long-time fidelity
when allowing for small deviations from Eq. (63) which are
inevitable in practical implementations. Remarkably, even for
sizable deviations from the ideal parameter set, the fidelity
remains close to unity. By determining the spectrum of the
Lindbladian, we obtain the dissipative gap as

Ay = [4haps* Y T (65)

Using the parameters in Fig. 5, we find A, ! ~ 80 ns. Even
though our magic state stabilization protocol requires more
parameter fine tuning than the stabilization of |0), the dark
state |m) is reached on essentially the same timescale.

C. Effect of temperature

We next address the effect of raising temperature within
the conditions set by Eq. (31), in particular T < wy. Figure 6
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FIG. 6. Steady-state fidelity, F'(oo), and purity, P(co), vs tem-
perature (in degrees Kelvin) for the state |0) and for the magic
state |m). We use ideal state design parameters, see Eqgs. (56) and
(63), with all other parameters as in Figs. 4 and 5, respectively.
The numerical results for both states cannot be distinguished for
these parameter choices on the shown scales. The frequency wy
corresponds to a temperature of ~2.5 K, while Ec = 1 meV [49]
corresponds to ~11 K.

shows numerical results for the 7-dependent steady-state
fidelity F(co) with respect to the states |0) and |m), choosing
ideal parameters as in Egs. (56) and (63), respectively.

At very low temperatures, the fidelity stays very close
to the ideal value (F = 1) since here only the rate ', see
Egs. (36) and (53), is significant. In this limit, corrections
to F = 1 are exponentially small and appear to be governed
by the dissipative gap, 1 — F ocexp(—A;/,/T). The same
scaling behavior also applies to the purity. As temperature
increases, the thermal excitation rate I'_ = e=/"T", cannot
be neglected anymore. Focusing on the stabilization of the
state |0), we have J_ o« o_. The Lindblad dissipator ['_£[J_]
will then target the “wrong” Z eigenstate |1). The competition
between L£[J,] and L[J_] implies that the fidelity will deteri-
orate as temperature increases.

This expectation is confirmed by our numerical results.
For the parameters in Fig. 6, the fidelity noticeably drops
once T exceeds the crossover temperature 7. ~ 250 mK.
Figure 6 also shows the temperature dependent purity of the
steady state, P(00) = trpg(t — o0). For T « T, we find
P(00) ~ 1. As T increases, however, the maximally mixed
state pp(00) = %Jl with F (00) = P(co) = 1/2is approached,
and consequently the purity also becomes smaller.

Finally, let us note that at elevated temperatures, the RWA
will also become less accurate. One may thus need to account
for dephasing effects induced by corrections beyond RWA
[85]. However, for the results shown in Fig. 6 with T'/w <
0.2, such effects are expected to be very small.

D. Stabilization without driving field

In certain cases, it is possible to stabilize dark states even
without drive Hamiltonian, Hy.ve = 0. In this subsection, we
demonstrate the feasibility of this idea for special choices of
the state design parameters. We are not aware of other DD
systems allowing for dark states in the absence of driving. In

our setup, we will see that the dissipative dynamics can also
generate terms that mimic the effects of a weak driving field.

To be specific, we apply the Lindblad equation (52) to se-
tups where A j, # 0 only for (jv) € {11, 12, 23}. In particular,
since Ap; = 0, this case corresponds to the special parameter
regime discussed in Sec. I B 2. For simplicity, below we drop
the exponentially small contribution to the dissipator due to
J_. From Eq. (44), the only relevant jump operator is then
given by

Jp =250 X — AnY). (66)

In addition, we keep Lamb shift effects implicit. In particular,
they can be taken into account by renormalizing B, in Eq. (70)
below. The operator J, entering Hy , see Eqs. (46) and (54), has
the form

J, = —sin B1|An1A 2] Z. (67)
We now study the undriven (A = 0) scenario for two param-
eter sets allowing for analytical progress. The stabilization of
pure dark states may then be possible because the Hamiltonian
H can effectively take over the role of the drive. As a result,
the arguments behind the factorized form of the long-time
density matrix in Eq. (50) carry over to the present case.
The frequency wy now simply represents the (positive) energy
difference €, — €1, see Eq. (29), instead of a drive frequency.
Moreover, we assume p; = 0 while the probability p in
Eq. (51) is estimated by p & go/wo. We note in passing a finite
static contribution to the inter-QD tunnel coupling, ¢, # 0 in
Eq. (4), can be taken into account here. This coupling will
modify p according to p ~ max(t),, go)/wo. We also recall
that for A # 0, one instead finds p = 1/2 since we have A, =
0, cf. Sec. II B 2.

1. Case 1: )»11 = :Ei)s.lz

The first case is defined by A} = isAkip, with s = £1. We
observe that the dot fermion operator d; corresponding to QD
1 is then tunnel-coupled to a nonlocal fermion formed from
the Majorana operators, ¢ = (y; — isy»2)/2. Withor = (X £
iY)/2, Egs. (66) and (67) simplify to

Jy = 4iMshnoo,, Jo=—slanl*Z (68)
The Lindblad equation (52) is then given by
g om(t) = —ilH, pm(®)] + T LIolpm(),  (69)
where the Hamiltonian follows from Eq. (54) as
Hy, = —2s(1 —2p)go|rn|*Z = sB.Z. (70)

We note that the Lamb shift 4, can be taken into account
by redefining B,. Furthermore, the rate I'; in Eq. (69) is
proportional to I, in Eq. (43). The only zero eigenstate of
the Lindbladian is the Z eigenstate |0) (for s = —1) [or |1)
(for s = +1)], e.g., L[0+]]0)(0] = 0. The same Z eigenstate
is also the lowest energy eigenstate of Ay in Eq. (70).

Using the Z eigenstate basis {|0),|1)} for s = —1 [and
{I1), ]0)} for s = 41], we can parametrize the time-dependent
density matrix ppm(#) solving Eq. (69) with real-valued x(z)
subject to 0 < x < 1 and complex-valued y(¢) as

_ (1 —x(0) y@)
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The quantities x(¢) and y(¢) represent the diagonal and off-
diagonal density matrix deviations, respectively, from the
steady-state density matrix corresponding to the stabilized Z
eigenstate. Using Eq. (69), these deviations obey the equations
of motion

L (72)
) Y,

which explicitly shows the relaxation and decoherence dy-
namics of py(#) towards the stabilized pure state. The above
example demonstrates that the dissipative stabilization of a
dark state can be achieved even in the absence of a driving
field in our Majorana box setup.

ox=—-I1x, 0y=-2iBy—

2.Case2: B =0

Putting the phase §; to zero, d; is effectively coupled to a
single Majorana operator, Yest = y1 €088 + ¥, sind, with § =
tan~! [A12/A11]. One then obtains J, = 0. The jump operator
J is now given by

Jy =Bjoye® +He., By =2iM3h/|cossl.  (73)

Noting that the Lamb shifts in A only give an irrelevant
constant, we arrive at the Lindblad equation

r
dom(0) = — Lloalou(®). (74)
where we define
on=n-0=o0.e"+0_e", (75)

with the unit vector n = (cos §, — sin~8, 0). Again, the rate I',
is proportional to the respective rate I'; in Eq. (43).

For the case in Eq. (74), the Lindbladian has two zero
eigenstates, L[oy]|s)(s| = L[on]|a){a| = 0, corresponding to
the eigenstates of oy, i.e., oy |s) = |s) and oy |a) = —|a). Using
the X eigenstates |£), one finds
(1) £ ey (76)
V2

In the {|s), |a)} basis, pm(#) can be parametrized as
_(3+x0) y®)

where the real-valued parameter x(¢) has to satisfy [x| < 1/2.
Equation (74) then yields

ls/a) =

)
Oy =——=). (78)
2
Clearly, there is no relaxation in the basis selected by the
environment via the QDs, i.e., x(¢) remains constant. Only
the off-diagonal elements of the density matrix are subject
to decay with the rate I';/2. One can therefore prepare an
arbitrary mixed state as steady state.

dx =0,

E. Discussion

We conclude this section with several additional points.

1. Mixed states

As pointed out in Sec. III D, one can also use our protocols
for stabilizing mixed states, see also Ref. [8§9]. To give another

example, now for A # 0, we consider changing the above

phase conditions such that a mixture of Pauli eigenstates can

be prepared as dark state. For instance, by choosing the state

design parameters as in Eq. (56) but keeping B = 81 — B3

arbitrary, one obtains the dark state

1 +sin B 1 —sinp
2

The relative weight of the two components can then be altered
by adjusting the phase difference S.

pm(00) = 10) (01 + 1) (1l (79)

2. Majorana overlaps

So far we have assumed that the overlap between different
MBSs is negligibly small. What are the effects of a finite
(but small) hybridization between different MBS pairs on the
above stabilization protocols? Such terms could arise, e.g.,
due to the finite nanowire length [44]. They are described by
aHamiltonian term H' = )" _, i€,y ¥, v, With hybridization
energies €,,,. By construction, such a term survives the RWA
and the Schrieffer-Wolff projection in Sec. II and thus con-
tributes to the Hamiltonian A in the Lindblad equation (52)
without affecting the Lindbladian dissipator. In the Pauli op-
erator language, such terms act like a weak magnetic Zeeman
field. If the corresponding field is parallel to the target axis of
the dark state, it does not cause any dephasing. For instance,
for the stabilization of the Z eigenstate |0), the hybridization
parameters €], and €34 can be tolerated as they only couple
to the Pauli operator Z in Eq. (2). Clearly, such couplings
have no detrimental effects on our stabilization protocols. For
the stabilization of arbitrary target states, however, the role
of MBS overlaps is more subtle, in particular when power-
law scaling of the overlap with increasing distance becomes
important [90]. A detailed discussion of such effects will be
given elsewhere.

3. Readout dynamics

For reading out a stabilized dark state, it is possible to
use the same techniques suggested previously for the native
Majorana qubit [58,59,65]. In particular, one can perform
capacitance spectroscopy using additional single-level QDs
that are tunnel-coupled to MBS pairs. These QDs are used for
measurements only, where the spectroscopic signal contains
an interference term which depends on the respective Pauli
matrix in Eq. (2). This projective readout yields the Pauli
eigenvalue 1 with a state-dependent probability [59]. Of
course, this method can also be used to prepare the Majorana
island in a Pauli eigenstate before the DD protocol is started.
In order for the readout not to interfere with the DD stabi-
lization protocol, one has to make sure that the characteristic
projective measurement time scale (see Refs. [58,59] for
detailed expressions) is much longer than the typical inelastic
cotunneling time f‘;l . Similarly, single-electron pumping pro-
tocols via a pair of QDs attached to different MBSs allow one
to apply a Pauli operator to the tetron state in a topologically
protected manner [58].

4. Beyond the horizon of a dark state

So far we have discussed DD stabilization protocols tar-
geting a desired dark state. The dark space dimension for
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FIG. 7. Schematic two-box layout for DD dark space stabiliza-
tion and manipulation protocols, cp. Fig. 1 for the single-box case.
The left (right) box harbors four MBSs described by yF (yX). The
tunneling bridge with amplitude 7,z connects ¥} and yf. QD 3 has
independently driven tunneling bridges to QD 1 and to QD 2 (solid
lines). The three QDs are operated in the single-electron regime,
Ny = 1. The electromagnetic environment affects the phases of the
tunnel links betweens QDs and MBSs (dashed lines). The phases g;
for this geometry are also indicated.

those protocols is D = 1, see Appendix C. Since there is
a unique dark state for a given choice of the state design
parameters, one could utilize a DD single-box device as a self-
correcting quantum memory. By means of adiabatic changes
of the state design parameters, one can in principle steer the
Majorana state on its Bloch sphere. However, for general state
manipulation protocols, it is advantageous to have access to a
dark space manifold with D > 1, which may be engineered in
systems with more than four MBSs. We address this case in
the next section.

IV. DARK SPACE ENGINEERING

We continue with DD protocols targeting quantum states
within a dark space manifold. A degenerate manifold of dark
states may be engineered by employing a device with at least
two Majorana boxes as depicted in Fig. 7. After introduc-
ing our model and the corresponding Lindblad equation in
Sec. IV A, we show in Sec. IVB how a dark space can be
created and classified. In Sec. IV C, we then describe how
to stabilize Bell states. In Ref. [74], we describe external
perturbations for moving the dark state to another state within
the protected dark space manifold, and we show how to create
a dark space manifold realizing a ‘dark Majorana qubit’. In
such a system, topological and DD mechanisms reinforce each
other and thereby can provide exceptionally high levels of
fault tolerance. Moreover, we remark that the stabilization of
Bell states can also be implemented in a hexon device (i.e., a
Majorana box with six MBSs [59]), see Ref. [91].

A. Lindblad equation for two coupled boxes
1. Model

Following the discussion in Sec. II A, we describe the two
islands in Fig. 7 by Hyox = Hpox,z. + Hupox,r, With Hyoy /g s in
Eq. (1). Here, the four MBSs on the left (right) box correspond
to Majorana operators ¥, (yX). Both islands are separately op-
erated under Coulomb valley conditions. For notational sim-
plicity, we assume that they have the same charging energy,
Ec1 = Ec g = Ec. Focusing on the long-wavelength compo-
nents of the electromagnetic environment, we again work with
a single bosonic bath, He,y = Zm E.b' b, where photons

m~m?>

couple to the QDs and MBSs via fluctuating phases, 0;, in
the tunneling Hamiltonian, see Sec. Il A. The setup in Fig. 7
requires up to three single-level QDs, Hy = Z;zl ejd;dj,
where QD 3 couples to both other QDs via independently
driven tunnel links. We consider the regime Ng = 1, where on
timescales 6t > 1/E¢, the three QDs share a single electron.

Using the interaction picture with respect to the dot Hamil-
tonian Hy, the full Hamiltonian is then given by

H(t) = Hyox + Heny + Hrg + Hdrive(t) + Hyn (t)s (80)

where a phase-coherent tunnel link couples the boxes. Without
loss of generality, we assume a real-valued tunneling ampli-
tude t,r > 0,

Hig = itLryy vy - (81)
The drive Hamiltonian now has the form

Hyive(t) = Y 24 cos(w;t)e""Vdldy + He.,  (82)
j=12

where the two driving fields have the respective amplitude A; »
and frequency w; ». In analogy to Eq. (7), the QD-MBS tunnel
links are described by

Hun(t) =10 Y Aj,e %% dlyy +He., (83)
jv,k=L/R

with the phase operators ¢,z for the left/right Majorana
island. Using the same approximations as in Sec. I A4,
the electromagnetic environment enters Eq. (83) through
the fluctuating phases 6;. With the overall energy scale 1,
the complex-valued parameters A;,, parametrize the trans-
parency of the tunnel contact between d; and y,*=*/. Similar
to Eq. (45), the phases §; in Fig. 7 follow from the phases of
these parameters. Since 4 can be absorbed by a renormaliza-
tion of B3 for the purposes below, we put B4 = 0.

To simplify the presentation, we next assume that QDs 1
and 2 have the same energy level, €; = €,. Moreover, we con-
sider the case of equal drive frequencies, w; = w, = wy, and
identical drive amplitudes, A; = A, = A, and again impose a
resonance condition, wy = €3 — €;. However, in analogy to
our discussion in Sec. II, we expect that overly precise fine
tuning with respect to those conditions is not necessary.

We now proceed in analogy to Sec. II A with the con-
struction of an effective low-energy model by means of a
Schrieffer-Wolff transformation to the lowest-energy charge
state in each box. We can then define Pauli operators
(X, Y, Z,) with k = L, R referring to the left and right box,
respectively, using the Majorana representation in Eq. (2). In
the present case, it is crucial to keep all terms up to third
order in the expansion parameters (9) when accounting for
cotunneling trajectories connecting pairs of QDs, cf. Fig. 7.
(For the single-box case in Sec. IT A, it is sufficient to go
to second order only.) The electromagnetic environment then
enters the low-energy theory via the three phase differences
0; — 6 with j < k. This fact implies that, in general, we
have six different spectral densities Jj;;« (w). We model
these spectral densities by the Ohmic form in Eq. (22), with
system-bath couplings o, . For simplicity, we employ an
average value « for these couplings below. The bath is then
described by a single spectral density J(w) again. Impor-
tantly, the physics is not changed in an essential manner by
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this approximation. In particular, no additional jump operators
appear when allowing for different o j .

2. Lindblad equation

We consider again the weak driving regime with 7 < wy.
Under these conditions, proceeding along similar steps as in
Sec. I B, one obtains a Lindblad master equation for the
density matrix, p(¢), describing both the Majorana sector and
the QD degrees of freedom. In order to arrive at a Lindblad
equation for the reduced density matrix, pm(¢), which refers
only to the Majorana sector of both boxes, we next trace
over the QD subsector, see Sec. I C. For the QD steady-state
density matrix, pq, we use the Ansatz

. (1=-p 1-p
pi _dlag< 2, 1o ,p), (84)
expressed in the basis {|100), |010), |001)} with QD occupa-
tion states |ny, np, n3) for Ny = 1. Note that since we assumed
€] = €;, the occupation probabilities of QDs 1 and 2 are
equal. The occupation probability 0 < p < 1 refers to the
energetically highest QD 3. Equation (84) is consistent with
our numerical analysis of the Lindblad equation for p(z),
where we again find a factorized density matrix at long times,
o) = pm(t) ® ps. We note that the dark space turns out to
be independent of the concrete value of p.

Going through the corresponding steps in Sec. IIC, we
arrive at a Lindblad equation for py (%),

6
dpm(t) = —ilHL, pu()] + Y TallKom(t).  (85)
a=1
The six jump operators are denoted by K,, with the respective
dissipative transition rates I'y. With A p =t p/Ec K 1, we
obtain

K, =K = iel(/sz—ﬁl)%&

— e h1 3Lk 3r|ZL YR,

K, = Ki = _igita—pn P2arbarl
2 5 ALR
4 et [A2,20.23 3R 1 X1 YR, 86)
K; = KJ = iMyL _ iel(ﬁz—ﬁl)MYR

ALR ALR
+ e P A arA2oL| X Zg
— &P |1 320,401 ZL XR.
The coherent evolution in Eq. (85) is governed by the Hamil-
tonian
6
Ay =2pgoK. + ) haK]Ka, (87)

a=1
with the operator
K. = sin Bi|A1,1rA 130120 Zg + Sin Bal Ao 21 A2 4r | XL XR. (88)
We here used the energy scale

l‘gl‘LR

-—, 89
£2 (89)

80 = ALr&0 =

which characterizes the relevant inelastic cotunneling pro-
cesses in the double-box setup. The transition rates I, follow
in the form

o0
I =T, =2pz; Re/ dte!®! glem(®)
0

~ ~ 0
I3 =T =(1-pigiRe / dte’®, (90)

0
L. 1— "
A R Gl 2

2p
and the Lamb shifts /, are given by

oo
}Nll = Bz = pgl% Im/ dteiwote‘/cuv(t)’
0

- - 1 o0
hy = he = 5(1 - P& Im/ dre’®, CIY)
0

~ - 1 - ~
h4 = ]’l5 = ﬂe—woﬂ’hl.
2p
For wy < w., we can then make further analytical progress.

Explicit expressions for '}, and /; , follow by comparison
with Eq. (43). In addition, we find

cos(ma)(@)(1 — 2a) (7T \** ' 283
21-20(] — @) < ) W

)

F36>~(1—p)

Wc We

- 1 ~
h3’(, = —E tan(rroz)F3,6. (92)

By following, the derivation of the reduced master equa-
tion (85), we observe that the operator K; (K;) comes from
unidirectional transitions transferring an electron from the
energetically high-lying QD 3 to QD 1 (QD 2) via the
double-box setup, collecting all possible cotunneling trajec-
tories allowed by third-order perturbation theory. Likewise,
the jump operator K4 (Ks) describes the reversed process,
with a cotunneling transition from QD 1 (QD 2) to QD 3.
For T < wy, the transition rates f‘4,5 and Lamb shifts 54,5
are exponentially suppressed, oce™®/T | against the respective
contributions from Kj,. Moreover, the jump operators K3
and K in Eq. (86) describe cotunneling transitions between
QDs 1 and 2. Since these QDs are not directly connected
by a driven tunnel link and have the same energy, €; = €,
the corresponding rates and Lamb shifts coincide, I'; = [¢
and h3 = he. Importantly, for 1/2 < a < 1, these quantities
are reduced by a factor (T/wg)**~' « 1 against I';, and
le,z, respectively. In the remainder of this section, we shall
study this parameter regime where the most important jump
operators in Eq. (85) are given by K; and K,. Nonetheless, we
retain the other jump operators in our numerical analysis as
well.

Finally, we note that all terms without the factor )\Zlg > 1
in Egs. (86) and (88) stem from third-order processes. While
one a priori expects that the corresponding dissipative terms
in Eq. (85) are suppressed against second-order contributions,
by careful tuning of the link transparencies A; ., they can
become of comparable magnitude. As a consequence, all
relevant cotunneling paths will then have amplitudes corre-
sponding to third-order processes. This means that for the
present two-box setup, the energy scale gy = #3/Ec appearing
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in Eq. (31) has to be replaced by g, in Eq. (89). The Lindblad
equation (85) describing the weak driving limit is therefore
valid under the conditions

B0 <K T Kwy, AZEo. (93)

3. Dissipative maps

Before entering our discussion of stabilization protocols
for the layout in Fig. 7, it is convenient to introduce the
dissipative maps [26]

Eix=0£ZZ0)Xg, Ers=(1%XXp)Zg. o4

These maps can be used to target the four Bell states,
1 1
V2 V2

which are eigenstates of both Z;Zz = +1 and X; Xp = £1.
We observe that £, _ maps even-parity onto the respective
odd-parity states, £, _|y.) = |¢.), while odd-parity states do
not evolve in time, £ 1.—|¢+) = 0. Under this dissipative map,
the system will thus be driven into the degenerate odd-parity
subsector spanned by the |¢.) states. Similarly, £, _ can drive
the system into the antisymmetric subsector spanned by |¢_)
and |¥_).

The key idea in our DD protocols below is to identify state
design parameters such that the jump operators effectively
realize the needed dissipative map(s) in Eq. (94). Recalling
that a dissipative map breaks a number of conserved quantities
(and therefore symmetries) in our system, see Refs. [15,17]
and Appendix C, we here employ this insight to either sta-
bilize a dark space, see Sec. IV B and Ref. [74], or to target
protected and maximally entangled two-qubit dark states, see
Sec. IVC.

[V+) = —=(100) £ [11)), [¢+) = —=(|01) £[10)), (95)

B. Stabilization of a dark space

In this section, we briefly outline how one can stabilize
a dark space in the setup of Fig. 7, see also Ref. [74]. For
convenience, we decouple QD 2 from the system by using the
parameter choice

B2 =0. (96)

We note that this is not the only possible parameter set for
constructing a dark space. As a consequence of Eq. (96),
many of the jump operators in Eq. (86) vanish identically,
K> = K3 = K5 = K¢ = 0. The jump operator K, = KI then
yields the dissipative map £, _ in Eq. (94) upon choosing

Bi=-m, Bz=-m/2, |Ayr|l=ArlAi3l.  (97)

Noting that EA],_ = Xg — iZ. Yy, see Eq. (94), we indeed arrive
at K, o< £, _ from Eq. (86). In addition, Eq. (87) shows that
under the above conditions, Hj. only generates terms «Z; Zg
which do not obstruct the dissipative dynamics.

For T <« w, we next observe that to exponential accuracy,
K is the only jump operator contributing to the Lindbladian
in Eq. (85) for the parameters in Eqs. (96) and (97). The DD
protocol therefore will stabilize the system in the odd-parity
(Z1Zr = —1) Bell state manifold spanned by {|¢), [¢—)}.
We show in Ref. [74] that this degenerate manifold has the

A22r = Az4r =0,

dark space dimension D = 4, see also Appendix C, which is
equivalent to a degenerate qubit space [15].

It is possible to manipulate dark states within a dark space
by following different strategies [74]. For instance, one can
adiabatically switch on a perturbation that breaks at least
one conservation law. An alternative possibility is to employ
single-electron pumping protocols, in analogy to previous
proposals for native Majorana qubits [58,59].

C. Stabilizing Bell states

We next turn to the stabilization of Bell states in the setup
of Fig. 7, where the couplings between QD 2 and the Majorana
islands are now assumed finite again. In that case, the jump
operator K, in Eq. (86) does not vanish anymore. In the
low-temperature regime, the corresponding Lindbladian term
in Eq. (85) contributes with the same transition rate, I, = ',
as for Kj, see Eq. (90). Importantly, K, breaks additional
conservation laws and thereby allows one to engineer sta-
bilization protocols targeting maximally entangled two-qubit
states. We again study the regime 1/2 < o < 1, where the
jump operators K3 ¢ give only subleading contributions.

Let us start with the Bell singlet state [¢_) in Eq. (95),
where Z;Zgp = —1 and X; Xz = —1. By choosing the state
design parameters as

Br=0, B3=-m/2,
ARl = ArrlAiacl,  [A2ar| = ArrlAzocl, (98)

we observe from Eq. (86) that K| EAL_ and K, EAQ._ are
directly expressed in terms of the corresponding dissipative
maps, see Eq. (94). The Lindbladian will therefore drive the
system to the dark state |¢_). The dark space dimension is
thus given by D = 1.

As is shown in Fig. 8, the numerical solution of Eq. (85)
confirms this expectation. For the stabilization parameters in
Eq. (98), the Bell singlet state is reached with nearly perfect
fidelity when taking ideal parameter values. One can ratio-
nalize the almost perfect fidelity by noting that the coherent
evolution due to A, see Eq. (87), involves only the operators
Z;Zg and X; Xg. As a consequence, the dynamics induced by
the dissipative maps Kj » E, /2,— will not be disturbed. Note
that the parameters in Fig. 8 were chosen such that I'; > I'3
while staying in the regime specified in Eq. (93). Indeed, the
observed small deviations from the ideal value F =1, see
Fig. 8, can be traced back to the jump operators K3 and Kg,
which give nominally subleading but practically important
contributions to the Lindblad equation.

Figure 8 shows that the stabilization protocol is rather
robust against deviations of state design parameters from their
ideal values in Eq. (98), see Sec. III. Following the approach
in Appendix B, we find that the dissipative gap for stabilizing
|¢_) is given by

Apen = 12233622 + o) Y Ta (99)
a=1,2,4,5

B = —m,

Due to the importance of third-order inelastic cotunneling
processes, this dissipative gap is several orders of magnitude
below the corresponding gaps in the single-box case, cf.
Sec. III. For the parameters in Fig. 8, we obtain the timescale
Agay ~ 0.3 ms.
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FIG. 8. Fidelity for stabilizing the Bell singlet state |¢_) in the
setup of Fig. 7. We show numerical results obtained from Eq. (85)
with the parameters in Eq. (98) and |A;3.] = |Aoor] = [A33r] =
1, using the initial state pp(0) = |00)(00|. Other parameters are
Ec =1meV, g/Ec =107, T /8 =2, wy/% =2 x 10°, &/ =
10*, @ =0.99, and p = 0.01. (Main) Time dependence of F(t) for
ideal parameters [Eq. (98)] (red curve), and for a mismatch of order
10% in all state design parameters [|A; 1g| = 1.1Azg|A13L], |A2ar| =
0.9 rlA22Ll, B1 = —1.1m, B3 = —97/20] (blue). (Inset) Steady-
state fidelity vs deviation ApB; from the ideal value, i.e., 8 =
—m (1 4+ ApBy), with otherwise ideal parameters.

The other Bell states in Eq. (95) can be targeted by
changing the phases 8; in Eq. (98). The jump operators K
and K, will then directly implement the desired dissipative
maps, with the dissipative gap still given by Eq. (99). For
stabilization of the Bell state |y;) (|¥_)), one has to put
B1=0, pp =7 (B2 =0), and B3 = 7 /2. Similarly, |¢) is
stabilized for 8y = —m, B, = m, and B3 = —m /2. We thus
always have B3 — B = /2, and the remaining two phases
select the targeted Bell state. In particular, §; selects the parity
of the target state while §, determines the symmetric versus
antisymmetric state.

V. SUMMARY AND PROSPECTS

In this paper, we have described DD protocols in Majorana-
based layouts for stabilizing as well as manipulating dark
states and dark spaces. For devices with one or two Majorana
boxes coupled to driven QDs and subject to electromagnetic
noise, we have shown that in a wide parameter regime the
dynamics in the Majorana sector is accurately described by
Lindblad master equations.

The underlying topological nature of the Majorana states
significantly boosts the power of DD schemes in several
directions. First, the role of uncontrolled environmental noise
sources should be suppressed compared to topologically triv-
ial realizations, which is a key advantage for high-dimensional
dark space constructions. Second, the fact that Pauli operators
describing native Majorana qubits correspond to products of
Majorana operators (pertaining to spatially separated MBSs),
see Eq. (2), allows for unique addressability options. Only
through this feature, which is rooted in topology, it is pos-
sible to design the special unidirectional cotunneling paths

which directly implement the jump operators appearing in the
Lindblad equation. In the simplest single-box case, see Fig. 1,
the basic pumping-cotunneling cycle involves (i) pumping the
dot electron from QD 1 to the high-lying QD 2 by means of a
weak driving field, and (ii) the back transfer of the electron
from QD 2 to QD 1 by cotunneling through the box. In
general, competing transfer mechanisms may also contribute
to both steps, and the parameter regime has to be carefully
adjusted to minimize their impact. Taking step (ii) as example,
the drive Hamiltonian in Eq. (4), possibly together with pho-
ton emission processes, may provide such a competing rate.
By choosing both a sufficiently small drive amplitude, A < g,
and a very small direct tunnel coupling #;, between both
QDs, these competing rates can be systematically suppressed
against the cotunneling rates through the box. We also note
that in most cases of interest, the Lindbladian dissipator alone
is responsible for driving the system into the desired dark
state or dark space, i.e., the Hamiltonian appearing in coherent
part of the Lindblad equation does not obstruct the dissipative
dynamics.

For a single-box architecture, we have shown how to
stabilize arbitary pure dark states, i.e., states that are fault
tolerant and stable on arbitrary timescales. For multiple-box
devices, one can also stabilize dark spaces, i.e., manifolds of
degenerate dark states, as well as protected two-qubit Bell
states. In our accompanying short paper [74], we show that
a two-box device allows one to implement a dark Majorana
qubit, which in turn could serve as basic ingredient for dark
space quantum computation schemes. Our stabilization and
manipulation protocols can be implemented with available
hardware elements once a working Majorana platform be-
comes available.

The above concepts and ideas raise many interesting per-
spectives for future research. First, we expect that one can
devise robust Majorana braiding protocols [44-46] that are
stabilized by working within a dark space manifold. Second,
for chains of many boxes, our DD stabilization protocols may
allow for interesting quantum simulation applications, e.g., a
realization of the topologically nontrivial ground state of spin
ladders [92] or of the Affleck-Kennedy-Lieb-Tasaki (AKLT)
spin chain [10,93]. For clarifying, the feasibility of such ideas,
one needs to analyze the spectrum of the Lindbladian for DD
multiple-box networks. We leave this endeavor to future work.

ACKNOWLEDGMENTS

We thank A. Altland, S. Diehl, and K. Snizhko for dis-
cussions. This project has been funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Grant No. 277101999, TRR 183 (project CO1),
under Germany’s Excellence Strategy - Cluster of Excellence
Matter and Light for Quantum Computing (ML4Q) EXC
2004/1 - 390534769, and under Grant No. EG 96/13-1.
In addition, we acknowledge funding by the Israel Science
Foundation.

APPENDIX A: ON THE STRONG DRIVING LIMIT

We here briefly discuss the strong driving limit for the
single-box device in Fig. 1, with total QD occupancy Ny =

134501-17



GAU, EGGER, ZAZUNOV, AND GEFEN

PHYSICAL REVIEW B 102, 134501 (2020)

1 and under resonant driving conditions, wy = €; — €. We
consider the regime

20 < T <A< ay, (A1)

with otherwise identical conditions as in Sec. II. After impos-
ing the RWA, the steady-state density matrix of the QDs is
given by Eq. (51) withp=1/2and p; = 0.

Starting from the effective Hamiltonian H (7) in Eq. (28),
we then arrive at a Lindblad equation for the density matrix
p(t) describing the combined system of MBSs and QDs,

3
dp(t) = —ilHL, p()] +285 Y > _Re Mgy LIaslp(1),

a=1 s=%
(A2)
with the effective Hamiltonian
3
Hy=At,+g5 Y Y Im Ay J] J, . (A3)
a=1 s==%

We here encounter six jump operators (s = %),

Tio =Tt s =Ji_ =t +iry)/2, (A4)

with the operators J. in Eq. (44). The dissipative transition
rates as well as the Lamb shifts follow from A; + = Ay, see
Eq. (37), and
o0
A2/3,S — / dt eiswot:tiAte.lenv(I)’ (AS)
0

with the bath correlation function (20). Comparing to the
weakly driven case in Sec. IIB, the strong driving field A
splits the two jump operators J; in Sec. II B into the six jump
operators in Eq. (A4).

Tracing over the QD degrees of freedom, we arrive at a
Lindblad equation for the density matrix pp (), cf. Sec. IIC,

dom(t) = —ilHL, pu(®]+ Y s LU pm(0),

s=%

(A6)

with H; = Trq{pqHL}. In this expression, pgq follows from
Eq. (61) with p — 1/2 and p; — 0. Only the two jump
operators J+ appear in the reduced Lindblad equation (A6),
with the dissipative transition rates

ﬁs = Zg%) RC[A]'S + %(AZ,J + A3,s)]'

Finally, we note that for 7 > A > gy, the Lindblad equation
(52) holds with p — 1/2.

(A7)

APPENDIX B: ON THE DISSIPATIVE GAP

An elegant way to study the spectrum of a general Lind-
bladian uses the so-called Choi isomorphism in order to map
the N x N system density matrix, p(¢), to an N2 x 1 vector,
|p(1)), and the Liouvillian, £, to an N> x N? superoperator L
[15]. We here include the Hamiltonian part in L.

Let us consider a general Lindblad master equation, cf.
Eq. (34),

dp(t) = Lp@t) = —ilH, p()] + Y _ TaLlldlp(t), (BI)
a
with jump operators J, and the corresponding transition rates

I',. Using the isomorphism, we have the correspondence
JpJT < (J ®J%)|p), and Eq. (B1) takes the equivalent form

&|p(t)) = Llp(r)) with

r
L=—i(H®Jl—Jl®H*)~I—Z§

x (2, ®J; —1® (1) —JJ.®1). (B2

In this language, the steady state, pgs, follows as right eigen-
vector of L with eigenvalue zero:

L|ps) = 0. (B3)

Equation (B3) allows one to systematically search for stabi-
lization conditions targeting a desired dark state. Moreover,
the spectrum of the Lindbladian coincides with the eigen-
values of the superoperator L. In particular, the number of
zero eigenvalues defines the dark space dimension, D, and the
dissipative gap equals the real part of the smallest nonzero
eigenvalue [15].

APPENDIX C: ON CONSERVED QUANTITIES

For an open quantum system described by a Lindbladian as
in Eq. (B1), where we assume that £ has no purely imaginary
eigenvalues, it is known that all conserved quantities are
linked to the basis states spanning the dark space [15]. For

a Lindbladian with D conserved quantities C,,;, . p, we have
the commutation relations
[H,Cl=1.,C]1=0. (&)

Using an orthonormal basis, {Mﬂ}gzl, to span the resulting
D-dimensional dark space, the steady state can be written as

D
ps = lim e p(0) = 3 cuMy, €2)
n=I1

where p(0) is the initial density matrix and the ¢, =
tr[C; p(0)] are weights determining in which of the degenerate
steady states the system ends up.

As first illustration, let us consider the stabilization of
the dark state |0) for a single-box device, cf. Sec. IIl A and
Eq. (56). The jump operators are then given by J1 oc . The
only operator commuting with both J, and J_ is the identity,
C, =1, and thus the dark space dimension is D = 1. For
this example, we also have H = H xZ, see Eq. (54). We
conclude that M; = |0)(0| spans the corresponding space.

As second example, we discuss the dark space stabiliza-
tion for a two-box device in Sec. IV B. Using the Lindblad
equation (85) and assuming that QD 2 remains decoupled
from the system, see Eq. (96), the four conserved quantities
C, listed in Ref. [74] are readily identified. Given these
quantities, a basis spanning the dark space can be constructed
from Eq. (C2). One may view the basis elements, M, as
linearly independent ‘vectors’ with the orthogonality relation
tr(MIjMU) = 8, The existence of four conserved operators
C,, now implies that we have four basis vectors spanning the
dark space, see Ref. [74] for explicit expressions. Since the
dark space dimension D coincides with the number of linearly
independent basis vectors, we have D = 4 for the case studied
in Sec. IV B and Ref. [74]. Since the C,, and M|, specified in
Ref. [74] form the Lie algebra u(2) [15], this dark space is
equivalent to a degenerate qubit space.
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