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Spin-orbit exciton in a honeycomb lattice magnet CoTiO3: Revealing a link between magnetism
in d- and f -electron systems
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We carried out inelastic neutron scattering to study the spin-orbit (SO) exciton in a single crystal sample
of CoTiO3 as a function of temperature. CoTiO3 is a honeycomb magnet with dominant XY -type magnetic
interaction and an A-type antiferromagnetic order below TN ≈ 38 K. We found that the SO exciton becomes
softer but acquires a larger bandwidth in the paramagnetic phase, compared to that in the magnetically ordered
phase. Moreover, an additional mode is only observed in the intermediate temperature range, as the sample
is warmed up above the lowest accessible temperature below TN . Such an unusual temperature dependence
observed in this material suggests that its ground states (an Seff = 1

2 doublet) and excited states multiplets
are strongly coupled and therefore cannot be treated independently, as often done in a pseudospin model. Our
observations can be explained by a multilevel theory within random phase approximation that explicitly takes
into account both the ground and excited multiplets. The success of our theory, originally developed for the
rare-earth systems, highlights the similarity between magnetic excitations in f - and d-electron systems with
strong spin-orbit coupling.

DOI: 10.1103/PhysRevB.102.134404

I. INTRODUCTION

Recently, there has been a dramatic increase in research
effort to understand the effects of spin-orbit coupling (SOC) in
a magnetic material. Anisotropic magnetic interactions such
as Dzyalloshinskii-Moriya and Kitaev interactions arising
from strong SOC are responsible for many exotic magnetic
states such as nontrivial magnetic order found in multiferroic
compounds [1,2] and quantum spin liquid phases in Kitaev
materials [3–10]. Although the details of interactions driving
the magnetic behavior of a material can be complex with
a myriad of energy scales, such as Coulomb interaction,
crystalline electric field (CEF), and SOC, the essential mag-
netism is, remarkably, often not directly dependent on these
intra-atomic energy scales. In particular, this happens when
the exchange interaction between magnetic ions, J , is much
smaller than these intra-atomic energy scales. In such a case,
it is sufficient to ignore the coupling between the ground and
excited multiplets and simply project J onto the ground states
manifold. The magnetic ground states and the low-energy
excitations can therefore be captured using a model of in-
teracting pseudospins Seff [11,12]. Since the ground multiplet
over which Seff is defined usually has an unquenched orbital
angular momentum, pseudospin interactions are anisotropic,

which is the most important feature common to all transition-
metal magnetic materials with large SOC. So far, materials
with a Kramers doublet ground state equivalent to a Seff = 1

2
pseudospin have attracted the most attention due to their sim-
plicity [13,14]. The same concept can be nontheless applied to
other systems with different ground state degeneracy by defin-
ing pseudospins of different magnitude, although the resultant
effective model can be slightly more complex [15,16].

Although the pseudospin picture greatly simplifies the
description of low-energy physics in these systems, the un-
derlying assumption that the coupling between ground and
excited multiplets is weak fails in some cases. When the mag-
netic interaction is large, the excited multiplets, often referred
to as a spin-orbit (SO) exciton, can become highly dispersive
and couple strongly to the ground states. Although largely
neglected in transition-metal magnetic materials, the need to
consider excited multiplets has been well recognized in a
different class of materials, namely, the f -electron systems.
The overall energy scale is considerably reduced in these
materials as the CEF splitting is much smaller than that in
a transition-metal material due to highly localized f orbitals.
As a result, the energy splitting between the ground and ex-
cited multiplets is often comparable to magnetic interactions,
which invalidates a simple pseudospin picture where these
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FIG. 1. (a–h) Neutron intensity as a function of energy h̄ω (meV) and momentum transfer detailing (top row) the high-energy SO exciton
and the (bottom row) low-energy magnon in CoTiO3. The data were obtained at the SEQUOIA time-of-flight spectrometer at T = 5 K using
an incident energy of Ei = 50 meV and a high-resolution chopper setting. Since the SO exciton in (g) shows almost no dispersion along L,
data in (a, c, e) have been integrated along L to improve data quality. Solid black lines are fit to a nearest neighbor tight binding model on a
honeycomb lattice as described in the text. However, the magnons are considerably more dispersive along L as shown in (h). Neutron spectra
in (e, d, f) are obtained for fixed L = 0.5 by integrating neutron intensity over a small range along L = [0.3, 0.7]. Data in the top/bottom
row are shown on the intensity scale to the right of panels (g) and (h). (i) Structure of CoTiO3 in a Co honeycomb layer together with the
surrounding oxygen octahedra (j) 2D projection of the Brillouin zones showing directions of momentum transfers within the honeycomb plane
(thick purple lines) in panels (a–f).

multiplets are considered to be decoupled. Instead, dynamics
of the higher energy multiplets become strongly dependent
on what happens in the low-energy sector, and vice versa.
Direct evidence for this is a strong renormalization of the
higher energy SO excitations across magnetic ordering that
has been observed in some rare-earth and actinide systems
[17–22]. These observations can be only explained through a
multilevel theory [23,24] where ground and excited multiplets
are considered simultaneously.

Only recently, the important roles played by the excited
multiplets are beginning to be recognized in some transition-
metal magnetic materials. Perhaps the most dramatic example
is the so-called “excitonic” magnetism in systems with a
nominally nonmagnetic Seff = 0 singlet ground state, first
proposed for rare-earth intermetallics such as PrTl3 [25] and
more recently extended to heavy d4 transition-metal ions
[26]. When dispersion of the SO exciton is large enough to
cross the ground state, magnetic order may be induced in
these systems via condensation of the SO exciton. Other than
this special case of a Seff = 0 magnet, a strongly dispersive
SO exciton has also been observed in a number of iridates
[27,28] and cobaltates [29–31] with a Seff = 1

2 ground state
and a simple magnetic order, which raises important questions
on the applicability of a simple pseudospin picture in these
transition-metal systems.

We examined these questions by studying high-energy
magnetic excitations around the SOC energy scale in a typical
transition-metal magnet with strong SOC. The transition-
metal system we focus on in our study is CoTiO3 with an
ilmenite structure, where the magnetic Co2+ ions form a
honeycomb layer, ABC-stacked along the c direction [see
Fig. 1(i)]. Each Co2+ residing in a trigonally distorted oc-
tahedra has an pseudospin Seff = 1

2 doublet ground state

determined by a combination of SOC and CEF (see Ref. [32]
as well as below). Below TN ≈ 38 K, the Co2+ pseudospins
are ordered ferromagnetically in the ab plane and antifer-
romagnetically along c [33]. A strong easy-plane magnetic
anisotropy was inferred from the large χ‖

χ⊥
observed in the

bulk magnetization data [34] and also from the magnetic
structure determined by neutron diffraction. Due to the sim-
plicity of both the magnetic and crystal structure, CoTiO3

was considered an ideal model system to study 3D XY mag-
netism, prompting extensive studies to investigate the effects
of doping by magnetic [35–40] and nonmagnetic ions [41]. In
particular, the solid-solution of CoTiO3 and FeTiO3, the latter
of which is an Ising system, has been systematically studied to
construct the full phase diagram of a mixed anisotropy system
[36–40]. However, the first comprehensive inelastic neutron
scattering (INS) measurements were carried out very recently
[32], in which direct dynamical evidence in the magnon
spectrum for strong XY exchange anisotropy in CoTiO3 was
provided. More importantly, the existence of Dirac magnon
with linear crossing at the K point of the Brillouin zone in
CoTiO3 was discovered in the same study, which renewed
interest in this material as a potential candidate system for
studying topological magnons.

In this paper, we report INS study on the high-energy
SO exciton in CoTiO3. Using a single crystal sample, we
directly probed its momentum dependent excitation spectrum
at various temperatures across TN . We observed a strong tem-
perature dependence of the high-energy SO exciton across TN .
This strongly contradicts a simple pseudospin picture, which
suggests that the excited multiplets are decoupled from the
ground multiplet. Instead, it reminisces the behaviours ob-
served in many f -electron systems. The observed temperature
dependence is well explained by a multilevel theory within
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random phase approximation (RPA) originally developed for
the rare-earth systems [24], further highlighting the strong
similarity between the f - and d-electron systems with strong
SOC. Quantitatively however, we found a model using simple
bilinear spin interaction underestimates the size of the SO
exciton’s bandwidth at all temperatures, suggesting potential
presence of higher order spin interactions in this material.

II. EXPERIMENTAL DETAILS

Details of single crystal growth can be found in Ref. [32]
Powder sample used in this experiment was synthesized by
mixing stoichiometric amount of CoCO3 and TiO2 and kept
in air at 1150 ◦C for 72 h, with intermediate grinding at every
24 h interval.

The single crystal sample was aligned at McMaster align-
ment diffractometer (MAD) at the McMaster reactor before
the inelastic neutron scattering (INS) experiment. INS mea-
surement was carried out at the SEQUOIA time-of-flight
spectrometer at SNS, ORNL. Measurements on single crystals
were carried out using an incident neutron energy of Ei =
50 meV. Two chopper settings were used: a high-resolution
(HR) setting using T0 and FC2 choppers rotating at a fre-
quencies of 90 and 360 Hz as well as a high-flux (HF) setting
using T0 and FC1 choppers rotating at a frequencies of 90
and 180 Hz. Energy resolutions of ∼1.4 meV and ∼2.9 meV
were achieved for the HR and HF settings, respectively. A
high Ei = 250 meV measurement was carried out on powder
to determine the crystal field levels. The incident energy was
selected by rotating the T0 and FC1 choppers at frequencies of
120 and 360 Hz, respectively, which gave an energy resolution
of ∼20 meV at the elastic line. Temperatures used in the
measurements were controlled by a closed cycle refrigerator.

III. EXPERIMENTAL RESULTS

High-resolution INS data at T = 5 K are shown in Fig. 1
as a function of energy h̄ω (vertical axis) and momentum
transfer (horizontal axis). Directions of momentum transfers
in Figs. 1(a)–1(f) are shown as thick pink lines through the
2D projection of Brillouin zones in Fig. 1(j). The INS spectra
shown in Fig. 1 consist of two bands of magnetic excitations:
a low-energy band below 15 meV and a high-energy band
above 20 meV. In this paper, we focus on the high energy
magnetic excitations occurring above 20 meV (top row of
Fig. 1). The low-energy magnetic excitations correspond to
magnons in the magnetically ordered phase of CoTiO3 (bot-
tom row of Fig. 1). The magnon spectrum at 5 K has been
studied in details in Ref. [32]. Here we show its temperature
dependence in Fig. 2. By comparing the 5 K magnon spec-
trum along (H + 2

3 ,−H + 2
3 ) with that at 35 K [Figs. 2(a)

and 2(b)], just below TN , one can clearly notice a softening
and damping of the magnon at a higher temperature. This
is illustrated more clearly in Fig. 2(c), where we showed
the temperature dependence of constant-Q cut at ( 2

3 , 2
3 ). As

temperature increases, the inelastic feature corresponding to
magnon at ( 2

3 , 2
3 ) gradually softens and broadens. By fitting

the constant-Q cut to a damped harmonic oscillator model
convolved with instrumental resolution, we found the peak

FIG. 2. (a, b) Magnon spectrum along (H + 2
3 , −H + 2

3 ) at
(a) 5 K and (b) 35 K. The data was obtained at SEQUOIA using
a high-flux chopper setting and an incident energy of Ei = 50 meV.
The data has been integrated over a range along L with 0 < L < 1.
(c) Constant-Q cut at ( 2

3 , 2
3 ) obtained by integrating the neutron

intensity in (a) (and neutron spectra at other temperatures) with
−0.1 < H < 0.1 and plotting as a function of energy. The solid
lines are fit to a damped harmonic oscillator model convolved with
instrumental resolution determined from width of the elastic line.
(d) Temperature dependence of the peak position of the inelastic
feature in (c) obtained from the fit.

position to decrease from ∼8 meV to ∼6 meV as shown in
Fig. 2(d).

As we will show later, the high-energy magnetic excitation
with a clear dispersion between 25 and 30 meV is attributed
to a SO exciton of trigonally distorted Co2+ ions. This SO
exciton, already present at 5 K, will henceforth be referred
to as mode B (the magnon will be referred to as mode A).
As shown in Figs. 1(a), 1(c) and 1(e), the SO exciton is
strongly dispersive within the honeycomb plane but has an
order of magnitude smaller dispersion (∼0.5 meV) in the out
of plane direction [Fig. 1(g)], suggesting its quasi-2D nature.
Phenomenologically, its in-plane dispersion can be modeled
as

ω(�q) = ±t

∣∣∣∣∣∣
∑

�d
exp(−i �q · �d )

∣∣∣∣∣∣ + �, (1)

which is the same as the quasiparticle dispersion of a tight-
binding model on honeycomb lattice. In this expression, t and
� denote the nearest neighbor hopping and an overall energy
shift [42] of the SO exciton, respectively, and �d denotes a
vector connecting an atom to its three nearest neighbours. Two
branches predicted by the model, which are also observed
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FIG. 3. (a–d) Temperature dependence of neutron spectra along (H+1.5, H−1.5). The B and C modes are marked by black arrows in panel
(c). (e–g) Constant-Q cut of the single crystal high-flux INS data at (e) Q = (1, 1), (f) Q = ( 2

3 , 2
3 ), and (g) Q = ( 7

6 , 1
6 ) at temperatures from

5 to 60 K. (h) Constant-|Q| cut of the powder-averaged high-resolution INS data from 5 to 120 K. The “powder”-averaged INS data here is
obtained by rotating the single crystal over 360◦ and averaging over all sample orientations. Intensity with |Q| = [1.0 Å−1, 4.0 Å−1] was then
integrated and plotted as a function of h̄ω. Solid lines in (e–h) are fit to the cuts from 20 to 35 K using a linear combination of data at 5 and
60 K as described in the text. (i, j) Temperature dependence of (i) energy and (j) intensity of modes B (blue square), C (black circle), and D
(red triangles) obtained from the constant Q-cuts as described in the text. Filled and open symbols are obtained from fitting the single crystal
and powder averaged data, respectively. Position of Neel temperature TN = 38 K has been denoted by vertical red dashed line.

in our data, correspond to quasiparticle excitations on the
two sublattices of a honeycomb lattice. As noted in another
recent study of low-temperature SO exciton in CoTiO3 [43],
relative intensities of the two branches at different Q’s are
determined by the interference of scattering amplitudes from
atoms on the two sublattices. As shown by the solid lines
in Figs. 1(a), 1(c) and 1(e), this simple phenomenological
model gives an excellent description of the 5 K data, with
tB(5 K) = 0.9(2) meV and �B(5 K) = 27.6(2) meV (the sub-
script B denotes the relevant parameters for mode B). As we
discuss below, microscopic origin of the hopping t comes
from magnetic interactions between Co2+ ions. The obser-
vation that only the nearest neighbor hopping is required to
describe the data indicates that only the nearest neighbor
magnetic interaction is important in CoTiO3, a conclusion also
reached in our previous study of low-energy magnons [32].

Very interestingly, a second mode (referred to as C) with
almost the same dispersion emerges at an energy slightly
below B as temperature increases. This is illustrated in the
INS data in Fig. 3, where we show the neutron spectra along
(H+1.5, H−1.5) at different temperatures from 5 to 60 K.
At 5 K [Fig. 3(a)], only mode B centered at ∼27 meV is
visible with a W-shaped dispersion along (H+1.5, H−1.5).
Only one branch of Eq. (1) is visible in Fig. 3(a) (shown
by the black solid line) while the other (black dashed line)
is suppressed due to destructive interference of scattering
amplitudes from the two sublattices [43]. [This is clear from
comparing Fig. 3(a) with Fig. 1(e). Both branches are clearly
visible in Fig. 1(e), which is along the direction equivalent to
Fig. 3(a), translated by a reciprocal space vector (1,0)]. At 30
and 35 K, intensity of B decreases while another W-shaped
mode, C, starts to gain intensity. Coexistence of B and C is
most clearly seen in the 35 K data [Fig. 3(c)], where the two
modes have been indicated with the horizontal black arrows.
At 60 K (>TN ), only one mode is visible which we label as D.

As shown in Fig. 3(d), mode D at 60 K in the paramagnetic
phase appears to be damped and occurs at a lower energy
�D(60 K) = 23.3(2) meV compared to B. Fitting to the same
phenomenological model given by Eq. (1) gives a larger hop-
ping tD(60 K) = 1.2(2) meV at 60 K, suggesting an increase
in the bandwidth of the SO exciton for T > TN .

To study the SO exciton at intermediate temperatures more
carefully, we make constant-Q cuts of the INS data. Rep-
resentative cuts are shown in Figs. 3(e)–3(g) for different
Q positions. At 5 K, the constant-Q cut in Fig. 3(e) with
Q = (1, 1) consists of two peaks at ∼25 meV and ∼30 meV,
both corresponding to the two branches of B. At higher
temperatures (but still below TN , for example at 30 K), the
constant-Q cut acquires a complex line shape with additional
spectral weight appearing below the double peaks due to
B. Constant-Q cuts at other Q’s shown in Figs. 3(f) and
3(g) show a similar asymmetrical peak profile at intermedi-
ate temperatures, where additional spectral weight appears
due to development of a new mode. These observations are
further corroborated by the following more quantitative anal-
ysis. We find constant-Q cuts at intermediate temperatures
5 K < T < 60 K to be fit very well by a simple linear com-
bination of data at two limiting temperatures, 5 and 60 K,
containing only one mode each:

IT (h̄ω) = ABI5K(h̄ω − δB) + ACI60K(h̄ω − δC ). (2)

In Eq. (2), IT(h̄ω) is the intensity as a function of energy in
a constant-Q cut at a temperature T . The first (second) term
denotes the empirical lineshape of the 5 K (60 K) data with
an overall scaling of intensity AB (AC ) and an overall shift in
energy δB(δC ). Most remarkably, this simple expression using
the same sets of {AB,AC, δB, δC} are found to simultane-
ously fit the data at all Q-positions shown in Figs. 3(e)–3(g).
This provides a robust way to extract the positions and
relative intensities of modes B and C, which are very close
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FIG. 4. Neutron spectra (a) at 80 K obtained with Ei = 50 meV
and the high-resolution chopper setting (b) at 60 K obtained with the
same incident energy but using the high-flux chopper setting. (c, d)
Comparison between constant-Q cuts of (a) and (b) at (c) H = −0.5
and (d) H = 0. Panels (c) and (d) have been normalized with respect
to the peak intensity.

in energy at the intermediate temperatures. Moreover, since
{AB,AC, δB, δC} does not depend on Q, the powder averaged
data can also be fit using Eq. (2) as in Fig. 3(h), providing
additional data points (both T < TN and T > TN ) supporting
our conclusion that the lineshape at an intermediate temper-
atures is well described by a simple linear combination of
the 5 and 60 K data. In addition, constant-|Q| cuts of the
powder averaged data in Fig. 3(h) above TN at 80 and 120 K
are identical to that at 60 K, indicating that the SO exciton is
unchanged across a wide range of temperatures with T > TN .
This confirms that the observed temperature dependence in
Figs. 3(a)–3(d) from 5 to 60 K is associated with the onset of
magnetic order. This is also supported by our high-resolution
single-crystal measurement at 80 K (Fig. 4) showing only one
broad dispersive SO exciton mode identical to the high-flux
data at 60 K in Fig. 3(d).

The fitting results are summarized in Figs. 3(i) and 3(j).
Mode C is not shown for T < 20 K where it has negligi-
ble intensity. Only mode D is present above TN (denoted
by a vertical dashed line). At an intermediate tempera-
ture, T , energy of mode B (C) is obtained by subtracting
the temperature-dependent shift δB (δC ) from energy of the

mode at 5 K (60 K) and are given by �B(T ) = �B(5 K) −
δB(T ) [�C (T ) = �D(60 K) − δC (T )]. (Explicit temperature
dependence is given in the bracket of each quantity for clarity.)
As shown in Fig. 3(i), mode B slightly softens while energy
of C is relatively unchanged as temperature approaches TN .
Intensity of mode B (C), denoted by IB (IC ), is obtained by
multiplying the integrated intensity in constant-Q cut at 5 K
(60 K) by the scale factor AB (AC ) at each temperature. As in
Fig. 3(j), intensity of B is suppressed as that of C increases.
Notably, there is also a clear increase in the integrated inten-
sity of the SO exciton in the paramagnetic phase compared to
that in the ordered phase, which can be directly inferred from
the temperature dependence shown in Figs. 3(e)–3(h).

IV. MULTILEVEL MULTIPLET THEORY

The observed temperature dependence is surprising. First
as temperature increases, it is the lower energy mode that
gains intensity (C), while the higher energy mode (B) loses
intensity. Second, there is an increase in the SO exciton’s
bandwidth above TN . The fact that the SO exciton is dispersive
at all in the paramagnetic phase is quite surprising as it is hard
to imagine the coherent propagation of a magnetic exciton in
the absence of magnetic order. However, as mentioned in the
introduction, most of our observations can be naturally ex-
plained when the ground and excited multiplets are considered
simultaneously.

A. Single-ion Hamiltonian

Many features of our data can already be understood by
examining what happens to a single Co2+ ion. In trigonally
distorted CoTiO3, the single ion Hamiltonian H1 is given by

H1 = �trigl2
z + λ�S · �l + h0〈Sx〉Sx, (3)

where l = 1 and S = 3
2 describes the orbital and spin angular

momenta of a Co2+ ion in the high spin state. We note that �l
is an effective orbital angular momentum which is related to
the actual orbital angular momentum �L by �L = − 3

2
�l [29]. In

Eq. (3), �trig and λ gives the trigonal distortion and spin-orbit
coupling in CoTiO3. The third term proportional to h0 gives
the molecular field on a spin due to exchange interactions with
the surrounding ions in the magnetically ordered phase. The
dominant nearest neighbor spin interaction is assumed to take
on a simple Heisenberg form, J �Si · �S j , therefore h0 = 3J
[44]. In Eq. (3), �trig and λ are the dominant energy scales.
They are determined from a high-energy (Ei = 250 meV)
INS measurement shown in Fig. 5. A constant-|Q| cut clearly
reveal three peaks occuring at 23(2) meV, 58(2) meV, and
132(2) meV. Since the measurement was carried out at 60 K
(> TN ) in the paramagnetic phase, the observed peaks are
transitions between different energy levels of Eq. (3) for h0 =
0. We can assume only the ground state is populated at temper-
ature of the measurement (60 K) and the observed transitions
correspond to those from the ground state to excited states.
The three transition energies uniquely determine �trig and λ

to be 57(6) meV and 26(1) meV, respectively. Value of λ

obtained here is consistent with another cobalt material [30].
In our previous work [32], a slightly different set of �trig and
λ were obtained as they were (incorrectly) determined from
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FIG. 5. (a) Powder averaged INS spectrum at 60 K obtained
using an incident energy Ei = 250 meV. Unlike Fig. 3(h), the mea-
surement here was carried out on an actual powder sample. A
logarithmic intensity scale is used. (b) Constant-Q cut of the powder-
averaged INS data (Ei = 250 meV) at 60 K and 5 K. Intensity with
|Q| = [1.0 Å−1, 5.0 Å−1] was integrated and plotted as a function of
h̄ω.

a CEF measurement at T = 5 K (< TN ). A constant Q cut at
5 K is also shown in Fig. 5(b) for comparison. Energies of the
CEF transitions at 5 K are slightly shifted compared to their
values at 60 K due to a nonzero h0.

Using �trig and λ obtained above, we find that the 12 states
of a Co2+ ion (l = 1, S = 3

2 ) break into 6 Kramers doublets.
Since the trigonal distortion breaks the full rotational symme-
try of a free ion, the total angular momentum J is no longer
a good quantum number. However, Eq. (3) still possesses
rotational symmetry around the z axis when h0 = 0, the six
Kramers doublets can therefore be labeled by z component of
the total angular momentum Jz. Importantly, wave-functions
of the two sets of doublet with the lowest energies studied in
our experiment are given by

∣∣∣Jz = ±1

2

〉
= −0.27

∣∣∣J = 5

2
, Jz = ±1

2

〉
∓ 0.18

∣∣∣∣J = 3

2
,

Jz = ±1

2

〉
+ 0.95

∣∣∣J = 1

2
, Jz = ±1

2

〉
, (4)

and ∣∣∣Jz = ±3

2

〉
= 0.31

∣∣∣J = 5

2
, Jz = ±3

2

〉

±0.95
∣∣∣J = 3

2
, Jz = ±3

2

〉
. (5)

Since h0 is much smaller than the splitting between any
two doublets, we expect mixing induced by h0 between the
lowest two doublets and the rest of the states to be negligible.
We therefore restrict our attention to the lowest two doublets
probed in our experiment.The full Hamiltonian projected onto
the lowest two doublets (denoted by H̃1) takes the following
form

H̃1 = �0

(∣∣∣3

2

〉〈3

2

∣∣∣ +
∣∣∣−3

2

〉〈
−3

2

∣∣∣) + h0〈S̃x〉S̃x, (6)

where S̃x is the projection of spin operator, Sx, for S = 3
2 onto

the lowest two doublets. Since the wave-functions given in
Eqs. (4) and (5) are eigenstates of �trigl2

z + λ�S · �l , its projec-

FIG. 6. (a) Schematic energy level diagram of the single ion
model showing only the ground and first excited doublets. h0 = 0
and h0 �= 0 limit are shown on the left and right, which represent the
paramagnetic (T > TN ) and magnetically ordered phases (T < TN ),
respectively. The approximate wave-functions are given besides the
states. (b) Temperature dependence of energies of the transitions A,
B, and C calculated self-consistently using the single ion model.
(c) Dispersion of magnetic excitations at T = 0 (black solid line)
and T > TN (blue dashed line). Both (b) and (c) are calculated with
a �0 = 23.5 meV and h0 = 3J = −3 meV. At T = 0, both magnon
and SO exciton are present. Only SO exciton is present at T > TN .
(d) Intensities of mode B and C as well as their combined intensity
calculated within the single-ion model.

tion onto these states gives the simple diagonal term in Eq. (6)
where �0 denotes the splitting between the two doublets.
The energy level diagram of the lowest two doublets with
and without h0 are given in Fig. 6(a). With a nonzero h0,
degeneracy of the ground state doublet is broken while that of
the first excited doublet approximately remains, as a molec-
ular field term linear in spin operator Sx does not directly
couple the two states |± 3

2 〉. Figure 6(a) naturally accounts for
temperature dependence of magnetic excitations in CoTiO3.
At T = 0, only the ground state is occupied, giving rise to
two transitions: A and B (shown by vertical arrows with solid
lines), corresponding to magnon and the SO exciton shown in
our data. As the higher energy state of the ground doublet is
thermally populated at higher temperatures 0 < T < TN , an-
other transition C (dashed arrow) appears below B. Last, since
two states in the ground doublet are degenerate at T > TN , the
two transitions B and C occur at the same energy in the para-
magnetic phase, giving rise to only one observed transition D
with an energy �0.

Quantitatively, the parameters �0 and h0 of the projected
single ion Hamiltonian can be determined from energies of the
transitions A and B, corresponding to magnon and SO exciton
at T = 0. Neglecting their dispersions, their energies are taken
to be centers of the bandwidths and are estimated to be 6 and
27 meV, respectively, from our data (Fig. 1). This gives �0 =
23.5 meV and h0 = −3 meV.
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Having determined all parameters of the projected single-
ion Hamiltonian, we can now calculate the the temperature
dependence of transition energies A, B, and C. For that,
Eq. (6) needs to be diagonalized at each temperature. The
unknown average 〈S̃x〉 can be determined from

〈S̃x〉 =
∑

m

〈m|S̃x|m〉exp(−Em/kBT )

Z
, (7)

where the sum runs over all four states shown in Fig. 6(a).
In this expression, Z is the partition function and exp(−Em/kBT )

Z
gives the thermal population factor for state m. Since both
energies and wave-functions of these states depend on the
thermal average 〈S̃x〉, Eq. (7) has to be solved self-consistently
at each temperature. Temperature dependence of transition
energies found this way are given in Fig. 6(b), in qualitative
agreement with the temperature dependence of SO excitons
and magnon shown in Figs. 3(j) and 2(d), respectively. Two
features are noteworthy. First, as temperature increases from
0 to T > TN , the transition energy from the ground state to the
excited doublet decreases from 27 meV (energy of transition
B) to 23.5 meV (�0), in reasonable agreement with our data.
Moreover, h0 = −3 meV predicts a TN of 36 K, very close to
the experimental value of 38 K.

Using the single ion model, we can estimate the neutron
intensity of B (similarly for C) using [45]

IB = exp(− E0
kBT )

Z

∑
α

(∣∣∣〈2∣∣∣2S̃α − 3

2
l̃α

∣∣∣0〉∣∣∣2

+
∣∣∣〈3∣∣∣2S̃α − 3

2
l̃α

∣∣∣0〉∣∣∣2)
, (8)

where the sum runs over all spin component α = x, y, z and
l̃α , S̃α denote the α-component of orbital and spin angular
momentum projected onto the lowest two doublets. Intensities
determined this way for B and C are shown in Fig. 6(d).
In agreement with our data, our model predicts an increase
(suppression) in intensity of mode C (B) largely due to change
in thermal population of the ground and first excited states.
In addition, we find that the combined intensity of B + C
increases with temperature. As discussed above, B and C
merges to give the observed transition D in the paramagnetic
phase, our prediction is therefore consistent with a larger
intensity of D in the paramagnetic phase than that of B at 5 K
as observed in Fig. 3(j).

B. Dispersion of SO exciton

To obtain the dispersion of SO exciton in the paramag-
netic phase (T > TN ), we apply the theory of generalized
susceptibility within random phase approximation (RPA) de-
veloped by Buyers [24], which was originally used to model
the temperature dependence of magnetic excitations in rare-
earth systems. Within this theory, the magnetic Hamiltonian
H is split into two parts, a single ion part H1 consisting of
intra-atomic interactions including SOC, CEF and molecular
field due to surrounding ions, as well as an interaction part H2,
consisting of two-ion interactions. One first diagonalizes H1 to
extract the single ion eigenstates |m〉 with energy Em, which
is done in the last section. Magnetic excitations probed in a

neutron scattering experiment correspond roughly to dipole
allowed transitions between these single-ion levels. One then
includes H2 to obtain the dispersions, or the q-dependent
energy h̄ωmn(�q), for an allowed transition from state |m〉
to |n〉. h̄ωmn(�q) is given by poles in the Green’s function
Gαβ (�q, ω), which is the fourier transform of Gαβ (i j, t ) =
−iθ (t )〈[Sα

i (t ), Sβ
j ]〉, where θ (t ) is the step function, square

and angle brackets denote the commutator and thermal av-
eraging, respectively. The Fourier transform of the Green’s
function follows an equation of motion given by

ωG
(
Sα

i , Sβ
j , ω

) = 〈[
Sα

i , Sβ
j

]〉 + G
([

Sα
i , H

]
, Sβ

j , ω
)
. (9)

To take into account all possible transitions, instead of
working directly with spin operators, one decomposes the spin
operator into boson operators C†

m’s which create the state |m〉,
Sα

i = ∑
mn Sα

m,nC
†
m,iCn,i, where Sα

m,n = 〈m|Sα|n〉. The impor-
tance of this step is clear by noting that the operator C†

mCn

induces a transition from |m〉 to |n〉. The desired dispersion
relation h̄ωmn(�q) is therefore directly contained in the dy-
namics of the operator C†

mCn described by the equation of
motion Eq. (9). When evaluating the commutator [Sα

i , H],
one encounters a four boson term where one approximates
using RPA as C†

m(i)Cs(i)C†
p( j)Cq( j) → fm(i)δmsC†

p( j)Cq( j) +
fp( j)δpqC†

m(i)Cs(i). The parameters fm, fp denote the thermal
population of states m, p in the single ion model. After this
decomposition, one gets a set of linear equations coupling
different components of the Green’s function that can be sub-
sequently solved.

Although this approach applies equally well to the mag-
netically ordered phase (T < TN ), the loss of rotational
symmetry around the z axis when a molecular field is present
greatly complicates the calculation. Instead, we apply a pseu-
doboson approach [29,30] to obtain the dispersion of SO
exciton at T = 0. (Equivalence between the pseudoboson and
generalized susceptibility approaches at T = 0 is shown in
Ref. [24])

Details of the calculation are given in the Appendix, disper-
sion of SO exciton at T = 0 and T > TN is shown in Fig. 6(c).
Notably, the theory correctly predicts a larger bandwidth for
the SO exciton in the paramagnetic phase by ∼1.3 times,
consistent with our data in Figs. 3(a)–3(d).

V. DISCUSSIONS

Our theory correctly predicts a larger bandwidth for the SO
exciton at T > TN (by ∼1.3 times) than at T = 0 as observed
experimentally in Figs. 3(a)–3(d). To gain an intuitive under-
standing of why this happens, we treat an excited state on a
Co2+ ion as an excitonic quasiparticle and study its motion
under the exchange interaction J �Si · �S j . As an example, we
consider the motion of a local exciton with wave-function
|2〉 [defined in Fig. 6(a)] that initially resides on site j in
the ordered phase. At T = 0, this exciton moves in a uni-
form background of |0〉 states. It can hop to a neighboring
site i (initially in its ground state |0〉) if wave-functions on
the two sites can be exchanged. The effective hopping of
the exciton is therefore given by the matrix element tT =0 =
J 〈0, 2|�Si · �S j |2, 0〉 = J |〈0|�S|2〉|2, where |0, 2〉 = |0〉i

⊗ |2〉 j

denotes the two-ion state where site i, j are occupied by
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|0〉 and |2〉, respectively. However, each site is populated
by the two states in the ground doublet | ± 1

2 〉 with equal
probability at T > TN . Within a random phase approxima-
tion, the effective hopping of an excited state | 3

2 〉 is given by

the thermal average tT >TN = 1
2J (|〈 1

2 |�S| 3
2 〉|2 + |〈− 1

2 |�S| 3
2 〉|2) in

the disordered phase. Using the single-ion wave-functions
in the ordered and disordered phase, the effective hoppings
are tT =0 = 0.45J and tT >TN = 0.61J , respectively. Using
J = −1 meV and the fact that bandwidth is 6t for a near-
est neighbor tight-binding model on a honeycomb lattice,
bandwidths are estimated to be ∼2.7 meV and ∼3.6 meV
for T = 0 and T > TN , in agreement with the treatment
using Buyers’ theory. From this simple argument, we can
understand the change in bandwidth of the SO exciton as a
change in effective hopping matrix element due to a change
in the single ion wave-functions. More specifically, we ar-
gue that any difference in effective hopping in the ordered
phase compared to the paramagnetic phase must be due to
a small admixture of the ground and excited doublets. To
see this, we neglect any mixing between the two doublets
and diagonalize the molecular field term along x: h0〈S̃x〉S̃x

within each doublet in the ordered phase. As in Fig. 6(a),
approximate wave-functions of the ground states doublet are
given by |0〉, |1〉 ≈ 1√

2
(| 1

2 〉 ± | − 1
2 〉); those of the excited

states doublet are given by |2〉, |3〉 ≈ 1√
2
(| 3

2 〉 ± | − 3
2 〉). Using

these approximate wave-functions, we note that the hopping
matrix element of an excited state |2〉 to a neighboring site
in its ground state |0〉 is identical to that in the paramagnetic
phase. Therefore, any change in the effective hopping must
be because of the small admixture between the two doublets.
Similar argument shows that an increase in the SO exciton
intensity at T > TN predicted by our model [Fig. 6(d)] is also a
direct consequence of mixing between the ground and excited
doublets.

Quantitatively, however, our model considering only a bi-
linear exchange interaction underestimates the magnitude of
bandwidth for the SO exciton by a factor of two. The SO
exciton’s bandwidths are calculated to be ∼2.7 meV and
∼3.6 meV for T = 0 and T > TN [Fig. 6(c)], in contrast to
experimentally observed values of ∼5.4 meV and ∼7.2 meV.
One way to reproduce the experimentally observed bandwidth
is to use a larger exchange interaction J = −2 meV and while
keeping �0 = 23.5 meV. �0 = 23.5 meV is fixed by average
energy of the SO exciton for T > TN . The calculated disper-
sion is shown in Fig. 7, where we overlay the calculation
on top of the data. In Fig. 7(a), the calculation reproduces
the data at 60 K perfectly, as it should. However, as shown
in Fig. 7(b), calculation using the same set of parameters
cannot explain our data at T = 5 K at all. First, the calcu-
lated magnon bandwidth ∼20 meV is almost twice than the
experimentally observed value ∼12 meV. Second, center of
the SO exciton occurs at much higher energy of ∼32.5 meV
than the observed value ∼27 meV. Third, the transition tem-
perature TN is predicted to be 85 K, more than twice the
experimental value. These inconsistencies are not independent
from each other. In a model where J is the only interaction
between spins, it is constrained by the following quantities:
TN , magnon bandwidth as well as the shift of SO exciton
going from ordered to paramagnetic phase. To see this, we first

FIG. 7. INS spectra (a) at 60 K and (b) 5 K above and below
the ordering temperature. Solid lines are dispersions calculated using
J = − 2 meV and �0 = 23.5 meV. These parameters are chosen so
that they reproduce the dispersion in the paramagnetic phase.

note that TN ∼ 3J S2
x within a molecular field approximation.

Since 〈Sx〉 ≈ ±1 when projected onto the ground doublet,
TN ∼ 40K forces J ∼ −1 meV. The center of the magnon
band, roughly half of the full magnon bandwidth, is given
by the splitting of the ground state doublet in the single ion
model, or 6J S2

x . Using a magnon bandwidth of 12 meV,
we obtain a J ∼ −1 meV, in agreement with the estimation
using TN . Last, from the schematic level diagram in Fig. 6(a),
difference in energy of SO exciton at T = 0 and T > TN is
given approximately by half of the splitting in the ground
doublet, or 3J S2

x . Using an experimentally observed shift of
∼4 meV, we again obtain J ∼ −1 meV. However, as we
have discussed above, J ∼ −1 meV could not quantitatively
explain the bandwidth of the SO exciton. In other words, there
is an “additional” hopping of the SO exciton not explained by
bilinear spin interaction.

One possible resolution to this discrepancy is provided
by considering quadrupolar interactions [46]. Interactions
between quadrupolar (or higher-order) spin moments have
been considered extensively for f -electron systems [47]. They
arise naturally from orbital-dependent super-exchange or spin
phonon coupling [46,48] in the presence of large spin-orbit
coupling. Since the quadrupolar operators (see Ref. [46]
for definition) have no effect when projected onto a pseu-
dospin Seff = 1

2 ground doublet, they will not affect TN or
the magnon bandwidth to first order. However, they could
contribute to additional hopping of the local SO exciton that
might account for the “missing” bandwidth in our model.
Signature of quadrupolar interactions can be found in bulk
measurements such as magnetostriction [49,50] and nonlin-
ear magnetic susceptibility [51]. Dynamically, quadrupolar
interactions give rise to collective excitations of quadrupolar
moments. Although hard to be detected directly in a neutron
scattering experiment, quadrupolar excitations may acquire
nonzero intensity by coupling to magnetic dipole excitations
or phonons [52]. Therefore, it will be interesting to search
for dynamical evidence of quadrupolar interactions in CoTiO3

by looking for dispersive quadrupolar modes, and/or their
coupling to phonon modes in future inelastic neutron or x-ray
scattering experiment.
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VI. CONCLUSIONS

In conclusion, we have carried out inelastic neutron scatter-
ing study of spin-orbit exciton in CoTiO3, a typical example
of transition-metal system with strong spin-orbit coupling. We
found a complex temperature dependence of the SO exciton
across TN : a significant softening and an increase in bandwidth
at T = 60 K(> TN ) compared to T = 5 K(< TN ), as well as
appearance of another mode at intermediate temperatures be-
low TN . The observed temperature dependence is satisfactorily
explained using a multilevel theory treating simultaneously
both the ground and excited multiplets. Quantitatively how-
ever, we found the calculated bandwidth considering only
bilinear spin interaction to be too small to explain our data,
which suggests the presence of higher order spin interaction.

A strong temperature dependence of higher energy SO
exciton across TN observed in CoTiO3 directly shows that
the ground and excited multiplets are strongly coupled in
this material. This is in contradiction to a traditional view
that these multiplets are decoupled in a transition-metal sys-
tem. Instead, our observations are strongly reminiscent of
behaviours in the rare-earth and actinide magnetic materi-
als containing f -electrons. Similarity between magnetism in
CoTiO3 and f -electron systems is further highlighted by the
success of a multilevel theory originally developed for the
rare-earth systems in explaining our data. Our results can be
readily generalized to other transition-metal materials with
strong SOC, such as the well-known iridates and ruthenates,
whose SO excitations are easily probed by INS or resonant
inelastic x-ray scattering (RIXS).
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APPENDIX

1. Dispersion of SO exciton

a. T > TN

To obtain the dispersion of SO exciton in the paramagnetic
phase, we apply Eq. (9) to the specific case of a honeycomb
lattice, where each site has four states shown in Fig. 6(a).
Since honeycomb lattice is a non-Bravais lattice with an A
and B site, we need to add an additional label to the Green’s
functions. For each set of α, β = {+,−, z} of the spin com-

ponents, we define the Green’s function Gαβ
μν , where μ, ν =

{A, B} of the honeycomb lattice. Since Eq. (6) possesses rota-
tional symmetry around z when h0 = 0, equations of motion
for Gαβ

μν is very simple in the paramagnetic phase and is given
by

G+−
AA = g+− + g+−J (�q)G+−

BA ,

G+−
BA = g+−J (�q)�G+−

AA . (A1)

In Eq. (A1),

J (�q) = 1

2
J [1 + exp(−i �q · �a) + exp(i �q · �b)],

g+− = g−+ =
∣∣∣〈3

2
|S̃+|1

2

〉∣∣∣2

×
[ 1

ω − �0
( f0 − f1) + 1

ω + �0
( f1 − f0)

]
, (A2)

where f1 and f0 are the thermal population of a state in
the excited doublet | ± 3

2 〉 and ground doublet | ± 1
2 〉, re-

spectively. At TN < T � �0, f1 ≈ 0 and f0 ≈ 1/2. �a and
�b are the in-plane lattice vectors of CoTiO3 crystal struc-
ture. G+−

BB and G+−
AB are related by exactly the same set of

equations as Eq. (A1). The Green’s function G−+
μν are ob-

tained simply by changing +− → −+ in Eq. (A1). The
poles of Eq. (A1) occur at 1 − |g+−J (�q)|2 = 0, from which
we can determine the dispersion of the SO exciton ω(�q) =√

�2
0 ± �0|〈 3

2 |S̃+| 1
2 〉|2|J (�q)|

We found the longitudinal component of the Green’s func-
tion, Gzz

μν = 0, as the matrix element 〈Jz = ± 3
2 |S̃z|Jz = ± 1

2 〉
strictly vanishes. Interestingly, this implies the SO exciton
observed at ∼23 meV in the paramagnetic phase to be purely
transverse. This can be easily verified using polarized inelastic
neutron scattering in future experiment.

b. T = 0

Since rotational symmetry about z of Eq. (3) is lost when
h0 �= 0, the general form of equations of motion at an interme-
diate temperature 0 < T < TN is therefore quite complicated.
Fortunately, we can easily determine the dispersion at T = 0.
In this case, only the ground state is populated and only transi-
tion from the ground state to an excited state C†

mC0 is relevant.
We can therefore treat the ground state as a vacuum and define
a new boson operator, which creates an excited state |m〉 on
an atom a†

m ≡ C†
mC0 (m = 1, 2, 3 are the three excited states

in Fig. 6(a) for T < TN ). For an in-plane ordering along x,
we can write the spin operators in terms of the newly defined
boson operators as [29,30]:

S̃x = S̃x
0,0 +

∑
m

S̃x
m,0(a†

m + am)

+
∑

m

(
S̃x

m,m − S̃x
0,0

)
a†

mam, (A3)

and

S̃+ ≡ S̃y + iS̃z =
∑

m

S̃+
m,0a†

m + S̃+
0,mam, (A4)

similarly for S̃−. It is important to note that the matrix element
S̃α

m,0 ≡ 〈m|S̃α|0〉 is evaluated between the basis functions in

134404-9



BO YUAN et al. PHYSICAL REVIEW B 102, 134404 (2020)

the ordered phase, where a nonzero molecular field is present,
and not the basis functions given by Eqs. (4) and (5). The
matrix elements S̃α

m,n in this new basis are given by

S̃x =

⎛
⎜⎝

1.07 0 0 −0.68
0 −0.74 0.87 0
0 0.87 −0.19 0

−0.68 0 0 −0.13

⎞
⎟⎠ (A5)

and

S̃+ =

⎛
⎜⎝

0 −1.55i −0.72i 0
0.35i 0 0 0.97i
0.61i 0 0 1.33i

0 −0.76i 1.39i 0

⎞
⎟⎠. (A6)

For each matrix S̃α defined above, we define the following col-
umn vectors �uα = (S̃α

10, S̃α
20, S̃α

30)T and �vα = (S̃α
01, S̃α

02, S̃α
03)T

which will be used later.
Using the a†

m-boson representations of the spin operators,
the total Hamiltonian, which is a sum of the single-ion and the
interaction part, H1 + H2 can be reformulated as a quadratic
boson Hamiltonian that is easily diagonalized by the standard
Bogoliubov transformation.

Since the state |m〉 created by a†
m already diagonalizes H1.

H1 in terms of boson operators are simply

H1 =
∑
m,i

h̄ωm(a†
m,iam,i + b†

m,ibm,i ), (A7)

where the index m runs over the three excited states (1, 2, 3)
in Fig. 6(a) and index i runs over all unit cells. To distinguish
between the two sublattices A and B in each unit cell, bosons
created on A and B are denoted by a† and b†, respectively.

Moving on to the interaction part, H2. In spin operators, it
is given by

H2 = J
∑
i,δ

�̃S(A, i) · �̃S(B, i + δ),

−J
∑

i

{3〈S̃x〉[S̃x(A, i) + S̃x(B, i)]}. (A8)

In this expression, S̃(A, i) denotes the spin on sublattice A
of unit cell i. The first term, which sums over all unit cell i and

three nearest neighbor δ of each unit cell, gives the Heisenberg
interaction between nearest neighbours. The second term is
the mean-field part of the first term. It has to be removed as it
is already included in H1. Written in terms of boson operators
ψA,i = (a†

1,i, a†
2,i, a†

3,i, a1,i, a2,i, a3,i )T (similarly for sublattice
B), it is given by

H2 = J
∑
i,δ

ψT
A,iHψB,i+δ, (A9)

where column vectors �uα and �vα are defined above. In this
expression, H is a real symmetric matrix given by

H = J
[(�ux

�vx

)(
�uT

x �vT
x

) + 1

2

(�u+
�v+

)(
�uT
− �vT

−
)

+ 1

2

(�u−
�v−

)(
�uT
+ �vT

+
)]

. (A10)

H consists of four symmetric 3-by-3 submatrices. As an ex-
ample, the submatrix H11 = J [�ux �uT

x + 1
2 (�u+�uT

− + �u−�uT
+)].

Going to momentum space, and defin-
ing the column vector of operators ψk =
(ak,1, .., ak,3, bk,1, .., bk,3, a†

−k,1, .., a†
−k,3, b†

−k,1, .., b†
−k,3)T,

the total Hamiltonian is given by

H1 + H2 = 1

2

∑
k

ψ
†
k Hkψk, (A11)

where

Hk =

⎛
⎜⎜⎝

D H12γ (�k) 0 H11γ (�k)
H12γ̄ (�k) D H11γ̄ (�k) 0

0 H22γ (�k) D H21γ (�k)
H22γ̄ (�k) 0 H21γ̄ (�k) D

⎞
⎟⎟⎠,

(A12)

where γ (�k) = (1 + exp(−i �q · �a) + exp(i �q · �b)). In Eq. (A12),
Hi j is the 3 by 3 submatrix of H defined above and D is
a 3-by-3 diagonal matrix with entries (h̄ω1, h̄ω2, h̄ω3) along
the diagonal. Eq. (A11) can be diagonalized by finding the
positive eigenvalues of the non-Hermitian matrix gHk where
g is a 12-by-12 diagonal matrix with the first six entries given
by +1 and last six entries given by −1. Dispersion for T > TN

and T = 0 are shown in Fig. 6(c).
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