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Localization, transport, and edge states in a two-strand ladder network
in an aperiodically staggered magnetic field
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We investigate the spectral and transport properties of a two-arm tight-binding ladder perturbed by an external
magnetic field following an Aubry-André-Harper profile. The varying magnetic flux trapped in consecutive
ladder cells simulates an axial twist that enables us, in principle, to probe a wide variety of systems ranging from
a ribbon Hofstadter geometry to helical DNA chains. We perform an in-depth numerical analysis, using a direct
diagonalization of the lattice Hamiltonian to study the electronic spectra and transport properties of the model.
We show that such a geometry creates a self-similar multifractal pattern in the energy landscape. The spectral
properties are analyzed using the local density of states and a Green’s function formalism is employed to obtain
the two-terminal transmission probability. With the standard multifractal analysis and the evaluation of inverse
participation ratio we show that the system hosts both critical and extended phase for a slowly varying aperiodic
sequence of flux indicating a possible mobility edge. Finally, we report signatures of topological edge modes
that are found to be robust against a correlated perturbation given to the nearest-neighbor hopping integrals. Our
results can be of importance in experiments involving ladderlike quantum networks, realized with cold atoms in
an optical trap setup.
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I. INTRODUCTION

The discovery of quantum Hall effect [1] has unleashed
a plethora of theoretical investigations and experimental ob-
servations of different nontrivial topological phases [2–5]
making it one of the most active research domains in the
present-day condensed matter physics. Such systems host
nontrivial quantum phases, characterized by topological edge
states on their surface, that are robust against any local per-
turbation. This remarkable fact makes such systems potential
materials where a transportation of energy can be engineered
with controlled or mitigated dissipation.

One of the most celebrated models in the context of topo-
logical phases was given by the pioneering work of Hofstadter
[6]. His work describes two-dimensional electron gas in a
periodic lattice potential. When subjected to a strong magnetic
field, the interplay of two length scales causes the energy
bands to fragment into smaller subbands producing a self-
similar fractal pattern, famously known as the “Hofstadter
butterfly.” However, the butterfly pattern is only observed if
the magnetic length scale is much smaller than the underly-
ing lattice periodicity requiring fluxes φ to be a significant
fraction of φo. For conventional condensed matter lattices,
this translates to an astronomically large magnetic field which
prevented researchers from realizing the butterfly experimen-
tally for decades. An alternative approach involves the use
of superlattice structures that effectively increases the lattice
constant to lower the requirement of magnetic field. This
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key concept has made it possible to realize the butterfly in
graphene [7,8] and semiconductor superlattice [9] structures.
Even reconfigurable quasiperiodic acoustic crystals have re-
cently been realized and are reported to show Hofstadter
butterfly and topological edge states, taking the excitement
beyond the realm of conventional electronic systems [10].

Recently, a lower-dimensional version of this problem,
viz., the Hofstadter model on a strip, has gained a lot of
interest and has triggered a series of theoretical [11,12] and
experimental [13,14] investigations focusing on the fate of
the Hofstadter butterfly and the nature of transport when the
motion of the electron is severely restricted in one or more di-
rections. However, previous works on strip geometries mostly
concentrate on a flat ribbonlike structure that lacks generality
in terms of flux distribution and completely neglects any effect
that the structural geometry may have on this problem. The
effect of geometry in the context of low-dimensional physics
can be a useful consideration while modeling biological sys-
tems such as a DNA molecule.

The question of whether a DNA conducts electric charge
has kindled the interest of physicists and biologists over the
years [15–17] and remains a challenging task to address even
now. An understanding of the charge migration process may
provide important insight about the biological processes such
as DNA damage repair [18]. However, modeling an actual
DNA strand is a daunting task given its extremely compli-
cated structure. One of the ways to attack such problems is
to make a suitable model of the system first and then use the
tight-binding approximation [19,20]. As a first approximation,
one can treat each Watson-crick base pair as an effective,
single site. This enables one to incorporate the basic fea-
tures of a DNA in a tight-binding Hamiltonian [21] where a
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suitable value of the on-site potential is attributed to the lattice
site (here, the sites in the ladder), along with an appropriate
hopping amplitude describing the overlap of the Wannier or-
bitals between the neighboring sites. The hydrogen bonding
between the complementary bases can then be mimicked by
the interstrand hopping of the ladder network. However, apart
from modeling DNA or proteins the tight-binding description
has been used in numerous theoretical studies to mimic a
wide variety of systems such as nonlinear waveguides [22],
Bose-Einstein condensate in optical lattices [23], and super-
conducting Josephson junctions [24].

In general, ladder networks have a unidirectional geometry
with only a few sites attached in the perpendicular direc-
tion. The resulting sharp boundaries make such a network
an excellent candidate for detection of the topological edge
features [25]. What is more important is that, these structures
are not just mere theoretical tools but can be readily generated
in laboratories with the coherent and sequential coupling of
internal states of atoms.

This backdrop motivates us to examine the transport and
topological edge state features of a two-arm tight-binding
ladder network trapping a magnetic flux in each cell, that
has a staggered distribution. We have chosen a generalization
of the Aubry-André-Harper (AAH) modulation in the flux
distribution, that encodes an effective tunable axial twist in the
ladder network. Originally, the AAH model was proposed as
a paradigmatic model of an incommensurate one-dimensional
system that exhibits a metal-insulator transition in parameter
space [26,27]. In recent times, the AAH potential profile and
its variants are also being thought of as suitable for developing
optical lattices [28] in describing bichromatic potentials [29]
and in engineered parity-time symmetric photonic lattices
[30], to cite a few examples.

In this paper, we show that even such a simple construc-
tion of modulated flux mapped on a quasi-1D Hofstadter
strip gives rise to plenty of rich physics. The real-space di-
agonalization of the Hamiltonian reveals that the Hofstadter
butterfly survives in its lower-dimensional counterpart. To
understand the role of geometry on the spectral and transport
properties, we estimate the local density of states (LDOS)
and multiterminal transport for different distributions of flux.
Our quantum transport calculation and inverse participation
ratio (IPR) analysis reveal discrete regions of extended and
critical phases in the energy spectrum and thus suggests the
existence of mobility edges. We also perform a multifractal
analysis to further support our claims of quantum phases.
Since the original AAH model has an inversion symmetry
in its commensurate limit, our proposed system guarantees
topological edge doublets that are chiral in nature. To test
the robustness, we introduce a staggered perturbation in the
hopping integrals that simulates a physical deformation of the
ladder geometry. Finally, we dedicate a section in the end on
how to realize our work experimentally.

II. THE MODEL

We consider a system of noninteracting, spinless particles
in a two-arm ladder network, subjected to a magnetic field
perpendicular to the ladder plane (see Fig. 1). The ladder has
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FIG. 1. Schematic diagram of a noninteracting spinless tight-
binding ladder model in a perpendicular magnetic field. The flux at
the nth plaquette is �n and only affects the electrons moving along
the a-leg due to gauge choice. The lead connections are marked as Li

and Ri (i = 1, 2), and are discussed in the text.

N plaquettes or n = 2(N + 1) atomic sites (i = 1, 2, 3 . . . , n)
and assumes open boundary conditions primarily.

To incorporate the angular twist, we introduce an AAH
modulation profile in the magnetic flux trapped in the lad-
der cells. For convenience, and definitely without losing any
physics, we choose to write the flux per plaquette, normalized
by the flux quantum �0 = hc/e, as

�i = (λ/2π ) cos(2παiν ). (1)

Here λ is the “strength” of the modulation, and 0 � ν � 1
defines a “slowness parameter” ν. The twist parameter α con-
trols the frequency of the flux modulation. The limit ν = 0
represents a constant flux distribution for a given α, and the
other limit of ν = 1 brings back the AAH modulation in the
same. It is worth mentioning that a similar slowly varying
function (SVF) was first introduced in designing an aperiodic
potential landscape [31] in a one-dimensional tight-binding
chain of atomic sites. It was argued that a nonzero value of
ν triggered a metal-insulator transition in a one-dimensional
chain of atoms, and one could work out the existence of mobil-
ity edges [32], a result that is not obtained in the conventional
AAH model. To the best of our knowledge, the effect of such
a modulation in the distribution of the magnetic flux trapped
in a two-strand ladder has not been addressed before.

This choice of correlation in the flux also serves as a gen-
eral function for the realization of different flux distributions
in the plaquettes. For instance, with ν = 1, one may set α to
1, 1/2, or any irrational number to obtain uniform, staggered,
or quasiperiodic arrangement of flux, respectively. Under the
tight-binding formalism, the Hamiltonian reads as follows:

H = −tx
∑

i

(eiθn,n+1 a†
n+1an + b†

n+1bn) − ty
∑

n

a†
nb†

n

− ε
∑

n

(a†
nan + b†

nbn) + H.c. (2)

Here, b†
n (bn) [or equivalently, a†

n (an)] is the fermionic
operator that creates (annihilates) a particle at the nth site
of the b-leg (or a-leg). Hopping amplitudes tx and ty are the
tunneling matrix elements along the leg and along the rung,
respectively. When an electron hops in a closed loop from rn

to rm, the phase accumulated is

θn,m = − e

ch̄

∫ rm

rn

�A · �dr = 2π

�o

∫ rm

rn

�A · �dr, (3)
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FIG. 2. Single-particle energy spectra E vs flux modulation frequency α are plotted for various λ. (a) The spectrum is overall continuous
with a small band gap for λ = 1/2 and ν = 1, (b) the band gap gets broadened if λ = 1, keeping ν = 1, and (c) at λ = 2, with ν = 1 still, the
band gap starts to fragment into smaller subbands exhibiting fractal nature. (d) For a slower flux modulation, with ν = 0.8, the interference
pattern is destroyed.

where �A(�r) is the vector potential and φo is the flux quan-
tum. The ladder is in the xy plane and the magnetic field
is applied in the z direction. We choose the Landau gauge
�A = (−By, 0, 0) such that �B = �� × �A. Further, we exploit the
gauge freedom and put the lower leg on the y = 0 axis. As a
result, the particle only adopts a phase when moving in the
upper leg direction. Thus, the effect of the magnetic flux is
realized through the aperiodically modulated Peierls’ phase
tagged to the hopping in the a-arm, viz., tx exp(iθn,n+1) and
its time-reversed partner. In our setup, θn = 2π�n along the
a-arm, and θn = 0 along the b-arm and the rung. This choice
of upper leg gauge does not alter the physical properties of
the system [33–36]. For the sake of simplicity, we set the
on-site potential term ε to zero and consider the natural unit
scale h̄ = c = kB = 1.

III. THE SPECTRUM AND THE TRANSPORT

A. The Hofstadter butterflies

In this section, we present the energy spectrum of a flux-
modulated ladder network as a function of the modulation
frequency α for different values of the flux strength λ. Similar
to the AAH situation, we see that a variation in α produces
butterflies in the energy landscape. The butterflies arise from
the interplay of two parameters α and λ. However, it should
be noted that this modulation is in the distribution of flux
in contrast to the original AAH model. To obtain the energy
spectrum, we use exact diagonalization of the Hamiltonian for
a system with n = 500 atomic sites.

Turning on the magnetic field, we first set λ = 1/2. With an
overall uniform profile, the electronic spectrum looks contin-
uous as shown in Fig. 2(a). One of the characterizing features
of the energy bands is the existence of the band gaps. Here, we
see a small band gap, symmetric around the center. Moreover,
the signatures of band overlapping can be seen as well if one
moves towards the band edge [Fig. 2(b)]. Next, we set λ = 1
and as a result, the central band gap broadens and multiple
mini bandgaps open up around the edges. A prominent change
in the spectrum is observed when λ = 2 in a sense that each of
the Landau levels breaks into smaller subbands and produces a
self-similar fractal pattern in the energy spectrum. In Fig. 2(c),
the fragmentation of the bands is evident as one moves away
from the center. This is similar to the Hofstadter butterfly
and can be regarded as its variant. The self-similarity of the
butterfly is discussed later. Interestingly, the result is similar to
the AAH model where the butterfly appears once the intensity
of the flux modulation potential is set equal to 2. Our findings
show that a quasi-1D system that can be approximated as a
strip geometry of the Hofstadter model is capable of produc-
ing a butterfly spectrum. However, the butterfly is destroyed
the moment we turn on the “slowness” index (ν = 0.8, for
example) as illustrated in Fig. 2(d).

B. Density of states and the transmission characteristics

To study the DOS and transport properties of a double-arm
ladder, we adopt the two-terminal Green’s function formal-
ism. In this process, we attach two semi-infinite pairs of
conducting leads at the left and the right ends of the ladder
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(a) (b) (c)

(d) (e) (f)

FIG. 3. The upper panel shows the LDOS profiles of the two-strand ladder network with the leads. The transport characteristics are
presented in the lower panels, just below the corresponding LDOS plots. We have set λ = 1 and tx = ty = 1. (a) and (d) correspond to a
uniform flux distribution (α = 1, ν = 1). (b) and (e) correspond to a staggered flux distribution (α = 1/2, ν = 1) and a gap opens up in the
spectrum. (c) and (f) depict the slow, aperiodically modulated case (α =

√
5−1
2 ; ν = 0.8). Energy is measured in units of tx .

[37] and present our results in Fig. 3. Due to the coupling of
the leads to the finite-sized ladder, the Hamiltonian takes the
form

H = HS +
4∑

l=1

Hl + HlS + H†
lS, (4)

where HS is the tight-binding ladder (system) Hamiltonian and
the term HlS (H†

lS ) accounts for the coupling between the lth
lead to the system S. The index l runs over all the leads that
are connected to the central part and can go up to 4 in our
case. With the help of Löwdin’s technique [38,39], we can
easily partition the Hamiltonian and arrive at the expression
for the effective Green’s function of the system that reads

GS =
(

EI − HS −
4∑

l=1

�l

)−1

, (5)

where 
l is the self-energy correction term that arises due to
attachment of the lead to the system and contains all the in-
formation about coupling. The expression for the self-energy
term of the lth lead is as follows:

�l = HlSGlH
†
lS. (6)

Here, Gl = (EI − Hl )−1 corresponds to the Green’s func-
tion matrix for the lth lead. Once the self-energy is obtained,
it is straightforward to calculate the coupling function, �l (E ),
viz.,

�l (E ) = i
[
�ret

l (E ) − �adv
l (E )

]
(7)

In the above equation, 

ret(adv)
l signifies the retarded (ad-

vanced) self-energy term. We make use of the fact that they

are Hermitian conjugate to each other and rewrite Eq. (7) as

�l (E ) = −2Im
[
�ret

l (E )
]
. (8)

The final expression for the transport between the mth and
nth leads, as a function of the system-lead coupling can be
written as [40–42]

Tmn = Tr
[
�mGret

S �nGadv
S

]
. (9)

Here, �m(n) denotes the matrix coupling the system to the
m(n)th lead and Gret(adv)

S is the matrix of the retarded (ad-
vanced) Green’s function of the system. To minimize the error,
we estimate transmittance for all four possible combinations
of lead attachments and take an average of it. Therefore, the
transport of a two-arm ladder is

T (E ) =
(
TL1R1 + TL1R2

) + (
TL2R1 + TL2R2

)
2

. (10)

1. The local density of states

The spectral canvas of a flux-modulated two-arm ladder
can be well understood through a density of states profile,
followed by a multiterminal transport across a finite-sized
system. As mentioned earlier, the “twist parameter” α deter-
mines the flux-modulation frequency as well as serving as a
gateway to achieve different flux distribution in the plaquette.
We try to understand how different arrangement of fluxes that
decides the hierarchy of the twist angle affects the spectral
scenario.

The LDOS is obtained by calculating the Green’s function
of the lead-connected system, which is given as follows:

ρ(E ) = lim
η→0

{
− 1

πN
Im[G00(E + iη)]

}
, (11)
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where G00(E + iη) is the diagonal element of the Green’s
function defined through the relation Gs = (EI − HS −∑4

l=1 �l )
−1

. The small preassigned quantity η (set equal to
10−4 in the present calculation) is added to the energy to avoid
any singularities. The expression is normalized by the total
number of atomic sites N . I is the identity matrix having the
same dimension as the system Hamiltonian matrix HS . The
self-energy correction term 
l appears due to the system-lead
coupling. We have kept our energy scanning interval small
enough to ensure a detailed distribution of the eigenstates.

We first study the spectral character with a uniform flux
distribution. This is easily achieved by setting α = 1. The
LDOS is presented in Fig. 3(a), where we restrict the pre-
sentation of the LDOS within the value of 2 just to bring
out the smaller peaks. The ladder network used for the com-
putation here has n = 100 atoms. We have chosen λ = ν =
1. Such choices of the parameters ensure �i/�0 = 1/2π a
constant, yet a nominal flux piercing each plaquette. The
time-reversal symmetry along the upper arm is still bro-
ken, and the hopping there takes up the values tx exp(±i)
along the forward and the backward direction, respectively,
on each bond in the upper arm. The uniformity of the phase
is seen to result in a gapless spectrum, centered around E =
0. The eigenstates in each case reported here bear an ex-
tended character (we can rule out localization here as there
is no intrinsic disorder anywhere in the system). The finite
size of the network, however, causes an oscillating LDOS
profile. There is an interesting segmentation in the behavior
of the two-terminal transport, for which a plausible argu-
ment is provided in the subsequent discussion, and also in
Appendix A.

A major change in the spectrum is observed for α =
1/2, which corresponds to a staggered flux distribution. In
Fig. 3(b), the dense cluster of states around E = 0 vanishes.
Instead, we see the opening of a gap in the middle of the
spectrum and a two-subband pattern emerges in the LDOS
profile.

To study the effects of an aperiodic flux modulation we
consider α to be irrational. Our choice here is α =

√
5−1
2 .

Motivated by the works of Refs. [32,43], we choose to take a
nonzero value of the slowness exponent and set ν = 0.8. The
LDOS profile shows a clustering of states around the center
and at the edges. However, there is no gap in the spectrum,
unlike the staggered case. The nature of such states will be
commented upon in the subsequent sections.

2. The transport characteristics

We have computed the transmission characteristics for var-
ious flux distribution using Eq. (10) and present the numerical
results in the lower panel of Fig. 3 to benchmark it with
the LDOS results. The result for a uniform flux arrangement
shows a resonating feature for an incoming electron with
−1 � E � 1 that leads to high transmittance. Beyond the
above energy range and on either side of it, the transmission is
lower, making a steplike appearance [see Fig. 3(d)] that is well
known to exist for a ribbonlike network, where an M strand
network gives rise to a total of 2M steps in T (E ) [44]. While
the exact reason for a low or a high transmission coefficient
at any particular energy is hard to justify in a quantitative

manner (apart from making a qualitative statement about par-
tially destructive or constructive quantum interference in the
looped structure of the ladder network), a plausible expla-
nation for the segmentation of the band can be obtained by
looking at the difference equations in a rotated basis, at least
in the special case of zero flux. Such an argument is provided
in Appendix A.

Switching to a staggered flux, we immediately notice
the extinction of the central conducting regime as shown in
Figs. 3(b) and 3(e). This zero transport region can be under-
stood from the LDOS profile which shows that there are no
energy states to offer any transmission. Beyond this central
energy regime, there exists a low transport region.

Finally, we focus on the SVF case where the flux ar-
rangement is incommensurate with the underlying lattice
periodicity. The average transport is low, compared to the
earlier cases. In Figs. 3(c) and 3(f), we present the results
and immediately observe that there are energy regimes where
the LDOS (broadened by the attached leads) is nonzero, and
yet the transmission coefficient vanishes. This implies that the
states have become either critical or localized with a local-
ization length falling well short of the system size. Its thus
tempting to conjecture a metal-insulator transition. However,
to gain a better insight and to resolve the issue we resort to
an analysis of the IPR and subsequently, to a study of the
multifractality of the spectrum.

IV. STATISTICAL ANALYSIS: THE IPR AND THE
MULTIFRACTALITY

A. The IPR and the nature of the eigenstates

We have estimated the IPR for the slowly varying
quasiperiodic arrangement of flux. IPR is a good numerical
tool to characterize localization. It is defined as the fourth
power of the normalized wave function and is given by
[45–47]

IPR ∼
∑

n

|ψn|4, (12)

where n goes over all the atomic sites. The IPR estimates how
many numbers of sites are occupied by the wave function, and
is defined as the inverse of this number. One of the reasons to
use IPR is that it does not assume the exponential localization
of the wave function beforehand and is very much sensitive
to the nature of the wave function making it a good candidate
to study the localization properties of a system. In Fig. 4, we
have plotted the IPR of the whole spectrum against energy.
Interestingly, the IPR shows a dramatic increase around E =
±1, where the transport is pretty low.

We further investigate the minute details and find that this
abrupt change in the value of IPR becomes sharper as the sys-
tem size N → ∞. On the other hand, there are almost flat and
low IPR regions, close to the edges primarily, and at the center,
that represent the delocalized eigenstates, leading to a larger
(sometimes resonant) transport profile. We notice the high IPR
states differ almost by an order of magnitude compared to the
low IPR counterparts. This asymmetry in the IPR suggests the
coexistence of different quantum phases in the spectrum. A
more rigorous approach is taken in a later section to clarify the
nature of the states. Nevertheless, it is safe to say this result
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FIG. 4. Inverse participation ratio of the whole spectrum is plot-
ted against energy for the system with N = 100 atomic sites. The
parameters are λ = 1, α =

√
5−1
2 , ν = 0.8.

at least presents the possibility of a single-particle mobility
edge—a domain wall specified by a particular energy that
separates the localized (insulating) states from the extended
(conducting) ones. It should be noted that the original AAH
model shows a metal-insulator transition only in the parameter
space, and does not have any mobility edge since all the states
are either delocalized or localized depending upon the value
of the strength of the on-site potential [48].

B. Multifractality of the spectrum

Multifractal behavior is a signature feature of strongly
fluctuating wave functions at criticality. Unlike monofractals,
multifractal systems are defined by a continuous set of expo-
nents illustrating the scaling of moments of some probability
distribution. For our case, this probability measure is |ψ (r)|2.
Now we can define generalized IPR (Iq) as the moments of
eigenstate intensities [49,50],

Iq =
∫

|ψ (r)|2qdd r.

At criticality, Iq follows a power-law relation with the
system size N , Iq ∼ N−τ (q). Here, τ (q) is a continuous set
of exponents that characterizes a multifractal system. The
normalization of the wave function requires I1 = 1. With this
constraint, one can write τ (q) as τ (q) = (q − 1)Dq, where Dq

is the generalized fractal dimension. It should be noted that
the critical exponent τ (q) (i) is linear with Dq = d for metals,
(ii) becomes flat in localized systems with Dq = 0, and (iii) is
a nonlinear function of q at critical points.

As seen earlier, our results exhibit two different regimes
of phases in a single spectrum for a slowly varying aperiodic
sequence of flux. Here, we unfold the nature of the underlying
quantum phases with the standard multifractal analysis. This
is a technique that has been successfully applied in many
disordered and quasiperiodic models [51–54]. To do this we
set α =

√
5−1
2 ; ν = 0.8 and pick two suitable eigenenergies

E = 1.13 and 2.8 (in units of the hopping integral tx) from
the high and low regions of IPR, respectively. We also make
sure that both of the energies are present at any system size.
The plot of the generalized IPR versus system size highlights
the difference between the two phases [see Figs. 5(a) and
5(b)]. For the critical states (E = 1.13), Iq changes nonlin-
early against N with the effect becoming sharper at higher
values of q while, on the contrary, the trend is linear at all
q for metallic phase (E = 2.8). We calculate the multifractal
exponent by plotting Iq versus N at different q ranging from
0 to 8 in an interval of 0.25 [see Fig. 5(c)]. The blue linear fit
demonstrates the metallicity for E = 2.8. At E = 1.13, τ (q)
changes nontrivially with q and deviates more and more as
the q increases—an inherent feature of the multifractality. A
nonlinear fit shows τ (q) varies as ≈ −1375.68

q+37.89 + 35.36 which
explains the effect of nonlinearity becoming more prominent
at higher q.

V. TOPOLOGICAL EDGE STATES

With the discovery of topological insulators [2,55,56], the
concept of topology has become essential in understanding
electronic transport. A striking feature of topological insula-
tors is that they host novel edge states on their surface. Such
states are conducting in nature and move around the insulating
bulk without being affected by any disorder present in the
system. The existence of an edge state is defined by the open
boundary of the system, and its dynamics is independent of
any microscopic details. This fact makes such systems an
excellent choice for fabricating disorder-free transport tech-
nology. The path breaking Su-Schreiffer-Heeger model for
example, provides an excellent platform to understand the oc-
currence of the edge states and a topological phase transition
[57].

To elucidate the nontrivial topological states, we study a
generic butterfly spectrum under open boundary condition.
Two pairs of edge states can be seen in the gapped region
of the spectrum in Fig. 6(a). We pick up three states from
different sections of the spectrum, for α = 1/3, 1/2, and
2/3, and plot the amplitude of the wave function against the
position in each case to highlight the contrast between the
bulk and the gapped states. Out of the three, the two gapped
states at α = 1/3 and α = 2/3 are predominantly stationed
at the interface, while for α = 1/2, in the bulk, the energy is
distributed all over the Bloch bands with a nonzero amplitude
everywhere.

In Fig. 6(b) we see the same picture in the energy versus
site index plot with two pairs of edge states isolated from the
rest of the spectrum. The right panel shows the density plot of
the probability distribution for the whole spectrum [Fig. 6(c)].
Energy eigenstates are plotted in the Y direction against the
lattice site index on the X axis while the color bar showcases
the probability density of wave function |ψ |2. We mostly see
a shade of dark-violet pattern prevailing everywhere except
at the four bright points. These high-intensity points indicate
that the edge states are localized in nature and must live in the
vicinity of the physical edge of the ladder.

One often associates the term “robustness” in the context
of edge states to describe the extent to which a state sur-
vives under a local distortion—a striking feature of the novel
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(a)

(b)

(c)

FIG. 5. Plot of ln Iq versus ln N is shown for two energies (a) E =
1.13, (b) E = 2.8, and (c) with system size N ranging from 40 to
1050. Here, q is a parameter and takes the value 2 (green), 3 (red), 4
(blue), and 5 (yellow). (c) The trend of multifractal exponent τ (q) ∼
− ln Iq

lnN against q demonstrates the difference between extended and
critical phase.

FIG. 6. (a) A butterfly energy spectrum under open boundary
condition is shown to demonstrate the traces of the topological edge
states. The Hamiltonian parameters are λ = 2, ν = 1, tx,y = 1. Both
the gapped states are found to be localized at the edges except for the
bulk region as shown by the amplitude versus position plot above.
Next we analyze an eigenstrip of the butterfly spectrum that contains
the gapped states, and fix α = 1

3 . In (b) a plot of the energy versus
lattice site index is shown. Traces of the edge states can be inferred
from the black circles that highlight the bulk-isolated energy points,
and in (c) the probability density |ψ |2 of the entire eigenspectrum
against lattice site index unfolds the spatial and intensity distribution
of the states across the ladder. Four bright spots indicate that the two
pairs of edge modes must be localized in nature.
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FIG. 7. The electronic spectrum of a generic butterfly under hop-
ping perturbation is shown. Here, the hopping elements are t n+1

x,y =
1, t n

x,y = 0.8. All the edge modes survive the perturbation suggesting
their robustness against local distortion.

insulators arising from the nontrivial topology of the energy
bands. There of course exists a wide variety of techniques
in the current literature each serving a different need of in-
dividual systems to check the robustness. In this work, we
work with a staggered distortion in the hopping element to
test the fate of the edge states under such disturbance. The
hopping element definitely depends, apart from other issues,
on the distance between two adjacent atomic sites. Thus, by
employing a perturbation we can mimic the physical equiv-
alence of stretching or squeezing a ladder. For this purpose,
we introduce a distortion amplitude δ ∈ [0, 1] so that the
hopping parameters take the form t n+1

x,y = t, t n
x,y = t − δ in the

(n + 1)th and the nth plaquette, respectively. With t set equal
to 1, we observe that increasing the amplitude of fluctuation
δ does not affect the edge states in any appreciable manner
as long as δ is not too high (e.g., beyond 0.5). We present
our result of the butterfly spectrum, shown in Fig. 2(c), under
perturbation for a median value of δ = 0.2 (see Fig. 7). As
expected, the hopping asymmetry opens up multiple band
gaps in the spectrum. The most interesting part is that all
the pairs of the edge states survive the presence of distortion
for amplitude as high as δ = 0.2. This demonstrates that, any
local change such as the physical distortion of the ladder does
not affect the edge states.

The topological origin of these states can be traced back to
a chiral symmetry of the ladder Hamiltonian. This has been
discussed in detail in Appendix B, considering the specific
case of α = 1/3, and Fig. 6. The argument can easily be
extended to other values of α to ascertain any chiral sym-
metry connection. Interestingly, very recently, higher-order
topological insulators described by AAH potentials have been
reported to exhibit a similar chiral symmetry protection of the
edge states [58].

VI. POSSIBLE EXPERIMENTAL SETUP

We propose that an optical lattice setup using ultracold
atoms may realize our work experimentally. Ultracold atoms
in optical trap provide an excellent opportunity to test different
theoretical models in many areas of physics as diverse as
quantum information [59], statistical physics [60], and high-
energy physics [61]. The process involves interfering several

counterpropagating laser beams to artificially create a con-
trolled and tunable periodic light system where atoms can be
trapped. As shown in Ref. [62], a two-dimensional double-
well potential is considered for fabricating a two-arm ladder
network. High-controllability and precision of this method
allow us to tune the well depth by varying the ratio of the
laser amplitudes and the phase between them. However, our
system requires the use of charged particles. Thus, we suggest
incorporating synthetic gauge fields to overcome the charge
neutrality of the atoms. Synthetic gauge fields are achieved
by a pair of Raman lasers that can imprint a complex phase,
analogous to Peierls’ phase on the wave function as it hops
between atomic sites [63–65]. The ability to tune the lattice
constant paired with the artificial gauge is useful to achieve
magnetic flux as high as the flux quantum. This allows us to
test theories without the need of astronomically large mag-
netic field which was not possible in conventional condensed
matter lattices. Experimentally, strong staggered [66,67] and
uniform [68] magnetic flux arrangements have been achieved
in this framework and very recently, Mancini et al. [69] have
reported to measure chiral edge current of a ribbon Hofstadter
geometry within a synthetic gauge field setup.

VII. CONCLUSION

In summary, we have considered a two-arm tight-binding
ladder network, defined by Eq. (2), in the presence of an
external magnetic field. The key feature of our work is the
inclusion of a cosine modulated magnetic flux that mimics a
virtual axial twist of the ribbon structure. Such spatial vari-
ation of flux paired with a low-dimension ladder network
provides an excellent framework to study systems from ribbon
Hofstadter geometry to twisted DNA network. We show that
ladder networks are capable of producing a butterfly pattern
for a magnetic flux of few flux quantum. However, if the
variation of flux is too slow the interference pattern dies out.
Our main result indicates the coexistence of extended-critical
phase for a slowly varying flux incommensurate with the
underlying lattice. Furthermore, we use the multifractal anal-
ysis to investigate and characterize the nature of the phases.
A significant change in the IPR along with the multifractal
exponent calculation supports our claim of different phases.
This result is of substantial importance, because the coexis-
tence of quantum phases in the spectrum hints towards the
existence of mobility edge. For a commensurate sequence of
flux, the ladder hosts two pairs of nondegenerate topological
edge states localized near the physical edge of the ladder.
We propose a scheme of correlated hopping perturbation to
test the robustness of edge states. We notice all of the edge
modes are robust against the hopping perturbation up to a
mark indicating their nontrivial topological origin. Finally, we
suggest the use of assisted Raman lasers in an optical lattice
with ultracold atomic configuration to realize our work in an
experimental framework.
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1 2 3
E

−1−2−3 0

FIG. 8. The schematic diagram that shows the extent of the en-
ergy bands of the decoupled ladder strands described in the new φn

basis. The region of overlap is outlined by the red-dashed lines.

APPENDIX A: ON THE TWO-TERMINAL TRANSPORT
ACROSS A LADDER NETWORK

Let us consider the clean case, with zero flux, to understand
the heuristic argument that we wish to put forward.

With �n = 0 (that is obtained by setting λ = 0), the dif-
ference equations satisfied by the amplitudes of the wave
functions ψn,a and ψn,b are easily written down as

(E − ε)ψn,a = tx(ψn−1,a + ψn+1,a) + tyψn,b,

(E − ε)ψn,b = tx(ψn−1,b + ψn+1,b) + tyψn,a. (A1)

A change of basis [70,71] decouples the set of Eq. (A1)
into

[E − (ε + ty)]φn,a = tx(φn−1,a + φn+1,a),

[E − (ε − ty)]φn,b = tx(φn−1,b + φn+1,b), (A2)

where φn,a = (ψn,a + ψn,b)/
√

2 and φn,b = (ψn,a −
ψn,b)/

√
2. The new “rotated” φ basis represents an excitation

that is well described by a linear combination of the old
amplitudes. It should be noted that if any one of the
amplitudes ψn,a or ψn,b is extended in nature, the combination
naturally represents an extended wave propagation. On the
other hand, in order that the φn’s represent a localized state,
both ψn,a and ψn,b have to be localized in space.

Each equation in the set of Eq. (A2) gives rise to abso-
lutely continuous bands, ranging between (ε + ty − 2tx, ε +
ty + 2tx ) and (ε − ty − 2tx, ε − ty + 2tx ). With ε = 0 and tx =
ty = 1, the bands coming from each equation are schemati-
cally shown in Fig. 8. The region of overlap is put inside a
red-dashed box.

a

b

Φ Φ Φ Φ ΦΦ Φ2 31 1 2 33

1 2 3 4

7 6 58

FIG. 9. A two-strand ladder threaded by a period-3 flux profile.
The yellow-shaded region represents the unit cell. Peierls’ phase is
acquired as the particle hops along the upper (red) bonds, and has a
positive sign from left to right.

For a continuous distribution of energy between E ∈ [1, 3]
and between E ∈ [−3,−1] we come across the lower value of
the transmission coefficient, that turns out to be approximately
half the value T (E ) 	 1 which spans the central energy
regime E ∈ [−1, 1]. This is the result shown in Fig. 3(d), and
not for �n = 0 really. Our argument, given above, about the
band splitting, though assumes zero-flux penetration, works
pretty well to explain the band splitting shown in the density
of states plot in Fig. 3(a), and subsequently reflected in the
transmission spectrum in Fig. 3(c), where we have chosen
λ = 1. The strength of the flux in any nth plaquette is now
equal to 1/2π , which turns out to be a rather small pertur-
bation, and thus the transmission pattern is not expected to
change its global pattern appreciably from the zero-flux case.
The steplike structure, as we already have stated in the main
text, exactly corroborates the results obtained analytically in
the case of nanoribbon strips where, for an M strand ladder
network one finds a total of 2M steps in the transmission
coefficient [44].

APPENDIX B: THE SYMMETRY AND TOPOLOGICAL
EDGE STATES

To explore any bulk symmetry and its connection to the
edge states, such as the gapped states in the butterfly spectrum,
shown in Fig. 6(c), we investigate the case for α = 1/3. The
existence of the other pair of edge states for α = 2/3 can be
justified in a similar way.

It is to be appreciated that the parameter α controls the flux
modulation frequency and thus, the case α = 1/3 corresponds
to a ladder with flux periodicity Nφ = 1

α
= 3. This scheme of

flux distribution is shown in Fig. 9 with the unit cell high-
lighted in yellow. For Nφ = 3, the Hamiltonian in Eq. (2) can
be written in the momentum space as

H(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 txeiθ1 0 txeik 0 0 0 ty
txe−iθ1 0 txeiθ2 0 0 0 ty 0

0 txe−iθ2 0 txeiθ3 0 ty 0 0
txe−ik 0 txe−iθ3 0 ty 0 0 0

0 0 0 ty 0 tx 0 txe−ik

0 0 ty 0 tx 0 tx 0
0 ty 0 0 0 tx 0 tx
ty 0 0 0 txeik 0 tx 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B1)

We of course, have chosen tx = ty = 1 throughout, but in
this analysis that really does not matter. The Peierls’ phase

θn is related to the trapped magnetic flux by the relation
θn = 2πφn (n = 1, 2, 3), k being the wave vector. We have
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set the lattice translation as unity, without losing any physics.
We find H(k) exhibits chiral symmetry, viz., CH(k)C−1 =
−H(k), with the unitary operator C given by an 8 × 8 diagonal

matrix C = diag(1,−1, 1,−1, 1,−1, 1,−1). Therefore, the
gapped states of such bulk systems are protected by the chiral
symmetry.
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