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Method to observe the anomaly of magnetic susceptibility in quantum spin systems

Nobutaka Aiba * and Kiyohide Nomura †

Department of Physics, Kyushu University, Fukuoka 819-0395, Japan

(Received 4 October 2019; revised 31 July 2020; accepted 9 October 2020; published 28 October 2020)

In quantum spin systems, a phase transition is studied from the perspective of magnetization curve and a
magnetic susceptibility. We propose a new method for studying the anomaly of magnetic susceptibility χ that
indicates a phase transition. In addition, we introduce the fourth derivative A of the lowest-energy eigenvalue per
site with respect to magnetization, i.e., the second derivative of χ−1. To verify the validity of this method, we
apply it to an S = 1/2XXZ antiferromagnetic chain. The lowest energy of the chain is calculated by numerical
diagonalization. As a result, the anomalies of χ and A exist at zero magnetization. The anomaly of A is easier to
observe than that of χ , indicating that the observation of A is a more efficient method of evaluating an anomaly
than that of χ . The observation of A reveals an anomaly that is different from the Kosterlitz-Thouless (KT)
transition. Our method is useful in analyzing critical phenomena.
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I. INTRODUCTION

In condensed matter physics, phase transitions and their
corresponding energy gaps are an important research subject.
Researching these gaps is necessary for studying the behavior
of quantum spin systems. Bethe showed that an S = 1/2 XXZ
chain system had the characteristic of the absence of a gap [1].
Later, Haldane argued that the difference between half-spin
and integer spin systems involved the gap [2].

Many researchers observed the energy gap via the magneti-
zation curve as a function of the magnetic field. The magnetic
field at zero magnetization is equal to the magnitude of the
gap. However, the method of observing the gap is not appro-
priate for deciding whether a spin system is gapless or gapped
in numerical calculation; it is difficult to distinguish a gapless
system from one with a very small energy gap [3].

Hence, Sakai and Nakano [4–7] proposed a method for dis-
tinguishing a gapless from a gapped system. They introduced
the magnetic susceptibility and used numerical diagonaliza-
tion. They demonstrated that the susceptibility clearly shows
the variation of the energy gap with changing magnetization,
in comparison to the magnetization curve. Subsequently, they
found the anomaly of the magnetic susceptibility. The term
“anomaly” refers to a divergence in the thermodynamic limit.
This anomaly usually exhibits a phase transition.

In this paper, we propose a novel method of evaluating an
anomaly by investigating the magnetic susceptibility χ and
the fourth derivative A of the energy with respect to magneti-
zation. Few investigations of high-order differentials such as A
have been carried out. We show that our method is appropriate
for analysis of the phase transition, compared to the method
using the magnetic susceptibility χ alone. The introduction
of A resolves the issue of whether the high-order differential
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of energy diverges. As a test case, we apply this method
to the S = 1/2XXZ antiferromagnetic chain, which shows
the ferromagnetic phase for � � −1, Tomonaga-Luttinger
(TL) phase for −1 < � � 1, and antiferromagnetic phase for
� > 1. Here � denotes an anisotropic parameter associated
with the z component of the XXZ antiferromagnetic chain.
The lowest energy up to 26 spins of the chain is calculated
by numerical diagonalization on the basis of the Lanczos
algorithm. Subsequently, we analyze the anomalies of χ and
A to observe the phase transition. The results demonstrate that
an anomaly of χ at zero magnetization exists under � > 1,
while an anomaly of A at zero magnetization is shown for
� > 1/2. Hence, the anomaly of A is easier to observe than
that of χ .

The anomaly of A at 1/2 < � < 1 is different from that of
A at � = 1, indicating a Kosterlitz-Thouless (KT) transition.
It is well established that the −1 < � � 1 region corresponds
to the TL phase, in which the scaling dimensions vary con-
tinuously with the parameter � [8,9]. In the � > 1 region,
a Neel state appears in which the ground state is doubly
degenerate with an energy gap. Under the Hamiltonian of the
U (1) symmetry, the change of scaling dimensions from irrel-
evant to relevant indicates a KT transition that corresponds to
the phase transition at � = 1 in the S = 1/2 XXZ chain. In
contrast, the scaling dimensions influencing high derivatives
such as A remain irrelevant for −1 < � � 1 [10]. Thus, the
onset of the anomaly of A at � = 1/2 is different from the
KT point and does not indicate the phase transition. We refer
to −1 < � < 1/2 as TL phase (I) and 1/2 < � � 1 as TL
phase (II), as the TL phase is divided by the anomaly of A.
The scaling dimensions influence the corrections for various
quantities such as energies, susceptibility, and high deriva-
tives [10]. Thus, the anomalies of χ and A indicate the phase
transition and the energy gap.

The starting point of the anomaly of A, i.e., � = 1/2,
corresponds to N = 2 supersymmetry (SUSY) from cor-
respondence between the XXZ chain and the free boson
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model [11] and Ashkin-Teller model [12]. Moreover, the re-
sults of our computations agree with the exact solutions under
0 � � < 1. These findings indicate that the method using A is
better than that using χ for analyzing critical phenomena with
phase transitions.

This paper is organized as follows. In Sec. II, the cal-
culation method of χ and A is introduced. In Sec. III, we
present our numerical results for the S = 1/2 XXZ chain. In
Sec. IV, we compare our results to available exact solutions
to investigate the behavior of A. In Sec. V, we reveal that
the anomaly of A is associated with conformal field theory.
The correction term is discussed from the perspective of the
boundary conditions and dimension. In Sec. VI, the anomaly
of χ−1 and A is discussed in detail from the perspective of size
dependence. Section VII is the conclusion.

II. METHOD: MAGNETIC SUSCEPTIBILITY χ

AND FOURTH DERIVATIVE A

In this section, we introduce the physical procedure to
calculate the magnetic susceptibility χ and fourth derivative
A of energy as a function of magnetization. First, we define
the total spin operator in the z direction as

Ŝz
T ≡

N∑
j=1

Ŝz
j, (1)

where Ŝz
j is the jth site spin operator in the z direction and N

is the system size. This operator and a Hamiltonian Ĥ that
shows U (1) symmetry commute: [Ĥ , Ŝz

T ] = 0. Therefore,
the relation is obtained that

Ĥ |ψ〉 = E (N, M ) |ψ〉 , (2)

Ŝz
T |ψ〉 = M |ψ〉 (M = 0,±1, . . . ,±N/2), (3)

where E (N, M ) is the lowest-energy eigenvalue, M is the
magnetization, and |ψ〉 is the simultaneous eigenstate. The
energy of Ĥ per site, ε(m), in the thermodynamic limit is
then written [13]

lim
N→∞

E (N, M )

N
= ε(m), (4)

where m = M/N is the magnetization per site. In finite N
cases, it is shown that

E (N, M )

N
= ε(m) + C(N, m), (5)

where C(N, m) is a correction term of a finite size. Generally,
ε(m) is analytic for m in the thermodynamic limit. The term
“analytic” means that the function and high-order differential
are continuous (our study treats the high-order differential up
to the fourth derivative). C(N, m) satisfies

lim
N→∞

C(N, m) = 0, (6)

lim
N→∞

C(n)(N, m) = 0 (n � 1), (7)

where C(n)(N, m) is the nth derivative of the correction term
with respect to magnetization. The correction term depends
on the boundary conditions and dimension.

Next, we define the magnetic susceptibility χ and fourth
derivative A in the form

χ ≡ 1

ε′′(m)
, (8)

A ≡ ∂2

∂m2
χ−1 = ∂4

∂m4
ε(m). (9)

It is shown that

ε′′(N, m) ≡ N{E (N, M + 1) − 2E (N, M ) + E (N, M − 1)}

= χ−1 + C′′(N, m) + 1

12N2
(ε (4)(m) + C(4)(N, m))

+ O
(

1

N4

)
, (10)

ε (4)(N, m) ≡ N3{E (N, M + 2) − 4E (N, M + 1) + 6E (N, M )

− 4E (N, M − 1) + E (N, M − 2)}

= A + C(4)(N, m) + 1

6N2
(ε (6)(m) + C(6)(N, m))

+ O
(

1

N4

)
, (11)

where ε (n)(N, m) is the nth finite difference between energies.
ε(N, m) is obtained directly from numerical data in finite
systems. E (N, M + 1) − 2E (N, M ) + E (N, M − 1) becomes
a nonzero constant at large N when finite energy gaps exist at
m. Similarly, E (N, M + 2) − 4E (N, M + 1) + 6E (N, M ) −
4E (N, M − 1) + E (N, M − 2) becomes a nonzero constant.
For example, we consider the XXZ model at m = 0 and
m = ±1/N . For a large anisotropic limit � � 1 in the Neel
region, there is an energy gap at m = 0 and the energies are
written in the form

E (N, M ) = E (N, 0) + |M|�E , (12)

where M is the magnetization and �E is an energy gap for a
finite system. For large N , substituting Eq. (12) into Eq. (10),
we obtain

ε′′(N, m) =
{

N (2�E ), (m = 0),

0, (m �= 0).
(13)

Similarly, substituting Eq. (12) into Eq. (11), we obtain

ε (4)(N, m) =

⎧⎪⎨
⎪⎩

N3(−4�E ), (m = 0),

N3(2�E ), (m = ±1/N ),

0, (m �= 0,±1/N ).

(14)

However, for a finite anisotropy, there is some interaction
between magnons. Thus, the above relations are modified to
the forms

ε′′(N, m) =
{

N (2�E ), (m = 0),

finite, (m �= 0),
(15)

ε (4)(N, m) =

⎧⎪⎨
⎪⎩

N3(−4�E ), (m = 0),

N3(2�E ), (m = ±1/N ),

finite, (m �= 0,±1/N ).

(16)

This means ε (4)(N, m) is N2 times as large as ε′′(N, m). This
fact shows that the anomaly of A appears stronger than that
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FIG. 1. Magnetization dependence of the magnetic susceptibility χ of the S = 1/2 XXZ antiferromagnetic chain for several system sizes
N : 10, 12, 14, 16, 18, and 20. Panel (c) shows that χ has a sharp cusp at zero magnetization. However, panel (c) does not exhibit an anomaly
because the size dependence is small. Thus, χ does not have an anomaly.

of χ−1 in the thermodynamic limit. Thus, we introduce A for
observing an anomaly.

Finally, we consider the case in which ε(m) is not analytic.
ε(m) is not analytic for m when ε′′(N, m) or ε (4)(N, m) di-
verges. In the thermodynamic limit, it is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lim
N→∞

ε′′(N, m) = ε′′(m)

⇒ ε(m) is analytic, (17)
lim

N→∞
ε′′(N, m) = ±∞

⇒ ε(m) is not analytic. (18)

The same holds for ε (4)(N, m). The divergence of ε′′(N, m)
and ε (4)(N, m) is equivalent to the fact that χ−1 and A diverge.

III. NUMERICAL RESULTS

We calculate the lowest-energy eigenvalue E (N, M ) to de-
rive the magnetic susceptibility χ and the fourth derivative A,
using numerical diagonalization by TITPACK Version 2 [14]
and Hφ [15]. As an example, we treat an S = 1/2 XXZ
antiferromagnetic spin chain

Ĥ = J
N∑

j=1

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1 + �Ŝz

j Ŝ
z
j+1

)
, (19)

where Ŝx
j , Ŝy

j , Ŝz
j is the jth site spin operator in the x, y, z direc-

tion. � is an anisotropic parameter that takes a 0.1 increment
of values from 0 to 2. The phase of the chain is changed by
�, which shows the ferromagnetic phase for � � −1, the
Tommonaga-Luttinger phase for −1 < � � 1, and antiferro-
magnetic phase for � > 1. N is even from 10 to 26. We then
give an exchange interaction J = 1. The boundary condition
of the model is periodic:

ŜN+1 = Ŝ1. (20)

In this section, we present our numerical data for � = 0, 1, 2
with several sizes from 10 to 20.

A. Magnetic susceptibility χ and χ−1

First, we show the magnetization dependence of χ in
Fig. 1. Figures 1(a) and 1(b) show smooth curves. Figure 1(c)
only shows a sharp cusp at zero magnetization. However, this
cusp does not indicate an anomaly, as an anomaly must satisfy
the following conditions: (1) χ , χ−1, and A have a cusp and (2)
the size dependence of the cusp is large in the thermodynamic
limit. Thus, Fig. 1(c) does not show the anomaly as the size
dependence is small. Similarly, neither Fig. 1(a) nor Fig. 1(b)
show the anomaly. The results demonstrate that the anomaly
of χ is not shown.

Next, the magnetization dependence of χ−1 is shown in
Fig. 2. Figure 2(a) does not show an anomaly because the
graph does not have a cusp. Figures 2(b) and 2(c) have sharp
cusps at zero magnetization, compared to Fig. 1. Thus, it
is clearer to observe the cusp of χ−1 than of χ . However,
Fig. 2(b) does not show an anomaly as the size dependence
is small at zero magnetization. In contrast, Fig. 2(c) demon-
strates the possibility of showing an anomaly because the size
dependence is large. The results indicate a possibility that χ−1

shows an anomaly for � > 1 in the thermodynamic limit. The
details are discussed in a later section.

B. Fourth derivative A

We show the magnetization dependence of A in Fig. 3,
which indicates that A decreases as the magnetization ap-
proaches zero for 0 � � � 1. Figure 3(a) does not show an
anomaly as the graph does not have a cusp. Figures 3(b)
and 3(c) have sharp cusps at zero magnetization in compar-
ison to Fig. 2. Furthermore, these graphs show the possibility
that A at zero magnetization indicates an anomaly as its size
dependence is large. This shows that it is easier to observe
the possibility that an anomaly exists for A than for χ−1.
The difference between the graphs is the behavior of A at
m = ±1/N . Figure 3(b) demonstrates that at m = ±1/N , A
exhibits negative values. Although A in Fig. 3(b) appears to
be discontinuous near m = 0.1, this behavior is superficial.
In fact, Fig. 4 shows that near m = 0.1, A is continuous for
three system sizes: 10, 14, and 20. Thus, A near m = 0.1
is continuous for � = 1. In contrast, Fig. 3(c) demonstrates
that A at m = ±1/N shows large positive values, in con-
trast to the large negative value of A at zero magnetization.
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FIG. 2. Magnetization dependence of the inverse of the magnetic susceptibility χ−1 of the S = 1/2 XXZ antiferromagnetic chain for
several system sizes N : 10, 12, 14, 16, 18, and 20. Panel (b) demonstrates that χ−1 shows a cusp and a low size dependence at zero
magnetization. Panel (c) demonstrates that χ−1 shows a sharp cusp of large positive values and high size dependence at zero magnetization,
compared to panel (b). Therefore, it is easier to observe the cusp of χ−1 than that of χ in Fig. 1. Moreover, it is possible for χ−1 to show an
anomaly for � > 1 owing to its high size dependence at zero magnetization.

The behavior of A indicates the possibility of showing an
anomaly as its size dependence is large. This is explained by
Eq. (16). However, we do not understand how the behavior
of A for � < 1 changes in the thermodynamic limit. These
details are discussed in a later section.

IV. COMPARISON TO EXACT SOLUTIONS

In this section, we compare our numerical data to exact so-
lutions [16–20] to investigate the behavior of A. The behavior
of χ is well established for all �. However, the behavior of
A has not previously been studied. The reliability of the data
of A increases when the data of χ agree with exact solutions.
This leads to an investigation of the behavior of A.

A. Comparison to magnetic susceptibility near saturation
magnetization

For the spin S antiferromagnetic chain, the inverse of mag-
netic susceptibility χ−1 is proportional to a magnetization
S − m near the saturation magnetization [21]. In our case, it
is shown that

χ−1 ∝ 1/2 − m. (21)

We investigate whether our numerical data are consistent with
Eq. (21). Figure 5 shows a magnetization dependence of
χ−1 for � = 1 with a fitting function f that is described by
Eq. (21). The fitting is performed under 0.3 � |m| � 0.4. The
graph demonstrates a linear relation between χ−1 and m near
m = 1/2 because f is consistent with our data. However, the
relation is not applied to the points where f is not consistent
with our data. Thus, our data of χ are reliable, and the relia-
bility of our data of A increases.

B. Comparison to Bethe-ansatz solution

The Bethe ansatz is an exact method applied in a wide
range of fields, such as quantum field theory and statistical
mechanics. We compare our numerical data to exact solutions.
The Zeeman energy is given by

Ĥz = h
N∑

j=1

Ŝz
j . (22)

Ĥz and the Hamiltonian in Eq. (19) commute. h is a magnetic
field.
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FIG. 3. Magnetization dependence of the fourth derivative A of the S = 1/2 XXZ antiferromagnetic chain for several system sizes N : 10,
12, 14, 16, 18, and 20. Both panels (b) and (c) demonstrate that A shows a sharp cusp of large negative values and a high size dependence
at zero magnetization. Furthermore, panel (c) shows that A has large positive values as the magnetization approaches zero. Therefore, it is
possible for A to show an anomaly for � � 1 owing to its high size dependence at zero magnetization.
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1. Case of χ−1 for 0 < � � 1

First, under 0 < � < 1, the exact solution of χ is given
by [9]

χ = 4γ

π (π − γ ) sin γ

{
1 + O(h2) + O

(
h

4γ

π−γ

)}
, (23)

γ = arccos �. (24)

We then rewrite Eq. (23) as a function of m as it is difficult to
compare our numerical data with Eq. (23):

χ = 4γ

π (π − γ ) sin γ
+ c1m2 + c2|m| 4γ

π−γ , (25)

h = 4γ

π (π − γ ) sin γ
m,

where c1 and c2 are constants. We perform the fitting with
Eq. (25) under 0 < |m| � 0.1. The result of this fitting
is shown in Fig. 6(a). Figure 6(a) indicates that our data
are consistent with exact solutions near zero magnetization.
Therefore, this consistency increases the reliability of our
numerical data of χ for 0 < � < 1.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

χ-1

m

N=10
N=12
N=14
N=16
N=18
N=20

f

FIG. 5. Magnetization dependence of the inverse of the magnetic
susceptibility χ−1 for � = 1. f is the fitting function expressed by
Eq. (21). Our numerical data are consistent with f near saturation
magnetization.

Next, we explain the exact solution of χ for � = 1. In

this case, although it appears that h
4γ

π−γ = h0 from Eq. (23),
there remains a possibility of logarithmic behavior from the
solutions of a Hubbard model [22]. The Hubbard model is
regarded as an isotropic Heisenberg model with an infinite
Coulomb repulsion. Thus, using the exact solution of the
Hubbard model, that of χ is given by [22]

χ

χ0
= 1 + 1

2

1

ln hc
h γc

− 1

4

ln ln hc
h γc(

ln hc
h γc

)2 + h.o., (26)

hc = 4 sin2
(π

2
n
)
, γc = π

2

√
2π

e
, (27)

where χ0, n, and h.o. are the magnetic susceptibility at zero
magnetization, a filling that denotes electron density, and
high-order terms, respectively. For an isotropic Heisenberg
model, n = 1 and χ0 = 1/π2 [23,24]. Similarly, we rewrite
Eq. (26) as a function of m for the Heisenberg model

χ = 1

π2
+ 1

2π2

1

ln
2π

√
2π
e

d0m

− 1

4π2

ln ln
2π

√
2π
e

d0m(
ln

2π
√

2π
e

d0m

)2
,

h = d0m, (28)

where d0 is a constant. We perform the fitting with Eq. (28)
under 0 � |m| � 0.1. The result is shown in Fig. 6(b). Fig-
ure 6(b) indicates that our data are consistent with exact
solutions near zero magnetization. Thus, our data are consis-
tent with exact solutions in 0 < � � 1. This indicates that the
reliability of the data of A increases with that of χ . However,
for � = 1 the magnetic susceptibility shows an infinite slope
when m approaches zero from Griffiths’s theory. The cause of
the differences between the theoretical and calculated results
is a finite-size effect.

2. Case of A

The exact solutions of A have not been investigated. How-
ever, C. N. Yang and C. P. Yang discussed [8,25]

(29)
lim

m→0+
A =

{
finite (−1 < � < 1/2)

infinite (1/2 < � < 1). (30)

The numerical data of A are shown in Fig. 7. Figure 7(a)
indicates that A becomes finite as m approaches zero because
its size dependence is small. In contrast, Fig. 7(b) indicates
that A appears to become infinite as m approaches zero from of
its large size dependence. Thus, our data are explained by the
tendency of the exact solutions. � = 1/2 corresponds to N =
2 supersymmetry (SUSY) in a conformal field theory [11].
Details of this are discussed in a later section.

V. ANOMALY AND CORRECTION TERM ASSOCIATED
WITH CONFORMAL FIELD THEORY

In this section, we describe the relationship between the
anomaly of A and a conformal field theory (CFT). In addition,
the correction term obtained from the CFT is discussed.
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FIG. 6. Magnetization dependence of the inverse of the magnetic susceptibility χ−1 with a fitting function f . Panel (a) f is expressed by
the inverse of Eq. (25). Panel (b) f is expressed by the inverse of Eq. (28). Our numerical data are consistent with f under 0 < |m| � 0.1.

A. Anomaly at � = 1/2

We demonstrate that the � = 1/2 point corresponds to
the N = 2 SUSY in the CFT. We apply the CFT to the S =
1/2 XXZ chain. The anisotropic parameter of the chain �

is related to the scaling dimension xT , which is associated
with the critical exponent [26]. It is shown for −1 < � � 1
that [27,28]

xT (k = 0) = 2π

arccos (−�)
, (31)

where k is the wave number of the spin state that is a parameter
obtained from translational symmetry. We focus on the scaling
dimension with the wave number k = 0 and zero magnetiza-
tion, as it is compatible with the symmetry of the Hamiltonian.
For � = 1/2, from Eq. (31), xT (k = 0) = 3. The scaling di-
mensions xT (k = 0) > 2 have irrelevant characteristics [26].
Thus, xT (k = 0) = 3 shows the irrelevant characteristics. S.
K. Yang [12] demonstrated that xT (k = 0) = 3 corresponds
to N = 2 SUSY from the correspondence between the XXZ
chain and Ashkin-Teller model. Later, Ginsparg [11] showed
the same correspondence from the relation between the XXZ
chain and free boson model. Therefore, these discussions
show that � = 1/2 corresponds to N = 2 SUSY.

B. Anomaly and scaling dimensions

We show that the anomaly of A is influenced by scaling
dimensions in the CFT. In the CFT, the energy gap �E for a
finite system size N is given by [29]

�E = 2πv

N

{
x + C1

(
1

N

)xT −2

+ C2

(
1

N

)2(xT −2)}
, (32)

where x is a scaling dimension that is different from xT , C1 and
C2 are constants, and v is the velocity of the spin wave. For a
sine-Gordon model that corresponds to the XXZ chain, C1 =
0, xT > 2 [30], and C2 < 0 [27]. First, we consider ε (4)(N, m)
at xT > 2. Next, considering 1/N ∝ m, Eq. (32) is written as

�E = 2πv

N
{x + C2m2(xT −2)}. (33)

Substituting Eq. (33) into Eq. (10), the second differentials are
written by

ε (2)(N, m) = 4πv{x + C2|m|2(xT −2)}, (34)

where m is replaced by |m| as the system has the spin rever-
sal symmetry m → −m. This equation is consistent with the
exact solution of Eq. (25). The fourth differential of magneti-
zation with respect to energy is then written in the form

ε (4)(N, m) = 4πvC2(2xT − 4)(2xT − 5)|m|2(xT −3). (35)
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FIG. 7. Magnetization dependence of the fourth derivative A near � = 1/2. Our numerical data are consistent with Eqs. (29) and (31).
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ε (4)(N, m) diverges for 2 < xT < 3, i.e., 1/2 < � < 1 in the
thermodynamic limit. ε (4)(N, m) = 0 at xT = 5/2 is a subject
of future works as few investigations have been carried out. In
addition, we focus on the size dependence of ε (4)(N, m = 0).
Considering the Gaussian model [27,31], we extend Eq. (33)
in the form

E (N, M ) − 2E (N, 0) + E (N,−M )

= E (N, M ) − E (N, 0) − (E (N,−M ) − E (N, 0))

= 4πv|M|2
N

{
x + C2

∣∣∣M
N

∣∣∣2(xT −2)}
, (36)

where |M| � N . Although few investigations into the ex-
tension of Eq. (33) have been carried out, with respect to
|M/N |2(xT −2), we consider that the average distance between
quasiparticles is |N/M|, which is renormalized by xT . The
relation is applied for the fourth differential in Eq. (11) in the
form

ε (4)(N, m = 0) = N3{E (N, 2) − 2E (N, 0) + E (N,−2)

− 4(E (N, 1) − 2E (N, 0) + E [N,−1)]}
= 16πvC2(22(xT −2) − 1)N6−2xT , (37)

where the coefficient 16πvC2(22(xT −2) − 1) has a negative
value for C2 < 0 and xT > 2. Thus, ε (4)(N, m = 0) diverges
for 2 < xT < 3 in the thermodynamic limit.

Next, we explain ε (4)(N, m) at xT = 2, i.e., � = 1. The
energy gap �E is written as [19]

�E = 2πv

N

1

2

(
1 − 1

2

1

ln N
N0

+ 1

4

ln
(

ln N
N0

)
(

ln N
N0

)2

)
, (38)

where N0 is a nonuniversal renormalization constant. Under
1/N ∝ m, substituting Eq. (38) into Eq. (10), we obtain

ε (2)(N, m) = 2πv

(
1 − 1

2

1

ln m0
m

+ 1

4

ln
(

ln m0
m

)
(

ln m0
m

)2

)
, (39)

where m0 is a constant that corresponds to 1/N0. Hence, the
fourth differentials are shown by

ε (4)(N, m) = πv
(

m ln
m0

m

)−2
{

1 − ln
[

ln m0
m

)] + 3/2

ln m0
m

+O
[(

ln
m0

m

)−2]}
. (40)

Thus, ε (4)(N, m) diverges in the thermodynamic limit. Fur-
thermore, we discuss the size dependence of ε (4)(N, m = 0).
We use Eq. (38) in the same procedure as for Eq. (36) and
obtain

E (N, M ) − 2E (N, 0) + E (N,−M )

= 2πv

N
|M|2

⎛
⎝1 − 1

2

1

ln N
N0|M|

+ 1

4

ln
(

ln N
N0|M|

)
(

ln N
N0|M|

)2

⎞
⎠. (41)

Using this relation, the fourth differentials are expressed by

ε (4)(N, m = 0) = − 4πvN2
(

ln
N

N0

)−2

ln 2

{
1 − ln

(
ln N

N0

) − ln 2 − 1/2

ln N
N0

+ O
[(

ln
N

N0

)−2]}
. (42)

Therefore, ε (4)(N, m = 0) diverges in the thermodynamic
limit.

These facts indicate that the scaling dimension xT in-
fluences the energy gap, magnetic susceptibility, and fourth
derivative for a finite magnetization. The anomalies of χ and
A are subject to the change in scaling dimension that is related
to phase transition.

C. Scaling dimension and phase transition

We explain that the scaling dimension xT is related to
phase transition. To demonstrate this, Fig. 8 indicates the �

dependence of the fourth derivative A at zero magnetization. It
appears that A diverges for � > 1/2 as the size dependence is
large. This is as expected by C. N. Yang and C. P. Yang [8,25].
However, the anomaly of A at � = 1/2 is different from that at
� = 1 from the perspective of the scaling dimension xT . Gen-
erally, the −1 < � � 1 region corresponds to the TL phase,
which is controlled by the scaling dimension xT subject to the
parameter � [8,9]. For � = 1, the anomaly of A represents
the phase transition corresponding to the KT transition when
the scaling dimension xT changes from irrelevant to relevant
for U (1) symmetry. In contrast, for � = 1/2, the anomaly

of A does not represent the phase transition as the scaling
dimension xT is irrelevant in the −1 < � � 1 region [10].
Similarly, the anomaly of A for � = 2 does not represent
the phase transition as the scaling dimension xT is relevant
in � > 1. Therefore, the phase transition is controlled by the
scaling dimension xT . These facts show that the anomalies of
χ and A represent the phase transition through the scaling
dimension xT . In addition to this, we name −1 < � < 1/2
TL phase (I) and 1/2 < � � 1 TL phase (II) based on the
behavior of A for � > 1/2.

D. Correction term and boundary conditions

The correction term of Eq. (5) changes in relation to bound-
ary conditions and dimension. First, we discuss C(N, m) in
one-dimensional systems. Without anomaly, C(N, m) in a pe-
riodic boundary condition is written in the CFT as [32–34]

C(N, m) = −πv(m)

6N2
, (43)

where v(m) is the velocity of the spin wave and a smooth
function for m. Thus, ε′′(N, m) and ε (4)(N, m) in Eqs. (10)
and (11) converges to 1/N2 order, which agrees with our
numerical results. In contrast, the correction term for an open
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FIG. 8. Anisotropic parameter � dependence of the fourth
derivative A at zero magnetization for several system sizes N : 10,
18, and 26. A appears to diverge for � > 1/2 as the size dependence
is large. Thus, the starting point of the anomaly of A is the � = 1/2
point. The anomaly of A at 1/2 < � < 1 does not indicate the phase
transition from the scaling dimension [10]. The −1 < � < 1/2 re-
gion is named TL phase (I) and 1/2 < � � 1 is named TL phase (II)
based on the behavior of A.

boundary is given by [32–34]

C(N, m) = b(m)

N
− πv(m)

24N2
, (44)

where b(m) is a nonuniversal boundary term. In general, the
convergence of this term is worse than that for a periodic
boundary condition. We do not perform calculations for open
boundary conditions herein, and leave them for future work.

Next, we discuss the correction term in two-dimensional
systems. The correction term quickly converges, as shown
by Nakano and Sakai [4], and thus, has convergence of at
least second order. Unlike in the one-dimensional case, the
convergence depends on the shape of the lattice. Figure 4 in
Ref. [4] is different from Fig. 1(b) from the perspective of
an energy gap, although it resembles Fig. 1(b) from previous
research [4]. This problem will be addressed in our future
works.

VI. ANOMALIES OF χ−1 AND A

In this section, we investigate the anomalies of χ−1 and A
at zero and m = 1/N for 0 � � � 2 from the perspective of
size dependence. In addition, we reveal the anomalies of χ−1

and A. The origin of an anomaly is usually a phase transition
or Neel state that indicates double degeneracy of ground states
with an energy gap for the S = 1/2 XXZ chain.

First, the behaviors of χ and χ−1 are shown at zero mag-
netization in Fig. 9. Figure 9(a) shows that χ−1 becomes finite
for � = 1 in the thermodynamic limit. This indicates that the
system does not have a finite spin gap or an anomaly. In con-
trast, Fig. 9(b) shows that χ−1 becomes infinite, i.e., χ reaches
zero for � = 2 in the thermodynamic limit. However, it is not
conclusive that χ approaches zero in the thermodynamic limit.
To solve this problem, we present Fig. 9(c), which is described
as a semilog graph of Fig. 9(b). Figure 9(c) shows that the
behavior of log χ is consistent with the Ornstein-Zernike rela-
tion, which explains that ln χ ∝ −N/ξ + ln N , where ξ is the
correlation length. Thus, χ for � = 2 approaches zero, i.e.,
χ−1 approaches infinity in the thermodynamic limit. This in-
dicates that the system has a finite spin gap and an anomaly for
� = 2. The origin of the anomaly is the Neel state. These facts
are consistent with the results obtained by C. N. Yang and C.
P. Yang [8,25]; thus, we observed an anomaly of the magnetic
susceptibility in a one-dimensional system. Moreover, the ob-
servation of the anomaly is useful for distinguishing gapped
from gapless systems.

Next, the behavior of A at zero magnetization is shown in
Fig. 10. Figure 10(a) shows that A becomes finite for � = 0.3
in the thermodynamic limit, whereas Fig. 10(b) shows that it is
negative infinity for � = 0.7 in the thermodynamic limit. For
� = 0.7, from Eq. (37), A is proportional to N6−2xT = N0.6439,
as the scaling dimension xT = 2.678003 in Eq. (31). Thus, we
plot the horizontal axis in Fig. 10(b) as N−0.644. The behavior
of A for � = 0.7 is consistent with Eq. (37), in terms of both
the power index and sign of the divergence. Both Figs. 10(c)
and 10(d) show that A is negative infinity in the thermody-
namic limit. For � = 1, from Eq. (42), A is proportional to
N6−2xT = N2, as the scaling dimension xT = 2.0. Thus, we
plot the horizontal axis in Fig. 10(c) as N−2. The behavior
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FIG. 9. N and N−2 dependence of the magnetic susceptibility χ and its inverse χ−1 at zero magnetization. Closed circles denote values of
the magnetic susceptibility for several system sizes N : 10, 12, 14, 16, 18, 20, 22, 24, and 26. Panel (a) demonstrates that χ−1 becomes finite in
the thermodynamic limit. Panel (c) demonstrates that log χ approaches minus infinity in the thermodynamic limit because log χ is consistent
with the Ornstein-Zernike relation that explains ln χ ∝ −N/ξ + ln N , where ξ is the correlation length. Therefore, panel (b) demonstrates that
χ approaches zero in the thermodynamic limit and shows an anomaly that indicates double degeneracy of ground states.
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FIG. 10. N dependence of the fourth derivative A at zero magnetization. Closed circles denote values of A for several system sizes N :
10, 12, 14, 16, 18, 20, 22, 24, and 26. Panel (a) indicates that A becomes constant in the thermodynamic limit. Panel (b) indicates that A
approaches minus infinity and is consistent with Eq. (37) in the thermodynamic limit. Both panels (c) and (d) demonstrate that A is minus
infinity in the thermodynamic limit. These numerical data are consistent with Eqs. (42) and (16). Thus, these graphs show an anomaly that
indicates Kosterlitz-Thouless (KT) transition for � = 1 and double degeneracy of ground states for � = 2.

of A for � = 1 is consistent with Eq. (42), in terms of both
the power index and sign of the divergence. For � = 2, from
Eq. (16), A is proportional to N3. Therefore, we plot the hori-
zontal axis in Fig. 10(d) as N−3. The behavior of A for � = 2
is consistent with Eq. (16), in terms of both the power index
and sign of the divergence. These demonstrate that A shows
an anomaly for � = 0.7, 1.0, 2.0. However, the origin of the
anomaly is different. For � = 0.7, the origin is TL phase (II).
The origin of the anomaly for � = 1 is the phase transition,
which means the transition from TL liquid phase to antiferro-
magnetic phase [8,9]. In contrast, in the � > 1 region, a Neel
state appears for the S = 1/2 XXZ chain. Thus, the origin of
the anomaly for � = 2 is the Neel state. Moreover, A shows
the transition for � = 1, although χ−1 does not show it from
Fig. 9(a). The difference is used to confirm whether a phase
transition happens or not. Therefore, observing A is helpful
for determining the consistency of phase transition.

Finally, we show A at m = 1/N in Fig. 11, as the be-
havior of A at m = 1/N differs between Figs. 3(b) and 3(c).
Figure 11(a) shows that A becomes finite for � = 0.3 in
the thermodynamic limit, whereas Fig. 10(b) shows that it is
minus infinity for � = 0.7 in the thermodynamic limit. The
behavior of A for � = 0.7 is consistent with Eq. (35). The
origin of the anomaly is TL phase (II). It appears that A in
Fig. 11(c) becomes finite for � = 1. However, the behavior of
A is not consistent with Eq. (40), in which A reaches infinity
when m approaches zero. The disagreement results from the

intermediate region in Eq. (40), in which A exhibits flat and
negative behavior, before reaching a sufficiently small region
|m| � 1. Thus, A becomes infinite as the system size becomes
larger in our calculation. The origin of the anomaly is phase
transition. In contrast, Fig. 11(d) shows that A reaches infinity
for � = 2 in the thermodynamic limit. The behavior of A
is consistent with Eq. (16). This indicates that A shows an
anomaly for � = 2. The origin of the anomaly is a Neel
state. Therefore, the behavior of A at m = 1/N in Figs. 3(b)
and 3(c) is explained by Eqs. (16) and (40). Observation of
the change in behavior at m = 1/N can be proposed as a new
technique to distinguish gapped from gapless systems. Hence,
observing A at m = 1/N allows us to distinguish gapped from
gapless systems. However, future works must focus on the
exact solutions of A at m = 1/N , as few investigations have
focused on this behavior.

These findings indicate that observation of A is more effi-
cient than that of χ . Thus, we expect this technique to be used
for analysis of spin liquids with spin gap issues in triangular
and Kagome lattices [4–7].

VII. CONCLUSION

We investigated anomalies of χ and A for the S = 1/2
XXZ antiferromagnetic chain by numerical diagonalization.
At zero magnetization, χ−1 shows an anomaly for � > 1.
At zero magnetization, A clearly indicates an anomaly for
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FIG. 11. N dependence of the fourth derivative A−1 at m = 1/N . Closed circles denote values of A for several system sizes N : 10, 12, 14,
16, 18, 20, 22, 24, and 26. Panel (a) indicates that A becomes finite in the thermodynamic limit. Panel (b) indicates that A approaches minus
infinity and is consistent with Eq. (35) in the thermodynamic limit. Panel (c) appears to indicate that A becomes finite. However, it disagrees
with Eq. (40), in which A approaches infinity as the magnetization approaches zero. The disagreement results from the intermediate region in
Eq. (40), in which A exhibits a negative and flat region. Thus, A approaches infinity as the system size becomes larger. Panel (d) demonstrates
that A is infinity and is consistent with Eq. (16) in the thermodynamic limit. Thus, panel (d) shows an anomaly that indicates double degeneracy
of ground states.

� > 1/2. In addition, an anomaly of A at m = 1/N is shown
for � > 1. In contrast, in the � < 0 region, future works are
required regarding the anomalies of χ and A in numerical
calculations. The results indicate that χ and A have anomalies,
and that observing the anomaly of A is easier than that of χ for
relatively small system sizes. In other words, the observation
of phase transition is easier by A than by χ . We reveal that
the TL phase can be divided into −1 < � < 1/2 as TL phase
(I) and 1/2 < � � 1 as TL phase (II), from the perspective
of the anomaly of A at � = 1/2. Therefore, we conclude
that observation of A is a useful method of analyzing critical
phenomena, compared to that of χ .

Our study is concerned with one-dimensional systems.
However, our method can be used regardless of dimensions.
This method will help investigate quantum spin systems in
two or three dimensions. In addition, this method can be
applied to other systems such as spin liquids. The behavior of
spin liquids has been studied for magnetic susceptibility [4,7]
and our method using A, compared to that using χ , will be
useful for researching the behavior of a spin liquid that has
spin gap issues. The study of using A for other models and
higher dimension is left for future works.

In particular, A relates to the nonlinear magnetic suscep-
tibility [35] of quantum spin systems and is thus of direct

relevance to experiments. The nonlinear magnetic suscepti-
bility can be easily calculated with high accuracy using A.
The method using A can be a new technique in the study of
quantum spin systems and strongly correlated electron sys-
tems. Furthermore, the method will enable one to discover
a magnetization plateau observed in experiments that shows
constant magnetization when a magnetic field changes. The
plateau indicates the anomaly of χ , and that of A should also
appear there from Eqs. (15) and (16). The observations of χ

and A will be useful for evaluating a magnetization plateau.
Numerical diagonalization calculations of A will provide us
with a new development in theory and experiments for quan-
tum spin systems.
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