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Ferrimagnetic resonance induced by the spin Hall effect
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A bilayer consisting of a ferrimagnetic insulator (FiM) and a heavy metal (HM) can be used as a “pump-probe”
system to analyze the magnetic properties of the FiM. An oscillating electric current in the HM induces spin
current injection into the FiM via the spin Hall effect. The resulting magnetization dynamics of the FiM, in turn,
causes spin pumping back into the HM and modifies its conductivity via the inverse spin Hall effect (ISHE). We
present a phenomenological theory to model the ISHE output spectrum, in which the Landau-Lifshitz-Gilbert
equations governing the FiM dynamics are coupled to the spin-diffusion equations governing the spin and charge
transports in the HM. It is found that the ISHE signal is greatly enhanced at the magnetization compensation point
of the FiM. Furthermore, the peak frequencies and amplitudes of the ISHE spectrum are strongly correlated to
the magnetic properties of the FiM sublattices. Most interestingly, the ISHE output can be increased by several
orders of magnitude by tuning the on-site-sublattice and cross-sublattice damping constants. Our analysis shows
the possibility of using the FiM/HM bilayer system as a sensitive probe into the magnetic parameters of the FiM
sublattices. Conversely, the drastically enhanced ISHE signal with appropriate tuning of the damping parameters
suggests a means to substantially improve the spin torque efficiency in FiM-based heterostructures.
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I. INTRODUCTION

The interconversion between charge and spin currents
forms the foundation of spintronics, and this can be achieved
efficiently through the spin Hall effect (SHE) and its coun-
terpart, the inverse spin Hall effect (ISHE), in nonmagnetic
heavy metals (HMs) with strong spin-orbit coupling (SOC)
such as platinum (Pt), tantalum (Ta), and tungsten (W) [1–4].
These two phenomena, the SHE and ISHE, can be combined
in a coupled bilayer system consisting of a HM layer and
a magnetic insulator (MI) layer, to yield the so-called spin
Hall magnetoresistance (SMR) [5–7]. This is essentially a
“pump-probe” system where an oscillating electric current
is applied to the HM layer, which excites the magnetization
dynamics in the MI via SHE. This, in turn, induces a back-
reaction on the HM layer via the ISHE, and the resulting SMR
output can be used to probe the magnetization dynamics of the
MI. This SMR-induced spin-torque ferromagnetic resonance
(ST-FMR) measurement was theoretically proposed by Chiba
et al. [8] and then experimentally demonstrated [9–12].

Recently, antiferromagnetic materials (AFMs) with com-
pensated magnetic moments and fast intrinsic magnetization
dynamics have attracted intensive research interests [13–17].
Compared with AFMs, ferrimagnetic materials (FiMs) allow
further manipulation of magnetic states since their magnetiza-
tion is electrically detectable and can be modified by changing
the sublattice element concentration [18–20] or temperature
[21,22]. Furthermore, FiMs possess distinct properties near
their compensation point, e.g., enhanced spin torque effi-
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ciency [18,23], fast current-driven domain walls [24], and
small skyrmions [21], etc., which are potentially useful for ap-
plications. Insulating FiMs have also been intensively studied
in conjunction with spin transports [25–27].

Combining the themes of SMR and FiM, we propose a
bilayer system consisting of a FiM insulator and a HM (see
Fig. 1), as a means to investigate the unique magnetization
dynamics of FiM. Under application of an oscillating electric
current in the HM, an oscillating transverse spin current is
generated via SHE which then exerts an oscillating spin torque
on the FiM. This induces the magnetization precession at
the FMR frequency, which in turn propagates a spin current
back to the HM through spin pumping. Consequently, through
the ISHE, the resultant spin current can be transferred to a
detectable electrical signal, which gives information of the
current-induced magnetization dynamics in the FiM. This
broadly shares the principle of the SMR-induced ST-FMR
measurement.

Here we present a phenomenological theory to investigate
the ISHE signal output (i.e., effective change in the electric
conductivity of the HM). We solve the coupled spin-diffusion
equations, which model the SHE and ISHE in the HM, with
the Landau-Lifshitz-Gilbert (LLG) equations describing the
FiM magnetization dynamics. As expected, we showed the
large enhancement of the ISHE signal at the magnetization
compensation point of the FiM. In general, there are two
macrospin resonance peaks in the ISHE signal, and the peak
frequencies and relative amplitudes can be correlated to the
magnetization properties of the FiM sublattices. More inter-
estingly, the asymmetry of the damping constants gives rise to
distinct features in the resonance spectrum. In particular, the
cross-sublattice damping can be tuned to enhance the ISHE
signal by several orders of magnitude. Our results indicate that
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FIG. 1. Diagram of the FiM/HM structure in this work. The
oscillating electric current j(t ) is applied along the x direction. Here
we consider the FiM with perpendicular magnetization anisotropy
(PMA), and the static magnetic field H0 is applied along its easy-axis
(i.e., the z axis). tH(F) is the thickness of the HM (FiM).

the coupled FiM/HM bilayer is a sensitive system to probe
the magnetic properties of FiM and distinguish its sublattice
contributions. Conversely, the bilayer system could also be
utilized to achieve enhanced and controllable spin torque effi-
ciency in FiM layers.

II. THEORY AND MODEL

Figure 1 is the diagram of the FiM/HM structure in this
work, where the oscillating electric current density j(t ) is
applied along the x direction, i.e., j(t ) = j0eiωt x̂ with fre-
quency ω = 2π f . Since the FiM layer is insulating, j(t ) flows
exclusively within the HM. In the following, we use subscripts
H and F to represent the quantities within the HM and the FiM
layers, respectively.

A. Spin diffusion in the HM

We begin by considering the spin accumulation μs,H in
the HM induced by the oscillating electric current. The spin
accumulation is described by the spin-diffusion equation

∂tμs,H = D∂2
z μs,H − μs,H

τsf
, (1)

where D is the diffusion constant and τsf is the spin-flip
relaxation time. In the frequency domain, the general solution
of the spin accumulation reads [8]

μs,H(z, ω) = A(ω)exp[κ (ω)z] + B(ω)exp[−κ (ω)z], (2)

where κ (ω) = √
1 − iωτsf/λH refers to the inverse of the

frequency-dependent spin diffusion length with the general
spin-diffusion length λH = √

Dτsf . A(ω) and B(ω) are the
constant column vectors to be determined by applying ap-
propriate boundary conditions. The frequency-dependent spin
current density consists of the diffusion and SHE contribu-
tions, i.e.,

js,H(z, ω) = −σH(ω)

e
∂zμs,H(z, ω) + θsHσH(ω)E (ω)ŷ, (3)

where σH(ω) = σH,0

1−iωτsf
is the complex frequency-dependent

conductivity and E (ω) is the electric field associated with the
applied oscillating current density j(ω) = σH(ω)E (ω) in the
frequency domain. θsH j(ω) gives the transverse pure spin Hall

current polarized along ŷ, where θsH is the spin Hall angle.
e = |e| is the electron charge.

Here we introduce the interfacial spin current density
QF→H at the FiM/HM interface (z = tH), which is defined
as being injected from the FiM to the HM, i.e., js,H(tH, ω) =
−QF→H. For notational simplicity, this interfacial spin current
density is denoted as Q in the following. By applying the
boundary condition that the spin current density vanishes at
the outer boundary, i.e., js,H(0, ω) = 0, the spin accumulation
in the HM can be solved from the aforementioned drift-
diffusion equation in terms of Q as

μs,H(z, ω) = e

κ (ω)σH(ω)
csch[tHκ (ω)](cosh[κ (ω)z]Q

+ θsHσH(ω)E (ω){cosh [κ (ω)z]

− cosh [κ (ω)(tH − z)]}ŷ). (4)

Accordingly, the spin accumulation at the FiM/HM interface
(z = tH) on the HM side is given by

μs,H(tH, ω) = e

κ (ω)σH(ω)

{
coth[tHκ (ω)]Q

+ tanh

[
tHκ (ω)

2

]
θsHσH(ω)E (ω)ŷ

}
. (5)

The value of Q in the relation above is yet to be determined.
Note that Q is the quantity that links the spin transport in the
HM with the magnetization dynamics in the FiM. We shall
see later that it would be affected by the spin pumping back
current induced by the FiM dynamics.

B. Magnetization dynamics in the FiM

The oscillating spin current generated in the HM via SHE
exerts spin torques on the adjacent FiM, thereby exciting
its magnetization dynamics. Here we utilize a two-sublattice
model with distinct parameters for each sublattice in the FiM.
Consider the two coupled LLG equations for the two sublat-
tices (i = 1, 2),

dm1

dt
= −γ1μ0m1 × H1 + α11m1 × dm1

dt

+ α12m1 × dm2

dt
+ T1τ1

dm2

dt
= −γ2μ0m2 × H2 + α22m2 × dm2

dt

+ α21m2 × dm1

dt
+ T2τ2, (6)

where mi and γi denote the sublattice magnetization unit
vector and gyromagnetic ratio, respectively. μ0 is the vacuum
permeability. The first term on the right-hand side of Eq. (6)
represents the precession term with respect to the sublattice
effective field H i. The following two terms pertain to the
damping effect in the system. In addition to the damping
constant for the on-site-sublattice (i.e., α11 and α22); we also
include the cross-sublattice terms in the Gilbert damping [28],
i.e., α12 and α21. The last term gives the spin torque contribu-
tion, where τ i = mi × (mi×Q) is the spin torque exerted on
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sublattice i with the coefficient Ti = h̄
2e

γi

Mi0tF
. Note that τ i is

produced by the spin current Q injected into the FiM from the
HM. Mi0 is the saturation magnetization of sublattice i. The
free-energy density of the FiM has the form

F = −μ0Hex · (M1 + M2) − K1(M1 · ẑ)2

− K2(M2 · ẑ)2 + JexM1 · M2, (7)

where M i = Mi0mi and Hex = H0 + hOe with H0 = H0ẑ and
hOe = hOeŷ. H0 represents the external static magnetic field
and hOe is the Oersted field induced by the applied oscillat-
ing electric current. Ki and Jex describe the anisotropy and
exchange energy terms, respectively. Note that H0 is applied
along the easy axis of the FiM, i.e., we are considering
the FiM possessing perpendicular magnetization anisotropy
(PMA). Consequently, the sublattice effective field is obtained

from H i = − 1
μ0

∂F
∂Mi

as

H i = Hex + 2Ki

μ0
Miz ẑ − Jex

μ0
M j (8)

with (i, j) = (1, 2) or (2, 1). Miz = Mi0miz and miz is the z
component of mi. Here we are interested in the small-angle
precession of the magnetizations, i.e., only the first-order
deviations from the ground state of magnetizations are consid-
ered. Therefore, it is assumed that the lattice magnetizations
are largely oriented along the external static field H0, i.e.,
m1 = m1xx̂ + m1yŷ + ẑ and m2 = m2xx̂ + m2yŷ − ẑ. Note this
assumption also applies in the absence of H0 as a result of the
PMA in the FiM. In this small-angle limit, the LLG equations
can be linearized as

Mm = hOeL + RQ, (9)

where m = (m1x, m1y, m2x, m2y)T and Q = (Qx, Qy)T . The
matrices in Eq. (9) are explicitly given by

M =

⎛
⎜⎜⎝

iω ω1eff + iα11ω

−ω1eff − iα11ω iω

0 ω12 + iα12ω

−ω12 − iα12ω 0
0 −ω21 − iα21ω

ω21 + iα21ω 0

iω −ω2eff − iα22ω

ω2eff + iα22ω iω

⎞
⎟⎟⎠, (10)

L = μ0(γ1 0 −γ2 0)T
, (11)

and

R = −
(

T1 0 T2 0

0 T1 0 T2

)T

, (12)

where we have introduced the frequency terms ω1eff =
γ1(2K1M10 + JexM20 + μ0H0), ω2eff = γ2(2K2M20 +
JexM10 − μ0H0), ω12 = γ1JexM20, and ω21 = γ2JexM10.
By setting the determinant of M as zero, the complex
eigenfrequencies of ω can be obtained, in which the real
components correspond to the resonant frequency ωres

and the imaginary components describe the damping of
the corresponding modes. If the damping of the system is
assumed to be sufficiently small as to not affect the resonance
frequency significantly, the resonance frequency ωres can be
expressed as

ωres = 1
2 [

√
(ω1eff + ω2eff )2 − 4ω12ω21 ± (ω1eff − ω2eff )].

(13)

From the above, we observe that the FiM exhibits two
macrospin resonance frequencies. The two resonance modes
agree with the earlier theoretical descriptions [29,30], and
they are usually called the ferromagnetic mode (for the low
frequency) and the exchange mode (for the high frequency).
The assumption of negligible dependence of ωres on the damp-
ing parameters will be validated in subsequent numerical
simulations.

C. Interfacial currents and the ISHE-induced
electric conductivity

At the FiM/HM interface, the spin current density consists
of spin transfer and spin pumping contributions [31], i.e.,

JSTT
s (t ) = Gr

2e

∑
i

mi × [mi × μs,H(tH)], (14)

JSP
s (t ) = h̄Gr

2e

∑
i

mi × dmi

dt
, (15)

where Gr is the interfacial mixing conductance for both sub-
lattices (i.e., G11 = G22 = Gr) and the cross-sublattice terms
[28,32] are neglected for simplicity (i.e., G12 = G21 = 0). In
the frequency domain to the first order, we have

Q = JSTT
s (ω) + JSP

s (ω) (16)

with

JSTT
s (ω) = −Gr

e
μs,H(tH, ω) (17)

and

JSP
s (ω) = h̄Gr

2e
HM−1[hOe(ω)L + RQ], (18)

where

H = iω

(
0 −1 0 1

1 0 −1 0

)
. (19)
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The Oersted field is determined by Ampère’s law as
hOe(ω) = σH(ω)E (ω)tH

c , where c is the speed of light [8]. Note
that Eq. (18) captures the back current into the HM layer due
to the spin pumping induced by the FiM dynamics. The FiM
dynamics is obtained by considering Eq. (9) and taking the
time derivative. Thus, as seen from Eq. (16), the interfacial
current Q consists of the contributions from the SHE induced
by the original source of excitation, the oscillating electric
current, and that of the spin-pumped back current from the
FiM. Combining Eqs. (16)–(18), the interfacial spin current
density Q can be solved as

Q = − tanh
[ tHκ (ω)

2

]
κ (ω)

θsHGrE (ω)F−1ŷ, (20)

where

F =
(

1 + Gr

κ (ω)σH(ω)
coth [tHκ (ω)]

)
I2 − h̄Gr

2e
HM−1R,

(21)

with I2 representing the 2 × 2 identity matrix. Note we have
omitted the Oersted field contribution in Eqs. (20) and (21). It
can be easily seen from Eq. (20) that Q ∝ θsHE (ω), i.e., the
pure spin current density generated directly through the SHE.

In the SMR mechanism, the spin current is generated by
the SHE from the applied oscillating electric current and can
be detected by the ISHE through the measurement of the
modified electric current or voltage in the HM. The total
longitudinal electric current density (along x̂) reads [5]

jcx,H(z, ω) = σH(ω)E (ω) − σH(ω)

e
θsH∂zμsy,H(z, ω), (22)

where μsy,H denotes the y component of μs,H. In the above,
the expression for the ISHE-induced current is obtained by
incorporating the solution for Q in Eq. (20) into the expression
for μsy,H in Eq. (4), and then substituting the latter in Eq. (22).
Further, we average the electric current density over the HM
layer thickness [i.e., jcx,H(ω) = 1

tH
∫tH

0 jcx,H(z, ω)dz], so that
the effective electric conductivity change �σ̃H(ω) modified
by the ISHE can be obtained as

�σ̃H(ω)

σH(ω)
= − θsH

tHκ (ω)

tanh
[ tHκ (ω)

2

]
E (ω)

Qy

= θ2
sHGr

tHκ2(ω)
tanh2

[
tHκ (ω)

2

]
(F−1ŷ)y, (23)

where Qy denotes the y component of Q, which is given
by Eq. (20). Equation (23) is our final analytical result and
it encapsulates the SMR output signal that is dependent on
the FiM dynamics which is, in turn, induced by the initial
oscillating electric current. From Eq. (23), it can be seen that
the detected signal change is proportional to the interfacial
spin current density (e.g., Qy), and therefore it is in the second
order of θsH.

III. NUMERICAL SIMULATION AND DISCUSSION

In this section, we examine the ISHE-induced output signal
[i.e., effective electric conductivity change of the HM given

by Eq. (23)] as a probe into the magnetic properties of the
FiM. The parameters employed in the numerical simulations
are (i) in the HM made of Pt [33,34]: σH,0 = 2.44 ×
106 −1 m−1, λH = 1.4 nm, τsf = 10 fs, and θsH = 0.12;
(ii) in the FiM [28]: M20 = 105 A m−1, K1 = K2 =
10−7 H m−1, Jex = 10−5 H m−1 and γ2 = 1.8 ×
1011 s−1 T−1. These parameter values are chosen to
represent the typical order of magnitude found in FiM but
without pertaining to any specific material. The thicknesses
are assumed to be tH = 10 nm and tF = 5 nm. For the
interfacial conductances, we use the representative values
assumed previously [31,35–37] in the absence of available
experimental measurements, i.e., Gr = 2 × 1014 −1 m−2.
Based on these parameters, we compute the ISHE output
signal in the absence and presence of a static magnetic
field with different FiM properties, including the sublattice
magnetization magnitude, gyromagnetic ratio, and Gilbert
damping constant.

A. Sublattice magnetization magnitude and gyromagnetic
ratio dependence

Experimentally, the sublattice magnetization in a FiM can
be altered by changing the sublattice element concentration
[18–20] or temperature [21,22], and this flexibility has been
utilized to achieve the magnetization compensation point of
the FiM. This compensation behavior of the FiM can be cap-
tured within our model by varying M10 while keeping M20

fixed. The ISHE signal is examined with respect to different
M10/M20 ratios in Fig. 2, where other parameters (e.g., γi) are
assumed identical for both sublattices. Regardless of whether
or not the static magnetic field is present, it can be seen that
the magnitude of the ISHE signal increases as the sublattice
magnetization approaches the compensation point, and the
maximum is achieved at M10/M20 = 1 (the red curve). To
some extent, this behavior corresponds to the experimentally
observed enhanced spin torque efficiency [18,23] at compen-
sation as both signals are determined by the interfacial spin
current density Q. In the absence of a static magnetic field
[Fig. 2(a)], only one single resonance peak is observed at
M10/M20 = 1 (the red curve), while for other M10/M20 ratios,
there are two resonance peaks. This can be explained by
considering the expression for the two macrospin resonance
frequencies given by Eq. (13), which reduces to one when
M10/M20 = 1, since ω1eff = ω2eff . On the other hand, in the
presence of finite static magnetic field, we have ω1eff �= ω2eff ,
and therefore resonance occurs at two different frequencies for
any value of M10/M20 ratios, even at the compensation point
where the two resonance peaks have the same amplitude [the
red curve in Fig. 2(b)]. Note that μ0H0 = 0.1 T applied here
is below the spin-flop field, which ensures the validity of our
assumption of small-angle precession about the essentially an-
tiparallel magnetization direction of the two sublattices [38].
In addition, it can be seen in Fig. 2(b) that the resonance fre-
quencies of both modes and the frequency difference between
them can be minimized by tuning the FiM to approach its
magnetization compensation point. By comparing Figs. 2(a)
and 2(b), it can be seen that the inclusion of the static magnetic
field slightly decreases the magnitude of the ISHE signal.
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FIG. 2. The normalized ISHE-induced output signal (i.e., effective electric conductivity change of the HM) is plotted as a function of the
excitation frequency f with different M10/M20 ratios in the absence and presence of a static magnetic field H0 in (a) and (b), respectively. The
insets give the corresponding magnified diagrams of the main panels. The parameters employed are α11 = α22 = 0.02, α12 = α21 = 0 with
γ1 = γ2.

Next, we investigated the sublattice gyromagnetic ratio
dependence of the ISHE signal at the magnetization com-
pensation point (i.e., M10/M20 = 1) in Fig. 3. In the absence
of a static magnetic field [Fig. 3(a)], one single resonance
peak is obtained when γ1/γ2 = 1 as a result of ω1eff = ω2eff

(the green curve). This peak splits into two normal macrospin
resonance peaks for other γ1/γ2 ratios. In addition, it can be
seen that the ISHE signal amplitude tends to be enhanced with
increasing the ratio of γ1/γ2.

We delve further into the combined dependence of
the ISHE signal on the relative magnetization magnitude
and gyromagnetic ratio of the two sublattices. Recall-
ing that ω1eff = γ1(2K1M10 + JexM20 + μ0H0) and ω2eff =
γ2(2K2M20 + JexM10 − μ0H0), it can be concluded that a sin-
gle resonance peak (i.e., ω1eff = ω2eff ) would ensue if both
Mi0 and γi are symmetric for the two sublattices in the absence
of a static magnetic field, otherwise two normal resonance
peaks are generally observed. On the other hand, in the pres-
ence a static magnetic field, having two resonance peaks with
the same amplitude would indicate identical values of both
Mi0 and γi for the two sublattices. In general, the number,
frequency and relative amplitude of the resonance peaks in the
ISHE spectrum can provide a means to probe the sublattice
asymmetry in the saturation magnetization and gyromag-
netic coefficient of the FiM sublattices. In addition, since the

frequency difference between the two resonance peaks deter-
mined by (ω1eff − ω2eff ) is minimized in the absence of the
static magnetic field, it may be easier to experimentally detect
both resonance peaks by applying a smaller static magnetic
field.

B. Gilbert damping dependence

Experimentally, the damping strongly depends on the ma-
terial and geometrical properties of the fabricated bilayer
sample, e.g., the layer thickness, interface properties, etc. An
enhanced magnetic damping can also be expected by en-
gineering increased interface roughness or atomic diffusion
via elevated annealing temperature [39]. On the other hand,
adding an ultrathin interlayer made of Cu (or Al) may provide
an alternative way to tune the Gilbert damping by changing
the interlayer thickness [39,40]. In this section, we first inves-
tigate the Gilbert damping type dependence of the ISHE signal
as plotted in Fig. 4. We consider the magnetization compen-
sation point (M10 = M20) and symmetric gyromagnetic ratio
(γ1 = γ2). For the previous calculations (i.e., Figs. 2 and
3), we assume α11 = α22 = 0.02 and α12 = α21 = 0, i.e., the
FiM possesses the same on-site-sublattice damping while the
cross-sublattice damping terms are treated as negligible. We
use this damping configuration as the reference case in Fig. 4

FIG. 3. The normalized ISHE-induced output signal (i.e., effective electric conductivity change of the HM) at the magnetization compen-
sation point is depicted as a function of the excitation frequency f with different γ1/γ2 ratios in the absence and presence of a static magnetic
field H0 in (a) and (b), respectively. The damping parameters employed are the same as for Fig. 2.
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FIG. 4. The normalized ISHE-induced output signal (i.e., effective electric conductivity change of the HM) at the magnetization com-
pensation point is depicted as a function of the excitation frequency f with different damping types in the absence and presence of a static
magnetic field H0 in (a) and (b), respectively. The red curves give the results for the symmetric on-site-sublattice damping and neglecting the
cross-sublattice damping terms. The other two cases of finite cross-sublattice damping terms and asymmetric on-site-sublattice damping are
represented by the green and blue curves, respectively. Here γ1 = γ2 is employed.

(depicted by the red curves). However, recent theoretical pro-
posals on spin pumping in two-sublattice magnets [28,32,41]
suggest an important role for the previously disregarded
cross-sublattice terms in Gilbert damping. Within our model,
it can be seen that the introduction of the cross-sublattice
damping terms substantially modifies the magnitude of the
ISHE signal, while their effect on the resonance frequencies
are negligible, as shown by the green curves. In addition,
we consider the asymmetry of the on-site-sublattice damping
(the blue curves), which also modifies the peak amplitude
but to a much lesser extent compared to the cross-sublattice
damping. Its effect on the resonance frequencies are like-
wise negligible. This validates our assumption of negligible
dependence of ωres on the damping parameters in our deriva-
tion of Eq. (13). Interestingly, in the presence of a static
magnetic field [Fig. 4(b)], the two resonance peaks differ in
amplitude (the blue curve) in the case of asymmetric on-site-
sublattice damping. They have the same amplitude for the
case of symmetric on-site-sublattice damping, as discussed
before. According to the previous experimental results based
on the element-resolved x-ray ferrimagnetic resonance [42],
the same value of the on-site-sublattice damping constants in
FiM would be expected. Therefore, the proposed detectable
ISHE signal can potentially be used as an additional aproach
to check the symmetry of the sublattice damping constants.

Next, we further examine the Gilbert damping constant
dependence of the ISHE signal. The resonance peak amplitude
of the ISHE signal as a function of the on-site-sublattice
damping constant is plotted in Fig. 5(a), where α11 = α22 is
assumed for simplicity. Note here we are considering the case
that both Mi0 and γi are identical for the two sublattices in
the absence of a static magnetic field, and therefore only one
single resonance peak appears. Surprisingly, a sharp peak in
the resonance amplitude is obtained as α11 is varied, with
the maximum occurring at α11 ∼ 0.014. Compared with
α11 = 0.02 used in the previous simulations, the amplitude
maximum achieved at α11 ∼ 0.014 is drastically enhanced
by two orders of magnitude. Analytically, the optimal value

of on-site-sublattice damping of α11 ∼ 0.014 can be obtained
by setting the determinant of F as zero at ω = ωres, which
corresponds to the maximum interfacial spin current density
Q [see Eqs. (20) and (21)]. In Fig. 5(b), we plot the ISHE
signal as a function of the excitation frequency f with sev-
eral α11 values, which further validates the maximum of the
peak amplitude appears at α11 ∼ 0.014. Interestingly, the
large enhancement in the amplitude is accompanied by little
or no change in the resonance frequency. At this optimal
α11, the resonance amplitude maximum can be further am-
plified by tuning the cross-sublattice damping parameter α12,
as shown in Figs. 5(c) and 5(d). We find a sharp peak at
α12 ∼ 1.5 × 10−4, at which a further enhancement of two
orders of magnitude is achieved compared with the case that
only the on-site-sublattice damping exists. This ultrasensi-
tive dependence of the ISHE signal on the on-site-sublattice
as well as cross-sublattice damping parameters provides an
insight into these damping coefficients, which are usually
not easily accessible by other experimental techniques. Con-
versely, these sharp enhancements of ISHE at specific values
of α11 and α12 indicate that the injected spin current, and hence
the spin torque efficiency to a FiM layer, can be significantly
enhanced by optimizing the damping parameters. In addition,
the signal enhancement is generally accompanied with the de-
crease of the ferrimagnetic resonance linewidth, both of which
are correlated to the determinant of F . However, due to the
complexity of F which includes the matrix inverse M−1, the
FMR linewidth could not be expressed in a compact analytical
form in terms of the explicit damping constants within M
matrix. On the other hand, in the presence of a static magnetic
field, the single resonance peak in Fig. 5 would split into
two, and therefore the optimal damping has to be obtained
separately for each peak. However, in order to avoid spin-flop
transition, the applied magnetic field has to be small. Thus,
there would be negligible difference of the optimal damping
constants for the two peaks and the optimal damping constants
obtained in the absence of the static magnetic field (Fig. 5)
would still be valid.
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FIG. 5. The peak amplitude of the normalized ISHE-induced output signal (i.e., effective electric conductivity change of the HM) under
the resonance condition is depicted as a function of the on-site-sublattice damping α11 in (a) and of the cross-sublattice damping α12 in (c),
respectively. The normalized ISHE-induced output signal (i.e., effective electric conductivity change of the HM) is depicted as a function of
the excitation frequency f with different α11 values in (b) and different α12 values in (d), respectively, where the insets give the corresponding
magnified diagrams of the main panels. α12 = α21 = 0 is employed in (a) and (b), and α11 = α22 = 0.014 is employed in (c) and (d). In all
panels, M10 = M20 and γ1 = γ2 are utilized.

Finally, based on all above numerical simulations, it can
be seen that each resonance peak of the ISHE signal has a
symmetric line shape. Although the Oersted field generated
by the oscillating current can give an antisymmetric spec-
trum [8], it is negligible compared with the SHE contribution
in our numerical simulation. Our model is based on the
macrospin approximation, i.e., we assume the magnetization
configuration to be spatially invariant. Despite this simpli-
fying assumption, our model reveals unexpected behavior
especially with regard to the damping parameters. We envis-
age even richer behavior with further investigations which
include the excitation of spatially varying modes, such as
standing spin waves [43], from which the higher-energy reso-
nance modes may appear. In addition, the rectified DC voltage
should be nonzero in our proposed FiM/HM structure with
perpendicular configuration, unlike the zero DC signal based
on ferromagnets [44,45], which can provide an avenue for
experimental verification. Last, the compensated FiM mimics
an AFM to some extent except for different material parameter
values. Accounting for the sublattice symmetry of the AFMs,
both γ1/γ2 = 1 and M10/M20 = 1 should be utilized while the
damping can assume different values for the two sublattices
[28]. Under these assumptions, the drastic ISHE signal en-
hancement with the optimal damping constants would still be
applicable.

IV. CONCLUSION

In this work, we examined the ferrimagnetic resonance
induced by the SHE in a FiM/HM bilayer with an oscillating
electric current. The FiM resonance dynamics induces a spin-
pumped back current into the HM layer, which translates to a

measurable signal via the ISHE. A phenomenological theory
is presented to relate the output spectrum of the ISHE signal
(i.e., effective electric conductivity change of the HM), which
couples the spin transport in the HM to the magnetization dy-
namics in the FiM insulator. Our calculated results show that
the detectable ISHE output spectrum is strongly influenced
by the magnetic parameters of the FiM. As expected, there is
a large enhancement of the ISHE signal at the compensation
point of the FiM. Furthermore, the frequencies and relative
amplitudes of the peaks in the ISHE spectrum can be corre-
lated to the asymmetry in the magnetic properties of the FiM
sublattices. Interestingly, the ISHE output can be increased by
several orders of magnitude by tuning the on-site-sublattice
and cross-sublattice damping coefficients. Our analysis shows
that one can use the FiM-HM bilayer system to effectively
probe the magnetic parameters of the FiM sublattices by ex-
citing the bilayer with an oscillating current and analyzing
the resulting ISHE spectrum. Conversely, the drastically en-
hanced ISHE signal with appropriate tuning of the damping
parameters suggests a possible means to substantially improve
the spin torque efficiency in FiM-based heterostructures.
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