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Strain-dependent Dzyaloshinskii-Moriya interaction in a ferromagnet/heavy-metal bilayer
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We study the dependence of the Dzyaloshinskii-Moria interaction (DMI) using the s-d model in the bilayer
ferromagnet/heavy-metal system on the mechanical strain applied to the system. We show that DMI is sensitive
to the strain perpendicular to the film plane. It can vary 40% under the strain of 0.3%. Such a strong variation
is in agreement with recent experiment [Phys. Rev. Lett. 124, 157202 (2020)]. The DMI coefficient variation is
mostly related to the change of the distance between heavy-metal atomic planes under the strain. Changing the
in-plane distance between the heavy-metal ions does not produce strong variation of DMI. Anisotropy of the
DMI interaction may appear if the strain is anisotropic in the plane of the bilayer. The DMI anisotropy is related
to the anisotropy of the electron effective mass in the film plane induced by the strain.
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I. INTRODUCTION

Artificial multilayer structures with alternating ferromag-
netic (FM) and heavy-metal (HM) layers get into focus
of many groups nowadays [1–10]. Such structures host
skyrmions which are considered as the next generation
magnetic object for information storage and processing
[11–16]. The stability of the skyrmions is provided by the
Dzyaloshinskii-Moriya interaction (DMI). Therefore, many
efforts were spent on studying this interaction. Control of
the DMI with an external stimulus is one of the key issue
[17,18] since it promises the skyrmion manipulation. The
DMI can be controlled via charge accumulation in the system
HM/FM/insulator [19–21]. When voltage is applied across
the insulating layer the charge accumulation occurs in the FM
layer leading to DMI variations. Recent experiments show
that strain can essentially influence the DMI [22]. Theoretical
explanation of this effect is lacking. In the present paper we
propose a model for strain-dependent DMI in the FM/HM
bilayer system.

Following a Fert and Levy idea [23] the DMI appears due
to triple coupling of conduction electrons to spin-orbit (SO)
impurity and two FM ions. According to Ref. [23] the depen-
dence of the DMI on the distance between two ions is similar
to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
showing short-period oscillations. So, one can expect that
the DMI interaction is sensitive to a strain applied to bilayer
FM/HM film. Based on this idea we calculate the DMI as a
function of strain applied to the system and show that it indeed
depends on the mechanical deformation.

Recently, the DMI was considered using a perturbation
theory in Ref. [24]. In this work the SO and the s-d exchange
interactions were treated as a perturbation. Several other mod-
els were used to describe the DMI in the FM/HM system. In
Refs. [25–27] the bilayer system was changed by the effective
uniform medium with Rashba interaction.

Direct application of the Levy-Fert formula for FM/HM
system was used in Refs. [28,29]. The authors averaged the
Levy-Fert expression for ion-ion interaction over all HM
atoms in the system and obtained the DMI constant. Gener-
ally, the same approach can be used to study the influence
of strain on the DMI since the distance between ions directly
enters into the expression for two ion interaction. However,
it is not clear to what extent the result for the interaction of
two magnetic ions via a spin-orbit impurity in a nonmagnetic
metal can be applied to the bilayer system. In the Levy-Fert
approach the electrons mediating the DMI are free ones. The
exchange interaction is considered as a perturbation. This is
not the case for the FM/HM system where the exchange
coupling is usually strong and essentially modifies electron
energy spectrum and wave functions. Moreover, the applied
strain can also change the energy quantization in the system
which can modify the DMI. This cannot be taken into account
using the approach of Ref. [28]. Therefore, here we generalize
the Levy-Fert approach for a bilayer system following a more
regular procedure.

The paper is organized as follows. First, we introduce
the model of a ferromagnetic/heavy-metal bilayer. Next, we
calculate the DMI and discuss general properties of the inter-
facial DMI in Sec. III. In Sec. IV we consider the dependence
of the DMI on applied mechanical strain. Finally, we compare
our results with recent experimental data and discuss limits of
our model in Sec. V.

II. THE MODEL

Consider the system consisting of two layers with an in-
terface at the plane y = 0 (see Fig. 1). The upper part of the
system (y < 0) represents a FM material and the bottom part is
the material with a spin-orbit interaction [heavy metal (HM)].
The FM layer has thickness dFM, the HM layer has thickness
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FIG. 1. Hybrid system with ferromagnetic (FM) and heavy-
metal (HM) layers. Layers thicknesses are dFM and dSO, respectively.
Red arrows show magnetization of the FM layer. The magnetization
forms the spiral state in the (x, y) plane with spiral period being
2π/q. Blue spheres are ions in the HM layer forming a lattice with
interplane distance a.

dSO. Electrons in the FM film are described by the s-d model
[30]. The single electron Hamiltonian reads

Ĥsd = 1

2m
p̂2 − J (σ̂M), (1)

where m is the effective mass of an electron. Here the effective
mass is isotropic. However, in the general case the effective
mass may be anisotropic (for example, when strain induces
system anisotropy). J is the exchange coupling constant de-
scribing the conductive electrons spin subbands splitting. This
splitting is mostly due to interaction of conductive (s) elec-
trons with localized (d) electrons forming magnetization of
the FM film. M is the unit vector showing the direction of
local magnetization. We assume that conductive electrons are
free and can be described in the weak coupling model. The
influence of the ionic potential is described using the effective
electron mass m. In the HM layer an electron experiences a
spin-orbit interaction and the Hamiltonian is given by

ĤSO = 1

2m
p̂2 +

∑
i

λ(|r − ri|)(σ̂ l̂i ), (2)

where the second term describes the spin-orbit interaction
of an electron at each ion of HM (y > 0). Summation is
performed over all ions with positions ri. The operator l̂i =
[(r − ri ) × p̂] is the electron orbital angular momentum with
respect to the ith ion. λ(|r − ri|) is the SO interaction (SOI)
spatial profile defined by the Coulomb potential produced by a
single ion. λ(|r|) is a well localized function which is nonzero
only in a small (compared to or less than an interatomic
distance) region around an ion.

For simplicity we assume that ionic electrostatic potential
in the HM film renormalizes the electron mass in the same
way as in the FM layer. Therefore, the electron effective mass
is the same in the whole space.

To calculate the total energy of electrons, we find electron
wave functions and energies and sum over all states in the
system. We consider the zero temperature limit. Therefore, all
the states below the Fermi level EF are occupied and all the
states above it are empty.

In the continuous limit the DMI at the interface is given by

WDMI = Dx

(
Mx

∂My

∂x
− My

∂Mx

∂x

)
+ Dz

(
Mz

∂My

∂z
− My

∂Mz

∂z

)
,

(3)

where Dx and Dz are the DMI constants. If the system has in-
plane anisotropy these constants can be different. We assume
that magnetization is uniform across the magnetic film and
the energy WDMI is the volume energy density (surface energy
divided by the magnetic film thickness). Therefore, Dx,z have
the dimension of energy per unit area.

Energy contribution Eq. (3) leads to the formation of inho-
mogeneous helical magnetization distribution. To define the
DMI strength we calculate the system energy for a magnetic
spiral state described by

M = (cos(qx), sin(qx), 0). (4)

This is a magnetic spiral of the Néel type (common for sys-
tems with DMI). The spiral propagates along the FM/HM
boundary with the rotation plane perpendicular to the inter-
face. Note that the magnetic structure in Eq. (4) is considered
for DMI calculations only. The real magnetic structure of the
film should be calculated by taking into account all energy
contributions such as magnetic anisotropy, dipole-dipole in-
teraction, exchange interaction, and DMI.

Substituting Eq. (4) into Eq. (3) one finds that DMI is
linear in q, WDMI = qDx. Note that beside the DMI energy
there is also the exchange interaction between localized mag-
netic moments in the FM film (not taken into account in the
model since it does not influence the DMI). This interaction
is quadratic in q and stabilizes magnetic spiral with a certain
wavelength.

Using the above Hamiltonian [Eqs. (1) and (2)] we find the
electron energy as a function of q and check if it has a linear
in q terms. First, we find the electron wave functions for the
system without the spin-orbit interaction. The nonperturbed
Hamiltonian has the form

Ĥ (0) =

⎧⎪⎪⎨
⎪⎪⎩

p̂2

2m
− J[σx cos(qx) + σy sin(qx)], y < 0,

p̂2

2m
, y > 0.

(5)

Next, we calculate the SO interaction energy using the first
order perturbation theory where perturbation reads

Ĥ (1) =
⎧⎨
⎩

0, y < 0,∑
i

λ(|r − ri|)(σ̂ l̂i ), y > 0.
(6)

III. DMI CALCULATIONS

A. Electron wave functions

First, we consider the nonperturbed Hamiltonian in Eq. (5).
We use the adiabatic approximation where electron spin fol-
lows the local magnetization direction in the FM. The small
parameter in this case is β = h̄2qkx/(mJ ) � 1. For small q
limit (used to find linear in q energy correction), the above
inequality is always valid. Additionally, in metallic ferromag-
nets the exchange interaction is usually strong supporting
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our assumption. The quasiadiabatic (of order of ∼β1, and
of higher orders) corrections can be neglected when calcu-
lating electron wave functions and unperturbed energy, see
Appendix A. In Ref. [23] the exchange interaction was treated
as a perturbation (which is not a good approximation for a
metallic ferromagnet). Here we consider the opposite limit. In
Ref. [24] the exchange (sd) field was treated as perturbation,
however this field was linearly changing in space. Therefore,
the DMI in Ref. [24] appears in the second order perturbation
theory (exchange variation + SO interaction). In our work we
find the DMI as a first order perturbation correction due to the
SOI. At that, the exchange interaction is included in the zero
order Hamiltonian.

The single electron wave function for y < 0 (we indicate
this region with the index 1) has the form

ψ1±
k = 1√

2
eikxx+ikzzeik±

1yy

( ±e−iqx/2

eiqx/2

)
. (7)

The sign + (−) stands for electron spin co-directed (counter-
directed) with local magnetization M. Electron energy is
given by

E±
kx,k1y,kz

= h̄2

2m
k2 ∓ J. (8)

The wave function in Eq. (7) has different x quasimo-
mentum for up and down spinor components. To satisfy the
boundary conditions we compose the wave function in the
HM layer (y > 0, indicated by the index 2) of two plain waves
exp(ikr) with different x momentums:

ψ2±
k = 1√

2
eikzz

( ±eik+
2yy+i(kx−q/2)x

eik−
2yy+i(kx+q/2)x

)
. (9)

Note that energies of spin-up and spin-down states are the
same:

Ekx,k
+
2y,kz

= h̄2

2m

[
k2

z + k+2
2y + (kx − q/2)2]

= h̄2

2m

[
k2

z + k−2
2y + (kx + q/2)2]. (10)

This gives the relation

k+2
2y = k−2

2y − 2qkx. (11)

Note that due to the boundary conditions kx and kz should be
the same for the wave function in both layers. The components
along the y direction are related as follows:

(k±
1y)2 = k±2

2y ∓ qkx ± J. (12)

Quadratic in q term is neglected within our approximation.
The full wave function consists of several plain waves in

each layer:

�kx,k
+
1y,kz

= 1

N
ei(kzz+kxx)

{(
(B+

→ − B−
→)eik+

2yy−i qx
2

(B+
→ + B−

→)eik−
2yy+i qx

2

)

+
(

(B+
← − B−

←)e−ik+
2yy−i qx

2

(B+
← + B−

←)e−ik−
2yy+i qx

2

)}
, y > 0,

�kx,k
+
1y,kz

= 1

N
ei(kzz+kxx)

×
{

A+
→eik+

1yy

(
e−i qx

2

ei qx
2

)
+ A−

→eik−
1yy

(
−e−i qx

2

ei qx
2

)

+A+
←e−ik+

1yy

(
e−i qx

2

ei qx
2

)
+ A−

←e−ik−
1yy

(
−e−i qx

2

ei qx
2

)}
,

y < 0. (13)

Using boundary conditions at y = −dFM, y = 0, and y = dSO

we obtain a system of eight linear equations for eight un-
known coefficients A±

→, A±
←, B±

→, and B±
←. Using the condition

Det = 0 (where Det is the system determinant) we find the
energy levels and y quasimomentums. We find zeros of the de-
terminant numerically. Note that there is no quasimomentum
quantization along x and z directions, but there is a quantiza-
tion along the y direction. Finally, we find the wave functions
for given kx, kz, and k+

1y. We chose these quantum numbers
to enumerate the electron states. These quantum numbers
are real. Note that there will be states with spin mostly co-
directed with the FM magnetization and states with spins
counter-directed to magnetization. These states have different
quasimomentums k1y. Therefore we do not need to introduce
an additional quantum number responsible for a spin state
of a particle. The normalization factor 1/N of electron wave
function is discussed in Appendix A.

B. Properties of SO interaction

Consider the average energy of the SO interaction between
a single electron with a single ion in the HM layer. The energy
correction is given by

W (i)
SO = 〈�|λ(|r|)(σ̂ · [r × p])|�〉. (14)

The superscript i stands for the ith HM ion. As an example,
consider a single term in this expression 〈�|λ(|r|)σxypz|�〉.
This contribution is an odd (linear) function of kz since the
wave functions are the harmonic plain waves in the z di-
rection. Taking into account the fact that electron spectrum
is an even function of kz the contribution of this term into
the total SO energy is zero after averaging over all electron
states. Therefore, all terms with pz do not contribute to the SO
interaction energy. Now consider the term 〈�|λ(|r|)σxzpy|�〉.
From Eq. (13) one can see that the electron spin and mass
densities do not depend on the z coordinate. Therefore, this
matrix element is also zero after integrating over coordinates.
So, elements with z do not contribute to the SOI energy. Now
consider the term of the form 〈�|λ(|r|)σzxpy|�〉. One can
show that z component of the electron spin does not depend
on x. Therefore, this term also cancels out. The only term that
contribute to the SO energy has the form

W (i)
SO = 〈�|λ(|r|)σzypx|�〉. (15)

First consider one part of the wave function traveling outward
the interface. For high enough energies the wavenumbers k+

2y

and k−
2y are real. Such a wave function has the form

�+
→ = ei(kzz+kxx)

√
2

(
(B+

→ − B+
→)eik+

2yy−i qx
2

(B+
→ + B+

→)eik−
2yy+i qx

2

)
. (16)
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One can see that the z component of the spin is independent
of y. Therefore, Eq. (16) is an odd function of y and vanishes
after averaging over coordinates. A similar situation is for the
wave purely traveling toward the interface. Finally, only the
interference of waves traveling backward and forward con-
tribute to the SOI. This interference is the origin of oscillations
of electron magnetic moment which contribute to the SOI.

If the wave has an imaginary quasimomentum it also con-
tributes to the SOI, since the z component of the electron spin
varies exponentially in this case.

C. SOI energy

For the states with real k±
2y the expression for the energy of

SO interaction between a single electron and a single ion at
the position yi is the following:

W (i)
SO (kx, k+

1y, kz )

= −2IRe
(
ik+

2y(kx − q/2)(B+
→−B−

→)∗(B+
←−B−

←)e−2ik+
2yyi

−ik−
2y(kx + q/2)(B+

→ + B−
→)∗(B+

← + B−
←)e−2ik−

2yyi
)
,

(17)

where I is given by

I = 2h̄

N

∫
d3ry2λ(|r|). (18)

In the above expressions we use the fact that λ is nonzero in
the small region around |r − ri| = 0. In this region we write
the exponents e2ik+

2y (y+yi ) ≈ e2ik+
2yyi (1 + 2ik+

2yy). The first term
is even in y and does not contribute to the SOI. Only the term
linear in y gives the nonzero matrix element. The SOI energy
correction does not depend on kz. Note that I is inversely
proportional to the system volume. However, the number of
ions is proportional to the system volume. Therefore the DMI
coefficient contains only the ion density which is finite.

It is important that the matrix element of SOI does not
depend on the position of the HM ion in the film plane (on x
and z coordinates). Therefore, the total DMI does not depend
on the distance between the HM ions in the film plane. Only
the distance between ions in the y direction is important. As a
result only the strain along the y direction influences the DMI.

Results for states with imaginary quasimomentums are
given in Appendix B.

Now we average the energy correction in Eq. (17) over all
electron states and all ions in the HM layer:

W tot
SO = S

4π2

∑
yi

∑
k+

1y

∫
dkx

∫
dkzW

i
SO(kx, k+

1y )

= S

2π2

∑
yi

∑
k+

1y

∫ kF

−kF

dkx

×
√

ẼF − k2
x − k+2

1y − 2J̃W i
SO(kx, k+

1y). (19)

Here we introduce normalized energies ẼF = EF/(h̄2/2m)
and J̃ = J/(h̄2/2m). The quantity S is the interface area and
kF is the Fermi momentum.
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FIG. 2. Contribution of each layer of HM to the DMI coefficient
Dx . HM and FM layer thickness is fixed, dSO = 5 and dFM = 3 atomic
layers. Other parameters are discussed in the text. Inset shows the
energy density of DMI, DE (see text for definition).

D. Relation between the DMI coefficient and the SO energy

As we mentioned above, the DMI energy in the system
with the spiral magnetization is defined by WDMI = qDx. The
SOI energy is the only contribution which has a linear in q
part. Thus, we can write

Dx = 1

dFMS

∂W tot
SO

∂q

∣∣∣∣
q→0

. (20)

Similarly one can calculate the DMI constant Dz. In this case
one needs to consider a magnetic spiral propagating along the
z direction.

E. Contribution to the DMI from different HM ion layers

Figure 2 shows how each layer in the HM film contributes
to the DMI coefficient. The following parameters are used:
the thickness of the HM layer is dSO = 5 atomic planes;
the FM layer thickness is dFM = 3 atomic layers; electrons
concentration is nel = 0.5 electrons per atom which is the
characteristic carrier concentration in Co [31]; and exchange
interaction is of order of 1 eV [32] which is about 0.12EF [33]
(EF = 8.5 eV).

The strength of the SO interaction is defined by the con-
stant I . It has the dimension of energy × length2. We introduce
the quantity with the dimension of energy as follows. Param-
eter I describes the interaction of an electron with a single SO
ion. At that the electron is smeared over the whole sample.
So, we multiply I by the number of ions in the system to
avoid the factor 1/V (V is the system volume). Also to get
the energy units we multiply I by the quasimomentum square.
The DMI matrix element in Eq. (17) is linear in q (for small
q). So, q would be one of two characteristic quasimomenta.
The second one is the Fermi momentum. Finally, we intro-
duce a characteristic SO energy per unit cell contributing to
the DMI interaction as follows INsitesqkF. For estimates we
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FIG. 3. Dependence of the DMI coefficient Dx on FM layer
thickness. Inset shows the DMI coefficient Dx as a function of HM
layer thickness.

use the value 0.01EF for this energy. Note that DMI linearly
scales with I . Therefore, this parameter does not influence any
dependencies shown below.

Figure 2 shows that the DMI interaction appears mostly
in the first HM layer. This is in agreement with ab initio
simulations [34]. Also this follows from the fact that the
matrix element in Eq. (17) is the fast oscillating function
of y coordinate. These oscillations are defined by the wave
vector of electrons. Electrons with different quasimomentum
approach a particular HM ion with different phase. This phase
is the same only for ions in the close vicinity to the interface.
For ions away from the interface the wave functions of various
states are dephased leading to cancellation of contributions
from different electrons.

The inset in Fig. 2 shows how electrons with different ener-
gies contribute to the DMI. This quantity can be expressed as
DE (E )dE ∼ ∑

yi

∫
dkx

∫
dkz

∑
k+

1y,|Ekx ,k1y ,kz −E |<dE/2 W i
SO. One

can see that all states in the conduction band contribute,
however the states with higher energy contribute more. This
is because the high energy electrons have higher orbital mo-
mentum and therefore show stronger SOI. Peculiarities in the
curve are related to energy quantization, which is important
due to small thickness of the layers.

F. DMI dependence on the layers thickness

The DMI coefficient decreases with dFM since this is a
surface effect and should decrease as 1/dFM (see Fig. 3). The
inset in Fig. 3 shows the dependence on the HM layer. One
can see that there is practically no dependence on the HM
layer since only the first layer contributes.

IV. DMI DEPENDENCE ON STRAIN

The strain in the film FM/HM film can be created in
different ways. One can use a ferroelectric crystal as a sub-
strate for FM/HM film. Applying voltage to such a crystal

induces strain in it. This strain is transferred into the magnetic
multilayer film. For example, using PMN-PT with orientation
(001) as a substrate allows us to create isotropic in-plane strain
in the HM/FM system. A different cut [(110) for example]
of PMN-PT can be used to create an anisotropic in-plane
strain. Even without the FE crystal the strain can be induced
with bending the sample. In this case the strain is anisotropic
in-plane. Note that due to the Poisson law the in-plane strain
should inevitably induce the out-of-plane one. At that the
volume of the FM/HM film is not conserved. Typical strain
that can be achieved is usually less than 1%.

We mention that in this work we do not consider the share
strains and only the diagonal components of the strain are
nonzero.

A. Mechanisms of strain dependence

There are several contributions to the strain dependence of
DMI constant.

(1) The effective mass of the electron depends on the strain
m = m(ε). One can expect that it grows with positive strain.
Increasing the distance between the ions leads to stronger
localization of electrons and increases the effective mass. So,
we assume that mx,y,z = m0(1 + m1εxx,yy,zz ). If we apply an
isotropic in-plane strain to a thin film we have εxx = εzz, εyy =
−2νεxx/(1 − ν). Here ν is the Poisson ratio which is of order
of 1/3 for metals [35]. Finally, the isotropic in-plane strain
leads to mass anisotropy. Positive in-plane strain increases
the in-plane effective mass and decreases the mass in the
out-of-plane direction.

(2) The exchange constant J also changes due to a strain.
J defines the effective magnetic field acting on the spin of
conduction electrons. The field is produced by the localized
magnetic moments. In a stretched FM film the density of mag-
netic ions decreases leading to a smaller effective field. The
coupling constant J should scale with volume of the FM layer
as J = J0V0/V , where J0 and V0 are the exchange constant
and the volume in the absence of strain. For isotropic in-plane
strain one has J ≈ J0(1 + εyy). Similarly the SO interaction
constant I scales with the strain as I ≈ I0(1 + εyy), where I0 is
the SO constant for zero strain.

(3) Strain changes the thickness of the magnetic layers.
This rearranges the locations of the SO ions ri. The lattice
constant (distance between ions) changes according to the
applied strain. As we mentioned above the in-plane position
of the HM ions is not important. Positive isotropic in-plane
strain increases the in-plane lattice constant and decreases the
out-of-plane constant ax,y,z = a0(1 + εxx,yy,zz ) (a0 is the lattice
constant for the unstrained sample, we consider the cubic
lattice here, but our results can be generalized to different
lattices). Since the ion positions directly enter the Hamiltonian
we do not need to introduce any phenomenological constants
(as in the case of effective mass variation). Lattice constant
variation influences the SO matrix elements since the elec-
trons approach the ions with different phases compared to
the unstrained sample. Variation of the film thickness also
modifies the quantization conditions leading to reshaping of
electron wave functions and to changing of eigenenergies.

Below is shown that this last contribution is the most
important one and can induce a large variation of the DMI
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FIG. 4. Relative variation of the DMI coefficient as a function of
applied strain εyy. D0

x is the DMI coefficient at zero strain. Electron
density nel = 0.5 electron per site, exchange constant J0 = 0.2EF,
and SOI constant I are the same for all curves. Thickness of FM
and HM layers (measured in atomic planes) is different.

constant. Variation of the effective mass and constants I and
J should be of order of the applied strain and should induce
the corresponding DMI variation (of order of a few %). Vari-
ation of ions position affects the electron phase. Since the
electron wave functions oscillates in space quickly (at Fermi
wavelength) even small displacement of the ions leads to big
variation of the phase of SO matrix element.

B. Strain dependence of the DMI constant

Figure 4 shows how the DMI coefficient depends on strain
for systems with different layer thickness. A relative variation
of Dx is shown. The applied strain is isotropic in the film plane
(εxx = εzz). The isotropic in-plane strain induces the out-of-
plane strain εyy due to the Poisson law. As we mention before,
the matrix elements of the SOI do not depend on the in-plane
positions of the HM ions meaning that in-plane strain itself
does not affect the DMI. Therefore, we plot all the curves here
as a function of εyy.

The Fermi energy is chosen such that there is 0.5 electrons
per site. The exchange coupling constant J0 ≈ 0.15EF. Value
of I0 is not important for relative variation of the DMI con-
stant. Several curves are shown for different FM and HM layer
thickness.

The DMI coefficient depends on strain. The strain of order
of 0.3% induces a variation of the DMI coefficient of the
order of 6%. The DMI coefficient is a nonlinear function of
strain and it decreases with strain. Also one can see that the
dependence Dx(εyy) varies with FM and HM layer thickness.
There is an optimum thickness (around 2 monolayers of FM
and 2 monolayers of HM) of the system giving the high-
est slope. At smaller and larger thickness the DMI variation
becomes weaker. Also at large thickness the DMI constant
variation becomes strongly nonlinear and has a minimum at
small strain.
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FIG. 5. Relative variation of the DMI coefficient as a function of
applied strain εyy. D0

x is the DMI coefficient at zero strain. Thickness
dFM = 2 atomic layers, dSO = 3 atomic layers, and exchange con-
stant J0 = 0.2EF are the same for all curves. The electron density nel

varies.

Figure 5 shows the dependence of the DMI coefficient on
strain for various electron density in the system. The thickness
of FM and HM metals is fixed, dFM = 2 atomic planes and
dSO = 3 atomic layers. The exchange coupling constant is
fixed, J0 = 0.2EF. One can see that the relative variation of the
DMI coefficient is almost independent of the electron concen-
tration. It is of order of 5% for all concentrations. However,
the absolute value of DMI coefficient increases with electron
concentration.

One can see that the strain dependence of the DMI is
not monotonic. Dx decays at negative strain, but starts to
increase at positive εyy. This is related to the fact that DMI
is induced by conduction electrons. The phase of the elec-
tronic wave function oscillates in space quickly leading to
oscillating interaction. The situation is similar to Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction which oscillates as
cos(kFa). The expression obtained by Levy and Fert for the
DMI between two FM ions also contains a similar factor (see
Eq. (5) in Ref. [23]). So, the nonmonotonic behavior of the
DMI with strain (interatomic distance) is due to the oscillating
nature of the interaction.

Strain sensitivity of the DMI coefficient also depends on
the exchange coupling constant, see Fig. 6. One can see that
Dx variation increases with exchange constant J , however this
increase is not very big, 3%–6%.

Finally, Fig. 7 shows the strain dependence of the DMI
coefficient for various initially strained states. We assume
that the initial state is strained already and apply additional
deformations to the system. The initial strain is denoted as ε0

yy.
It can appear due to growth condition, lattice mismatch, and
other factors. Usually, the initial strain defines the equilibrium
lattice constant. Figure 7 shows that for system with the lattice
constant 3% smaller than the initial one we a have large
variation of DMI coefficient reaching ±40% under strain of
0.3%. The parameter Dx changes twice when changing strain
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FIG. 6. Relative variation of the DMI coefficient as a function of
applied strain εyy. D0

x is the DMI coefficient at zero strain. Electron
density nel = 0.5 electron per site, thickness dFM = 3 and dSO = 2
atomic planes, and SOI constant I0 are the same for all curves. The
exchange coupling constant J0 varies.

from −0.3% to +0.3% strain. This change is comparable with
experimental data.

C. Strain induced DMI anisotropy

Above we discuss the isotropic (εxx = εzz) strain in the
(x, z) plane. Here we consider the anisotropic one. We com-
pare two limits when yy component of the strain is produced
by the uniaxial deformation along either x axis or z axis. Both
types of deformation lead to the same εyy. The only difference
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FIG. 7. Relative variation of the DMI coefficient as a function of
applied strain εyy. D0

x is the DMI coefficient at zero strain. Electron
density nel = 0.5 electron per site, thickness dFM = 3 atomic planes
and dSO = 2, J0 = 0.2EF, and SOI constant I0 are the same for all
curves. The initial system strain ε0

yy varies.
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FIG. 8. Relative variation of the DMI coefficient as a function of
applied strain εyy. D0

x is the DMI coefficient at zero strain. Electron
density nel = 0.5 electron per site, thickness dFM = 1 and dSO = 2
atomic planes, J0 = 0.2EF, and SOI constant I0 are the same for all
curves. Effective mass is anisotropic due to anisotropic strain in the
(x, z) plane. Orientation of the uniaxial in-plane strain is shown in
the legend.

between these two limits is that the effective mass along x and
z axes is different. At that the magnetic spiral propagates along
x axis in both cases. When we deform the system uniaxially
along the x axis the mass along the z axes does not change and
vice versa. Since positions in the (x, z) plane of the HM ions
are not important for the SOI matrix elements, the anisotropy
of the effective mass is the only mechanism contributing to
DMI anisotropy in our model. Figure 8 shows the relative
variations of DMI coefficient for strains applied along x and
z directions. Indeed, one can see that the DMI coefficient is
anisotropic but this effect is weak.

D. Different contributions to the DMI coefficient

There are several mechanisms influencing the DMI under
applied strain: (1) varying distance between ions in HM layer,
(2) varying effective electron mass, (3) varying effective ex-
change constant due to volume variation, etc. To define the
main factor for strain-dependent DMI we remove some of
the mechanisms and compare the DMI sensitivity to strain.
Figure 9 shows the dependence of Dx on εyy for different
cases when all mechanisms work, when mechanism 2 is sup-
pressed, or when mechanism 3 is switched off. As one can
see all mechanisms contribute to Dx(εyy) behavior. However,
the influence of mechanisms 2 and 3 is not very pronounced.
Therefore, the distance variation between HM ions is the main
mechanism of DMI sensitivity to the strain.

V. DISCUSSION

A. Comparison to experiment

Recent experiment in Ref. [22] shows the dependence of
the DMI on strain. The model considered in the current paper
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FIG. 9. Relative variation of the DMI coefficient as a function of
applied strain εyy. D0

x is the DMI coefficient at zero strain. Electron
density nel = 0.5 electron per site, thickness dFM = 3 atomic planes
and dSO = 2, J0 = 0.2EF, and SOI constant I0 are the same for all
curves. No initial strain is applied. Various mechanisms of the DMI
strain dependence are removed.

is a toy model that cannot describe the experimental data on a
quantitative level. We consider an ideal crystal structure with
an ideal lattice match. In the experiment however, the mag-
netron sputtering was used to prepare the samples. This means
that the films consist of crystallites with different orientation
of lattice vectors. The interface also is not ideal when this
method is used. It is rough and intermixed. The lattice con-
stants of both Co and Pt are defined by the tantalum underlayer
and the embedded strain (used in our modeling) is not known.
Nevertheless, we can check if our model can reproduce some
prominent features of the experiment: (1) relative DMI vari-
ation larger than the strain (relative lattice constant change);
(2) anisotropy of DMI induced by the anisotropic strain; and
(3) change of the DMI sign due to the strain.

The model discussed in the present work can produce
large variations of DMI coefficient. The relative change of
the DMI is much larger than the relative variation of the
interatomic distance. This is in agreement with experimental
data of Ref. [22]. In Ref. [22] the DMI coefficient grows with
positive εxx deformations. We plot the DMI coefficient as a
function of εyy. As we discussed above, εxx and εyy are related
through the Poisson law. At that, they have different sign. So,
positive εxx means negative εyy and decreasing of the DMI
with εyy is the same as increasing DMI with εxx. So, the trend
observed in our simulations is the same as in the experiments
in Ref. [22].

Another experimental finding is that DMI shows a strong
anisotropy due to anisotropic in-plane strain. We also repro-
duce the anisotropy of DMI. However, the anisotropy in our
simulations is smaller than in experiment.

The third main observation in Ref. [22] is the change of the
DMI sign with strain. We cannot reproduce this effect using
our model. It is possible that there are other mechanisms of
the DMI (such as Rashba effect at FM/HM interface). This

additional contribution may have the opposite sign. Competi-
tion of different mechanisms can lead to sign change. Doing
more rigorous simulations by taking into account the band
structure can probably reproduce the whole spectrum of ob-
served phenomena.

B. Other possibilities for DMI strain dependence

(1) There are other mechanisms of the DMI interaction in
the bilayer system. For example, the embedded electric field at
the interface between the FM and HM can induce the Rashba
spin-orbit interaction leading to the DMI. The sensitivity of
this contribution to strain effects is an open question and will
be considered in a forthcoming work.

(2) We use the zero-order perturbation theory in the quasia-
diabatic approximation in the FM metal and the first order
perturbation theory in SO interaction. The first approximation
is justified because we study the limit of small q. However,
the second approximation can be violated in real materials.
Therefore, it is interesting to study the limit of strong SOI.

(3) We never discuss the real band structure of the FM
and HM. We consider the problem within the effective mass
approximation assuming that there is no internal structure of
the wave function at HM ions. This approximation is often
used for s electrons. We use it for all conductive electrons in
the system. In HMs p and d electrons are very important. They
have nonzero orbital moment with respect to ions and there-
fore demonstrate strong SOI. It would be interesting to study
how strain affects SOI of electrons with a more complicated
wave function (such as p or d electrons). This can be done
using ab initio simulations [34].

VI. CONCLUSION

We studied the dependence of the DMI in the bilayer
system FM/HM on the mechanical strain applied to it. To
calculate the DMI coefficient we took into account only the
mechanism related to the SOI in the bulk of the HM metal and
neglected the Rashba interaction at the HM/FM interface due
to embedded surface field. We showed that the DMI constant
varies with strain (isotropic in the film plane). While the de-
formations can be quite small (on the order of 0.3%) the DMI
variation can be as high as 70%. This is in agreement with
recent experimental data on the strain-dependent DMI. The
strain dependence of the DMI is mostly related to the variation
of the distance between the atomic planes in HM layer and
variation of boundary conditions for the wave function. So,
the deformations along the axis perpendicular to the film plane
are important. At that the deformations in the plane of the
film do not contribute to the DMI variation. The anisotropy
of DMI interaction may appear if the strain is anisotropic in
the plane of the FM/HM bilayer. In our model the anisotropy
appears due to the anisotropy of effective mass in the film
plane. Sensitivity of the DMI constant to the strain depends
on the system parameters.
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APPENDIX A: WAVE FUNCTION NORMALIZATION FOR
THIN FILM SYSTEM

The normalizing constant N is given by

1/N2 = N1 + N2, (A1)

where N1 is defined by

N1 = 2dFM(|A+
→|2 + |A+

←|2) + |A−
→|2
κ−

1y

(e2κ−
1ydFM − 1)

+ |A−
←|2
κ−

1y

(1 − e−2κ−
1ydFM ) + 2Re

(
A+∗

→ A+
←

ik+
1y

(e2ik+
1ydFM − 1)

)

+ 4dFMRe(A−∗
→ A−

←). (A2)

for imaginary k−
1y (κ−

1y = |k−
1y|). For real k−

1y we have

N1 = 2dFM(|A+
→|2 + |A+

←|2 + |A−
→|2 + |A−

←|2)

+2Re

(
A+∗

→ A+
←

ik+
1y

(e2ik+
1ydFM − 1)

)

+2Re

(
A−∗

→ A−
←

ik−
1y

(e2ik−
1ydFM − 1)

)
. (A3)

The second contribution to N is defined by

N2 = 2dSO(|B+
→|2 + |B+

←|2 + |B−
→|2 + |B−

←|2)

+Re

(
(B+

→ − B−
→)∗(B+

← − B−
←)

−ik+
2y

(e−2ik+
2ydSO − 1)

)

+Re

(
(B+

→ + B−
→)∗(B+

← + B−
←)

−ik−
2y

(e−2ik−
2ydSO − 1)

)
. (A4)

This equation is valid when both k+
2y and k−

2y are real. In the
case when one of them is imaginary (k+

1y in the expression
below) one has

N2 = dSO(|B+
→ + B−

→|2 + |B+
← + B−

←|2)

+|B+
→ − B−

→|2
(

1

−2κ+
2y

(e−2κ+
2ydSO − 1)

)

+|B+
← − B−

←|2
(

1

2κ+
2y

(e2κ+
2ydSO − 1)

)

+2dSORe[(B−
→ − B−

→)∗(B−
← − B−

←)]

+Re

(
(B+

→ + B−
→)∗(B+

← + B−
←)

−ik−
2y

(e−2ik−
2ydSO − 1)

)
.

(A5)

Here κ+
2y = |k+

2y|. Changing + and − we obtain the expression
for N2 when k+

2y is real and k−
2y is imaginary.

When both k+
2y and k−

2y are imaginary we find

N2 = |B+
→ − B−

→|2
(

1

−2κ+
2y

(e−2κ+
2ydSO − 1)

)

+|B+
→ + B−

→|2
(

1

−2κ−
2y

(e−2κ−
2ydSO − 1)

)

+|B+
← − B−

←|2
(

1

2κ+
2y

(e2κ+
2ydSO − 1)

)

+|B+
← + B−

←|2
(

1

2κ−
2y

(e2κ−
2ydSO − 1)

)

+2dSORe[(B−
→ − B−

→)∗(B−
← − B−

←)]

+2dSORe[(B−
→ + B−

→)∗(B−
← + B−

←)]. (A6)

APPENDIX B: MATRIX ELEMENT OF SOI FOR THE
WAVE FUNCTION OF THIN FILM SYSTEM

When k+
2y is imaginary (κ+

2y = |k+
2y|) and k−

2y is real we have

W (i)
SO = I

(
−κ+

2y

(
kx + q

2

)
|B+

→ − B−
→|2e−2κ+

2yyi + κ+
2y

×
(

kx − q

2

)
|B+

← − B−
←|2e2κ+

2yyi + 2Re(ik−
2y(kx + q/2)

× (B+
→ + B−

→)∗(B+
← + B−

←)e−2ik−
2yyi )

)
. (B1)

In the opposite case

W (i)
SO = I

(
κ−

2y

(
kx + q

2

)
|B+

→ + B−
→|2e−2κ−

2yyi

− κ−
2y

(
kx + q

2

)
|B+

← + B−
←|2e2κ−

2yyi

− 2Re(ik+
2y(kx − q/2)(B+

→ − B−
→)∗

× (B+
← − B−

←)e−2ik+
2yyi )

)
. (B2)

When both quasimomentums are imaginary one has

W (i)
SO = I

(
κ−

2y

(
kx + q

2

)
|B+

→ + B−
→|2e−2κ−

2yyi

− κ−
2y

(
kx + q

2

)
|B+

← + B−
←|2e2κ−

2yyi

−, κ+
2y

(
kx − q

2

)
|B+

→ − B−
→|2e−2κ+

2yyi

+ κ+
2y

(
kx − q

2

)
|B+

← − B−
←|2e2κ+

2yyi

)
. (B3)
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